
Doctoral Dissertation

Doctoral Program in Computer Engineering (35thcycle)

New Techniques to Detect and
Mitigate Aging Effects in Advanced

Semiconductor Technologies

By

Sandro Sartoni
******

Supervisor(s):
Prof. Matteo Sonza Reorda

Ing. Riccardo Cantoro, Co-Supervisor

Doctoral Examination Committee:
Prof. Alberto Bosio, INL - École Centrale de Lyon
Prof. Andrea Calimera, Politecnico di Torino
Prof. Giorgio Di Natale, Grenoble INP
Prof. Maksim Jenihhin, Tallinn University of Technology
Prof. Chrysovalantis Kavousianos, University of Ioannina

Politecnico di Torino

2023



Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Sandro Sartoni
2023

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).



I would like to dedicate this thesis to my loving parents



Acknowledgements

I would like to thank all those who have stood by me and supported me throughout
this PhD journey. A special thank to my two supervisors, Matteo Sonza Reorda
and Riccardo Cantoro, whose knowledge and assistance have been of paramount
importance during the last three years. I would also like to acknowledge Michele
Portolan and Lorena Anghel, my two supervisors in Grenoble, who have contributed
in making my three months in France really fruitful. Thank you, mom and dad,
for always believing in me and supporting me no matter what, I wouldn’t be here
without you. Thank you Emma for your love and patience, I am so happy to have
you by my side.



Abstract

New advanced semiconductor technologies are increasingly adopted in emerging
applications, as they provide high computational capabilities together with reduced
power consumption. Integrated Circuits (ICs) that employ such semiconductor
technologies require complex and sophisticated manufacturing processes and feature
advanced transistor designs in a highly dense topology, as they require to work at high
frequencies to provide the aforementioned advantages. These technologies, however,
introduce new issues as they present higher physical defects rates and a reduced
lifespan. Some of these defects can also arise during the device lifetime: in most
cases they are related to aging effects and overheating-related issues, making systems
more sensitive to degradation than older generations with a strong dependence on
the adopted workload. Other defects are also generated due to ElectroMagnetic
Interference (EMI) or parasitic effects. As a result, ensuring the correct functioning
of circuits manufactured with newer technologies within safety-critical applications is
becoming more and more crucial, especially when the expected lifetime of the whole
electronic system is in the order of at least one decade, such as in the automotive
sector. When dealing with the test (both at the end of manufacturing and in field) of
ICs manufactured with the most advanced technologies, it is not possible to keep
on relying on traditional fault models anymore, e.g., the stuck-at fault model. For
this reason, efforts should be made towards adopting more advanced fault models
such as delay faults, i.e., faults affecting the timing behavior of the device under test
(DUT), that allow to detect the eventual presence of these newly identified issues.
When tackling delay faults, it is customary to work with two fault models, namely
transition and path delay faults (TDFs and PDFs, respectively). Such fault models,
however, are not as popular and widely adopted as the stuck-at fault (SAF) model
when in field testing is required, and solutions for dealing with TDFs and PDFs are
not as mature, especially when Software-Based Self-Test (SBST) techniques must
be adopted. This PhD thesis aims at defining and validating SBST solutions for the



vi

two aforementioned delay fault models, allowing an effective in-the-field test that
can ensure the reliability of the device under test for several years.

This manuscript is organized into three parts. The first part is dedicated to
the study and development of solutions to improve the effectiveness of Self-Test
Libraries (STLs) for transition delay faults. Transition delay faults share similarities
with the more mature SAF model, hence why rather than developing test programs
from scratch it is more useful to take already existing SAF oriented STLs and find
ways to improve the achieved TDF fault coverage by targeting transition delay faults.
Two methodologies are presented, one based on a purely software approach, looking
for points in the STLs to insert specific pieces of code in order to improve the
observability of the aforementioned set of NO faults. The second one, on the other
hand, relies on a mixed hardware and software approach that allows the test engineer
to reuse post-silicon debug hardware that is already present inside any System on
Chip to monitor flip-flops where fault effects propagate and stop inside the DUT.
Advantages and achieved results related to these two approaches are presented
and discussed in details in this manuscript, showing how the transition delay fault
coverage can be increased with a relatively small overhead.

The second part focuses on the more challenging path delay fault model. Func-
tional SBST solutions for this fault model targeting modern complex CPUs are not
available to this day. In addition to that, no EDA tool currently supports functional
testing for sequential circuits targeting path delay faults, making it difficult to de-
velop STLs and estimate their effectiveness. For this reason, the first step consists
in devising a framework capable of performing functional fault simulations for se-
quential circuits. Thanks to this framework, the effectiveness of already existing
STLs developed for other fault models was studied first, showing that they cannot
be immediately employed when working with PDFs, followed next by the detailed
presentation of techniques for developing STLs for PDFs. This methodology proves
to be highly effective, showing significant improvements with respect to the state of
the art.

The third and final part of this manuscript tackles the important topic of aging.
As circuits age so does their timing behavior, with portions of the circuit that degrade
faster than others depending on the workload, voltage and operating temperature.
The changes that ensue from the aging process are reflected, from a timing stand-
point, in the evolution of the set of critical paths found within a DUT. As circuits



vii

must operate correctly in the field for several years, this third part devotes to the
refinement, automation and application of an aging model previously developed at
the University of Grenoble-INP in collaboration with STMicroelectronics to modern
in-order complex CPUs, so that their path delay faults can be tested through time.
An analysis on how paths evolve in time is provided, together with an estimate of
how the test coverage changes and how to ensure that appropriate fault coverage
levels are achieved throughout the operative lifetime of the DUT.



Contents

List of Figures xii

List of Tables xv

Introduction 1

I Transition Delay Fault Oriented Solutions 6

1 Background 8

1.1 Transition Delay fault model . . . . . . . . . . . . . . . . . . . . . 9

1.2 Techniques for testing transition delay faults . . . . . . . . . . . . . 11

1.3 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.1 STL development for transition delay faults . . . . . . . . . 16

1.3.2 Self-Test Libraries hardening . . . . . . . . . . . . . . . . . 20

1.3.3 Trace Buffers . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Main Contributions 25

3 STL hardening techniques for transition delay faults 27

3.1 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Internal Observation Points Extraction . . . . . . . . . . . . 29

3.1.2 Observability Study . . . . . . . . . . . . . . . . . . . . . 31



Contents ix

3.1.3 Logic Simulation Trace . . . . . . . . . . . . . . . . . . . . 37

3.1.4 Test Program Enhancement . . . . . . . . . . . . . . . . . 40

3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.2 Achieved results . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Improving transition delay fault coverage through post-silicon debug
logic 58

4.1 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.1 Generation of fault dictionary . . . . . . . . . . . . . . . . 59

4.1.2 Flip-flops selection procedure . . . . . . . . . . . . . . . . 60

4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.2 Fixed flip-flop selection . . . . . . . . . . . . . . . . . . . 65

4.2.3 Variable flip-flop selection . . . . . . . . . . . . . . . . . . 67

4.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

II Path Delay Fault Oriented Solutions 73

5 Background 75

5.1 Path Delay Fault Model . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Main Contributions 84

7 Path Delay Fault Simulation Flow 86

7.1 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



x Contents

7.2 Logic simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3 Static Timing Analysis . . . . . . . . . . . . . . . . . . . . . . . . 90

7.4 Combinational-level fault simulation . . . . . . . . . . . . . . . . . 92

7.5 Sequential-level fault simulation . . . . . . . . . . . . . . . . . . . 94

7.6 STL performance evaluation on Path Delay Faults . . . . . . . . . . 95

7.6.1 Combinational-level fault simulation . . . . . . . . . . . . . 96

7.6.2 Detected by Implication faults . . . . . . . . . . . . . . . . 96

7.6.3 Sequential-level fault simulation . . . . . . . . . . . . . . . 97

7.6.4 Test programs effectiveness . . . . . . . . . . . . . . . . . 99

7.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8 STL Development for Path Delay Faults 105

8.1 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.1.1 ATPG pattern extraction . . . . . . . . . . . . . . . . . . . 105

8.1.2 Functional constraints identification . . . . . . . . . . . . . 109

8.1.3 Patterns-to-instructions mapping . . . . . . . . . . . . . . . 111

8.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.2.1 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.2.2 Achieved Results . . . . . . . . . . . . . . . . . . . . . . . 116

8.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

III Testing an aged integrated circuit 123

9 Background 125

10 Main Contributions 134

11 Automatic Aging Tool 136



Contents xi

11.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 141

11.1.1 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . 141

11.1.2 Achieved Results . . . . . . . . . . . . . . . . . . . . . . . 143

11.2 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

12 Conclusions and Achievements 149

12.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

References 153



List of Figures

1.1 A network of NAND gates implementing a XOR function . . . . . . 9

1.2 An increased delay causes the circuit’s output to not update in time . 9

1.3 Circuit affected by slow-to-fall fault . . . . . . . . . . . . . . . . . 10

1.4 Generic sequential circuit structure with scan chain insertion . . . . 11

1.5 Launch on Shift waveforms[1] . . . . . . . . . . . . . . . . . . . . 12

1.6 Launch on Capture waveforms[1] . . . . . . . . . . . . . . . . . . 13

1.7 Typical SBST-based fault simulation flow . . . . . . . . . . . . . . 15

3.1 Proposed test flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Example of User Accessible Registers in a basic core implementation 30

3.3 Example of Hidden Registers in a basic core implementation . . . . 31

3.4 Internal Observation Point extraction algorithm . . . . . . . . . . . 32

3.5 Circuit with internal observation point . . . . . . . . . . . . . . . . 33

3.6 Fault dictionary snippet . . . . . . . . . . . . . . . . . . . . . . . . 36

3.7 Data produced by the tracer . . . . . . . . . . . . . . . . . . . . . . 38

3.8 Example of database entry . . . . . . . . . . . . . . . . . . . . . . 39

3.9 STL improvement strategy . . . . . . . . . . . . . . . . . . . . . . 39

3.10 Multi-cycle instructions and fault effects propagation . . . . . . . . 41

3.11 Controlling and observing the effect of a transition delay fault in a
sequential circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



List of Figures xiii

3.12 Internal architecture of the RI5CY core[2] . . . . . . . . . . . . . . 47

3.13 Internal architecture of the zero-ri5cy core[2] . . . . . . . . . . . . 47

3.14 Transition delay fault coverage with UAR faults . . . . . . . . . . . 50

3.15 Transition delay fault coverage with HR faults . . . . . . . . . . . . 52

3.16 Transition delay fault coverage with UAR and HR faults . . . . . . 53

4.1 Undetected TDFs and SAFs faults recovered using a fixed selection
of pipeline flip-flops to monitor. . . . . . . . . . . . . . . . . . . . 66

4.2 Configurations and percentage of faults recovered for STL1 . . . . . 68

4.3 Configurations and percentage of faults recovered for STL2 . . . . . 68

4.4 Configurations and percentage of faults recovered for STL3 . . . . . 69

4.5 Configurations and percentage of faults recovered for STL4 . . . . . 69

4.6 Configurations and percentage of faults recovered for STL5 . . . . . 70

5.1 Circuit affected by a STF path delay fault . . . . . . . . . . . . . . 76

5.2 Non-robust test for A-B-C STR fault . . . . . . . . . . . . . . . . . 77

5.3 The STF fault affecting the path in red cannot be tested . . . . . . . 78

7.1 Path delay test flow diagram . . . . . . . . . . . . . . . . . . . . . 88

7.2 Huffman model for a generic sequential circuit . . . . . . . . . . . 89

7.3 Paths extraction flow . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.1 Patterns generation flow . . . . . . . . . . . . . . . . . . . . . . . . 106

8.2 ATPG-based test vectors generation . . . . . . . . . . . . . . . . . 107

8.3 Example of test program . . . . . . . . . . . . . . . . . . . . . . . 113

9.1 Number of transistors on microchips over time [3] . . . . . . . . . . 126

9.2 Silicon model of a MOSFET . . . . . . . . . . . . . . . . . . . . . 127

11.1 Automatic Aging Tool flow diagram . . . . . . . . . . . . . . . . . 137



xiv List of Figures

11.2 An example of SDF syntax for two cells . . . . . . . . . . . . . . . 138

11.3 Snippet from a SAIF file . . . . . . . . . . . . . . . . . . . . . . . 139

11.4 An example of an entry from the fresh cell delay dictionary . . . . . 140

11.5 Critical path and path delay fault coverage time evolution for basic-
math_small program . . . . . . . . . . . . . . . . . . . . . . . . . 143

11.6 Critical path and path delay fault coverage time evolution for qsort
program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

11.7 Original and new critical paths evolution for basicmath_small program145

11.8 Original and new critical paths evolution for qsort program . . . . . 146



List of Tables

3.1 Case study general info . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 STLs general information . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Analysis on detected UAR faults . . . . . . . . . . . . . . . . . . . 49

3.4 Analysis on detected HR faults . . . . . . . . . . . . . . . . . . . . 51

3.5 Sub-modules analysis for the adopted STLs targeting UAR faults . . 52

3.6 Sub-modules analysis for the adopted STLs targeting HR faults . . . 53

4.1 STLs general information . . . . . . . . . . . . . . . . . . . . . . . 64

7.1 Combinational-level fault simulation results . . . . . . . . . . . . . 96

7.2 Number of detected faults per endpoint type . . . . . . . . . . . . . 97

7.3 Functional fault simulation results . . . . . . . . . . . . . . . . . . 98

7.4 Most critical detected faults per program . . . . . . . . . . . . . . . 99

7.5 Fault Coverage per slack range . . . . . . . . . . . . . . . . . . . . 100

7.6 Fault Coverage per module . . . . . . . . . . . . . . . . . . . . . . 101

7.7 Number of detected faults vs. number of detections on PPOs . . . . 102

7.8 Fault coverage summary . . . . . . . . . . . . . . . . . . . . . . . 102

8.1 Case study general info . . . . . . . . . . . . . . . . . . . . . . . . 115

8.2 Paths report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.3 Long path fault coverage . . . . . . . . . . . . . . . . . . . . . . . 118



xvi List of Tables

8.4 Long path fault coverage per module . . . . . . . . . . . . . . . . . 118

8.5 Short path fault coverage . . . . . . . . . . . . . . . . . . . . . . . 119

8.6 Short path faults coverage per module . . . . . . . . . . . . . . . . 120

9.1 Physical parameters of an INV and AND gate . . . . . . . . . . . . 131

11.1 Paths distribution per modules in fresh circuit . . . . . . . . . . . . 142



Introduction

Semiconductor companies are developing new advanced technologies that require
more complex and sophisticated manufacturing processes. The increased complexity
is related to, among other aspects, the transistors’ shorter channel length that allows
high working frequencies and dense designs. This advantage, however, comes at
the price of more frequent physical defects and shorter device lifespan. Integrated
Circuits are nowadays more prone to manufacturing defects, process variations,
aging effects, ElectroMagnetic Interference, parasitic effects and overheating related
issues and are much more sensitive to degrading than older generation devices.
When dealing with defects stemming from new semiconductor technologies, static
fault models, e.g., the stuck-at fault model, are becoming less and less effective
in representing the real defect coverage. This is why dynamic fault models such
as delay fault models, i.e., fault models that take into account the timing behavior
of the device under test, are becoming more and more important. Several delay
models have been defined in literature, the two most important and adopted ones
being the transition delay and path delay fault models. Both fault models present
advantages and disadvantages, the transition delay fault model — a gate-delay fault
model — being easier to manage as it models delay faults affecting single points in a
circuit, and the path delay fault model being more accurate as it models delay defects
distributed along paths — a series of logic gates connected through interconnections
— but harder to manage.

