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Abstract. In a recent study (K.J. Painter and T. Hillen, Spatio-temporal

chaos in a chemotaxis model, Physica D, 240 (4), 363-375, 2011) a model for
chemotaxis incorporating logistic growth was investigated for its pattern forma-

tion properties. In particular, a variety of complex spatio-temporal patterning
was found, including stationary, periodic and chaotic. Complicated dynamics

appear to arise through a sequence of “merging and emerging” events: the

merging of two neighbouring aggregates or the emergence of a new aggregate
in an open space. In this paper we focus on a time-discrete dynamical sys-

tem motivated by these dynamics, which we call the merging-emerging system

(MES). We introduce this new class of set-valued dynamical systems and anal-
yse its capacity to generate similar “pattern formation” dynamics. The MES

shows remarkably close correspondence with patterning in the logistic chemo-

taxis model, strengthening our assertion that the characteristic length scales
of merging and emerging are responsible for the observed dynamics. Further-

more, the MES describes a novel class of pattern-forming discrete dynamical
systems worthy of study in its own right.

1. Introduction. The analysis of pattern formation in chemotactic systems is in
full swing. Chemotaxis describes the active orientation of cells or organisms in
response to chemical gradients which, in many instances, are generated and/or ma-
nipulated by the cells themselves: particular examples include soil-dwelling cellular
slime molds such as Dictyostelium discoideum [6, 19, 9], or bacteria populations
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 1. Simulations of the chemotaxis model (2) under distinct
parameters and boundary conditions. Cell densities (dark indicates
high densities) plotted as a function of space (y-axis) and time (x-
axis). We observe stationary, periodic and chaotic patterns. (a)-(d)
homogeneous Dirichlet boundary conditions, (e)-(f) homogeneous
Neumann boundary conditions. Parameters are D = r = 1, χ = 10
and (a) L = 10, (b) L = 14, (c) L = 17 , (d) L = 21, (e) L = 10, (f)
L = 13, (g) L = 17, (h) L = 24. Numerical method as described
in text; see supplementary data for code.

such as Eschirichia coli [7, 20] and Salmonella typhimurium [26]. Here, chemotaxis
and chemical signalling operate in a positive feedback loop that allows a dispersed
population to self-organise into localised aggregations or swarms.

Mathematical models of this process date to the work of Keller-Segel in the
early 1970s [15, 16], who developed a coupled system of nonlinear partial differ-
ential equations (PDEs) to describe the interactions between cells/organisms and
their chemoattractant. This model has proved surprisingly rich, generating insta-
bilities, pattern formation, travelling waves and finite-time blow-up amongst other
properties (see the comprehensive reviews in [12, 10]). In [22] the authors studied
a specific form of chemotaxis model incorporating logistic cell growth, revealing
spatio-temporal dynamics ranging from stationary patterns to periodic solutions
and chaotic behaviour. Notably, this complex spatio-temporal patterning phenom-
enon has also been reported in cultured Eschirichia coli populations, for example
see [24, 5]. Examples of these various patterns are demonstrated in Figure 1; details
of the chemotaxis model itself will be provided in Section 1.1.

Inspecting the third simulation, Figure 1 (c), we find two principal processes in
operation: if two local maxima are close together, they join (merging), while if two
local maxima are sufficiently far apart, a new maximum forms in the space between
(emerging). These same processes apply in Figure 1 (b, d, e, f, h), although in some
instances they conspire to generate a time-periodic solution. A detailed analytical
understanding of these behaviours is challenging – PDE chemotaxis models gener-
ally remain intractable – and multiple lines of attack are necessary. One method,
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Figure 2. Illustration of the transition rules of the MES system.
The top figures show the iteration step on the x-axis and the points
on the interval [0, 1] on the y-axis. Solid lines indicate merging
events and dotted lines show emerging. The bottom figures give a
count of total number of points at a given iteration step.

taken in [17], would be to carefully examine the underlying instabilities and use
asymptotic methods to uncover the bifurcations.

Here we adopt a more global approach: our inspection suggested that the dy-
namics are determined by two principal length scales, corresponding to merging and
emerging, and a principal aim is to test this assertion. To this end we explore a
caricature model: a discrete analogue of the patterning process in which the num-
bers and positions of points on an interval are updated at each time step according
to their distribution. Briefly, two points sufficiently close are merged into a single
point at their midpoint (merging), while for two points sufficiently far apart a new
point is inserted in the space between (emerging).

While these rules are easily explained, careful assembly is required to lay out
the formal dynamical system within a suitable phase space: the merging-emerging
system (MES). We define this in Section 2, however previews of its output are
provided in Figure 2 and 3 and selected to correlate with the PDE simulations in
Figure 1. To aid presentation, merging events are illustrated through solid lines and
emerging events are presaged with a dotted line leading to the new point. The lower
graph tracks the number of points at each (time) step. In Figure 2 (b) we note a
three-point merger at time 6; this special case, along with other “mega-mergers”, is
described in detail later. Figure 3 shows a case corresponding to the periodic case
(b) of Figure 1, while a highly irregular case is shown in Figure 3 (b).

