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Abstract—The need to execute Deep Neural Networks (DNNs)
at low latency and low power at the edge has spurred the
development of new heterogeneous Systems-on-Chips (SoCs)
encapsulating a diverse set of hardware accelerators. How to
optimally map a DNN onto such multi-accelerator systems is an
open problem. We propose ODiMO, a hardware-aware tool that
performs a fine-grain mapping across different accelerators on-
chip, splitting individual layers and executing them in parallel,
to reduce inference energy consumption or latency, while taking
into account each accelerator’s quantization precision to maintain
accuracy. Pareto-optimal networks in the accuracy vs. energy or
latency space are pursued for three popular dataset/DNN pairs,
and deployed on the DIANA heterogeneous ultra-low power edge
AI SoC. We show that ODiMO reduces energy/latency by up to
33%/31% with limited accuracy drop (-0.53%/-0.32%) compared
to manual heuristic mappings.

Index Terms—Heterogeneous Computing, Edge Computing,
Deep Learning Accelerators, Quantization

I. INTRODUCTION

Executing Deep Neural Networks (DNNs) inference at
the edge brings several advantages, including lower energy
consumption, lower and more predictable response latency,
and improved privacy, by eliminating the dependency on a
constant Internet connection [1], [2]. However, deploying com-
putationally intensive DNNs on edge devices with tight power
envelopes and energy constraints is a daunting task, addressed
by current research in two orthogonal ways. On the software
side, optimization techniques such as constrained Neural Ar-
chitecture Search (NAS), pruning, and quantization [2], [3],
are applied to DNN models to make them both accurate
and resource-efficient. On the hardware side, efficiency is
improved through specialization, i.e., by designing increas-
ingly heterogeneous Systems-on-Chip (SoCs), equipped with
domain specific accelerators for DNN processing [4]–[7].
In particular, a recent trend goes towards multi-accelerator
SoCs, in which multiple specialized hardware blocks are either
optimized for different DNN operations, or to perform the
same operations with different trade-offs in terms of latency,
throughput, energy efficiency or accuracy [5]–[7].

How to optimize a DNN model for execution onto these
multi-accelerator systems is an open problem. In fact, classic
model optimizations are either hardware-independent targeting
abstract complexity metrics, or tailored to the scenario in
which the entire network runs on a single device (CPU,
GPU, etc). While more recent works considered multi-device

inference [7]–[14], to our knowledge, they all assumed that
all devices could produce equivalently accurate results. This
is not always true, with a key counter-example being SoCs
including both Digital and Analog In-Memory-Computing
(AIMC) accelerators [5], [6], where the latter can be faster and
more efficient, but produce approximated results due to very
low quantization bit-width used for weights (e.g., binary or
ternary), while the former are slower and more energy hungry,
but process wider data items at higher numerical precision.

In this work, we propose a novel approach to optimize and
map a DNN execution onto such kind of system, which takes
into account the quantization supported by different acceler-
ators already at training time. Namely, we leverage a fine-
grained, gradient-based, mixed-precision search method [15],
[16] to partition each DNN layer onto sub-layers, executed
in parallel by the various accelerators using their respective
precision. While taking into account the possible accuracy
drops due to quantization, our method tries to minimize energy
consumption or latency, through appropriate hardware-aware
cost models. We name our approach One-shot Differentiable
Mapping Optimizer (ODiMO).

With experiments on three popular Convolutional Neural
Network (CNN) architectures, trained on edge-relevant
computer vision benchmarks, we show that our method yields
rich Pareto-fronts of mapping solutions in the accuracy versus
latency or energy spaces, under different assumptions regard-
ing the accelerators capabilities in a heterogeneous SoC. When
deployed on a real-world SoC of this kind, DIANA [6], our
optimized models reduce energy/latency by up to 33%/31%
with limited accuracy drops (-0.53%/-0.32%) compared to
manual mappings based on rules of thumb. Furthermore, we
improve accuracy by up to +37% for a 1.12× energy increase
compared to a solution that only tries to minimize energy
without considering accuracy. Our code is open-sourced at:
https://github.com/eml-eda/odimo.