Two main solutions are usually adopted when testing delay faults on an integrated
circuit, namely structural and functional tests. Structural tests are based on the
adoption of a Design for Testability (DfT) approach that is based on the insertion
and/or modification of hardware circuitry within the device under test. This is done
in order to increase its controllability, i.e., the capability of inducing specific states
within the device under test, and observability, i.e., the capability of observing



2 Introduction

the value on specific nodes of the device under test, and it is usually achieved by
operating on the flip-flops in the circuit. Scan chains are an example of the features
introduced by DfT-based approaches: by modifying flip-flops of the Design Under
Test (DUT) it is possible to scan in test vectors, thanks to the increased controllability,
and scan out responses to said vectors, thus enhancing the observability, easing the
generation and launch of test procedures. Another popular approach based on DfT
techniques is the JTAG standard, that requires the insertion of a boundary scan cell
per input/output pin to scan in and out test vectors, together with a TAP controller
and additional registers needed to perform the test routine. DfT solutions are well
supported by commercial tools, and they enable the generation of high quality tests
capable of achieving significant fault coverage figures. Nevertheless, they introduce
some drawbacks, too: the additional circuitry impacts the area overhead of the whole
SoC in a non-negligible way and degrades timing performances. Power consumption
during test procedures can be an issue when adopting DfT solutions, and overtesting,
i.e., when circuits are discarded for the presence of faults that will not occur under
any functional scenario, or functionally untestable faults [4], may occur. In addition
to that, routing of clock signals is complicated due to the insertion of scan circuitry.
The other popular solution is known as functional test, that is testing without resorting
to additional hardware. A commonly adopted approach when opting for functional
test is Software-Based Self-Test (SBST)[5, 6]. SBST relies on the execution of a
Self-Test Library (STL) by the CPU usually found within any SoC. The test routine
usually unfolds as follows: whenever there is an idle time slot where the device to be
tested is not performing any critical operation, the STL is launched in order to record
the results produced while testing the device. These results are then compacted into a
signature through software algorithms; such signature is finally compared against the
golden circuit’s one, i.e., the fault-free responses that are expected from the device
under test, to look for errors. This approach has the advantage of being cheap, as no
additional hardware is required, flexible, as the STL can be split into sub-routines
based on how long are the idle slots, thus not impacting the functioning of the circuit
to be tested, and fast, given that DfT-based routines typically cannot be executed
within the aforementioned idle time slots. Test vectors generated through DfT
techniques may cause peaks in power consumption during the testing procedure that
do not occur under any functional scenario, due to the fact that internal signals may
toggle in a way that cannot be otherwise reproduced, as well as overtesting. All these
issues can be avoided with an SBST approach, too. Given that test vectors come in



Introduction 3

the form of instructions executed at the functional clock speed, SBST solutions have
the additional advantage of performing at-speed tests, a crucial feature for effectively
tackling delay faults as even small changes in propagation delays are accounted for.
Finally, SBST is suitable whenever the reliability of safety-critical devices must
be ensured throughout their operative lifetime, as mandated by standards such as
the ISO26262. This approach has been proven effective both when testing CPUs
[7–18], memories [19–21] and peripherals [22–28], and companies provide STLs
for their own products [29–35]. At the same time, generally speaking SBST is not
capable of achieving the same high fault coverage figures that are obtained through
DfT approaches, mainly due to the fact that there are no automatic methodologies
to develop STLs capable of testing the totality of faults. This makes SBST not
particularly suited for manufacturing testing.

In addition to that, developing SBST solutions oriented at delay faults presents
an additional challenge, due to the fact that they are two-cycle faults (hence, two test
vectors are required) and, in the case of path delay faults, the defect is distributed
along a path. This is why they are not as effective as those developed for the stuck-at
fault model, and in some cases are not even extensively supported by EDA tools
(especially for path delay faults). This requires the study, definition and validation of
new techniques for delay fault-oriented SBST solutions.

In Part I of this thesis, the focus is on addressing the transition delay fault model.
This fault model bears similarities to the stuck-at fault model, which is why existing
STLs for stuck-at faults serve as a solid foundation for testing transition delay
faults. Rather than concentrating on developing STLs from scratch, this section
provides two mechanisms to enhance the effectiveness of available STLs in detecting
previously unnoticed transition delay faults. These mechanisms aim to increase fault
coverage with minimal additions to the existing codebase. To delve into the topic
further, Chapter 1 introduces the transition delay fault model, explores the typical
testing techniques employed, and provides an extensive overview of related research
in the realm of STL development for transition delay faults, STL hardening, and
trace buffers. Subsequently, Chapter 3 and Chapter 4 present and elaborate on the
techniques proposed in this PhD thesis for bolstering STLs to enhance transition
delay fault coverage.

The approach detailed in Chapter 3 is entirely software-based and involves cate-
gorizing not-observed transition delay faults into two groups based on the location



4 Introduction

of their effects within the device under test. This categorization enables the imple-
mentation of two distinct fault detection mechanisms, one for each group. On the
other hand, Chapter 4 introduces two algorithms that leverage the post-silicon debug
hardware commonly found in modern System-on-Chips (SoCs) to make the effects
of the aforementioned transition delay faults observable. Experimental data from
both approaches demonstrates the ability to detect previously unnoticed transition
delay faults, resulting in a potential increase in overall fault coverage of up to 20.09%
for transition delay faults.

Techniques for developing STLs specifically designed for path delay faults are
presented in Part II of this thesis. Unlike the transition delay fault model, path
delay faults differ significantly from stuck-at faults, and the methods for developing
STLs for this fault model are not as well-established. Furthermore, at the time of
writing, no commercially available fault simulation tool can perform sequential fault
simulation of path delay faults, which means simulating faults using test vectors
generated by test programs without utilizing scan chains. To address this limitation, a
path delay fault simulation flow, described in detail in Chapter 7, has been developed
from scratch. This flow enables sequential fault simulations of path delay faults on
integrated circuits. The fault simulation flow consists of several steps, beginning with
the synthesis of the DUT and followed by the extraction of critical paths that can be
structurally tested using an Automatic Test Pattern Generation (ATPG) engine. Test
vectors, obtained as Value Change Dump (VCD) files through logic simulations of an
STL executed on the DUT, are then applied at the combinational level to determine
the detectability of path delay faults at the primary and pseudo-primary outputs of the
DUT. Subsequently, another top-level simulation propagates the effects of this group
of faults throughout the DUT, aiming to observe their effects at primary outputs.
Chapter 8, on the other hand, proposes a systematic and automated method for
developing STLs specifically tailored to path delay faults. The proposed approach
involves first extracting a set of critical paths, which will be considered for the
presence of path delay faults. An ATPG is then employed to generate test vectors
capable of detecting path delay faults at the combinational level. However, since the
ATPG is not aware that these test vectors need to be applied functionally through
STLs, functional constraints must be provided to ensure the generated vectors can be
replicated through programs. Once the test vector generation step is completed, these
vectors need to be converted into instructions that form the final STL. Additionally,
it is essential to include ‘store’ instructions to make the fault effects observable at



Introduction 5

primary outputs. Experimental data demonstrates that all path delay faults within a
32-bit, in-order 5-stage pipelined RISC-V CPU can be detected using the proposed
method.

Part III of this thesis delves into aging phenomena and their impact on modern
integrated circuits. Detailed in Chapter 9, the mathematical equations necessary for
estimating aging effects on integrated circuits are extensively covered. Subsequently,
Chapter 11 outlines an automated aging framework capable of generating aged
delays for each cell of a design. This is accomplished by utilizing physical data
from the technology library used for synthesis, in conjunction with the fresh (VCD)
and Switching Activity Interfile Format (SAIF) files of the circuit to be aged. Due
to the unavailability of physical data for every possible aging configuration, linear
regression models are employed to interpolate data and provide a close estimation of
aged propagation delays. Experimental data reveals an increasing number of critical
paths over time, with the introduction of several new ones after the 5-year mark.
Consequently, fault coverage figures degrade accordingly. Initially, a 32-bit, in-order
5-stage pipelined RISC-V CPU achieves 100% fault coverage, which gradually
declines to slightly over 83% after 10 years.



Part I

Transition Delay Fault Oriented
Solutions





Chapter 1

Background

Delay faults were first introduced by Melvin Breuer in his "The Effects of Races,
Delays, and Delay Faults on Test Generation" [36] published in 1974. The motiva-
tions for introducing this new category of faults stemmed from the fact that, in all
sequential circuits, logic operations are synchronized by one or more clock signals
with the constraint that each and every signal transition must not occur a minimum
amount of time after the clock active edge, defined as hold time, and settle a mini-
mum amount of time before the following clock active edge, defined as setup time.
The well-known stuck-at fault model is described as a fault affecting a node in a way
such that it is stuck to a specific logic value, may that be a logic 1 (stuck-at-one) or 0
(stuck-at-0). Such description can also be thought as a transition that takes an infinite
amount of time to occur on a line, hence why this is not sufficient to effectively
model and detect faults affecting the timing behavior of a sequential circuit. To
exemplify this concept, Fig. 1.1 shows a basic circuit comprised of three NAND
gates that implements a XOR function. It is assumed that all logic gates have the
same propagation delay of one time unit.

Physical defects in circuit, however, can impact their timing behavior, leading to
unexpected results. Let us consider, for instance, the waveforms reported in Fig. 1.2
where the two inputs A and B are reported in green, the correct output F in cyan and
the delayed output F_del in orange. As it can be seen, due to the increased delay,
the faulty output does not update its value by the end of the simulation, where it
should transition from 1 to 0 as both inputs are now equal. If this simple circuit must
operate on a clock basis, the sequential elements that are attached at the output of



1.1 Transition Delay fault model 9

G1

G3

G2

G4

A

B
F

Fig. 1.1 A network of NAND gates implementing a XOR function

Fig. 1.2 An increased delay causes the circuit’s output to not update in time

said circuit might sample the wrong value, leading to an erroneous behavior. It is
noted, however, that given enough time the output will eventually be updated to the
correct value, differently from the stuck-at fault model where a net is forever tied to
a logic value. Given the limitations of the stuck-at fault model, it is obvious that a
delay fault model is needed to model this kind of defects. Several delay fault models
have been defined ever since, with the two most popular and widely adopted ones
being transition delay faults and path delay faults.

In this chapter the transition delay fault model is presented and discussed in
Section 1.1, together with techniques on how to test them in Section 1.2. Section 1.3,
finally, provides a detailed analysis on related works.

1.1 Transition Delay fault model

The transition delay fault model is one of the two most popular delay fault models.
Transition delay faults are described as large additional propagation delays that
affect transitions on a single line in a circuit. When a transition delay fault affects
rising transitions it is called a slow-to-rise (STR) fault, while faults affecting falling
transitions are called slow-to-fall (STF) faults. The increased delay is so large that
the propagation delay of all paths containing that line exceeds the clock period, thus
making the presence of said fault noticeable. Let us consider, as an example, a simple
combinational circuit reported in Fig. 1.3.



10 Background

A

B

C

D

E

D

E

F

G

H

Y

Z

B

C

1

H

Y

Z

1

0

A

ti tf

Fig. 1.3 Circuit affected by slow-to-fall fault

In this picture, the line E is affected by a STF fault which also affects transitions
on lines F, G, H and, ultimately, both outputs Y and Z. Correct signal transitions are
reported with a full line, while delayed transitions are represented with a dashed line.
Assuming that the transition on input B occurs at the time ti and any output signal
must settle before t f , the presence of a transition delay fault makes the time required
for signal propagation on any path containing line E exceeding t f .

Given the nature of delay faults, testing them requires to apply a pair of test
vectors (t1, t2), differently from the stuck-at fault model that requires only one test
vector per fault. Assuming, for instance, that line E from the previous example is
affected by a slow-to-fall fault, the first test vector t1 must drive the line to a logic
1, followed by a logic 0 in the second test vector t2, so that the required transition
is generated, while other inputs must be set to a non-controlling value so that the
examined transition can propagate towards one of the outputs of the circuit. Going



1.2 Techniques for testing transition delay faults 11

back to Fig. 1.3, an example of test vectors that allows to detect a STF fault on E
could be (1110,1010), but (0110,0010) is also a suitable choice. The difference
among the two pairs is that the first one makes the fault effect observable at both
outputs, while the second one propagates the transition to Z, only. Since the extra
delay introduced on the line is sufficiently large that any path is affected, both the
long and short paths can be chosen to propagate the transition, simplifying the test
generation process, although the long path is usually chosen as it allows to detect
smaller defects too. Finally, it is noted that testing a slow-to-fall fault implies testing
the stuck-at-1 fault on the same line as the second test vector forces a 0 on said
line and drives the other inputs so that the fault effect is observed from one output.
Similarly, testing a slow-to-rise fault implies testing the correspondent stuck-at-0.

1.2 Techniques for testing transition delay faults

Transition delay fault testing can be performed either through DfT or SBST tech-
niques. This fault model is well supported by EDA tools, also thanks to the simi-
larities it shares with the popular stuck-at fault model. For the sake of simplicity,
let us consider a generic implementation of a sequential circuit where the combina-
tional logic has been grouped under one single combinational block separated by all
flip-flops as in Fig. 1.4.

Combinational Block

D

SI

SE

Q/SO

D

SI

SE

Q/SO

D

SI

SE

Q/SO

CLK

POsPIs

PPOsPPIs

Scan In

Scan Enable

Scan

Out

Fig. 1.4 Generic sequential circuit structure with scan chain insertion

In this figure, inputs to the whole circuit, or Primary Inputs (PIs), are directly fed
to the combinational block, from where the outputs of the whole circuit, or Primary



12 Background

Outputs (POs) stem. Two other signal groups are introduced, namely Pseudo-Primary
Inputs (PPIs), containing the output of every flip-flop, and Pseudo Primary Outputs
(PPOs), the inputs of every flip-flop. In blue, modifications to flip-flops to implement
the scan chain functionality, together with two additional input pins, the Scan In (SI)
and Scan Enable (SE) signals, and one output pin, the Scan Out (SO) signal, are
reported.

Concerning the DfT approach, three of the most notable techniques used to test
transition delay faults are Launch on Shift (LOS), Launch on Capture (LOC) and
Enhanced Scan Test. All of them require the circuit to be tested to be equipped with
scan chains to apply test vectors.

Launch on Shift, also referred to as Skewed Load [37–39], is a testing technique
implemented as follows:

1. The first test vector t1 is fed to the scan chain by driving high the SE signal,
while providing the first set of PI values,

2. After t1 has been scanned in, t2 is provided by scanning in another bit together
with the second set of PI values,

3. POs are observed, and one capture clock cycle is pulsed at nominal speed
while driving low the SE pin to latch the PPOs,

4. The content of all PPOs is scanned out while providing the next test vector.

The typical waveforms of a Launch On Shift-based test are reported in Fig. 1.5.

CLK

SE
Shift in i-th

vector

Launch

Cycle

Capture

Cycle

Shift out i-th vector response,

shift in i+1-th vector

Fig. 1.5 Launch on Shift waveforms[1]

Launch on Capture, also referred to as Broadside test [40, 41], is described as
follows:



1.2 Techniques for testing transition delay faults 13

1. The first test vector t1 is scanned in by driving high the SE signal, all the while
the first set of PI values is applied

2. The SE signal is driven low, and a functional clock cycle is applied to generate
the second test vector t2 from the response of the circuit to the first test vector
t1, while applying the second set of PIs,

3. POs are observed, and another functional clock pulse is given to capture the
internal status of the circuit,

4. The internal status of the circuit is scanned out, while providing the new test
vector.

Waveforms describing the application of a Launch on Capture-based test are
shown in Fig. 1.6.

CLK

SE
Shift in i-th

vector

Launch

Cycle

Capture

Cycle

Shift out i-th vector response,

shift in i+1-th vector

Fig. 1.6 Launch on Capture waveforms[1]

It is noted that, in both Launch On Shift and Launch on Capture, the clock speed
at which test vectors are scanned in is slower than the nominal frequency at which
the circuit works. Both approaches feature advantages and disadvantages: generating
test vectors under the Launch on Capture approach is harder, as the ATPG must take
into account that the second test vector is the circuit’s internal response to the first
test vector, which may lead to lower coverages. Launch On Shift instead requires the
second test vector to be a 1-bit shifted version of the first one, with the drawback
that the second test vector is applied at speed lower than the nominal one.