The manuscript is organised as follows. The remainder of the introduction recalls
the logistic chemotaxis model. Section 2 is devoted to a systematic definition of the
MES as a discrete set-valued dynamical system on a phase space P. We define
addition, subtraction, multiplication and a metric on P. In Section 3 we demon-
strate basic properties of the MES, including conditions for the existence of steady
states, the idea of a generating set, and representations as discontinuous Poincaré
maps. Section 4 illustrates the close resemblance between the patterns of the full
chemotaxis PDE and those of the corresponding MES system. We also study the
dependence on model parameters, the appearance of “hiccups” and the effect of
stochasticity. In Section 5 we perform a statistical analysis based on multiple runs
of the algorithm. The dynamical properties of the MES are shown to be far richer
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(b)

Figure 3. Output from MES. (a) Emerging-merging dynamics
corresponding to the simple periodic chemotaxis pattern of Figure
1 (b). (b) A highly irregular example generated for small merging
and emerging lengths.

than initially expected, including “hidden” periodic solutions. Yet the determinis-
tic MES model does not appear to show chaotic dynamics, rather each simulation
eventually runs into either a fixed pattern or periodic orbit (of potentially very long
periods). We end with a brief discussion.

1.1. The chemotaxis model. The chemotaxis model considered in [22] is a cou-
pled system of two reaction-advection-diffusion equations for the cell density u(x, t)
and the concentration of the chemical substance v(x, t). In rescaled form, these
equations are given by

ut = (Dux − χuvx)x + ru(1− u) ,
vt = vxx + u− v . (1)

In the above x ∈ [0, L], L > 0 denotes space, t ≥ 0 is time, r relates to a popu-
lation growth rate and D and χ are a scaled diffusion coefficient and chemotactic
sensitivity, respectively. The index notation denotes partial derivatives. For the
current paper it is convenient to further rescale onto the unit domain [0, 1]: setting
x̃ = x/L,

ut = ( DL2ux − χ
L2uvx)x + ru(1− u) ,

vt = 1
L2 vxx + u− v , (2)

where we have subsequently dropped the tildes for notational convenience. Model
(2) is typically equipped with one of three standard boundary conditions:
(a) homogeneous Neumann boundary conditions,

ux(0, t) = ux(1, t) = vx(0, t) = vx(1, t) = 0 ;

(b) homogeneous Dirichlet boundary conditions,

u(0, t) = u(1, t) = v(0, t) = v(1, t) = 0 ;

(c) periodic boundary conditions,

u(0, t) = u(1, t), v(0, t) = v(1, t),

ux(0, t) = ux(1, t), vx(0, t) = vx(1, t).

Model (2) with any of the above boundary conditions possesses rich dynamical
behaviour, including stationary patterns, periodic solutions and chaotic dynamics:
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see Figure 1. Note that the simulations of (2) have been performed using the Mat-
lab internal PDE solver (pdepe); the numerical code is available for download in
the supplementary data (or at request from the authors). Simulations have been
further tested and compared against “home-grown” codes (see numerical meth-
ods in [22]): the distinct methods produce equivalent output, although a precise
quantitative match across the full parameter space is precluded due to the chaotic
properties/sensitive dependence in the PDE system. Further examples are shown
throughout this paper, along with [22, 25, 2, 11] and references therein.

In [22] an estimate for the emerging length was obtained via a critical domain-size
problem. In the rescaled model (2) the emerging length is

le = 2π

√
D

L2r
.

Note that for the examples presented, where D = r = 1, χ = 10, this simplifies to

le =
2π

L
. (3)

2. Merging emerging systems. In this section we formulate a caricature discrete
dynamical system of the merging-emerging dynamics. We note that under Dirichlet
boundary conditions the chemotaxis PDE model (2) only generates interior aggre-
gates (e.g. see Figure 1 (a-d)), while under Neumann boundary conditions two
local maxima typically form at the boundaries x = 0 and x = 1 and remain fixed
throughout (e.g. see Figure 1 (e-h)). Either way, we are fundamentally interested
in the dynamics of interior points on the unit interval [0, 1]. Prior to the definition
of the MES, we consider the phase space.

2.1. Phase Space.

Definition 2.1. A finite partition of unity (or “partition”, for short) is a finite
subset of [0, 1] that contains 0 and 1. Let P denote the set of all finite partitions of
unity.

Obviously, P is not empty and we denote e := {0, 1} ∈ P. A finite partition of
unity {aj} can always be arranged as

0 = a0 < a1 < · · · < an = 1.

We define three operations on P : addition (+), subtraction (−) and multiplication
(·). P is closed with these operations and they carry several algebraic properties.

Definition 2.2. Given a, b ∈ P, a = {a0, . . . , an}, b = {b0, . . . , bk}.
1. We define addition, +, by

a+ b := a ∪ b .

2. Let ã ⊂ a. Then we define subtraction, −, by

a− ã := a\ã+ {0, 1} .

3. We define multiplication, ·, by

a · b := {a0b0, a1b0, . . . , anb0, a0b1, . . . , anb1, . . . , anbk} .

Addition, subtraction and multiplication have the following properties.
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• P is closed with respect to (w.r.t.) addition. Addition has a neutral element
e = {0, 1} such that a+e = a. Each element is idempotent, a+a = a. Addition
is commutative, a + b = b + a, and associative, a + (b + c) = (a + b) + c, for
a, b, c ∈ P.

• Note that subtraction is normally defined through solvability of the equation
a+ x = b. Here, however, this equation is generally not solvable in P. Hence
our subtraction is not the inverse operation of addition. However, we do have
the following relations:

(a+ b)− b = a ;

for ã ⊂ a,

(a− ã) + ã = a ;

and there is the inverse element

a− a = e .