II. BACKGROUND AND RELATED WORKS

A. Specialized hardware for edge DNN inference

In recent years, specialized architectures for DNN process-
ing at the edge have flourished, with several designs proposed
both in industry and academia [17]. Many of these modern
SoCs contain multiple specialized hardware blocks, able to
execute the same workload with different trade-offs in terms
of latency, throughput, energy consumption, or accuracy. One



example is the Jetson AGX Xavier series from NVIDIA,
equipped with an 8-cores ARM CPU, a NVIDIA Volta GPU
with 512 CUDA cores and two NVIDIA Deep Learning
Accelerators (NVDLA). Users can split the workload between
the GPU, faster but more energy hungry, and the NVDLAs,
slightly slower but more efficient [7].

In the architecture of [5], a control CPU dispatches the
workload either to a 590k-cells AIMC accelerator tailored
for 1-bit multiply-and-accumulate (MAC) operations, or to a
digital Near-Memory Computing (NMC) accelerator, which
supports variable precision from 1 to 8bits. In this case,
selecting one of the two accelerators results either in more
accuracy but higher latency and energy (NMC), or vice versa
(AIMC). Similarly, DIANA [6] features a single-core RISC-
V CPU as control unit and two DNN accelerators: a 16×16
grid of digital processing elements performing MACs at 8-
bit precision, with a 64 kB weight memory, and a 500k-cells
AIMC accelerator with ternary weights. The two accelerators
share a dedicated 256 kB L1 memory, accessed through Direct
Memory Access (DMA).

B. Mixed-Precision Quantization

In parallel to new specialized SoCs, many DNN optimiza-
tion techniques have been introduced over the years, such
as pruning, quantization, and NAS, to design lightweight
networks that can fit on edge devices. This section focuses
on the main knob explored by ODiMO, i.e., quantization; we
refer readers to [2] for details on other techniques.

Quantization improves DNNs’ energy-efficiency by reduc-
ing the precision of data and operations, e.g., from floating
point to low bit-width integer formats (1 to 8-bit) [3]. The
default approach is the so-called fixed-precision quantization,
in which the same bit-width n (usually 8-bit) is used across
the model. Recently, mixed-precision approaches, that vary n
for different parts of a DNN, have been shown to provide addi-
tional time, memory and energy savings, especially when na-
tive hardware support for sub-byte operations is available [15],
[16], [18], [19]. However, finding the optimal assignment of
bit-widths to different parts of the network, e.g., to minimize
energy under a given accuracy constraint, involves searching
a huge space, exponential in the depth of the DNN.

Existing solutions to this problem use techniques inherited
from NAS, such as sensitivity-based heuristics [19] or Rein-
forcement Learning [18]. In particular, a recent approach [15],
[16] takes inspiration by Differentiable NAS (DNAS) to speed
up the process, optimizing the bit-width assignment during
training. Multiple copies of each tensor, quantized at different
bit-widths, are generated on-the-fly, and linearly combined by
means of trainable NAS parameters. The latter are then in-
serted in a standard DNN training loop, where an appropriately
regularized loss function guides the optimization to increase
the NAS parameters linked with quantizations that yield a good
trade-off between accuracy and inference cost. At the end of
training, the bit-widths which have been assigned the largest
NAS coefficient are selected for each tensor.

C. DNN mapping on heterogeneous systems

The problem of mapping complex tasks onto a heteroge-
neous system with accelerators has been studied for a long
time. Early works focus on generic workloads (e.g. OpenCL
programs) [20], but more recently, the specific case of DNN
inference has attracted a lot of attention. The authors of [8]
implement a simple form of data parallelism, in which entire
inferences are mapped onto a single device, selecting the
fastest available between CPUs, GPUs and NPUs at any time.
[9] performs a similar mutually-exclusive mapping, but at the
level of each DNN layer, using a random forest to predict the
latency or energy efficiency of offloading a layer to CPU or to
multiple GPUs, based on the tensors geometry. [10] proposes
a heuristic for a multi-accelerator system including a GPU
(NVIDIA Jetson TX2) and a FPGA (Xilinx Artix7), consisting
in offloading all Fully-Connected (FC) layers to the FPGA, and
the rest of the DNN to the GPU.