Enhanced scan, on the other hand, is the DfT-based approach that allows the
highest achievable coverage as it allows to apply any couple of test vectors. In order
to do so, however, flip-flops equipped with scan chain circuitry must be further
modified to add hold latches together with a hold signal. An enhanced scan test
routine unfolds as follows:



14 Background

1. Shift in the first test vector t1, while applying the first set of PIs,

2. The hold signal is activated, latching t1 and giving the chance to load the
second test vector t2,

3. The second set of PIs is applied together with a new application of the hold
signal that allows the transition from the first to the second test vector,

4. One capture cycle at nominal speed is executed, so that the internal state is
sampled by the flip flops,

5. The internal state of all flip-flops is scanned out.

Hardware modifications introduced in enhanced scan, although easing the test
generation process, can thus severely impact the area and timing overheads of the
circuit to be tested.

Software-Based Self-Test techniques are a valid alternative to DfT approaches
for testing transition delay faults. Differently from their counterpart, such techniques
are usually based on two steps, the first one being preparatory to second one that
consists in the actual fault simulation. An example of the typical SBST-based fault
simulation flow is reported in Fig. 1.7.

For this process to run successfully, two sets of inputs must be provided, namely
the post-synthesis netlist of the device to be tested and the technology library with
which the netlist has been synthesized, together with the STL intended to test
transition delay faults, reported in green in the figure. The first step consists of a
logic simulation, usually carried out by means of commercial tools, whose role is to
simulate the execution of the suite of test programs by the device under test and record
the set of input and outputs applied to it. This set of inputs and outputs represents
the stimuli that are then used in the actual fault simulation to check whether they can
detect faults, similar to those that the ATPG generates. For this reason, these stimuli
are usually recorded into Value Change Dump (VCD) files, which will then be fed
to the fault simulator together with the synthesized netlist and technology library
to carry out the fault simulation. The fault simulation process, for which several
commercial fault simulation tools exist, consists of building an internal model of
the device to be tested based on the netlist, followed by the application of input
patterns derived from the VCD while observing the POs, looking for differences
among the golden, i.e., fault-free, and faulty circuits responses. Once the fault



1.3 Related works 15

Logic Simulation

Post-synthesis netlist

Technology Library

Self-Test Library

Value Change Dump

(VCD) file

Fault Simulation

Fault Coverage
Fault Reports, Fault

Dictionaries

Step I

Step II

Fig. 1.7 Typical SBST-based fault simulation flow

simulation is concluded, the simulator reports a fault coverage, that is, the percentage
of faults detected over the total amount of faults, and a test coverage, evaluated as
the percentage of faults detected minus those that are untestable due to the circuit’s
topology over the total amount of faults. It is noted that in the test coverage figures
functionally untestable faults are usually not removed from the active fault list, thus
making the test coverage number a worst-case scenario of the STL’s effectiveness.
In addition to that, fault simulation tools can also report diagnostic data in the form
of fault reports, outlining what faults have been detected and what not, or fault
dictionaries, useful to understand at what time faults have been detected and, in case
they were not, where their effects propagated and stopped inside the device under
test.

1.3 Related works

Several works have been proposed in literature on the topic of transition delay fault
testing, both resorting to DfT and functional approaches. In this PhD thesis, however,



16 Background

functional SBST solutions are investigated: for this reason, a detailed description
of related works in this area is provided. For the sake of completeness, however,
works [42–47] present several techniques aimed at improving launch on shift and
launch on capture methodologies for transition delay faults. In the following, related
works are divided into three main areas. Section 1.3.1 focuses on works concerning
the generation of Self-Test Libraries for transition delay faults, while Section 1.3.2
tackles the topic of hardening, i.e., improvement and refinement of test programs
that were developed for other purposes to make them more efficient in terms of
fault coverages. Finally, given that one of the approaches proposed in this PhD
thesis resorts to the usage of post-silicon debug logic as trace buffers, Section 1.3.3
describes works focusing on the adoption of such circuitry.

1.3.1 STL development for transition delay faults

The development of test programs for delay faults through an SBST approach is a
well-studied topic in academia, with several articles describing related methodologies
[9, 11, 13]. When dealing with the generation of STLs for transition delay faults,
the article [8] describes how to generate test programs for RISC processors without
knowing details on their internal implementation. This feature is achieved by first
dividing the processor under test into functional blocks, referred to as Modules Under
Test (MUT), and representing them as control and data parts separately. Following,
two high-level fault models are defined for the control and data parts, namely control
and data faults. Data faults are tested through data manipulation functions, bit-
wise pseudo-exhausting tests, that allow to achieve high fault coverage of a broad
class of faults without the need of knowing implementation details of the module
to be tested. As for control faults, the paper introduces a functional fault model
that is able to cover a large amount of low-level structural faults, and also a set of
traditional high-level functional fault models that are typically used in testing of
memories. This approach is initially defined for the stuck-at fault model and then
extended to the transition delay fault model, leveraging on the fact that the two
fault models share similarities, as highlighted in Section 1.1. Experimental results
on the execution and forwarding unit of the MiniMIPS core show high coverages,
both when targeting stuck-at and transition delay faults. Authors in [7] tackle the
problem of generating test programs for out-of-order superscalar processors. In an
in-order processor, since instructions go through the pipeline one after the other,



1.3 Related works 17

if one instruction does not have its operands ready or its execution unit free, the
processor stalls the instruction and all the following ones until the first one can
proceed. An out-of-order (OOO) superscalar processor, while still allowing fetch,
decode and writeback (commmit) in order, differs from an in-order processor in the
sense that as soon as one instruction is ready to be issued it is executed regardless of
other instructions that may come before. This architectural implementation allows
for optimization in performance, but introduces challenges as delay faults require
specific vector pairs to be applied which in OOO processors may not be replicated
since it is not known in advance whether the processor is capable of executing two
instructions one after the other. The authors propose a methodology based on the
adoption of conditional branch instructions in order to bring the dispatch buffer into
a known state and thus apply the test instructions in the intended order. The rationale
behind this is that in most cases processors adopt branch prediction techniques so
that the throughput of the processor’s instruction flow is increased. Through branch
prediction, the processor speculates on the outcome of the branch, preloading a set
of instructions to be executed in case the outcome matches the prediction, while in
the opposite case the pipeline is flushed and new instructions are loaded. Exploiting
this particular behavior, the authors take advantage of the misprediction of branches
to bring the dispatch buffer into a known state from which the test is launched.
Test instructions are obtained through ATPG to which functional constraints are
applied. These constraints are obtained by means of Verilog wrappers to be applied
to module to be tested, which restrict input values to those that can be obtained by
using instructions from the instruction set architecture. This methodology has been
defined for execution modules defined as simple_alu and complex_alu, obtaining
high fault coverage figures, the lower being a 98.66% on the complex_alu module.

The paper [48] presents a reinforcement learning-based test program generation
technique for TDFs for processor cores. This approach makes use of a reinforcement
learning algorithm to produce simulation traces geared for fault sensitization, that is,
for exciting faults hidden in the inner logic of the processor under test and propagate
their effects towards registers, thus allowing to integrate this approach with others
that tackle the problem of observing the faulty values stored in registers at primary
outputs. The authors of this paper generate fault sensitizing states to be reached in
order to excite the faults to be tested by means of a constrained ATPG, and then limit
the reinforcement learning search space by selecting only those registers that are
relevant for the fault sensitizing states and those that carry control signals. Once the



18 Background

fault sensitizing states have been screened out for each transition delay fault through
the adoption of a constrained ATPG, the goal space and the reinforcement learning
state encoding of the processor are determined, followed by the execution of the
reinforcement learning algorithm. This is all done with the goal of finally generating
the test program, with the possibility of deploying functional constraint extraction
to obtain constraints to apply to the ATPG for the next iteration. This approach is
applied on a MIPS32 core, with results achieving a 94.94% on the whole core.

Works [49, 50] focus on the generation of temperature-aware SBST solutions
for transition delay faults. The idea behind these papers is that delay testing under
high temperatures is a critical factor in ensuring the reliability of computer systems,
and SBST techniques can be one of the most suitable methods to carry out this task,
provided that they are capable of creating and maintaining an appropriate high test
temperature throughout the execution of the test program. [49] achieves this task by
first adopting an Automatic Test Instruction Generator (ATIG) to which functional
constraints are applied. Thanks to this setup, authors produce test programs capable
of reaching high transition delay fault coverages on the ALU of processor cores. Ex-
perimental results, in fact, show a 97.91% fault coverage on the ALU of a MiniMIPS
core. These test programs, however, still need to be modified so that they can heat
up the processor core, mainly by trying to reduce any stall which would hinder the
switching activity of signals inside the CPU, as the more the signals toggle the higher
the power consumption is. Two methods are proposed, either via loop unrolling or
by exciting cache misses in load and store instructions. Experimental results show
that, besides the high fault coverages, the dissipated power can be increased in a
significant way by either implementing one of the two aforementioned strategies on
its own or by using them both, at the cost however of an increased code size and
execution time. [50] makes use of a Bounded Model Checking (BMC) approach to
generate a set of sequential constraints that are used in conjunction with an ATPG
to generate functional test patterns for delay faults through which test programs
can be autonomously generated. It then follows the same principles as in [49] for
making the test program suitable to heat up the circuit under test, producing high
fault coverages at test temperatures that fall within safe ranges.

Finally, the work in [22] describes a generic approach to STL development for
peripherals embedded in modern System on Chips. The methodology proposed in
[22] explains how an STL can be developed starting by a series of small programs
that are capable of accessing, both in terms of reading and writing when available,



1.3 Related works 19

all peripheral registers and activate all of its functionalities, may them involve the
transmission and reception of packets in several working configurations. Each code
section usually follows a specific structure, having first a setup or configuration
phase that is used to configure the peripheral in a specific working mode, and an
operational phase where the peripheral operates under the intended scenario. This
article also puts an emphasis on how the targeted fault model impacts the stimuli
required to excite the faults and propagate their fault effects, for example, stuck-
at faults require one test vector while delay faults require pairs of test vectors. In
addition, code written for verification of the device under test can be used as a starting
point, but it still needs modifications as the observation of fault effects requires more
pervasive data sampling operations. This approach is then validated on a System
Power Management Interface (SPSMI) peripheral, dividing the STL into six macros:
a Reset, write 0/1 and read 0/1 on all Control Status Registers, a Mailboxes test where
all FIFO buffers are tested for rising and falling transitions, a Bus Access Request
test, an All Commands test, going for all commands provided by the peripheral, an
AHB Control Interface test, thus targeting the AHB interface, and finally a Counters
test, mainly used for the protocol timing management. Experimental data shows
how it is possible to achieve a test coverage figures of 87.83% transition delay faults
showing how SBST can be adopted in conjunction with other testing methodologies
even after the circuit has been manufactured.

All the works presented in this section tackle the problem of generating test pro-
grams for transition delay faults, specifically, by following very diverse approaches.
The achieved results are quite high in every case, showing that testing transition delay
faults through functional means can lead to satisfactory results and thus validating
the usage of SBST techniques for this fault model. Generating test programs starting
from scratch, however, is a complex task, and it requires non-negligible time and
effort from test engineers that scales with the complexity of the processor to be
tested. For instance, the adoption of reinforcement learning algorithms as described
in [48] might not be particularly effective when tackling high-complexity cores. The
increase in code size and execution time reported in [49, 50] might not be negligible
thus leading to limitations depending on the properties of the device to be tested and
the main application in which it works. Other works focus more on the execution
unit or ALU portions of the processor to be tested, while faults that may arise from
other units may still significantly impact the processor and are harder to tests, e.g.,
those stemming from the control unit. For this reason, the techniques presented in



20 Background

this PhD thesis focus on how to improve already existing test programs to improve
transition delay fault coverages without focusing on single functional units of the
device under test and with little timing and size overhead.

1.3.2 Self-Test Libraries hardening

Improving available test programs to achieve higher fault coverages is a thoroughly
investigated issue, with several works on this[51–53, 18]. The work in [51] presents
a methodology to generate test programs intended for online testing starting from
verification-oriented programs. To do that, the authors introduce a two-step approach,
namely an Autonomous Systems Safe Faults Classification followed by an On-Line
Test Set Generator. The first step aims at generating a fault list from which all Safe
Faults, that is, all faults that affect areas that never toggle while running the software
application are removed. The idea behind this is that even though a portion of the
device under test’s logic is affected by faults, if that logic is never used during the
operative lifetime the fault cannot affect the system into which the DUT is embedded.
This definition is, therefore, strictly bound to the software application, and the list
of Safe Faults can thus change from application to another. This task is carried out
by recording the switching activity of internal nets in the combinational portion of
the device under test, also bearing into mind that there might be signals that must be
analyzed carefully, e.g., those handling interrupts from GPIOs or those belonging
to status registers, as they can toggle in an unexpected way thus not allowing to
constraint them to fixed values. Once this is done, faults belonging to the never
toggling signals are identified and removed, so that untestable and undetectable
faults are not taken into account in the test generation phase. The second step
involves the use of the On-Line Test Set Generator, with the aim of taking code
snippets written for verification and turning them into test programs. The verification
program provides the skeleton for the final test program and is expanded by adding
portions of code, namely a Stack frame creation, saving the content of the registers
before launching the test routine, a Register initialization portion, a Signature Store
section where the register values affected by errors due to faults are compacted into
a signature and stored in memory and finally a Stack frame destruction, with the goal
of recreating the context prior to the execution of the test program. The authors tested
this approach on two modules of a RISCV core embedded in a nanodrone, namely
the multiplier and hardware loop control. Experimental results show a stuck-at fault



1.3 Related works 21

coverage of 99.26% and 80.41% on the multiplier and hardware control loop module,
respectively.

Authors in [52, 53] present an approach based on a tool implementing High-
Level Decision Diagrams (HLDDs) used to model microprocessors and their faults,
paired with a test generator that produces the final test program starting from already
available templates stored in the assembly code library. The High-Level Decision
Diagram of the processor under test is produced starting from the ISA of the core
to be tested, that has to be appropriately described into specific file formats so that
the tool can process it. The user can select how many instructions from the ISA to
provide the tool for the HLDD generation, e.g., if only the ALU should be tested then
ALU intructions only can be provided. The generated test program can be divided
into two parts, the first one being the initialization, where registers are written with
specific data, followed by the actual test part. Given these properties, the authors
report that the test generation process is heavily influenced by the modeling level
implemented in the previous steps: the more instructions can be fed to the tool the
better the representation; moreover, specific behaviors of the CPU might not be
deducted from the ISA and simple set of instructions could thus not be enough to
test them.

Authors in [54] present a technique based on evolutionary algorithms, in the form
of Genetic Programming, paired with a hardware-accelerated fault simulation process
through which already existing test suites are improved by adding new content to
them. The proposed system architecture makes use of a Fault Manager, that has the
task of generating the target fault list and supervising the automatic test program
generation process, and an Automatic Test Program Generator. The Automatic
Test Program Generator is based on µGP, an evolutionary approach for generating
programs based on the genetic programming paradigm. With this approach, µGP
cultivates a population of candidate test programs. Once generated, each program is
simulated with an external tool and then the feedback, i.e., the fault coverage, is used
to improve the next generation of candidate test programs. The simulator is+ based
on a hardware accelerator that is composed of three modules, namely an FPGA,
a PCI bus and a host computer. Through this approach it is possible to increase
an initial stuck-at fault coverage of 59% up to a final 99.38% fault coverage on a
pipelined SPARCv8 core.