Note, however, that −a 6∈ P, and hence the inverse element is not in the set.
• P is closed w.r.t. multiplication, since a0b0 = 0 and anbk = 1. Multiplication

is commutative, i.e. a · b = b · a, and it has a neutral element e, i.e. a · e = a.
The neutral element e is neutral for both addition and multiplication; hence,
P is not an algebra. It is, however, a monoid with respect to addition.

• + and · satisfy the distributive law, i.e.

(a+ b) · c = a · c+ b · c.

• Partitions can be multiplied by a scalar µ ∈ [0, 1] in the following way

µa := {µa0, µa1, . . . , µak} ∪ {1}.

Using this multiplication, we have the relations

µ(a+ b) = µa+ µb

and

µ(a · b) = µa · b = a · µb.

2.2. Metric on P. We can introduce topologies on P by using mollifier functions.
For 0 < h < 1 and 0 ≤ aj ≤ 1 we define

φ(x) := exp

(
−
(x
h

)2)
, ψ(x; aj) :=

φ(x− aj)∫ 1

0
φ(x− aj)dx

,

such that ∫ 1

0

ψ(x, aj)dx = 1.

For a = {a0, . . . , an} ∈ P we define an indicator function of a by summing over all
internal points (excluding 0 and 1):

Ψ(x; a) :=

n−1∑
j=1

ψ(x; aj) .

Then

N(a) :=

∫ 1

0

Ψ(x; a)dx

is the number of internal points of a. For the neutral element e we have N(e) = 0.



MERGING-EMERGING SYSTEMS 7

We define two distance measures on P as follows:

d1(a, b) :=

∫ 1

0

|Ψ(x; a)−Ψ(x; b)|dx ,

d2(a, b) :=

(∫ 1

0

|Ψ(x; a)−Ψ(x; b)|2dx
)1/2

.

The above, of course, mimic the L1 and L2 distances.
Properties of the distance functions are as follows:

• clearly, d1 ≥ 0, d2 ≥ 0, d1(a, b) = d1(b, a) and d2(a, b) = d2(b, a);
• we have

d1(a, b) = 0 ⇔ d2(a, b) = 0 ⇔ a = b ;

• based on the properties of the L1 and L2 norms, for a, b, c ∈ P we have the
triangle inequality ,

dj(a, b) ≤ dj(a, c) + dj(b, c), j = 1, 2 ;

• we note N(a) = d1(a, e). If |a| denotes the size of the set a, then |a| = N(a)+2.
• N(a) ≥ 0 and N(a) = 0 iff a = e;
• arbitrary sets a, b ∈ P may have common points, hence

N(a+ b) ≤ N(a) +N(b) ;

• for any µ ∈ (0, 1) we have

N(µa) = N(a) + 1 .

Hence, d1 and d2 define a metric on P and P is a metric set with addition, subtrac-
tion and multiplication. Unfortunately, N(.) is not a norm since it is not homoge-
neous of order one.

2.3. Merging and emerging dynamics. We are now in a position to define a
time-discrete dynamical system on P. We consider two non-negative model param-
eters lm and le, respectively termed the merging length and the emerging length.
The definition of the MES system requires attention to a number of special cases,
which we consider in an incremental manner. Here we only define the base-case,
which we call (E0,M0), where E0 describes an emerging operator and M0 a merging
operator. While the base case ignores some more complicated scenarios, it helps
introduce the notation; in the Appendix a systematic specialisation is taken towards
the final model (Ê2, M̂1), closest in description to the behaviour observed in PDE
simulations. As in the PDE case, we distinguish between Neumann and Dirich-
let boundary conditions. For the Neumann-case we impose fixed local maxima at
the boundaries with nearby points absorbed into these, whereas for the Dirichlet
case there are generally no boundary points. The emerging operator is the same
for each boundary condition, but the merging operator in the Neumann case must
incorporate absorption to the boundary. Absorption is described by an additional
absorption length parameter, la, usually taken as la = lm/2.

Base case:

• Emerging: Given a ∈ P and an emerging length le > 0. We combine all
intervals with a length larger than le in an emerging index set J0

e := {j :
|aj+1 − aj | > le}. The emerging operator E0 : P → P is defined as

E0(a) := a+
∑
J0
e

{
aj+1 + aj

2

}
.
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• Merging, Neumann: Given a ∈ P and a merging length lm > 0. Inner
intervals that have a length smaller than lm will merge. At the boundary,
merging to the boundary (absorption) occurs if the distance is less than la =
lm/2. Hence, here we define two merging index sets: J0

m := {j : |aj+1 − aj | <
lm, j = 2, . . . , n − 1}; J̃0

m := {1 : a1 < lm/2} ∪ {n − 1 : 1 − an−1 < lm/2}.
Then the merging operator M0 : P → P is defined as

M0(a) := a−
∑
J̃0
m

{aj} −
∑
J0
m

{aj+1, aj}+
∑
J0
m

{
aj+1 + aj

2

}
.

• Merging, Dirichlet: In the Dirichlet case we no longer assume to have
a0 = 0 and an = 1 and the phase space in this case is PD := {finite subsets
of (0, 1)}. Given a ∈ PD and a merging length lm > 0. Intervals that have a
length smaller than lm will merge. We define a merging index set: J0

m := {j :
|aj+1−aj | < lm, j = 2, . . . , n−1}. Then the merging operator M0 : PD → PD
is defined as

M0(a) := a−
∑
J0
m

{aj+1, aj}+
∑
J0
m

{
aj+1 + aj

2

}
.

• The merging-emerging system (MES) is then defined by the iteration map

A0 : P → P with A0 := E0 ◦M0 (or Ã0 := M0 ◦ E0) in the Neumann case or
A0 : PD → PD in the Dirichlet case.