The authors of [7] explore the energy versus latency trade-
offs offered by offloading parts of a DNN to the GPU or to
the NVDLAs in a NVIDIA Jetson AGX Xavier. Partitioning
is done at layer level, and linear programming is used to find
the lowest latency mapping under an energy constraint. An
alternative mapping scheme for the Xavier is proposed in [11],
which explores data parallelism and pipelining among GPU
and NVDLAs, focusing only on improving throughput.

In [12], finer-granularity intra-layer partitions are explored,
using dynamic programming to optimize DNN training latency
on a system composed of multiple Google TPUv2/v3 accel-
erators, taking into account compute performance and com-
munication overheads. Three partitioning axes are considered
(over batches, input channels or output channels). Lastly, other
works target DNN mapping problems for networks of dis-
tributed devices rather than individual multi-accelerator SoCs,
proposing similar data- or model-partitioning schemes [13],
[14].

III. ONE-SHOT DIFFERENTIABLE MAPPING OPTIMIZER

All works discussed in see Sec. II-C assume that mapping
part of a DNN to a given accelerator does not affect the final
accuracy [7]–[14]. Therefore, they only explore the trade-off
between latency and throughput or latency and energy. While
reasonable for their targets, this assumption breaks for more
extreme-edge-oriented platforms such as [5], [6] in which
some of the available accelerators use aggressive quantization.
In that case, the mapping choices greatly influence both
functional (accuracy) and non functional (e.g., energy) metrics.
To our knowledge, no previous work has considered this trade-
off in DNN mapping optimizations for multi-accelerator SoCs.

We fill this gap by proposing ODiMO, an optimization
method that partitions a DNN execution onto heterogeneous
compute domains that include accelerators with different quan-
tization levels and formats, optimizing the trade-off between
accuracy and energy or latency. Differently from most conven-
tional mapping strategies, which are coarse-grain (e.g., layer-
wise), our tool uses a fine-grain intra-layer partitioning aimed
at maximizing the utilization of all accelerators.
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Fig. 1. Mapping strategy for a Convolutional layer.

A. Mapping optimization strategy

ODiMO considers splitting each Convolutional (Conv) or
FC layer in a DNN among N different devices, at the level of
individual output channels/neurons. That is, all accelerators
process the entire layer input and produce a subset of the
output activations, as shown in Figure 1 for a Conv layer. For
this approach to be effective, the target heterogeneous system
must respect two properties: i) different accelerators can have
incompatible weights quantizations but must have the same
activation quantization, or at least two similar formats that do
not cause a significant difference in terms of accuracy (see
Sec. III-B); ii) all accelerators must have access to a shared
memory for loading/storing the layer input/partial output [12].
Note that both [5] and [6] respect these constraints. Under
these conditions, the problem can be reduced to selecting the
best quantization for each channel’s weights, where the choice
not only influences the overall model accuracy, but also limits
the mapping options for that channel to the accelerator(s) that
support the selected precision, thus affecting the inference
energy/latency costs.

The optimization space is huge: e.g., for just N = 2
accelerators and a ResNet18 CNN, there are about 1039

possible ways to assign each channel of each layer to one
of the two devices. Therefore, ODiMO adopts a DNAS-
like optimization method inspired by recent work on fine-
grained mixed-precision quantization [16], in which bit-width
assignment is performed during training, similar to so-called
One-shot NAS approaches.

As shown in Fig. 2, for each layer l of a DNN, the weight
tensor W (l) is fake-quantized multiple times, simulating the
data format supported by all available accelerators. Namely,
we generate Ŵ

(l)
acci ,∀i ∈ [1, N ] different fake-quantized copies

of the weights. Each of them is paired with a vector of
trainable parameters α

(l)
acci ∈ RC

(l)
out , where C

(l)
out is the number

of output channels in the l-th layer. For each channel c in C
(l)
out

we then compute the effective weights as:

Ŵ (l)
c =

N∑
i=1

ᾱ(l)
c,acciŴ

(l)
c,acci (1)

where ᾱ
(l)
c,acci = sofmax(α

(l)
c,acci , τ) and τ is the softmax

temperature. The aggregated effective weight tensor Ŵ (l) for
layer l is obtained concatenating the Ŵ

(l)
c tensors of Eq. 1

over the output channel dimension.
Using Ŵ (l) in place of W (l) for all layers, ODiMO solves a

continuous relaxation of the multi-accelerator mapping prob-
lem. In practice, each layer’s output becomes a “mix” of what
would be produced by all available accelerators, given their
quantization formats. The importance of each accelerator in

Conv0

Convn
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Weights …
W(0)
W(0)
W(0) Lo

ss

Fig. 2. DNAS-like optimization scheme at training time.

the mix is controlled by α
(l)
acci . We can then train α

(l)
acci as in

DNAS, to learn which mapping provides the best accuracy vs
inference cost trade-off for a given channel.