22 Background

The techniques I worked on regarding STL hardening for transition delay faults
have been presented in articles [18, 55] and will be thoroughly detailed in Chapter 3.
In summary, all the approaches presented in this section show how already developed
programs or code snippets can be improved in order to increase stuck-at fault
coverages. Techniques based on HLDDs as in [52, 53], however, may prove hard to
adopt when applied to the entire circuiit of complex pipelined CPUs. Moreover, the
stuck-at fault coverage on the Integer Unit module of the SPARC core adopted in
these works is still low, mainly due to the fact that not every instruction using the
Integer Unit was considered when building the HLDD model, and extensions for
the model to take into account all instructions needs further research. The approach
shown in [54], on the other hand, needs 26 hours to complete, and makes the original
test program size 1.4 times larger, posing the question of whether the new test
program can fit into the non-volatile memory of the device under test. The work in
[51] achieves good results, but the approaches developed in this PhD thesis do not
require to heavily modify the original program and focus on the whole CPU. Finally,
no work focuses on techniques for hardening STLs for delay faults, specifically.

1.3.3 Trace Buffers

Several works in literature examine in-depth the topic of adopting and optimizing the
usage of post-silicon debug logic[56–59]. The authors in [56] introduce a technique
for capturing debug data when errors are known to be present by means of a three
debug approach, thus overcoming the trace buffers limited capacity by discarding
data that is known to be error free. The first debug session is used to estimate
the error rate which is then used to extrapolate the maximum observation window
size. In the second debug session, during the clock cycles in the window range
identified in the previous step, a 2-D compaction algorithm is used to identify a set
of suspect clock cycles, where errors can occur. The 2-D algorithm is based on the
usage of Multiple-Input Signature-Registers and cycling registers, whose signatures
are intersected to extrapolate the aforementioned set of suspect clock cycles. The
third and final debug session debug data is captured in the trace buffers during the
previously identified suspect clock cycles. The article also describes the hardware
architecture of the debug module. Data shows that through the three debug sessions
the observation window of trace buffers can be increased by up to two orders of
magnitude. The work in [57] is an improvement of the one in [56], aiming at defining



1.3 Related works 23

a systematic methodology to identify a set of suspect clock cycles so that erroneous
data only is stored inside the trace buffers. The proposed approach is based on a two
data debug session, removing one with respect to the previous work. The first session
is used to extract the set of suspect clock cycle obtained by means of a 2 dimensional
(2-D) compaction algorithm, resorting to an intersection the failing signatures of a
MISR and two Cycling Registers followed by the store of such intersection into the
trace buffer. Prior to the second debug session, tag bits are generated and stored on
the trace buffer with the the goal of facilitating the process of debug data capture.
Finally, with the second debug session, final debug data is captured. The article
explains in details the hardware architecture used for this approach, and as detailed in
the experimental results, it achieves fine-grained error localization with an expansion
in temporal visibility.

In the paper [58], authors aim at reducing debug time by proposing an on-chip
error detection method capable of increasing the trace buffer capacity, which is
usually limited, by identifying time windows in which errors are present. This is
done in order to reduce the number of debug sessions by selectively capturing debug
data. The article focuses on three main aspects. The first is a technique on how to
reuse empty portions of trace buffers to reduce debug time with a limited hardware
overhead. Pre-calculated golden responses of the circuit to be tested is stored in trace
buffers unused area, allowing for a real time analysis of debug data. The second
aspect is a new compaction technique, so that the debug module can compress
erroneous intervals in an efficient way. The final aspect is an architectural feature
that makes use of Multiple-Input Signature-Registers to perform the compaction
mechanism required by the proposed on-chip method. Thanks to this approach,
debug time is reduced, with a limited hardware overhead.

Finally, [59] tackles the issue of trace buffers overflowing. Trace buffers are
largely adopted in post-silicon validation but usually present a limited size, hence
the risk of frequent overflowing. The problem associated to trace buffers overflow is
that the chip has to be stalled so that the state data that is stored inside the buffers
can be transferred outside of the chip. This obviously hinders an efficient debug
procedure. To mitigate this problem, the authors propose a technique to minimize
the amount of stalls based on several points. First, they introduce a specification
language, called Storage Specification Language (SSL), through which the validation
engineer can signal what information must be saved and what can be discarded from
the traces to generate summaries. Next, they define techniques to perform spatial



24 Background

and temporal summaries of traces, i.e., techniques that allow to filter out irrelevant
signals by removing unneeded fields or discarding information that is defined as
not useful after examining compliance to the specified temporal property. Finally,
they present hardware design approaches to implement the proposed spatial and
temporal summarizer. Results show how it is possible to achieve a reduction in stalls
with a relatively low area overhead. My contribution in this specific field have been
presented in [60] and will be described in details in Chapter 4.

The related works show how post-silicon debug logic can be used in an effective
way in the validation step on the actual hardware to capture the presence of errors.
In my contribution, this hardware is reused for testing purposes, looking for signals
where hard-to-observe transition delay faults propagate and stop. This allows for an
increase in transition delay fault coverage without area overhead, as only a limited
set of signals must be observed as opposed to other applications where trace buffers
are at least tens of kilobytes wide.



Chapter 2

Main Contributions

Between the two main delay fault models, transition delay faults are the most adopted
fault model and the one for which solutions are more mature, both when looking
at DfT and SBST approaches. Most of the approaches in literature focus on the
issue of generating from scratch Self-Test Libraries for transition delay faults, and
usually mainly tackle fault stemming from the execution unit of processor cores,
as thoroughly detailed in Section 1.3.1. By studying and evaluating the solutions
available in literature, it is possible to outline two prerequisites that the work related
to TDFs presented in this thesis should have:

• Rather than working on another method to develop transition delay fault-
oriented STLs, developing techniques to increase the fault coverage of already
existing STLs with a minimal overhead is of interest,

• Such techniques must work for faults stemming from the entirety of the device
under test.

Improving the effectiveness of STLs for transition delay faults means finding
ways for detecting faults that have not been detected by the test program suite. This
category of faults, however, can be quite heterogeneous as there can be different
reasons why a fault has not been detected in the fault simulation process. As an
example, the STL may have been able to excite the location where the fault is present
but then fail in propagating the fault effect to any of the observation points, usually
POs, or it might have failed in even controlling the fault location, thus not exciting
the fault in the first place. Moreover, there is the issue of identifying Functionally



26 Main Contributions

Untestable Faults, that cannot be tested in any way by means of SBST solutions.
Faults that were excited but whose effects were not propagated to POs are usually
referred to as not-observed (NO) faults, while faults that were not excited in the first
place are usually referred to as not-controlled (NC) faults.

Given the absence of solutions for this specific topic, in this PhD thesis the
focus will be on not-observed transition delay faults as they usually require the least
amount of modifications to be imparted to the already available STL thus allowing
for a good tradeoff in terms of amount of faults recovered versus code overhead. As
a consequence, any increase in fault coverage is achieved by detecting not-observed
faults, only. Test programs enhancement may, as a side effect, cause the detection of
not-excited transition delay faults, too, even though they are not the focuse of this
thesis.

In order to achieve such results, two works are presented in this PhD thesis,
one consisting in a purely software solution capable of easily enhancing the fault
coverage with a small increase in code size, the other being a hybrid approach that
leverages the post-silicon debug hardware that is already present inside modern
System on Chips to observe a subset of flip-flops where effects of not-observed
transition delay faults propagate and stop. For these two proposed methodologies to
work, no minimum fault coverage from STLs is required, with the exception of the
constraint of having many not-observed transition delay faults. This constraint, in
practice, is usually satisfied by the large majority of STLs, as it will be highlighted
in the following chapter and shown in [18].



Chapter 3

STL hardening techniques for
transition delay faults

In this chapter, a systematic methodology for improving STLs previously developed
for the stuck-at fault model is presented. The reasons for picking STLs developed
for stuck-at faults as the starting point are:

1. methodologies for developing effective SAF-oriented Self-Test Libraries are
more mature and capable of achieving high fault coverage when targeting
faults from the entirety of the device under test,

2. companies systematically develop STLs for stuck-at faults, thus already having
a starting point on top of which the presented methodology can be applied,

3. although being two different fault models, stuck-at and transition delay faults
share similarities in the way they are tested, as shown in Section 1.1, further
validating the choice of selecting STLs for stuck-at faults.

3.1 Proposed Approach

The proposed approach aims at identifying code regions in the test program where
to insert a specific instruction block to increase transition delay fault coverage in
complex pipelined processor cores. Once defined the goal, we can formulate the
problem as (i) understanding where the code needs to be improved and (ii) finding



28 STL hardening techniques for transition delay faults

a suitable set of instructions that can propagate the effect of NO faults with the
minimum overhead possible. Given that test vectors come from the execution of
instructions of the test program, understanding where the code should be enhanced
is a matter of knowing what instructions cause the fault to be excited but fail in
propagating the value to the primary output. To solve this issue, the first step has
then been decoupled into two sub-steps as follows:

• Find the time instant at which a fault effect stopped inside the processor under
test

• Find what instructions were being executing in a surrounding of that time
instant.

By intersecting these two information, one can retrieve the instruction that caused
the fault to be not observed, also defining a region of code within which the additional
testing instructions can be placed before the faulty value is overwritten in the CPU.
A broad overview of the test flow I devised to tackle this problem is outlined in
Fig. 3.1.

Fig. 3.1 Proposed test flow

Starting from the white block, i.e., the original test program, the test flow articu-
lates into four main processes, namely:



3.1 Proposed Approach 29

1. Internal Observation Points (IOPs) Extraction: extract a list of signals where
faults effect propagate and stop

2. Observability Study: analyse fault simulation data to determine at what time
instant fault effects stopped in the DUT

3. Logic Simulation Trace: map instructions with their execution time inside the
core

4. Test Program Enhancement: apply a set of techniques to improve test programs
based on the information gathered in the previous steps.

In the following, all four processes are described in details.

3.1.1 Internal Observation Points Extraction

When dealing with not-observed transition delay faults, the very first issue to address
is understanding where the fault effects propagate and stop. Since this technique is
to be applied to processor cores, we can restrict our analysis to the locations within a
CPU that can be reached by faults’ effects. Moreover, the assumption is that faults
originate from nets in the combinational logic and their effects propagate from there
towards other sites in the CPU.

Given this premise, an erroneous value stemmed from the presence of a not-
observed fault can evolve in three possible ways:

• The value reaches a register that can be directly controlled through instructions
from the Instruction Set Architecture,

• The value reaches a register that cannot be directly controlled through instruc-
tions from the Instruction Set Architecture,

• The value does not reach any register, and gets stuck somewhere into the
combinational logic.

In this PhD thesis, I focus on the first two groups of faults, as they lend themselves
to be especially suited for the proposed methodology. The set of faults whose effects
reach registers that can be directly controlled through instructions are called User



30 STL hardening techniques for transition delay faults

Accessible Register faults, and the set of signals belonging to such registers are
called User Accessible Registers (UARs). An example of UARs are all registers
belonging to the register file or control status registers since there are instructions
that allow to directly work with such registers, e.g., load and store instructions allow
to read and write into registers as needed. Fig. 3.2 shows an example of UARs in a
basic implementation of a pipelined RISC core.

MemoryPC

A
d
d
er

Register

File

Sign

Extend
IF

 / ID

ID
 / E

X

Imm

RS1

RS2
Zero?

ALU

M
U

X

E
X

 / M
E
M

Memory

M
U

X

M
E
M

 / W
B

M
U

X

M
U

X
Next SEQ PC Next SEQ PC

WB Data

Branch
taken

IR

Instruction Fetch

Next PC

Instruction Decode
Register Fetch

Execute
Address Calc.

Memory Access Write Back

IF ID EX MEM WB

User Accessible

Registers (UARs)

Fig. 3.2 Example of User Accessible Registers in a basic core implementation

The set of faults whose effects reach register that cannot be directly controlled
through instructions are called Hidden Register faults, and the set of signals belonging
to such registers are called Hidden Registers (HRs). An example of HRs are all
registers that can be found in pipelines in every modern pipelined processor core,
since no instruction can directly establish the content of such registers, not allowing to
directly read from them. Fig. 3.3 shows an example of HRs in a basic implementation
of a pipelined RISC core.

Special emphasis is put on the distinction among the two categories of faults
because in practice they require different techniques to propagate the faulty value
they store towards primary output, as UAR faults tend to be easier in principle to test
with respect to HR faults. Having these fault categories introduced and explained, the
IOPs Extraction process consists in defining the list of signals belonging to the User
Accessible Register and hidden register groups, and extracting their exact name from



3.1 Proposed Approach 31

Hidden Registers

(HRs)

MemoryPC

A
d
d
er

Register

File

Sign

Extend

IF
 / ID

ID
 / E

X

Imm

RS1

RS2
Zero?

ALU

M
U

X

E
X

 / M
E
M

Memory

M
U

X

M
E
M

 / W
B

M
U

X

M
U

X

Next SEQ PC Next SEQ PC

WB Data

Branch
taken

IR

Instruction Fetch

Next PC

Instruction Decode
Register Fetch

Execute
Address Calc.

Memory Access Write Back

IF ID EX MEM WB

Fig. 3.3 Example of Hidden Registers in a basic core implementation

the post-synthesis level netlist. Performing this task requires the knowledge of the
processor’s internal structure and its Instruction Set Architecture, considering how
tightly connected are these two concepts and the faults’ definition previously given.
The algorithm used to extract User Accessible Registers and Hidden Registers is quite
straightforward, and consists of first extracting all sequential elements, flip-flops
and latches, and understanding whether they belong to UARs or HRs based on the
functionality implemented by the register they belong to. A graphic representation
of such algorithm is presented in Fig. 3.4.

Once the list of UARs and HRs is available, it is possible to move on to the next
steps.

3.1.2 Observability Study

Once information on what constitutes User Accessible Registers and what constitutes
hidden registers is available, it is possible to start with the Observability Study step.
The aim of this process is to give insights on whether a not-observed fault belongs to
the UAR or HR category, so that appropriate strategies can be adopted at the STL
enhancement level.



32 STL hardening techniques for transition delay faults

Yes No

Can it be

traced back to a
UAR?

Pick the first sequential

element from the list

Start

End

Extract all sequential

elements (flip-flop and
latches) from the DUT

Mark it as a User

Accessible Register

Mark it as a Hidden

Register

No

Yes
Pick the next sequential

element to the list

Fig. 3.4 Internal Observation Point extraction algorithm



3.1 Proposed Approach 33

D Q

Q

A

B

C

D

E

CLK

F

G

Z

STR

IOP

Fig. 3.5 Circuit with internal observation point

The Observability Study consists of two sub-processes, namely a fault simulation
followed by an analysis of data produced while performing the simulation. The fault
simulation follows the generic approach detailed in Section 1.2, that is, it requires
a list of input stimuli stemming from the execution of the STL on the processor
under test that will be used while performing the actual fault simulation, so that test
vectors deriving from instructions from the test suite can be used to test transition
delay faults. In addition to this, however, the information on internal observation
point must be applied, so that reports produced after the fault simulation can show
what faults belong to what group. In order for the fault simulation tool to acquire the
required information on IOPs, the concept of promotion table is introduced.

When performing a fault simulation, labels are assigned to faults in order to
reflect their status and give the test engineer feedback on the test’s effectiveness.
Specific names of labels may change from tool to tool, but overall some labels can be
found in most commercial tools. For instance, some commonly found labels are those
that identify detected faults DT, potential detected faults PT, not-observed faults NO,
not-controlled faults NC or untestable faults UN. However, the test engineer may wish
to add other labels that allow to understand whether a fault passed through specific
points in the device, so that additional diagnostic information can be gathered. Still,
defining new labels is not enough to solve the problem, as it is also necessary to
provide the ranking, i.e., the priority list, of all labels. To exemplify the concept, let
us consider a simplified example shown in Fig. 3.5.