Note that any of the above index sets J can be empty in a given situation. The
above model defines the base model, incorporating the simplest dynamics. We also
consider more advanced rules that deal with special cases that might arise. For
example, two merging intervals of the same interval length might occur side-by-
side: the PDE model in this instance shows the quasi-simultaneous merging of
three aggregates into one, which we call a mega-merger (cf. Figure 1 (c) at time
850, or (d) at around 770). Further, if two merging intervals of different length
occur, then the shorter one would merge first. Including these more realistic rules
requires advanced merging and emerging operators: we refer to Figure 17 for a
schematic and Appendix A for precise details.

It is possible to compute some explicit example by hand. For example, assuming
the Dirichlet base case we find:

• Example 1: lm = 0.5 + ε, le = 0.5− ε,

{1/2} E→ {1/4, 1/2, 3/4} M→ {3/8, 5/8} E→ {3/8, 5/8} M→ {1/2} E→ . . .

• Example 2: lm = 0.5− ε, le = 0.5 + ε,

{1/2} E→ {1/2} M→ {1/2} E→ . . .

• Example 3: lm = 0.5− ε, le = 0.5 + ε,

{4/7} E→ {2/7, 4/7} M→ {3/7} E→ {3/7, 5/7} M→ {4/7} E→ . . .

Examples 1 and 2 illustrate how a subtle change in the emerging and merging lengths
can lead to distinct dynamics (periodic or stationary) from the same initial state;
Examples 2 and 3 illustrate how distinct initial conditions can generate distinct
dynamics for identical emerging and merging length parameters.
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3. Some basic properties of the MES. To identify some basic properties we
consider A0 = E0 ◦M0, where E0 and M0 are given by the base case for Neumann
boundary conditions. We expect that similar properties hold for more advanced
cases, but it exceeds the present aims to go through all cases in detail.

3.1. Steady States. A general steady state ā satisfies ā = Aā. This can arise in
two ways: (i) trivial steady states, which satisfy ā = Mā and ā = Eā; (ii) merging-
emerging (me) steady states, which satisfy ā = Aā but ā 6= Mā, hence only a
combination of merging and emerging leads to a steady state.

Lemma 3.1. Let le ≥ lm > 0 and consider the MES in the base case with Neumann
boundary conditions.

1. A (trivial) steady state ā of size n+ 1 = |ā| only exists if

1

le
≤ n ≤ 1

lm
+ 1. (4)

If no integer exists satisfying (4), there is no steady state.
2. me-steady states can only result from absorption at the boundary. They do

not exist for the Dirichlet case.

Proof. We study trivial steady states first. The condition ā = Mā requires that
no merging occurs, which translates into three conditions:

a1 ≥
lm
2
, 1− an−1 ≥

lm
2
, |aj+1 − aj | ≥ lm,∀j = 2, . . . , n− 1.

This already defines a maximum of interior points that a trivial steady state can
support. If n + 1 = |ā| and ā = {a0, . . . , an} then, from the above inequalities, it
follows that

1 = a1 +

n−2∑
j=1

|aj+1 − aj |+ 1− an−1 ,

≥ lm
2

+ (n− 2)lm +
lm
2
,

= (n− 1)lm .

This leads to the condition
1

lm
+ 1 ≥ n.

Hence, given lm, the MES can only support steady states which have at most
1/lm + 1 points.

In the case of emerging, the condition ā = Eā requires that all intervals are
shorter than or equal to le, i.e.

|aj+1 − aj | ≤ le for all j = 1, . . . , n.

Then

1 =

n∑
j=1

|aj+1 − aj | ≤ nle

gives a minimum number of points of n ≥ 1
le

.

To obtain me-steady states which are not trivial steady states, we require ā 6=
Mā. Hence at least one merging event must occur. This merging event can arise
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in the interior or at one of the boundaries. An interior merging event gives an
additional point â := (aj+1 + aj)/2 for some j, however â 6∈ a. If we now apply
E then we can never remove this additional point and E ◦Mā 6= ā. Hence inner
merging events cannot occur.

If merging occurs at one of the boundaries, the point is absorbed into the bound-
ary. If then a1 > le or 1 − an−1 > le, this point could be replaced through an
emerging event.

�

3.2. Generating set. Due to the fundamental root of the dynamics in terms of
retaining points and taking pairwise mean values, we can consider a restriction of
the set of partitions P to be rational numbers

PQ := {{a0, . . . an}; a0 = 0, an = 1, aj < aj+1, aj ∈ Q; j = 1 . . . n− 1}

where PQ is closed w.r.t. the MES system.
Moreover, the initial set of points can be viewed as a generating set for the

dynamics in the following sense. Given an initial value a = {a0, . . . an} ∈ P, then,
in each iteration step, we can add at most the mean value of two neighbouring
points. We define the following elements of P as

S0
a := a, S1

a = a+

n∑
j=1

{
aj + aj−1

2

}
,

and, given Sk−1a = {sk−10 , . . . , sk−1N }, we define recursively

Ska := Sk−1a +

N∑
j=1

{
sn−1j + sn−1j−1

2

}
.

In the limit, we define

Sa :=

∞⋃
k=0

Ska .

Lemma 3.2. 1. For each finite time k, the dynamics of the MES is contained
in the finite set Ska .