Specifically, the DNN with fake-quantized weights is in-
serted in a training loop which optimizes:

min
W,α

LT (W ;α) + λLR(α) (2)

where LT is the standard task loss, W = {W (l)},∀l is the
set of DNN weights, and α = {α(l)

acci},∀l, i is the set of
parameters that determine the bit-width assignment for each
channel, and consequently its mapping to one of the available
accelerators. Lastly, LR is an additional loss term that models
the cost of the DNN execution (e.g., energy) as a function of
the mapping decisions, and λ is a scalar regularization strength
that controls the balance between the two loss terms.

We formulate LR differently when optimizing for energy
or latency. For latency, we minimize:

LR =
∑
l

M (l), M (l) = max(LAT
(l)
1 , ..., LAT (l)

n ) (3)

where LAT
(l)
i (α) is a differentiable model of the i-th acceler-

ator’s latency for layer l, as a function of the channels assigned
to it, detailed in Sec. III-C. M (l) is the latency of the entire
layer, assuming that the accelerators run in parallel, which
except for thermal effects, which are generally negligible for
low-power SoCs like DIANA, is the optimal choice for both
time and energy reduction, as it minimizes idle consumption.
In practice, since we need a fully-differentiable loss term,
we substitute the max operation of Eq. 3 with its smooth
differentiable approximation. For energy reduction, instead, we
use the following model:

LR =
∑
l

∑
i

Pact,i ·LAT
(l)
i +Pidle,i · (M (l)−LAT

(l)
i ) (4)

where Pact,i and Pidle,i are the average active and idle power
consumption of the i-th accelerator.

At the end of training, we discretize the mapping. Namely,
for each channel, we select the accelerator corresponding to
the largest α(l)

c,acci .
However, the channels assigned to the same hardware are in

general not consecutive, which would complicate the merging
of partial outputs. Therefore, a layer transformation pass is
applied to the DNN before deployment on the target SoC,
shown in Fig. 3. Activation channels are represented as side-
by-side squares for better visualization, and colors used for
weights filters and for activation outlines indicate the assign-
ment to a given accelerator. Black patterns are added to some
filters/output slices to clarify the process. The top-left part
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of the figure shows an example of ODiMO output. On the
top-right, the channels in X(1) and the corresponding filters
in W (0) are reordered, grouping together those that will be
dispatched to the same accelerator, to enable a simple con-
catenation of outputs. To preserve the network functionality,
the weights of the next layer W (1) are also reordered across
the input channels dimensions. After this transformation, the
layer is effectively split into N independent sub-layers that
can be deployed in parallel onto the N available accelerators,
without requiring any data-marshaling overhead to aggregate
their outputs (bottom of Fig. 3).

B. Training Details

In this work, we apply ODiMO to the DIANA multi-
accelerator SoC of [6], presented in Sec. II-A. This section
reports the HW-specific details of our implementation. Note
that the general approach is orthogonal to most of these details.

Given a pre-trained floating-point DNN, we first fold Batch
Normalization (BN) layers with Conv/FC, since the DIANA
accelerators do not implement BN in hardware. Then, we
apply fake-quantization following the scheme of [21]:

Q(x) =
es

2n−1 − 1
· round(2n−1 − 1 · clip(x,−1, 1)) (5)

where s is a trainable scale parameter and n is the bit-
width. With n = 2, Eq. 5 performs ternarization, i.e., the
quantization format of DIANA’s AIMC accelerator weights,
while we use n = 8 for the digital accelerator weights.
Concerning activations, the AIMC and digital blocks have
slightly different formats on 7- and 8-bit respectively. During
the optimization phase, we use the worst case of the two (7-
bit) as fake-quantization bit-width for layers’ inputs/outputs.
As long as the DNN is appropriately fine-tuned (see below),
we found this approximation not to degrade our results.