In this circuit we assume the presence of a slow-to-rise fault on the red line, and
define an internal observation point at the output of the flip-flop on the green line. Let



34 STL hardening techniques for transition delay faults

us consider the case in which the STR fault effect reaches the internal observation
point at t1, is detected at the primary output, in this case Z, at time t2 and is newly
observed at the internal observation point at time t3, where t1 < t2 < t3. We assign to
the event of the fault being observed at the internal observation point the label F1,
while the label associated to the fault being detected is the usual DT. Based on these
assumptions, it would appear that the considered STR fault would be marked as F1 at
time t1, followed by DT at time t2 and again F1 at time t3. This, however, results in an
incorrect outcome: once the fault is detected at the primary output, unless differently
specified, it should be dropped by the active fault list and no further change in its
label must occur, while in the example its status is "downgraded" from being detected
to being observed at an internal observation point. The first transition from being
observed at an internal observation point to being detected, instead, is perfectly legal,
and it shows how the fault effect, once excited, has been propagated at the primary
output. From the discussion above it emerges how, together with a set of user-defined
labels, it is important to provide a ranking so that fault statuses can evolve in one
direction but not in the other. It is noted that creating and assigning labels to points
in the circuit does not require the modification of the DUT’s hardware as they are a
mechanism introduced by commercial fault simulation tools that is simply attached
to the netlist in specific points.

A promotion table is a tool introduced by some commercial fault simulation tools
that implements the functionalities described above, i.e., it allows to create a set of
user-defined labels together with the ranking, so that fault statuses can promote in
a coherent way. When working with in-order pipelined processor cores, it is thus
possible to define a set of labels as follows:

1. PP: a fault effect has been potentially observed at one of the registers of the
fetch stage pipeline registers,

2. FP: a fault effect has been observed at one of the registers of the fetch stage
pipeline registers,

3. PD: a fault effect has been potentially observed at one of the registers of the
decode pipeline registers,

4. FD: a fault effect has been observed at one of the registers of the decode
pipeline registers,



3.1 Proposed Approach 35

5. PE: a fault effect has been potentially observed at one of the registers of the
execution stage pipeline registers,

6. FE: a fault effect has been observed at one of the registers of the execution
stage pipeline registers,

7. PL: a fault effect has been potentially observed at one of the registers of the
memory stage pipeline registers,

8. LS: a fault effect has been observed at one of the registers of the memory stage
pipeline registers,

9. PS: a fault effect has been potentially observed at any UAR not in the register
file, e.g., control status registers,

10. RS: a fault effect has been observed at any UAR not in the register file, e.g.,
control status registers,

11. PR: a fault effect has been potentially observed at one of the registers of the
register file,

12. RE: a fault effect has been observed at one of the registers of the register file.

It is noted that potentially observed differentiates from observed in the sense
that when an effect is potentially observed we are seeing a undefined logic value
instead of a logic 1 or 0, e.g., X/1 or X/0, while observed means we are seeing the
opposite logic value that we would expect, e.g., 0/1 or 1/0. This set of fault labels
is integrated with default labels from the commercial fault simulation tool in a way
such that they sit in between the class of not detected faults (NO, NC) and detected
faults (PT, DT). Moreover, this labels list has a descending increasing priority, i.e.,
marking a fault RE can only lead to a fault being eventually detected but it cannot go
back to being detected at a pipeline register. The reason for this is that UAR faults
tend to be easier to recover with software techniques than HR faults, hence why
they have a higher ranking. Together with the promotion table, it is also necessary
to provide a strobe list, i.e., a list of internal observation points associated to the
user-defined labels. For example, the strobe list will contain all registers belonging
to the fetch pipeline registers that are associated with the PP and FP labels, so that
the fault simulator tool knows what internal observation points are connected to user
labels.



36 STL hardening techniques for transition delay faults

Fig. 3.6 Fault dictionary snippet

Having defined all these additions, the transition delay fault simulation can thus
be launched. The information on IOPs, tied together with the data produced while
performing the fault simulation, is combined in a special report that is produced at
the end of the fault simulation process along the fault and test coverage figures that is
called fault dictionary. The fault dictionary is a text file that contains data on where
the fault effects have been observed together with their label and time at which the
effect reached that internal observation point. The fault dictionary internal structure
is reported in Fig. 3.6.

Looking at the figure, three main points can be extracted from the reported fault
dictionary entry, namely:

• The time instant at which the fault effect was observed, in this case 36238000ps,

• The internal observation point reached by the fault. The fault dictionary reports
the RE label, hence we know it is a register from the register file, and provides
a strobe list (in this case strobe1) that has an ordered set of signals. The
numbered table is interpreted as follows: for every couple of lines, the first
one starts with a numeric offset that represents the relative signal in the strobe
list and is followed by a set of 1 and 0 that constitute the content of those
signals in the golden machine at the time specified above, while the second
line constitutes the values found in the faulty machine where the dot stands for
no difference with respect to the golden machine and other values, may them
be 1, 0 or X, the discrepancies found in the faulty machine. In the reported
example, for instance, the fault affects the most significant byte of register 0
of the register file,



3.1 Proposed Approach 37

• The name of the fault from which the effect originates and the type of transition,
in this case a slow-to-rise on riscv_core.ex_stage_i_alu_i.U1718.A1.

The information gathered so far is crucial to the test engineer, as it provides a
framework for understanding what portions of the circuit are affected by the faults
and the time instant at which such event occurs. Although relevant, this is still
insufficient to pinpoint the instruction block inside the STL to be modified. To do
that, understanding at what time instructions from the STL are being executed in the
DUT is of paramount importance.

3.1.3 Logic Simulation Trace

The goal of the logic simulation trace is to gather information regarding instructions
of the STL being executed in the processor under test, mainly the time at which
instructions are executed and their operands value. To do so, the first step consists
of launching a slightly modified version of the basic logic simulation of the device
under test. Generally speaking, a logic simulation involves a device to be simulated
plus a testbench that serves the purpose of instantiating the DUT, connecting its
signals to other eventual modules, and driving the simulation by applying input
stimuli and, optionally, recording output values. Under these conditions, a new
module must be included in the testbench, that is, a tracer that has to be attached to
the RTL description of the device under test. Such tracer automatically activates as
soon as the simulation starts, and closely monitors internal signals of the DUT, like
the clock cycle, the program counter (PC), the instruction’s opcode coming from the
instruction RAM and the instruction operand values. The instruction is reported both
in form of hexadecimal value (as described in the documentation of the instruction
set architecture) and as a mnemonic, providing full details to the test engineer. While
the logic simulation proceeds and the processor under test executes the test program,
the tracer stores all of the aforementioned information at each clock cycle, and stores
the data into a text file. An example of the tracer’s output is presented in Fig. 3.7.

After the fault simulation completes and the tracer finishes recording data into
the text file, it is necessary to process such data in a way that is easily accessible in
an automated way. For this reason, the proposed approach resorts to the adoption of
a database where all data is stored. Starting from the data produced by the tracer and



38 STL hardening techniques for transition delay faults

Fig. 3.7 Data produced by the tracer

the disassembly of the test program, the database is implemented such that, for every
instruction found in the STL, the following information is available:

• id: an automatic id assigned by the database at the moment of insertion,

• time: the time instant in nanoseconds at which the instruction was executed in
the processor,

• opcode: the operation code of the instruction as per ISA documentation,

• instruction: the mnemonic of the instruction executed in the core,

• output_register: the destination register of the instruction,

• input_registers: the source register(s) of the instruction,

• PC: program counter value associated to the instruction,

• source_file: the name of the file where the executed instruction comes from,

• source_line: the line number of the source_file where the instruction is found,

• source_instruction: mnemonic of the instruction indicated by the source_file
and the source_line (it may not coincide with the aforementioned instruction
field due to operations performed by the compiler).



3.1 Proposed Approach 39

Fig. 3.8 Example of database entry

Fig. 3.9 STL improvement strategy

An example of a database entry is reported in Fig. 3.8.

The choice of adopting a database for storing the data generated by the tracer
shows its strength when trying to tackle the problem of understanding where in the
original code we should insert new instructions to enhance the detection of transition
delay faults. Although techniques for generating such instructions are described in
the following section, it is useful to visualize this concept by means of an example
as reported in Fig. 3.9.

Starting from the test program (block on the left), a simulation trace log is
produce by the tracer while running the logic simulation, associating instructions
to time instants. After running the fault simulation, the fault dictionary reports that,



40 STL hardening techniques for transition delay faults

at 560ns, a fault reached the register x11 in the register file (RE status), but is never
observed. Given this, the following step consists of identifying a range in the original
test code where new instructions should be added to observe at primary outputs, and
hence detect, the transition delay fault we are considering. Such problem can be
modeled as (i) finding the first instruction that operates on register x11 before the
time instant where the fault effect was observed in the register file, and (ii) the first
instruction following the aforementioned time instant that overwrites the x11 register,
that is, where x11 is the destination register. By means of carefully devised scripts,
this problem can be fully automated thanks to the adoption of the database, returning
not only the instructions that constitute the range into which to operate, reported in
Fig. 3.9 in blue and red, but also the source file from which they originate and the
source lines.

3.1.4 Test Program Enhancement

Now that information on what faults affect which internal observation points together
with data on where to edit the original test program are available, it is possible to start
discussing on the actual techniques to detect such faults based on their category. The
reason for defining different strategies for User Accessible Register faults and hidden
register faults lies in the aforementioned different controllability of such registers
through instructions from the instruction set architecture. Section 3.1.4 describes
the proposed approach for User Accessible Register faults, while Section 3.1.4 deals
with hidden register faults.

User Accessible Register faults

User Accessible Register faults are faults whose effects have been propagated from
the original fault site to registers that can be directly written and read through
instructions from the instruction set architecture. Being able to directly access these
registers’ content through instructions helps the test engineer to make faults effects
observable at the primary outputs. For instance, if we need to read the content of
a register, the store instruction is the best candidate, as it allows to propagate the
register’s content to the memory from which it can be read at a later time. At a
first glance, it would seem that simply putting store instructions after the instruction
causing the fault to be not-observed is enough to observe the fault’s effect and thus



3.1 Proposed Approach 41

F D E M W

D d0 d1 d2 d3 MF W

addi x5, x2, 10

div x7, x5, x1

Fault on x7 is lost as

the register content is
overwritten

Fault's effect reaches

register x7 at this clock
cycle

Fig. 3.10 Multi-cycle instructions and fault effects propagation

detect the fault. This, however, is not the case, as a more detailed analysis is required
on the instructions that excite the fault and propagate its effects to user accessible
registers.

Let us consider the example reported in Fig. 3.10. In this example, the a fault is
excited and its effect propagated while a division operation goes through its execution
stage. In this example, we consider the case in which the fault’s effect reaches the
register x7 after the first division cycle. As the division progresses, however, the
register is being continuously overwritten, eventually to a point where the faulty
value is permanently lost. Placing a store instruction after the division here would
be pointless, as the store instruction should sample the register’s content while the
division is being executed, a feature that is not possible under any circumstance.

For this reason, faults stemming from the execution of these instructions —
from hereinafter referred to as multi-cycle instructions, as opposed to single-cycle
instructions that only take one cycle in the execution stage — should be carefully
taken into account, as the fault effect might be overwritten during the required
execution cycles. Techniques for detecting user accessible register faults are thus
differentiated based on the two types of instruction.

When dealing with faults controlled by single-cycle instructions, a store instruc-
tion placed in the code portion after the fault has been observed at a given register
and prior to the instruction that overwrites the aforementioned register is enough to
observe the fault’s effect at the primary output, hence marking the fault as detected.
Additional action must be taken in specific cases when there is no direct match
between the instructions found in the source file and those reported by the tracer.
When an assembly source file is converted into machine code, the compiler can
slightly modify the original program as all alias instructions are mapped into in-



42 STL hardening techniques for transition delay faults

structions from the instruction set architecture. Such mapping is not always ensured
to provide a 1:1 conversion, meaning that an alias instruction may be substituted
by two or more instructions from the ISA. An example of such feature is given by
the pseudo instruction load immediate, li, whose effect is to initialize a register
to an arbitrary 32-bit value, that is converted to a load upper immediate, lui,
that takes a 20-bits immediate field that is used to initialize the upper 20 bits of a
register, and an add immediate, addi instruction, through which the lower 12 bits
are initialized. It is highlighted that both instructions write to the same register, given
that they split a higher level functionality into two. If we consider the case where the
fault effect is propagated to a register by the execution of the lui instruction, we can
notice how a problem quickly arises: to detect such fault, we should place a store
operation strictly in between the lui and addi instructions, as the addi overwrites
the content of the register holding the faulty value; those instructions however are
not found in the source file as they are the result of the compiling process. This is
the reason why in the database implementation provided in Section 3.1.3 both the
instruction and source_instruction fields are provided allowing to trace back the
modified instructions generated by the compiler to the original one in the source
file. Whenever this scenario occurs, the best course of action is to replace the alias
instruction in the source file with the relative instructions and placing the store
instruction when required.

If the fault is controlled by a multi-cycle instruction, on the other hand, two
scenarios can be identified. The first one is quite straightforward, and consists of
the case in which the fault effect is still present at the last execution cycle: in this
case, the same strategy adopted for single-cycle instructions is used. In any other
case, we duplicate the multi-cycle instruction and modify its operands to ensure
that the faulty value reaches the register towards the end of the execution stage,
so that it can be observed through a store instruction. In this case, duplicating the
instruction rather than modifying the original one is necessary, as the instruction
with the original operands might still be instrumental to the detection of other faults.
Finding the new set of operands to make the fault effects observabe at the end of
the execution stage cycles strictly depends on the instruction itself. It is noted that
in most cases instructions that take more than one clock cycle in the execution
stage implement either arithmetical or logical operations, thus shifting the issue to
understanding how specific operations are implemented, e.g., what algorithm is used
to implement divisions. In any case, as it is demonstrated by the experimental results



3.1 Proposed Approach 43

described in Section 3.2.2 and first presented in [55], identifying suitable operands
for this purpose is a feasible task which can often be performed by the test engineer
by manual inspection or by mathematically extrapolating them by looking at the
adopted algorithm.

Finally, it is noted that in the worst case scenario one instruction must be added
to detect a single-cycle instruction fault and two instructions must be added to detect
a multi-cycle instruction fault. In a large amount of cases, however, several different
faults happen to propagate their effects to the same register at the same time instant.
For this reason, one set of instructions may be capable of detecting more than one
not-observed transition delay fault at the same time, thus requiring a minimal code
and execution time overhead.

Hidden Register faults

All those faults whose effects reach registers that cannot be directly observed through
instructions fall within the hidden register faults group. These registers are deeply
embedded inside the processor core, either belonging to pipeline registers or inner
sub-modules, which makes particularly hard to propagate values from those locations
to either primary outputs or user accessible registers.

The premises on which the strategy I propose to detect these faults is based on
is similar to those defined for UARs, that is, it requires the analysis of the fault
database to extract information on where faults propagate and stop and at what time
instant, i.e., in what portion of the STL, such events occur. Given the nature of
hidden registers, however, an additional analysis is needed to understand how to
detect these faults.