2. For each initial condition a ∈ P the set Sa is dense in [0, 1].

Proof. Statement 1 is obvious, hence we only need to prove 2. Consider x ∈ [0, 1]
with x 6∈

⋃∞
k=0 S

k
a . For each k > 0 there exists an interval (skjk , s

k
jk+1) of elements

in Ska that contains x. The length of this interval is bounded by

|skjk+1 − skjk | ≤
1

2k
,

which converges to 0 as k →∞.
�

Although the first statement of Lemma 3.2 offers hope of dealing with a finite set
of possible points, the second statement shows that the dynamics are not a priori
restricted and can in fact involve the whole interval [0, 1].
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Figure 4. Poincare’s maps for case 1 (left) and case 2 (right); see
text for details.
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Figure 5. Poincare’s maps for case 3 (left) and the corresponding
MES simulation (right).

3.3. Relation to discontinuous Poincaré maps. Some simple cases can be di-
rectly related to discontinuous Poincaré maps, indicating the type of dynamical
system to be expected. To see this, we consider a special case where, after each
iteration with A, we have exactly one internal point. We can then define a map
which maps the internal point to its image: if a := {0, a1, 1}, then

f(a1) := (A(a))1.

This can then be plotted as an iterative map (cobweb).
Case 1. Assume le > 1 > 2lm. Emerging never occurs and merging can only

happen if the inner point is sufficiently close to the boundary. The map f for this
case is illustrated as the thick line in the left graph of Figure 4.

Case 2. Assume le <≈ 1 and lm � 1: if the inner point is close to a boundary we
have one emerging and one merging event, while if it is close to the centre nothing
occurs. For this case the Poincaré map is shown in the right graph of Figure 4.

Case 3. If we make the emerging length in Case 2 smaller, then we can expect
periodic behaviour. In Figure 5 we show the Poincaré map for the case 0.5 < le <
1, lm ≈ 0.5, where cobwebbing reveals a periodic orbit. The corresponding MES
simulation is shown in the right plot of Figure 5.
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Figure 6. PDE simulations of the Dirichlet problem (2) under
varying L (as indicated to the left of each plot). Simulation details
and other parameters as in Figure 1.

It is known that discontinuous Poincaré maps can generate complicated patterns,
including chaotic dynamics [14]. The MES show features of these discontinuous
systems.

4. Discrete patterns.

4.1. Comparison to the chemotaxis PDE. In this section we compare “pat-
tern formation” properties in the MES with those of the full chemotaxis model (2).
Figure 6 shows simulations of the Dirichlet problem for (2), where L is used as
a bifurcation parameter to show changes in dynamical behaviour across parame-
ter space: for these parameters, the estimated emerging length in the chemotaxis
model is le = 2π/L. In the following figure, Figure 7, we show iterations of the

corresponding MES system (Ê2, M̂1) with le defined from this estimate.
Notably, the essential qualitative properties of the full chemotaxis model are also

contained within the MES: figures 2 and 3 have already demonstrated stationary
and periodic patterns. In Figure 7 we note that steady states can emerge from peri-
odic behavior (L = 20), or the dynamic remains periodic/irregular (L = 18, 25, 29).
Note that for L = 25 there is a periodic structure of approximately period 50.
Typically, at a given point in (lm, le)-parameter space, we can observe multiple be-
haviours according to the initial conditions: certain initial conditions evolve to a
steady state, while others lead to periodic patterns of varying period (see Figure 8).
Note that distinct initial conditions also lead to distinct pattern types for the full
chemotaxis model (2).
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Figure 7. MES simulations for the Dirichlet case. We set le =
2π/L for (a) L = 18, (b) L = 20, (c) L = 25 and (d) L = 29.
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Figure 8. Two simulations of the MES for Dirichlet boundary
conditions, employing the same parameter values but distinct ini-
tial conditions. Here we set L = 17.

In Figure 9 we plot simulations of the Neumann problem for (2), once again using
L as the bifurcation parameter; note that we typically have maxima at the domain
boundaries and hence local maxima are also imposed at the boundary of the MES
system. Similar to the Dirichlet case, we obtain stationary and periodic solutions,
where the period lengths vary considerably. In Figure 10 we shows two examples of
an iteration that relaxes to a steady state (L = 22) and an example of a long and
complicated period (L = 27). We tested many more parameter values which are
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Figure 9. PDE simulations of the Neumann problem (2) under
varying L (as indicated to the left of each plot). Simulation details
and other parameters as in Figure 1.
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Figure 10. MES simulations for the Neumann case. We set le =
2π/L for (a) L = 22 and (b) L = 27.

not shown here and we again observe close resemblance between the full chemotaxis
model and the MES.

4.2. Base case. Notably the base case (E0,M0) does not reveal this rich behaviour:
simulations indicate that the dynamics either evolve to a steady state or a periodic
orbit with a rather short period (two or three time steps). Simulations in Figure
11 show two simulations of the base case under Neumann boundary conditions.
Dynamics appear to be dominated by an oscillation of small period, disturbed from
time to time through interaction with the boundary as the system attempts to reach
a “comfortable” arrangement with quasi-equal spacing. Qualitative differences arise
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Figure 11. Two base case simulations under Neumann boundary
conditions for lm = 0.199, le = 0.2 (left) and lm = 0.099, le = 0.1
(right).
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Figure 12. “Hiccup”-simulations for the MES Neumann case with
L = 23 (left) and L = 30 (right). Similar phenomena occur in the
PDE model, shown for Dirichlet case and L = 20.

according to whether dynamics fan outwards (e.g. left figure) as the system slowly
loses points, or fan inwards (e.g. right figure) as the system tries to gain points.