The fake-quantized DNN is optimized with the procedure
of Fig. 2 until convergence, with an early-stop mechanism.
Then, after discretizing the final channel assignment to each
accelerator, the model is fine-tuned based on the task loss term
LT only. In this phase, we use the exact quantization format
also for activations, i.e., shared data are stored on 8-bit but
the AIMC accelerator D/A and A/D converters are on 7-bit,
effectively truncating the LSB of inputs/outputs.

C. Hardware Models

The differentiable latency models plugged in Eq. 3 and 4 are
key elements of the proposed method. Latency modeling has
been studied extensively in recent NAS literature. A common

approach [22] uses a small NN model trained on many profiled
layers to predict latency based on the layer geometry. Although
this method is compatible with ODiMO, given the predictabil-
ity of DIANA’s AIMC and Digital accelerators execution, we
found that using simpler analytical models that account for the
respective parallelism and dataflow yields good-enough results
while making the optimization faster.

These simplified models neglect non-idealities such as
memory stalls, tiling overheads for large activation tensors,
and programming overheads. However, comparing them with
hardware measurements on a wide set of layer configura-
tions, we verified that they can preserve rank well, i.e., it
generally holds that if LAT 1

predicted < LAT 2
predicted, then

LAT 1
hw < LAT 2

hw, which makes them usable for mapping
decisions. For the AIMC accelerator, our latency model is:

LAT
(l)
aimc(α) =⌈C

(l)
in × f

(l)
x × f

(l)
y

1152
⌉⌈C

(l)
out(α)

512
⌉ × o(l)x × o(l)y +

2× 4× C
(l)
in × ⌈C

(l)
out(α)

512
⌉

where C
(l)
in , o

(l)
x /o(l)y and f

(l)
x /f (l)

y are the layer’s input
channels, output spatial dimensions and kernel sizes
respectively, and the two addends correspond to the cycles
of the computation and of the DMA transfer to populate the
weights respectively. Note that this model depends on the
optimization choices (α) through Cout, since ODiMO assign a
variable number of output channels to the AIMC accelerator.
The digital accelerator model uses the same two terms:

LAT
(n)
dig (α) =⌈C

(l)
out(α)

16
⌉⌈o

(l)
y

16
⌉ × C

(l)
in × o(l)x × f (l)

x × f (l)
y +

C
(l)
in × C

(l)
out(α)× f (l)

x × f (l)
y

Numeric constants in the two models depend on the sizes
of the respective processing element arrays. We do not count
activation transfers, because we assume that they are always
stored in the shared L1 scratchpad memory.

IV. EXPERIMENTAL RESULTS

A. Setup

We benchmark ODiMO on three edge-relevant computer
vision tasks and DNNs: i) image classification on CIFAR-10,
with ResNet20 [23] as reference model; ii) image classification
on the 200-classes Tiny-ImageNet [24], with ResNet18 [23];
iii) person detection on Visual Wake Word (VWW), which is
based on the MSCOCO 2014 dataset, with a MobileNet-V1
with 0.25× width-multiplier [25]. We pre-train and fine-tune
all DNNs using the same epochs and hyper-parameters of the
reference papers. ODiMO is written in Python 3.9 and PyTorch
v1.11. To deploy our networks on DIANA [6], we adapted the
open-source DORY [26] framework.

We compare ODiMO with several baseline mapping alter-
natives. Specifically, our baselines are: i) All-8bit and All-
Ternary, the trivial mappings that use only the DIANA digital
and AIMC accelerators, respectively; ii) IO-8bit/Backbone
Ternary, a heuristic solution from [6] that maps the first/last
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layers to the 8-bit accelerator, and the rest to the AIMC
one, based on the rule-of-thumb that aggressively quantizing
layers close to the input and the output of the network
often causes large accuracy drops; iii) Min-Cost an optimized
deterministic mapping that uses the same channel-wise parti-
tioning of ODiMO, with the sole goal of minimizing latency
or energy without taking accuracy into account. Namely, it
statically maps channels of each layer to the AIMC and digital
accelerators, before training, to minimize Eq.3 or Eq.4. In case
of equivalent solutions, digital channels are maximized since
this is expected to improve accuracy.