In order to do so, we observe that the process of exciting a transition delay fault
and observing its effects in a pipelined CPU can be decoupled into two sub-tasks. To
exemplify this aspect, let us consider the circuit reported in Fig. 3.11. In this circuit,
we assume that the net connected to the output of the first AND gate is affected
by a slow-to-rise fault, and the goal is to provide a set of test vectors to make the
fault effect observable. Given that in the circuit a flip-flop is present, the test vectors
required to detect the fault are three, the first two generating the required transition
on the net affected by the fault and propagating such transition to the flip-flop, the
third vector propagating such transition from the flip-flop to the primary output, in



44 STL hardening techniques for transition delay faults

D Q

Q

Z
F

E

CLK

D

C

B

A

STR

A (0, 1, X)

B (1, 1, X)

C (0, 0, X) E( X, X, 1)

D (1, 1, X)
Z (X, X, 0->1)

F (X, X, 0)

Fig. 3.11 Controlling and observing the effect of a transition delay fault in a sequential circuit

this case Z. In this example, inputs from A to D directly control logic that is placed
prior to the flip-flop, while inputs E and F control logic after the flip-flop. For this
reason, for the first two cycles E and F are set to a don’t care value (represented
with the letter X), as they do not influence the circuit portion involved with the
generation and propagation of the transition to the flip-flop. These two inputs are
assigned non-controlling values at the third clock cycle, as they must not block the
propagation of the signal to the primary output. Inputs from A to D, on the other
hand, are initialized with specific values in the first couple of clock cycles, while
in the third one they are all set to a don’t care state as the faulty value has crossed
the flip-flop. In summary, the way the problem of testing a transition delay fault is
decoupled into two sub-tasks is by first finding a specific pair of test vectors to be
applied to generate the required transition and propagate it towards an endpoint, may
that be a primary output — in which case the fault is marked as detected — or a
register within the processor core. Secondly, if the fault’s effect reached a register,
methodologies to propagate such effect to primary outputs are employed to detect
the fault. While the first step obviously depends on the fault model and the transition
that we want to generate, the second step does not depend as much on the fault to be
excited, and is just a problem of propagating a value from one point to another.

The aim of this section is to define an automatic way to easily increase the
transition delay fault coverage for STLs that were previously devised for stuck-at
faults. Given this group of faults, hence, we define the algorithm summarized in
Algorithm 1.

The presented algorithm is described as follows: in order to test a transition
delay fault Fi whose effects propagate and stop to the hidden register Hi at time Ti, it



3.1 Proposed Approach 45

Algorithm 1: HR faults detection algorithm
input :A list L of triplets (Fi, Hi, Ti) where

Fi is the transition delay fault to be tested
Hi is the HR bit reached by the fault’s effect
Ti is the time at which the fault effect reached Hi

An STL S that has been developed for SAFs
output :A set of instructions to propagate transition delay fault effects to primary

outputs
foreach (Fi, Hi, Ti) in L do

if S detects Hi’s stuck-at-1 and/or stuck-at-0 faults then
get the time Ts at which the stuck-at fault on Hi is detected;
extract a block B with the last N instructions before Ts from S;
check whether B does not contain jump instructions;
if Fi has been detected by B then

add B to the original program;
end

end
end

may be useful to look for pieces of code coming from an STL S already developed
for stuck-at-faults, as it may contain blocks of code capable of testing stuck-at-0
and stuck-at-1 faults located in pipeline registers. If that is the case, such block of
code can also be used to propagate values from aforementioned locations to primary
outputs. This makes for an effortless way to detect transition delay faults, as we
just need to find the appropriate chunk of code and put it right next to the one that
excites the transition delay fault and propagate its effect up to the relative pipeline
register. This operation, however, should not disrupt the overall flow of the original
test program: for this reason, jump instructions in the code to be added should be
avoided. Implementing this strategy can be easily done in an automatic way by
extending the set of functionalities offered by the database storing information on
test programs. For instance, in case several STLs are available for stuck-at faults,
it is sufficient to gather information on their fault coverage, understanding whether
they are capable of detecting stuck-at faults affecting the same line where hidden
register faults’ effects propagate and stop, and provide a means of extracting the set
of instructions responsible for such detection, elaborating it into a format that can
be easily elaborated at a later time, e.g., a JSON file. This is achieved by means of
scripts that coordinate all this information and all accesses to the database. In the rare
case where the transition delay fault effect propagates to a bit in a pipeline register



46 STL hardening techniques for transition delay faults

whose corresponding SAFs are still not detected by the existing STL, methods such
as [16] can be used to generate the required chunk of instructions (improving the SAF
coverage as well). The size of such block of instructions, in Algorithm 1 reported as
N, should be fixed to a specific value, so that the test program enhancement flow can
fully operate autonomously. In this approach, few tests can be conducted in order
to find the best solution in terms of code overhead and fault coverage improvement,
and once such value is experimentally found it is kept for every HR fault.

Similarly to User Accessible Register faults, even for hidden register faults a set
of instructions added to the original test program may be capable of detecting more
than one TDF at the same time, thus achieving better fault coverages with a smaller
test program with respect to having a set of instructions for each fault to be tested.

3.2 Experimental Results

This section is devoted to the presentation and analysis of the experimental results
that were collected in order to prove the effectiveness of the proposed approach.
The section is divided into a presentation of the core adopted for all tests and the
suite of STLs that were taken as starting point in Section 3.2.1, followed by the fault
simulation results in Section 3.2.2.

3.2.1 Case study

The approach presented in this chapter has been validated on PULPino[2], an open-
hardware single-core system on chip platform based on a 32-bit RISC-V core de-
veloped by ETH Zurich and Università di Bologna. PULPino can be configured to
use two type of cores, RI5CY or zero-ri5cy core. PULPino is configurable to use
either the RISCY or the zero-riscy core. RISCY is an in-order, single-issue core with
4 pipeline stages. This core fully supports the base integer instruction set (RV32I),
compressed instructions (RV32C) and multiplication instruction set (RV32M). Even-
tually, it is also possible to enable the single-precision floating-point instruction set
extension (RV32F). It is designed so that it can be used in ultra-low-power signal
processing applications, and it implements several additional functionalities such as
hardware loops, multiply and accumulate operations. The internal architecture of
this core is shown in Fig. 3.12



3.2 Experimental Results 47

Fig. 3.12 Internal architecture of the RI5CY core[2]

Fig. 3.13 Internal architecture of the zero-ri5cy core[2]

zero-riscy is an in-order, single-issue core with 2 pipeline stages and it fully sup-
ports the base integer instruction set (RV32I) and compressed instructions (RV32C).
It can be configured to have multiplication instruction set extension (RV32M) and
the reduced number of registers extension (RV32E). It has been designed to target
ultra-low-power and ultra-low-area constraints. The internal architecture of the
zero-ri5cy core is shown in Fig. 3.13.

In these experiments, PULPino was configured to use the RI5CY core, as it
is a good trade-off in terms of circuit complexity, size, and amount of offered
functionalities. This core has been synthesized using the 45nm Silvaco Open Cell
library (former Nangate Open Cell library)[61]. The PULPino system on chip comes
with a set of peripherals, e.g., communication peripherals such as UART, SPI, I2C.
The target of this approach, however, is the CPU only: for this reason, all other



48 STL hardening techniques for transition delay faults

components have been excluded by the synthesis process and all following steps.
Data regarding the synthesized core is reported in Table 3.1.

Table 3.1 Case study general info

Parameter Value

Number of gates 46,850
Total Area (eq. gates) 51,001.65
Clock Period (ns) 40.00
#Transition Delay Faults 159,326

In order to check how well this method performs under different scenarios, I
selected a set of three different Self-Test Libraries that were previously developed to
test stuck-at faults on the PULPino core, namely STL1, STL2, and STL3. To ensure a
diverse and realistic testbench, the three selected test programs have been developed
following different implementation strategies. Table 3.2 reports a summary of the
most important characteristics of the adopted STLs, namely the execution time
(expressed in the total amount of clock cycles), code memory size, and stuck-at fault
coverage.

Table 3.2 STLs general information

Test
Program

#Clock
cycles

Memory
size [kB]

SAF
coverage %

STL1 17,308 27.32 81.42
STL2 31,158 27.86 81.86
STL3 80,455 16.68 82.18

An important aspect to highlight is that the reported execution time for each STL,
that is, the amount of clock cycles for the test routine to execute, has been computed
by running STLs in their entirety. The test engineer, however, is free to split them
into sub-modules that can be launched separately depending on the situation and the
needs, thus creating a set of smaller routines that can fit into small idle time slots
with the final cumulative fault coverage.

The fault simulation experiments have been launched on Synopsys Z01X, a
commercial tool that was devised specifically for functional safety. Employing
Z01X is particularly advantageous, mainly because it provides the promotion table
functionalities that are crucial to implement the observability study described in



3.2 Experimental Results 49

Section 3.1.2, as well as it features a noticeable fault simulation speed: performing
transition delay fault simulations took, for each test program, no longer than 1 day
on an Intel Xeon CPU E5-2680 v3 server with a clock frequency up to 3.3GHz.

3.2.2 Achieved results

In this subsection, achieved results are discussed in details both in terms of overall
fault coverage improvement and fault coverage improvement related to specific
register groups, may them belong to user accessible registers and hidden registers.
Starting with data obtained on the whole core, Table 3.3 and Table 3.4 report the
most relevant information on the user accessible register and hidden register faults
that were detected as a result of the proposed methodology.

Starting with Table 3.3, it is possible to see that our approach is greatly effective
as it is capable of detecting almost every fault out of those that are excited but
not detected by the existing STL, with the worst case scenario being STL3 with a
98.76% of UAR faults being detected. Given a total amount of 159,326 transition
delay faults, through our methodology we can increase the final fault coverage by
4.13% for STL1, 15.01% for STL2, and 1.80% for STL3, respectively. The original
transition delay fault coverages of these programs are 61.73% for STL1, 44.19% for
STL2 and 62.54% for STL3 respectively; by adding the now detected user accessible
faults the fault coverages reach 65.86% for STL1, 59.20% for STL2 and 64.34% for
STL3 as reported in Fig. 3.14.

Table 3.3 Analysis on detected UAR faults

STL1 STL2 STL3

Detected UARs 6,578 23,912 2,864
Total UARs 6,591 23,922 2,900

%Detected UARs 99.80 99.96 98.76

Code size [kB] 6.34 4.17 3.53

This improvement comes with an increase of the final code size that amounts
to an additional 22.21% for STL1, 14.97% for STL2, and 21.16% for STL3. This
proves that the proposed strategy is able to systematically test not-observed transition



50 STL hardening techniques for transition delay faults

STL1 STL2 STL3
0

10

20

30

40

50

60

Tr
an

sit
io
n 
De

la
y 
fa
ul
t c

ov
er
ag

e

65.86

59.2

64.34Original fault coverage [%TDFs]
Fault coverage with UAR faults [%TDFs]

Fig. 3.14 Transition delay fault coverage with UAR faults



3.2 Experimental Results 51

delay faults whose effects reached user accessible registers with a reasonable code
size increase.

Moving on to data on hidden register faults, Table 3.4 reports information on
recovered HR faults in the whole core. In this case, as it can be deducted from the
table, the results achieved thanks to the presented methodology are quite dependent
on the considered STL.

Table 3.4 Analysis on detected HR faults

STL1 STL2 STL3

Detected HRs 643 183 608
Total HRs 6,741 3,599 3,955

%Detected HRs 9.54 5.08 15.37

Code size [kB] 2.60 0.92 0.92

For the HR group of faults, the worst case scenario is represented by STL2, for
which 5.08% HR faults can be detected, while the best case scenario is represented
by STL3, with a total of 15.37% faults detected. Although the results are not as
high as for UARs, it is worth mentioning that this methodology does not require
any effort from the test engineer, allowing to automatically detect this set of faults.
Moreover, experimental data for hidden register faults shows that the increase in
code size due to the test program enhancement is rather small, amounting to an
additional 9.52% for STL1, 3.30% for STL2, and 5.52% for STL3, respectively. In
addition to that, it is also worth mentioning that the data presented in this section
does not include a functional untestability analysis. This implies that, among all
not-observed transition delay faults belonging to the hidden register group, there is a
percentage that cannot be detected in any way with SBST technique, hence making
these numbers a worst-case scenario. Increase in the original transition delay fault
coverage thanks to the detection of HR faults is shown in Fig. 3.15.

Finally, it is possible to combine data obtained from both user accessible register
and hidden register faults, providing a final increased fault coverage that is reported
in Fig. 3.16.

In addition to results produced on the whole core, user accessible registers and
hidden registers have been divided into blocks of registers belonging to the same
functional unit, e.g., user accessible registers have been divided into general purpose



52 STL hardening techniques for transition delay faults

STL1 STL2 STL3
0

10

20

30

40

50

60

70

80

Tr
an

sit
io
n 
De

la
y 
fa
ul
t c

ov
er
ag

e

71.27

49.27

77.91Original fault coverage [%TDFs]
Fault coverage with HR faults [%TDFs]

Fig. 3.15 Transition delay fault coverage with HR faults

Table 3.5 Sub-modules analysis for the adopted STLs targeting UAR faults

Test Program
User Accessible Register faults

GPRs SPRs

STL1
Detected faults 4,359 2,219
Total faults 4,359 2,232
Added Instructions 1,107 478

STL2
Detected faults 23,814 98
Total faults 23,814 108
Added Instructions 1,022 20

STL3
Detected faults 2,853 11
Total faults 2,853 47
Added Instructions 877 6



3.2 Experimental Results 53

STL1 STL2 STL3
0

10

20

30

40

50

60

70

80

Tr
an

sit
io

n 
De

la
y 

fa
ul

t c
ov

er
ag

e

75.4

64.28

79.71Original fault coverage [%TDFs]
Fault coverage with HR faults [%TDFs]
Fault coverage with HR and UAR faults [%TDFs]

Fig. 3.16 Transition delay fault coverage with UAR and HR faults

Table 3.6 Sub-modules analysis for the adopted STLs targeting HR faults

Test Program
Hidden Register faults

IF Stage ID Stage EX Stage MEM Stage

STL1
Detected faults 23 587 32 1
Total faults 1,109 5,109 388 135
Added Instructions 45 550 25 5

STL2
Detected faults 52 120 5 6
Total faults 1,311 1,976 221 91
Added Instructions 80 115 20 15

STL3
Detected faults 13 595 0 0
Total faults 1,028 2,463 351 113
Added Instructions 35 195 0 0



54 STL hardening techniques for transition delay faults

registers and special registers while hidden registers have been divided into all
pipeline registers, and data for these blocks has been collected as well. Table 3.5 and
Table 3.6 describe the information regarding sub-modules of the tested processor core
in details, reporting the contributions in terms of detected faults, total faults and added
instructions regarding user accessible registers and hidden registers, respectively.
Starting from the UAR group, the table shows how all GPRs have been tested, while
only a small minority of SPRs is left undetected. When talking about UAR faults,
it is also worth mentioning how many fall within the single-cycle and multi-cycle
groups. Concerning STL1, out of all the 4,359 GPR faults 1,366 are related to
single-cycle instructions and 2,993 to multi-cycle instructions, while the 2,232 SPR
faults are divided into 2,219 single-cycle and 13 multi-cycle related faults. STL2,
on the other hand, has a total of 23,814 UAR faults, of which 22,683 are related to
single-cycle instructions and 1,131 are related to multi-cycle instructions, and the
108 SPR faults can be grouped into 98 single-cycle and 10 multi-cycle related faults.
Finally, STL3 has 2,853 faults of which 1,367 are related to single-cycle instructions
and 1,486 multi-cycle instructions; of all 47 SPR faults, 11 are single-cycle and 36
are multi-cycle related faults. The distinction between single-cycle and multi-cycle
related faults impacts the number of added instructions required to detect the faults
as well. As mentioned in Section 3.1.4, single-cycle related faults only need a store
instruction to be detected, with an additional overhead of one instruction for SPR
faults consisting in moving the value of the special register into a general purpose
register so that it can be stored. Multi-cycle related faults, on the other hand, require
to duplicate the related multi-cycle instruction and change its operands to make sure
that the fault’s effects are propagated towards the final cycles of the aforementioned
instruction, plus a store instruction to observe the aforementioned effects at the
primary outputs. Most not-detected SPR faults belong to the multi-cycle category,
due to the fact that finding the correct operands to propagate the error can be non
trivial.