4.3. Hiccups. A number of simulations reveal “hiccups”: seemingly ordered struc-
ture interspersed with bursts of less regular behaviour. In Figure 12 (a) we show
two examples of this phenomenon for L = 23 and L = 30 and Neumann bound-
ary conditions. Interestingly, the PDE chemotaxis model (2) can display somewhat
similar phenomena. Similar phenomena of intermittent bursting can be found in
very different contexts, such as turbulence “puffs” in pipeline flow [4] and bursting
for coupled neurons [8].
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Figure 13. Periodic boundary conditions: Typical rotating pat-
terns for the MES (left) and for the PDE model (right)

4.4. Periodic boundary conditions. It is straightforward to define the MES for
periodic boundary conditions as well: here, the region is wrapped onto a circle and
there is no need to define distinct rules for points closest to the “boundaries”. For
the periodic case a variety of solutions can again be found, including the new form
of a periodic orbit that rotates as a “travelling wave” about the unit sphere, see
Figure 13 (left). Notably, such solutions can also be found in the full PDE model:
an example is shown in Figure 13 (right).

4.5. Inclusion of randomness. The “definitive” insertion/merging of points in
the MES – at the exact middle of the interval – is obviously an approximation of
behaviour in the PDE simulations, where precise locations of merging and emerging
events vary according to the mass of individual aggregates and their distribution
across the domain. This source of variability can be introduced into the MES via
a small random perturbation. Specifically, if x1, x2 denote two points that either
merge or admit an emerging event, then we define the new “middle” location as

xnew = x1 + (x2 − x1)(0.5 + random{−1, 1}(x2 − x1)10−5).

Here we no longer require a mega-merger rule, since equal intervals do not arise
(unless present in the initial condition). Simulations of (Ê2, M̂1) with this random
offsetting are shown in Figure 14. We note a more irregular structure than in
previous simulations, with no clear periodic structure and more in line with the
seemingly chaotic patterning in the deterministic PDE. This indicates that the
deterministic MES system describes some of the dynamics of the PDE chemotaxis
system, but not all. It seems that a random component is also relevant. In this
case the MES becomes a stochastic set-valued dynamical system, which we will not
analyse further in this manuscript.

5. Statistical Analysis. A PDE model such as (2) is encumbered by its compu-
tational demand, limiting studies to localised investigations rather than exhaustive
sweeps throughout parameter space. The MES model, on the other hand, is quick
and simple to implement and allows highly detailed investigations with statistical
analysis following repetitions under distinct initial conditions. Again, we use model
(Ê2, M̂1) with Dirichlet boundary conditions and focus on the parameter region

(lm, le) ∈ [0.23, 0.25]× [0.25, 0.27].
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Figure 14. Stochastic MES simulations for the Dirichlet case with
lm = 0.22 and le = 0.245 (left) and le = 0.23 (right).

The emerging length le corresponds to an interval length of L = 2π/le ∈ [23.27, 25.13],
an area of interesting dynamics in the PDE model: see Figures 6 and 7. We incre-
ment lm and le in steps of 0.001 and, for each (lm, le) pair, run 50 simulations from
one, randomly chosen, initial point. The maximum run-time for each simulation is
set at n = 2000 and we monitor the dynamics for steady states or periodic orbits.
The latter are identified through a detection algorithm which compares pieces of
orbits: setting a tolerance level of 10−15, orbits are identified as periodic if the
distance between successive periods is less than this tolerance. Note that checks
for lower tolerances (10−20, 10−30) generated the same periods and the same period
lengths for each parameter pair (lm, le). We find that all runs become either steady
states or periodic orbits, although the period can be as long as 350 iteration steps.

In Figure 15 we plot, at each parameter pair (lm, le), the initial point in blue
if the iteration becomes stationary and in pink if it becomes periodic. Due to the
convoluted nature of the three dimensional picture, we take side-views below: on
the left we show the projections onto the (le, IC)-plane and on the right we show
the projections onto the (lm, IC)-plane; top frames plot the initial points that be-
come steady states (blue) while bottom frames plot the initial points that become
periodic (pink). We clearly see that the resulting pattern depends considerably on
le but less so on lm. A complicated mixing of periodic and stationary outcomes
is observed, with periodic regions interspersed with stationary “tongues”. Figure
15 (top right) plots the fraction of initial conditions that evolve to fixed patterns;
again, we observe the greater dependence on le than lm.

We note that the period length of the periodic solutions can range from approx-
imately 14 to 350, with a sharp transition at le ≈ 0.268, see Figure 16. Standard
deviations (not shown) vary from 5-6 in the region of period lengths around 16, to
circa 100 for regions with periods above 300. The long period solutions are typically
of hiccup type (see bottom row of Figure 16). In Figure 16 (middle row) we plot the
length of time until either a periodic orbit or stationary solution (to a tolerance of
10−15) is obtained. Here we also note a sharp transition about le = 0.265, in which
short period solutions form following a long transient time, while long periods are
found quickly. As previously we note strong dependence on le but weak dependence
on lm.
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Figure 15. Top left: Outcome of the MES simulations with
(lm, le) ∈ [0.23, 0.25]× [0.25, 0.27]. Blue points indicate initial con-
ditions that lead to stationary solutions, while pink indicate those
that lead to periodic orbits. Top right: Fraction of trials that re-
sult in a steady state as a function of (lm, le). Middle and bottom
row: Side views of the top left figure for initial conditions that lead
to steady states (middle) or to periodic orbits (bottom). Note the
symmetry about the midplane of IC=0.5 (color version online).