For the MobileNetV1 on VWW, we only optimize the map-
ping of pointwise and standard convolutions (and FC layers),
since in DIANA, depthwise convolutions can only be executed
on the digital accelerator. Further, all baselines that use the
AIMC accelerator are not reported for VWW because their
training could not converge, resulting in random predictions.

B. Search-Space Exploration

Fig. 4 show the results obtained with ODiMO on the
three benchmarks, in the accuracy versus estimated latency
(top row) and accuracy versus estimated energy (bottom row)
spaces, with latency and energy computed using the DIANA’s
models described in Sec. III-C. Each ODiMO point is obtained
repeating the training procedure of Sec. III-B with a different
regularization strength (λ) and using either the energy or
latency regularizer. We also report the baselines in green and
the floating point DNN accuracy as a horizontal dashed line.
In all graphs, baselines are either dominated or on the Pareto
frontier, demonstrating the effectiveness of our approach.
Additionally, ODiMO produces a rich set of intermediate
Pareto-optimal solutions that could not be obtained otherwise.

With the DIANA cost models, ODiMO can trade-off the es-
timated latency and accuracy (-32% latency, -0.32% accuracy)
w.r.t. the All-8bit baseline on CIFAR-10 (3rd blue dot from the
right in the top-row figure). Moreover, energy can be reduced
by 29% when accepting a 0.53% accuracy drop (4th point
from the right in bottom-row). On TinyImageNet, our tool
discovers solutions spanning more than one order of magnitude
on the x axis, that can reduce the estimated latency/energy
by 15%/35.6% and 77.8%/77.7% for a drop of <2% and
<5% accuracy w.r.t. the 8bit baseline, respectively. Lastly, on
VWW, ODiMO achieves up to 24.3%/20.8% latency/energy

reduction while improving accuracy by 0.87%/0.95% w.r.t
All-8bit.

Fig. 5 shows the independence of ODiMO from the DIANA
SoC specifics. For the sake of space, the figure shows results
only on Tiny-ImageNet, and demonstrates how ODiMO is able
to find a rich collection of Pareto optimal mappings even with
different hardware cost models. Results are obtained consid-
ering two abstract models, not related to any specific HW,
retaining from DIANA only the presence of two accelerators
working with ternary and 8-bit data precision respectively.
These models assume that the latency of both accelerators is
simply proportional to the number of operations, and that the
active power of the 8-bit accelerator is 10 times higher than the
ternary one (Pact,8 = 10 · Pact,ter). Then, for the first model,
we assume Pidle = Pact for both accelerators (no shutdown),
while, for the second, we consider Pidle = 0 (ideal shutdown).

The top graph of Fig. 5 shows ODiMO mappings obtained
with the first model. Note that in this corner case, energy and
latency minimization coincide, since substituting Pidle = Pact

for all accelerators in Eq. 4 yields Eq. 3, except for a constant.
The bottom of Fig. 5, instead, shows the results obtained with
Pidle,i = 0. The two graphs only show accuracies > 55%; the
all-ternary and min-cost baselines are not shown, as they reach
too low accuracy (see middle graphs in Fig. 4). With these two
models, ODiMO reduces energy respectively by 44.2%/51.5%
for a drop of <2% accuracy w.r.t. the 8bit baseline.

C. DIANA Deployment

This section analyzes the results of deploying a subset of
the solutions from Fig. 4 on the DIANA SoC, running at a
frequency of 260 MHz, substituting modeled with measured
latency and energy. For each benchmark, we deploy the All-
8bit and Min-Cost baselines and a selection of ODiMO results
(highlighted with a black circle in Fig. 4). We select two points
from the latency Pareto-front (Large-Lat and Small-Lat) and
two from the Energy one (Large-En, Small-En) for all bench-
marks except VWW, where given the smaller search space,
we deploy a single point from each graph. For all DNNs, we
report in Table I accuracy, latency, energy consumption, the
percentage of time each accelerator is utilized during an end-
to-end inference (D./A. util.), and the percentage of channels
executed on the AIMC accelerator, i.e., the fraction Caimc

out /Cout

for the whole network (A. Ch.). On CIFAR-10, ODiMO-



TABLE I
DEPLOYMENT ON DIANA OF SELECTED SOLUTIONS FROM FIG. 4

Network Acc. lat. [ms] E. [uJ] D./A. util. A. Ch.