Looking at the HR group, the best results are achieved in the pipeline registers
in between the decode and the execute stage, while the other stages pose some
challenges. The main reason for having a lower fault coverage stems from the fact
that it is not always possible to find the right set of instructions that propagates the
values from the pipeline stages to the primary outputs. As for the number of added
instructions, experimental data shows that the best results are achieved when adding
5 instructions from the stuck-at fault related test program. It is worth iterating the



3.3 Chapter Summary 55

fact that not every detected fault needs additional instructions, as some faults may
cause errors at the same register in the same time instant, thus requiring only one set
of added instructions.

3.3 Chapter Summary

This chapter described a systematic methodology for detecting a set of not-observed
transition delay faults by means of a purely software approach. Prior to the descrip-
tion of techniques to improve test programs, the proposed approach introduces some
preliminary steps that are required in order to produce the information needed for
coming up with STL hardening strategies. Two fault categories have been taken into
account, one being all not-observed transition delay faults whose effects propagate
and stop to registers that can be directly controlled by instructions of the instruc-
tion set architecture, called User Accessible Register faults, the other consisting of
not-observed transition delay faults whose effects propagate and stop to register that
cannot be directly controlled by instructions, called Hidden Register faults. Starting
from these definitions, a first Internal Observation Points extraction is performed,
with the goal of collecting information on all user accessible registers and hidden
registers. After that, two tasks are performed in parallel, the Observability Study and
Logic Simulation Trace. The Observability study is done in order to understand what
faults belong to the UAR category and what faults belong to the HR group and the
time at which their effects stop at those registers. To do that, the concepts of promo-
tion table and fault dictionary are introduced. A promotion table is a tool supported
by some commercial fault simulation tools that allows to create a set of user-defined
labels that are attached to faults whenever their effects reach specific points in the
circuit. A label is created for each block of registers both for user accessible registers
and hidden registers, thus providing an immediate way of categorizing these faults
that occurs while performing the fault simulation. These labels are integrated with
those that are already used by the fault simulation tool, and for this reason a ranking
is provided so that the tool knows how to promote from one label to another, allowing
promotions from labels with lower priority to those who have a higher priority only.
In this sense, not-dected fault labels (not-controlled, not-observed) have the lowest
priority, followed by hidden register faults labels, user accessible register labels (as
the related registers are directly controllable through instructions, hence easier to



56 STL hardening techniques for transition delay faults

observe) and finally potentially detected and detected fault labels. The result of a
fault simulation process with the adoption of promotion tables can be formatted into
a fault dictionary, with the goal of presenting in a compact and easy-to-parse way
data on the what register the fault was observed, thanks to the user defined labels,
and at what time such internal detection occurs. Concurrently, the Logic Simulation
Trace process is launched, with the aim of associating instructions being executed in
the processor core with their execution time. This data is crucial, as when intersected
with that produced in the fault simulation it is possible what instruction caused what
fault to propagate to a specific point in the core, enabling the test engineer to identify
the code region that must be modified to detect the not-observed transition delay fault.
Information on the test program’s instruction is stored into a database, providing
ease of access and information retrieval.

After clearing all the preliminary steps, techniques for improving STLs for tran-
sition delay faults are presented. Starting with UAR faults, it is noted that two
main scenarios can occur: the fault can be excited and its effects propagated by a
single-cycle instruction, i.e., an instruction that takes only one cycle in the execution
stage, or by a multi-cycle instruction, i.e., an instruction that takes more than one
clock cycle in the execution stage. In the first case, a single store instruction after the
instruction exciting the fault and before the next one overwriting the register where
the fault effect is propagated and stopped is sufficient. In case the original test pro-
gram presents alias instructions, extra care must be put in all those situations where
the alias instruction is converted by the compiler into two instructions and the fault
is excited by the first of the pair: putting a store after the alias instruction originally
found in the source program is not sufficient as the fault effect is overwritten by the
instruction pair. The best course of action here is to replace the alias instruction
with the actual ISA instructions and place the store as needed. HR faults require a
completely different approach as hidden registers cannot be directly controlled. The
proposed method relies on searching for pieces of code that are capable of testing
stuck-at faults on the same location where the fault effect propagated and stopped,
with the idea that the same piece of code can propagate the faulty value due to the
presence of a transition delay fault to one of the primary outputs. Pieces of code to
be added, however, must not disrupt the overall flow of the test program; for this
reason code blocks that include jump instructions are discarded.

This approach has been validated on a 32-bit, single issue in-order RISC-V core,
starting from a set of three STLs developed for stuck-at faults. Experimental results



3.3 Chapter Summary 57

show that almost every user accessible register fault is detected, while coverages for
HR faults depend on the test program. The approach proves to be effective in terms
of faults being detected versus code overhead required to do so, with a final increase
in coverage of 22.21% for STL1, 14.97% for STL2 and 21.16% for STL3 if UAR
faults only are targeted, and a code increase of 31.73% for STL1, 18.27% for STL2
and 26.68% for STL3 if UAR and HR faults are targeted. Future works will include
the improvement of software techniques for detecting HR faults specifically.



Chapter 4

Improving transition delay fault
coverage through post-silicon debug
logic

The previous section introduces techniques to improve the transition delay fault
coverage of Self-Test Libraries developed for the classical stuck-at fault model by
targeting User Accessible Register faults and Hidden Register faults. As outlined
in Section 3.2.2, almost every User Accessible Register fault is observed by the
proposed methodology, while hidden register faults prove to be harder to test, mainly
due to the fact that there is no immediate way to propagate values from those registers
to the primary output. Most modern System on Chips are equipped with special
logic that is used for post-silicon validation purposes. Such logic, however, can
also be reused for testing purposes, with the great advantage of allowing increased
observability of internal signals that would otherwise be inaccessible from the
outside, without additional hardware overhead as the circuitry is already there. In
this section, I propose a second technique that makes use of post-silicon debug
circuitry to effectively target this group of hard-to-test faults.

4.1 Proposed Approach

The approach proposed in this section aims at defining systematic techniques to
analyze Self-Test Libraries that were previously devised for other fault models and



4.1 Proposed Approach 59

identify all the flip-flops where the effects of not-observed transition delay fault
propagate and stop. Starting from that, methods to cleverly select subset of flip-flops
to monitor during the STL execution are defined, with the purpose of increasing the
final transition delay fault coverage.

This approach can be decoupled into two steps. Section 4.1.1 briefly summarizes
the fault dictionary based technique to generate a list of all flip-flops belonging
to the hidden register’s group that are reached by transition delay fault’s effects.
Section 4.1.2 defines post-processing procedures to identify a subset of all flip-flops
to monitor. This subset can either be fixed or variable in time, based on the features
of the hardware that is available to support the test.

4.1.1 Generation of fault dictionary

In order for the approach proposed in this section to extract the subset of flip-flops,
a preliminary step involving the generation of a fault dictionary is required. As
first described in Section 3.1.2, a fault dictionary is especially useful whenever
information on where fault effects were observed together with at what time they
were observed is required. Fault dictionaries are generated while performing fault
simulations, and require the definition of user-defined labels in conjunction with a
promotion table. The way in which the fault dictionary is generated for this approach
is similar to Section 3.1.2, with some slight modifications. In particular, a two fault
simulation steps is required, described as follows:

1. Run a fault simulation on the whole processor under test using test vectors
obtained by the execution of the STL, and extract all not-observed faults,

2. Run without fault-dropping whenever possible, or an n-detection fault simula-
tion on the combinational logic of the DUT, using the set of not-observed faults
previously identified and observing the pseudo-primary outputs connected to
hidden register flip-flops (i.e., pipeline registers). Generate a fault dictionary
using all gathered information.

The first step is required to obtain a list of not-observed transition delay faults
only, and for this reason no promotion table is required, as commercial fault simula-
tion tools already define this fault class. Once the first step is cleared, the second



60 Improving transition delay fault coverage through post-silicon debug logic

fault simulation involving the definition of labels for pipeline registers and user
accessible registers and the related promotion table can be launched. This simulation
however differs from what has been presented so far in the sense that it must be
conduced with the no-fault dropping option enabled if possible, or at least with
n-detection. When no-fault dropping is enabled, a fault that has been observed at
one of the observation points imparted to the fault simulation tool is not dropped
from the fault list. Under this scenario, this implies that for every fault the tool
returns all possible pairs of time instants and flip-flops affected by the propagation of
erroneous values due to the presence of a fault. In this approach this is particularly
useful: the more time instants and registers are affected by the propagation of a
fault’s effects, the better the post-processing procedures perform, allowing for a
high percentage of hard-to-test, not-observed transition delay faults to be detected.
Nevertheless, depending on the architecture of the design under test, it may lead
to computational intensive fault simulations and generate large dictionaries. Such
issue is solved by using an n-detection fault simulation, i.e., a fault simulation where
a fault is dropped from the active fault list after n detections have occurred. This
provides the best trade-off in terms of faults recovered and fault simulation time and
allocated resources.

4.1.2 Flip-flops selection procedure

In the second step, the fault dictionary previously generated is processed to identify
a subset of flip-flops to monitor through trace buffers. Given that the hardware
required to observe the value of such registers is already present inside the System
on Chip, as this approach reuses the debug infrastructure, critical paths within the
processor under test are not affected, thus not impacting the timing performance.
Such debug infrastructure is effectively used to increase fault observability in a
trasparent manner.

The algorithm used to extract the subset of flip-flops depends on the available
hardware and its features. For this reason, three different scenarios are identified,
leading to three different selection strategies. It is noted that the goal of this section
is not to provide a hardware implementation of the debug infrastructure adopted
for testing purposes, as several articles already tackle this issue as outlined in
Section 1.3.3, rather to define algorithms that select the minimum amount of flip-
flops to effectively increase transition delay fault coverages.



4.1 Proposed Approach 61

The three scenarios are described as follows:

1. A non-programmable hardware infrastructure can monitor a certain number
of flip-flops (e.g., by compacting their values using a Multiple-Input Shift
register, or MISR) selected at design time,

2. A programmable hardware infrastructure can monitor a certain number of
flip-flops, switching the configuration of monitored flip-flops after an arbitrary
amount of clock cycles,

3. A programmable hardware infrastructure can trace a certain number of flip-
flops, switching the configuration of monitored flip-flops after a fixed amount
of clock cycles.

The first scenario requires identifying the subset of flip-flops to observe during
the whole STL run. The algorithm to determine such a subset is described in
Algorithm 2.

Algorithm 2: Fixed flip-flop selection
input :A pair (D, Cmin) where

D is a list of triplets (Fi,Pi,Ti) where
Fi is a fault
Pi is a flip-flop where a Fi is captured
Ti is the time when Fi is captured in Pi

Cmin is a target coverage of recoverable faults
output :A set of flip-flops to observe
S := empty list of flip-flops;
while coverage < Cmin or D is not empty do

Pmax← flip-flop with most distinct faults in D;
add Pmax to S;
remove all elements with Pmax from D;

end
return S

The algorithm starts off with data processed from the fault dictionary, holding a
list of hidden register flip-flops reached by erroneous values due to faults and the
time at which such events occur. As noted in Section 3.2.2, it is frequent that more
than one fault happens to propagate their value at the same register in the same time
instant. Selecting those registers thus provides an advantage in terms of amount of
recovered faults versus number of selected flip-flops, a parameter that is fixed by



62 Improving transition delay fault coverage through post-silicon debug logic

the maximum size of trace buffers. For this reason, at each iteration, the algorithm
selects the flip-flop that increases the fault coverage the most, until a target fault
coverage Cmin is reached or all the flip-flops are selected. A threshold can be included
to stop after selecting a certain number of flip-flops. Given that this algorithm is
related to the scenario #1, it is noted that it does not give the possibility to switch
configurations: once a set of flip-flops has been selected, it is kept statically for the
whole test procedure.

The other two scenarios are addressed by the algorithm presented in Algorithm 3,
which follows a First-Come First-Served (FCFS) approach. In addition to the input
data required in Algorithm 2, i.e., a list D of triplets containing a not-observed
transition delay fault Fi whose effects propagated and stopped at Pi at time Ti,
this algorithm requires the amount of flip-flops that can be observed in any given
configuration Lmax, as well as the amount of time assigned to each configuration
Tmax, if any. Each configuration corresponds to a list of flip-flops and the time
to reconfigure the hardware infrastructure. Then, until the fault coverage has not
reached the minimum target or D is not empty, the algorithm extracts a triplet from D
and looks whether the fault Fnext is still not tested. If untested, it also looks whether
there is room for adding the flip-flop Pnext to the current configuration and, in case
configurations last for fixed amounts of clock cycles, if the time Tnext is compatible
with the current configuration. In such case, the fault is marked as tested, and if the
flip-flop Pnext was not part of the configuration it is added; else, the configuration
is complete (no more flip-flops can be observed in a given observation cycle, or a
new observation cycle begins in case its size is fixed, faults that are captured at the
same time of the last fill by other non-included flip-flops are discarded, as per FCFS
policy. At that time, when a new time instant is encountered, the algorithm stores the
configuration and moves to the next one, until reaching the target fault coverage or
the end of the dictionary.

Scenario #2 and #3 are quite similar, the only difference being that the former
allows to switch configuration after an arbitrary amount of time while the other
switches configuration after a fixed amount of clock cycles. For this reason, the
user can omit timing information, i.e., the maximum observation time Tmax in clock
cycles (highlighted in blue in the pseudo-code), to deal with the second scenario,
leading to configurations that can be kept for an arbitrary amount of clock cycles.
This algorithm, although more complex, closely reflects the behavior of post-silicon
debug circuitry, and is capable of providing more accurate and efficient results.



4.1 Proposed Approach 63

Algorithm 3: Variable flip-flop selection
input :A quadruplet (D, Lmax, Tmax, Cmin) where

D is a list of triplets (Fi,Pi,Ti) where
Fi is a fault
Pi is a flip-flop where a Fi is captured
Ti is the time when Fi is captured in Pi

Lmax is the max number of flip-flops to select
Tmax is the max observation time
Cmin is a target coverage of recoverable faults

output :A list of pairs (S j, Tj) where S j is a set of flip-flops to select at time Tj

S := empty set of flip-flops;
R := empty list of (set of flip-flops, time) ;
U ← all untested faults in D;
order D by time;
while coverage < Cmin or D is not empty do

(Pnext , Fnext , Tnext)← extract first el. from D;
if Fnext in U then

if (Length (S) < Lmax or Pnext in S) and Tnext −Tf lush < Tmax then
remove Fnext from U ;
if Pnext not in S then

add Pnext to S;
end
Tadd ← Tnext ;

else if Tnext > Tadd then
add (S, Tf lush) to R;
remove Fnext from U ;
clean S and add Pnext ;
Tadd ← Tnext ;
Tf lush← Tnext ;

end
end

end
return R



64 Improving transition delay fault coverage through post-silicon debug logic

4.2 Experimental Results

4.2.1 Case study

Table 4.1 STLs general information

STL1 STL2 STL3 STL4 STL5

Duration [c.c.] 17,308 31,158 80,455 64,541 118,137
Size [kB] 27.32 27.86 16.68 36.04 35.61
DT SAF faults 151,558 152,269 152,801 160,149 156,038
DT TDF faults 117,758 75,826 118,374 119,367 123,060
RC SAF faults 4,581 2,842 2,327 4,213 3,412
RC TDF faults 7,669 31,338 3,161 5,007 3,562
SAF Coverage 81.66 82.02 82.32 86.22 84.03
TDF Coverage 63.09 40.74 63.41 63.94 65.91
RC SAF Cov. 2.44 1.51 1.24 2.24 1.82
RC TDF Cov. 4.08 16.68 1.68 2.67 1.90

The methodology introduced in this thesis has been validated on PULPino[2],
the same processor adopted in Section 3.2.1. The DUT has been synthesized using
the 45nm Silvaco Open Cell library[61] and accounts for 51,001 NAND2-equivalent
gates, 187,857 stuck-at faults (SAF) and transition delay faults (TDF), and 1,207
flip-flops belonging to hidden registers.