6. Conclusion. Chemotaxis models have been the subject of interest for their
patterning properties. In particular the logistic chemotaxis model (1) demonstrates
rich patterning, for example see [1, 25, 22, 18, 3, 11] and references therein. In [22]
a systematic numerical analysis for this system was conducted, revealing stationary
and spatio-temporal patterns of both time-periodic and chaotic fashion; the latter
developing through the merging of neighbouring aggregates and the emergence of
new aggregates in open spaces. Similar behaviour has been observed in a number of



MERGING-EMERGING SYSTEMS 19

0.25
0.255

0.26
0.265

0.27

0.23

0.24

0.25
0

100

200

300

400

Emerge LengthMerge Length

P
er

io
d

 L
en

g
th

0.25
0.255

0.26
0.265

0.27

0.23

0.24

0.25
0

10

20

30

40

Emerge LengthMerge Length

P
er

io
d

 L
en

g
th

0.25
0.255

0.26
0.265

0.27

0.23

0.24

0.25
0

100

200

300

400

Emerge LengthMerge Length

T
im

e 
to

 R
ea

ch
 P

er
io

d
ic

it
y

0.25
0.255

0.26
0.265

0.27

0.23

0.24

0.25
0

5

10

15

20

Emerge LengthMerge Length

T
im

e 
to

 R
ea

ch
 a

 
 S

te
ad

y 
S

ta
te

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

P
os

iti
on

Dirichlet, 4 Initial Points  −   l
m

 = 0.24 ,   l
e
 = 0.258

0 100 200 300 400 500
0

5

Time# 
of

 P
oi

nt
s

Figure 16. Top row: Mean period length of the orbits that be-
came periodic; left: full range, right: restricted to le ≤ 0.266.
Middle row: Average time to reach periodicity (left) and stationar-
ity (right). Bottom row: two examples of periodic patterns, where
the left is of short period and the right is a long-period hiccup
pattern. Individual periods have been highlighted in red and blue
(color version online).

specific applications of models incorporating chemotaxis processes, such as models
for tumour-macrophage interactions [21], tumour invasion [2] and host-parasitoid
dynamics [23]. Furthermore, cultured Eschirichia coli bacteria populations can also
exhibit highly dynamic patterning, the nature of which has been shown to be well
replicated by models of the form (2): see [24, 5] for details.

In this paper we have developed a discrete dynamical system, called the merging-
emerging system (MES), to investigate the extent to which chemotaxis dynamics
are driven by the merging-emerging process. Intuitively, merging is driven through
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the chemotaxis-induced attraction between neighbouring aggregates: how quickly
merging can occur will depend on their closeness, and in turn on the range of
chemotactic action. Emerging will also depend on the space between aggregates,
and whether a new aggregate can develop through proliferation before becoming
absorbed into one of its neighbours. This suggests two characteristic length scales
for the merging and emerging processes, and the MES system is formulated with
this conceit in mind. Remarkably, we find that many, although not all, features of
the PDE model are recapitulated in the MES system and in comparable parameter
ranges. In the MES we find stationary patterns and periodic orbits of both very
short and very long periods (of > 300 time steps). On a short-time scale these
long-period solutions can appear quite irregular and, to a degree, correspond to the
spatio-temporal chaotic patterns of the PDE model. Of course, it is noted that
similarly long investigations of the PDE model are restricted by their numerical
feasibility and the very long-time behaviour of chaotic patterns in the PDE model
would be worthy of further investigation. In [22] arguments were given that imply
chaotic orbits exist for the PDE model and, while we have not yet observed chaotic
orbits in the MES system, this is not overtly surprising given the simplifications in
its formulation. As one example, while the positions of maxima are included in the
MES, their shape is not: merging/emerging events in the PDE model do not obey
the strict symmetric properties of the MES. Thus, we cannot expect a full recovery
of the PDE behaviour and, while the inclusion of randomness (Section 4.5) allows
random orbits, the MES loses its deterministic nature.

Another process excluded here is the spatial movement of spikes. In [13] it was
shown that a single interior spike in the chemotaxis model without logistic growth
is unstable to translational modes: an interior spike would move towards one of the
boundaries. In the MES model this is equivalent to lm = ∞, la = ∞ and each
single interior spike is immediately absorbed into one of the boundaries. With lo-
gistic growth the chemotaxis model reveals movement of spikes towards one another
prior to merging and, while this effect is certainly relevant in some cases, it does
not appear to play a major role in the merging-emerging dynamics. The drift of
spikes of order 1 is implicitly included into instantaneous merging (or absorption
into the boundary), while translational instabilities of small order are neglected.
Possible future extensions would be to consider more sophisticated (but determinis-
tic) operations that impose asymmetric merging/emerging events, along with spike
movement.

The MES system satisfactorily explains many of the pattern forming features of
the logistic chemotaxis model and, hence, forms the basis of a caricature model for
exploring dynamics in that system. Moreover, it represents a new class of discrete
set-valued dynamical systems that should be studied in its own right. Here we have
shown selected examples of its rich dynamical properties and further studies will
enhance our understanding of pattern interactions.

Acknowledgements: We would like to thank Drs. A. Berger and J. Kuttler for
helpful discussions. We would also like to thank Colin Schwartz, who worked on an
earlier version of the algorithm.

Appendix A. Alternative Merging and Emerging Operators. In this ap-
pendix we summarise alternative emerging and merging operators. The base case



MERGING-EMERGING SYSTEMS 21

!