Cifar10

All-8bit 90.70 1.55 38.71 100% / 0% 0%
ODiMO Large - Lat 91.24 1.55 43.20 100% / 21.0% 5.6%
ODiMO Small - Lat 90.38 1.07 34.43 100% / 44.8% 51.8%
ODiMO Large - En 90.33 1.05 33.43 100% / 43.1% 50.3%
ODiMO Small - En 90.17 0.80 25.94 76.2% / 60.0% 72.9%
Min Cost 90.06 0.47 13.57 9.5% / 93.6% 97.5%

TinyI.

All-8bit 71.29 94.44 2357.3 100% / 0% 0%
ODiMO Large - Lat 70.16 73.92 2999.8 100% / 8.2% 23.8%
ODiMO Small - Lat 64.07 4.32 139.2 25% / 87.8% 99.0%
ODiMO Large - En 69.54 63.55 1648.18 100% / 9.4% 34.2%
ODiMO Small - En 64.14 5.05 141.25 20% / 84.4% 96.5%
Min Cost 26.51 4.07 125.96 30% / 89.7% 98%

VWW
All-8bit 82.86 3.05 76.18 100% / 0% 0%
ODiMO - Lat 83.73 2.80 71.29 100% / 17.8% 39.1%
ODiMO - En 83.81 2.79 70.74 100% / 17.71% 40%

Fig. 6. Utilization of accelerators on convolutional layers of ODiMO-Small-
En on CIFAR-10. (Ci = i-th Conv. layer).

Small-En reduces energy by 33% w.r.t All-8bit, for a limited
accuracy drop (-0.53%). This result, which is compatible with
the 29% reduction estimated by the model (see Sec. IV-B), is
achieved offloading a large portion of the channels (72.9%
of the total) to the analog accelerator. Further, the digital
and AIMC accelerators are active for 76.2% and 60% of the
inference time. Fig. 6 shows a breakdown of the utilization
of both accelerators throughout an inference with this DNN.
For almost the 40% of the time, both accelerators work
simultaneously, demonstrating that splitting layers between the
two is beneficial to reduce energy consumption, while keeping
an almost constant accuracy.

On TinyImageNet, ODiMO-Large-En suffers an accuracy
drop compared to All-8bit (-1.75%), but improves the energy
by 1.43×, while ODiMO-Small-En achieves 37.63% higher
accuracy compared to Min-Cost, at the cost of only 1.12×
higher energy consumption. Both solutions exploit the analog
accelerator for a large portions of the DNN channels, 34.2%
and 96.5%, respectively. It is also worth mentioning that Min-
Cost, which offloads only an additional 1.5% of the network to
the AIMC accelerator compared to ODiMO-Small-En, fails in
reaching a good accuracy; this is because the Min-Cost map-
ping is built without taking into account accuracy, contrary to
our method. Further, notice that ODiMO-Large-Lat effectively
improves latency compared to All-8bit (1.27× faster) but at
same time fails in reducing the energy consumption (1.27×
less efficient) demonstrating the need to optimize energy and
latency with two different tailored models, depending on the
specific design goals.

On VWW, despite lower benefits, ODiMO-En shows a
higher accuracy compared to the All-8bit (+0.95%) solution
with 7% lower energy consumption, Pareto dominating it.

V. CONCLUSIONS

We have introduced ODiMO, a tool that partitions a DNN
execution at fine grain among multiple accelerators with

incompatible quantization formats. To do so, it formulates the
problem as a mixed-precision bit-width assignment and uses a
DNAS-like approach to optimize the mapping while training
the DNN weights. With results on different benchmarks and
DNN architectures, we have shown that ODiMO can obtain
rich Pareto-fronts in both the accuracy vs energy or latency
spaces, and reduce energy by up to 33% with limited accuracy
drops compared to a single-accelerator solution. Future work
will concentrate on building more accurate hardware models
and supporting also activations quantization requiring format
conversions whose cost need to be modeled.
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