E E E E EE0 0 1 1 2 2
! !

even
0 0

! !

M M
Neumann

M M0 0
Dirichlet DirichletNeumann

1M M1
odd

Figure 17. Schematic of (top row) emerging and (bottom row)
merging operators. Blue points are unchanged by the iteration,
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ing is also indicated through a green arrow, while merging by short
solid lines (color version online).

(M0, E0) is the easiest to formulate, however the final case considered, (Ê2, M̂1),
appears closest in behaviour to the PDE simulations and is used in the majority of
the simulations. While the base case (E0,M0) was formally defined in section 2, we
repeat it here for completeness. The following emerging and merging operators are
illustrated in Figure 17.

Emerging Operators:
We assume a ∈ P and the emerging length le > 0 is given.

: (i) Base case. Let J0
e := {j : aj+1 − aj > le} denote the index set of all

intervals longer than le (possibly empty). Then

E0(a) := a+
∑
J0
e

{
aj+1 + aj

2

}
.

: (ii) Repeated base case. An emerging event may still leave subintervals
longer then le. Here we repeatedly apply E0 until all intervals are shorter
than le:

Ê0(a) := E0 ◦ E0 ◦ · · · ◦ E0(a).
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Note this is a finite iteration of E0 until all intervals are shorter than le.
: (iii) Emerge in the largest interval. We let J1

e := {j : aj+1 − aj =
max{al − al−1, l = 1, . . . , n − 1} > le, } and let emergence only take place in
the longest interval:

E1(a) := a+
∑
J1
e

{
aj+1 + aj

2

}
.

: (iv) Repeated largest interval emergence. E1 is repeatedly applied until
all possible emergence events have occurred:

Ê1(a) := E1 ◦ E1 ◦ · · · ◦ E1(a).

Note that this infinite composition of E1 terminates after a finite time, since
the domain will continue to be filled until all intervals are shorter than le.

: (v) Mega-emerging in large intervals. If an interval is longer than > 1
multiples of le, we allow the addition of multiple points, equidistantly dis-
tributed and closer than le. We let J2

e := {j : aj+1 − aj = max{al − al−1, l =
1 . . . , n} > le}, and estimate the number of additional emerging points as

σ := floor(
aj+1−aj

le
). Then

E2(a) := a+
∑
J2
e

σ∑
k=1

{
k

σ + 1
(aj+1 − aj)

}
.

: (vi) Repeat mega-emerging in large intervals. As previously, we repeat-
edly apply E2:

Ê2(a) := E2 ◦ E2 ◦ · · · ◦ E2(a).

Again, the limit is a finite composition of E2.

Merging operator for Neumann boundary conditions. For Neumann
boundary conditions the PDE typically generates two fixed maxima at the boundary
of the domain. This is reflected in a merging algorithm whereby merging near the
boundary results in absorption into the boundary. Given a ∈ P and a merging
length lm > 0.

: (i) Base case, Neumann. We define two merging sets, for inner and bound-

ary merging events: J0
m := {j : |aj+1 − aj | < lm, j = 2, . . . , n − 1}; J̃0

m :=
{1 : a1 < lm/2} ∪ {n − 1 : 1 − an−1 < lm/2}. Then the merging operator
M0 : P → P is defined as

M0(a) := a−
∑
J̃0
m

{aj} −
∑
J0
m

{aj+1, aj}+
∑
J0
m

{
aj+1 + aj

2

}
.

: (ii) Repeated base case. A merging event can still lead to intervals shorter
than lm, hence we repeat the single merger until all intervals are longer than
lm:

M̂0(a) := M0 ◦M0 ◦ · · · ◦M0(a).

As for emerging, this composition defines a finite number of iterations, termi-
nating when all intervals are longer than lm.

Merging operator for Dirichlet boundary conditions. For Dirichlet bound-
ary conditions, boundary maxima are never observed in the chemotaxis model and
we therefore assume no boundary mergers.
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: (iii) Base case, Dirichlet. Let J0
m := {j : |aj+1 − aj | < lm} denote the set

of all critical intervals, then

M0(a) := a−
∑
J0
m

{aj+1, aj}+
∑
JD
m0

{
aj+1 + aj

2

}
.

: (iv) repeated base case:

M̂0(a) := M0 ◦M0 ◦ · · · ◦M0(a).

Mega-merger for both, Neumann and Dirichlet conditions

: (v) mega-merger: It has been observed in the PDE, that multiple merging
intervals that are side by side, lead to interaction of more than one maximum.
For example, three local maxima can merge into one maximum (see Figures
1, 17 above). To reflect this behaviour, we define a mega-merger for even and
for odd numbers of neighbouring merging intervals. Let

J1
odd := {j : ∃kodd odd : aj+i − aj+i−1 = min{al+1 − al}∀i = 1, . . . , k}

and

J1
even := {j : ∃keven even : aj+i − aj+i−1 = min{al+1 − al}∀i = 1, . . . , k} .
Then

M1(a) := a−
∑

j∈J1
even

keven∑
p=0,even

{aj+p}

−
∑

j∈J1
odd

kodd∑
p=1

{aj+p, aj}+
∑

j∈J1
odd

kodd∑
p=1,odd

{
aj+p + aj+p−1

2

}
.

The action of the mega merger is illustrated in Figure 17.
: (vi) repeated mega-merger:

M̂1(a) := M1 ◦M1 ◦ · · · ◦M1(a).
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