With regards to the adopted test programs, we selected a set of five different STLs
developed with the aim of testing stuck-at faults on the adopted core, referenced
here as STL1 to STL5. To ensure test diversity, the proposed five test programs
have been developed by distinct teams following various implementation and testing
strategies. Table 4.1 summarizes the most relevant data of the adopted STLs, i.e.,
the test Duration in clock cycles, the memory footprint of the test program (Size),
the number of Detected faults (DT SAF and TDF) in absolute value,the amount
of Recoverable (RC) stuck-at and transition delay faults, the SAF and TDF Fault
coverage, and the Recoverable fault coverage for both transitiont delay and stuck-at
faults, i.e., how much the fault coverage can be increased by detecting all hidden
register faults. Since all STLs were developed targeting the stuck-at fault model,
it is possible to notice how stuck-at fault coverages are comparable among all test
programs, while transition delay fault coverage figures are less homogeneous, with



4.2 Experimental Results 65

STL2 being significantly less effective, with a starting 40.74% fault coverage and
STL5 the most effective, with an initial 65.91% fault coverage.

Fault simulations have been carried out using Synopsys Z01X, a commercial tool
devised specifically for Functional Safety. As a result, the full flow of top-level and
combinational level stuck-at and transition delay fault simulations took no longer
than 5 hours on an Intel Xeon CPU E5-2680 v3 server with a clock frequency up
to 3.3GHz. The second fault simulation performed on the combinational logic has
been conducted by setting the n-detection parameter to 50, i.e., dropping each fault
after 50 detections, which led to fault dictionaries not larger than 15MB. The two
post-processing algorithms are written in Python and require few seconds to analyze
each fault dictionary.

4.2.2 Fixed flip-flop selection

Let us start first by analyzing data obtained when the fixed flip-flop selection algo-
rithm in Algorithm 2 is applied, as showed in Fig. 4.1. Given the relationship existing
between transition delay faults and stuck-at faults, i.e., test vectors that are able to
detect a transition delay fault affecting a given net on a circuit are capable of testing
a stuck-at fault on the same net, improving the transition delay fault coverage allows
for an enhancement on the stuck-at fault coverage too. For this reason, Fig. 4.1
reports results for both fault models.

More in details, each graph reports the percentage of recovered faults, i.e., faults
that become detected (y-axis) when a given percentage of flip-flops are monitored
(x-axis). Looking at the performance of the algorithm when tackling transition delay
faults, it is possible to notice that STL2 behaves quite differently from the other
programs having a quite steep slope at the very beginning, allowing to recover more
than 80% of transition delay faults by observing just 2.24% of all flip-flops. It is
noted, however, that the transition delay fault coverage of this test program was quite
low to begin with as shown in Table 4.1, and the curve, once reached this value,
markedly changes its slope, requiring 63.30% of all flip-flops to reach 100%.

Looking at other test programs, detecting 50% of faults requires observing 28%
for STL1, 8.5% for STL3, 12% for STL4 and 15% for STL5 of all flip-flops. Moving
to the 75% mark, we must monitor a percentage of flip-flops equal to 50% for STL1,
17% for STL3, and about 30% for STL4 and STL5. As for the previous case, trying



66 Improving transition delay fault coverage through post-silicon debug logic

Re
co

ve
re

d 
TD

Fs

0%

25%

50%

75%

100%

Monitored pipeline flip-flops
0% 20% 40% 60% 80%

STL1 STL2 STL3 STL4 STL5
Re

co
ve

re
d 

SA
Fs

0%

25%

50%

75%

100%

Monitored pipeline flip-flops
0% 20% 40% 60% 80%

STL1 STL2 STL3 STL4 STL5

Fig. 4.1 Undetected TDFs and SAFs faults recovered using a fixed selection of pipeline
flip-flops to monitor.



4.2 Experimental Results 67

to detect all the excited but not detected transition delay faults requires a significant
number of flip-flops to be observed, the worst case scenario being 78% for STL1,
equal to a total of 942 flip-flops.

Looking at stuck-at fault curves, some of them present significant differences
with respect to the transition delay fault case. Such differences can be explained by
noting that the available STLs have been developed keeping the stuck-at fault model
in mind. Covering 50% of excited but not detected stuck-at faults requires to observe
10% of flip-flops for STL2 and 3, 18% of flip-flops for STL4 and STL5, and more
than 20% for STL1. However, if we increase the amount of recovered stuck-at faults
to 75%, we must observe 29% of all flip-flops for STL2, STL3, and STL5, 38% of
flip-flops for STL4 and 44% for STL1. If we aim at recovering all SAF faults, we
need to monitor 58% of flip-flops for STL2, STL3, and STL5, 68% for STL4 and
80% for STL1. In the worst case scenario we would have to observe 960 flip-flops
for the whole duration of the test procedure.

4.2.3 Variable flip-flop selection

Results of Algorithm 3 are reported for each STL in Figs. 4.2 to 4.6 for both
transition delay faults and stuck-at faults. These images report data on the percentage
of recoverable faults with respect to the trace buffer width (Bits) and the number of
clock cycles during which a configuration of observed flip-flops is kept (Slots). The
value inf. defined for Slots means that there is no fixed number of clock cycles for
the trace buffer to observe, hence the configuration can be kept for as many clock
cycles as necessary; this situation implies for example the presence of a MISR to
compact the values of the monitored flip-flops.

Although different in absolute values, all figures report very similar trends for
all test programs. To get more into details, it is possible to see that the larger the
trace buffer width, the higher the amount of recovered faults: providing 128 bits, a
size usually adopted with trace buffers, allows to recover all transition delay faults
and stuck-at faults in almost every case. Looking at transition delay fault figures,
32-bits trace buffers are required to observe more than 90% of faults, with the sole
exception of STL3, where it is possible to recover about 84% of faults with minimal
fluctuations due to the different timing slots; when dealing with stuck-at faults,
on the other hand, even 16 bits trace buffers allow to observe more than 90% of



68 Improving transition delay fault coverage through post-silicon debug logic

16 32 64 128 inf.
Slots

12
8

64
32

16
8

4
Bi

ts

100 100 99.22 98.96 97.84

98.98 98.29 98.24 97.73 97.18

94.65 93.56 93.82 93.57 92.57

83.15 82.64 82.62 81.95 82.75

71.37 70.86 70.77 70.19 70.2

59.29 58.86 58.9 58.87 59.08

Recovered Transition Delay fault coverage[%]

16 32 64 128 inf.
Slots

12
8

64
32

16
8

4
Bi

ts

100 100 99.8 99.8 99.48

100 99.72 98.91 99.02 99.13

98.73 98.58 98.76 98.14 98.36

97.71 97.88 97.82 97.45 96.03

93.67 93.39 93.87 93.41 92.99

82.8 82.58 82.54 82.62 81.99

Recovered Stuck-at fault coverage [%]

60

65

70

75

80

85

90

95

100

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Fig. 4.2 Configurations and percentage of faults recovered for STL1

16 32 64 128 inf.
Slots

12
8

64
32

16
8

4
Bi

ts

100 100 99.99 99.71 99.77

99.79 99.61 99.5 99.49 99.55

99.07 99.11 98.9 98.83 98.9

95.65 95.45 95.21 94.44 93.69

84.78 84.05 83.34 83.25 82.77

69.81 69.09 68.58 67.53 67.45

Recovered Transition Delay fault coverage[%]

16 32 64 128 inf.
Slots

12
8

64
32

16
8

4
Bi

ts

100 100 100 100 100

100 98.59 100 100 100

99.96 99.96 99.96 99.96 99.96

98.35 98.28 98.28 98.28 98.17

98.31 98.28 98.21 98.17 98.28

91.48 91.48 91.48 91.52 91.2

Recovered Stuck-at fault coverage [%]

70

75

80

85

90

95

100

92

93

94

95

96

97

98

99

100

Fig. 4.3 Configurations and percentage of faults recovered for STL2



4.2 Experimental Results 69

16 32 64 128 inf.
Slots

12
8

64
32

16
8

4
Bi

ts

100 100 99.22 98.96 97.84

98.98 98.29 98.24 97.73 97.18

94.65 93.56 93.82 93.57 92.57

83.15 82.64 82.62 81.95 82.75

71.37 70.86 70.77 70.19 70.2

59.29 58.86 58.9 58.87 59.08

Recovered Transition Delay fault coverage[%]

16 32 64 128 inf.
Slots

12
8

64
32

16
8

4
Bi

ts

100 100 99.8 99.8 99.48

100 99.72 98.91 99.02 99.13

98.73 98.58 98.76 98.14 98.36

97.71 97.88 97.82 97.45 96.03

93.67 93.39 93.87 93.41 92.99

82.8 82.58 82.54 82.62 81.99

Recovered Stuck-at fault coverage [%]

60

65

70

75

80

85

90

95

100

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Fig. 4.4 Configurations and percentage of faults recovered for STL3

16 32 64 128 inf.
Slots

12
8

64
32

16
8

4
Bi

ts

100 100 99.99 99.71 99.77

99.79 99.61 99.5 99.49 99.55

99.07 99.11 98.9 98.83 98.9

95.65 95.45 95.21 94.44 93.69

84.78 84.05 83.34 83.25 82.77

69.81 69.09 68.58 67.53 67.45

Recovered Transition Delay fault coverage[%]

16 32 64 128 inf.
Slots

12
8

64
32

16
8

4
Bi

ts

100 100 100 100 100

100 98.59 100 100 100

99.96 99.96 99.96 99.96 99.96

98.35 98.28 98.28 98.28 98.17

98.31 98.28 98.21 98.17 98.28

91.48 91.48 91.48 91.52 91.2

Recovered Stuck-at fault coverage [%]

70

75

80

85

90

95

100

92

93

94

95

96

97

98

99

100

Fig. 4.5 Configurations and percentage of faults recovered for STL4



70 Improving transition delay fault coverage through post-silicon debug logic

16 32 64 128 inf.
Slots

12
8

64
32

16
8

4
Bi

ts

100 100 99.22 98.96 97.84

98.98 98.29 98.24 97.73 97.18

94.65 93.56 93.82 93.57 92.57

83.15 82.64 82.62 81.95 82.75

71.37 70.86 70.77 70.19 70.2

59.29 58.86 58.9 58.87 59.08

Recovered Transition Delay fault coverage[%]

16 32 64 128 inf.
Slots

12
8

64
32

16
8

4
Bi

ts

100 100 99.8 99.8 99.48

100 99.72 98.91 99.02 99.13

98.73 98.58 98.76 98.14 98.36

97.71 97.88 97.82 97.45 96.03

93.67 93.39 93.87 93.41 92.99

82.8 82.58 82.54 82.62 81.99

Recovered Stuck-at fault coverage [%]

60

65

70

75

80

85

90

95

100

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Fig. 4.6 Configurations and percentage of faults recovered for STL5

faults. Out of all five test programs, STL3 is the only one where, even in the best
case scenario, it is not possible to recover every not-observed transition delay fault,
stopping to a 99.50% of recovered hidden register faults with a trace buffer width
of 128 bits and an observation slot 32 clock cycles wide. The reason for this lies in
how this STL is implemented: this test program provides a large amount of faults
to be observed at the same time, which translates in a large amount of flip-flops to
be monitored by the trace buffer. If there are more flip-flops to be monitored than
the maximum trace buffer size, this will inevitably lead to the discard of some of
them, having some untested faults as a consequence. More sophisticated search
algorithms could be implemented to try to recover this situation, or to prove those
faults are untestable using a single STL run. Please note that further STL runs would
allow the full detection of recoverable faults. Finally, if we take a look at the fault
coverages reported in the figures with respect to the amount of observation time slots,
we see that the smaller the slot size the higher the final coverage. This is expected, as
shorter slots allow for more configurations, hence observing more signals throughout
the whole test procedure. Results from the inf. column fluctuate and are slightly
better or slightly worse than those achieved by having time slots of 128 and, in some
cases, 64 clock cycles. This can be traced back to the peculiarities of the single test
program. Some STLs might require more frequent configuration changes to achieve



4.3 Chapter Summary 71

higher coverages, a feature that cannot be achieved when large observation slots are
scheduled with no flexibility.

4.3 Chapter Summary

This chapter presented a methodology to detect hard-to-test, not-observed transition
delay faults whose effects reach hidden registers by reusing post-silicon debug
hardware that is already available in most modern System on Chips. This approach
stems from the fact that the hardware infrastructure can be adopted for testing
purposes, enhancing the observability of internal points that would not be otherwise
visible under any testing approach that does not involve the use of Design for
Testability techniques, without impacting the timing performance of the circuit
under test. The proposed approach can be divided into two steps: a fault dictionary
generation process, where a first fault simulation is launched to extract the set of
all not-observed transition delay faults followed by a second fault simulation with
no-fault dropping or, if not possible, the n-detection option enabled so that the tool
can extract all possible couples of registers affected by faulty values and time instants
for each fault. Once that information is produced in a compact way in the fault
dictionary, algorithms for extracting a subset of flip-flops to observe through post-
silicon debug logic are provided. Such algorithms are defined based on three possible
scenarios that derive from the features and capabilities of the hardware, namely (i)
non programmable hardware infrastructure is available, hence always observing the
same set of flip-flops, (ii) a programmable hardware infrastructure can monitor a
configuration of flip-flops, switching configuration after an arbitrary amount of clock
cycles and (iii) programmable hardware infrastructure can monitor a configuration
of flip-flops, switching configuration after a fixed amount of clock cycles. In the first
scenario, the configuration of flip-flops is created by selecting the first n flip-flops
where the most fault effects stop, where n is the trace buffer’s size. The other two
scenarios require an algorithm that, for each configuration, selects the flip-flops to be
observed with a first-come first-served policy. When n flip-flops have been selected
or in case the next observation time in the fault dictionary exceeds the clock cycles
in which the configuration is kept, a new configuration of flip-flops is created. By
omitting information related to the amount of clock cycles a configuration must be



72 Improving transition delay fault coverage through post-silicon debug logic

kept in case that value is fixed, the latter algorithm can be successfully adopted even
in the second scenario.

The approach has been validated on PULPino, a SoC based on a 32-bit single
issue in-order RISC-V core, starting with a set of five Self-Test Libraries developed
for stuck-at faults. Experimental results show that the algorithm defined for scenario
(i) is capable of recovering all hard-to-test, hidden register transition delay faults
but requires to observe a large number of flip-flops to do so, the worst case scenario
being 942 flip-flops. A similar behavior is obtained when looking at how many
not-observed stuck-at faults whose effects reach hidden registers can be detected as
a byproduct of applying this technique for transition delay faults, with the worst case
scenario requiring to observe 960 flip-flops to recover all not-observed stuck-at faults.
The algorithm defined for scenarios (ii) and (iii), although more complex, closely
reflects the real behavior of post-silicon debug logic, and allows for a large detection
of hidden register transition delay faults with a trace buffer’s width of 32 bits, leading
to more than 90% of recoverable transition delay faults being detected. Stuck-at
fault results are even better, observing more than 90% of recoverable stuck-at faults
even with 16 bits trace buffers. If larger trace buffers can be used, 128 bits trace
buffers are capable of detecting every recoverable transition delay and stuck-at fault
in almost every case. Finally, looking at fault simulation results with respect to the
amount of observation clock cycles, it is evident how the smaller the slot assigned to
each configuration, i.e., how many clock cycles a configuration is kept, the bigger the
final fault coverage, as more configurations can be loaded while the STL is executed.



Part II

Path Delay Fault Oriented Solutions





Chapter 5

Background

5.1 Path Delay Fault Model

The path delay fault model is, together with the transition delay faults, one of the
most popular and adopted delay fault models. Path delay faults are described as
the defects that cause the cumulative propagation delay of a combinational path to
exceed the timing specifications. A combinational path is intended as a sequence of
logic gates that starts from a startpoint, may that be a primary input or the output of
a sequential element, i.e., a pseudo-primary input, and ends on an endpoint, either a
primary output or the input of a sequential element, i.e., a pseudo-primary output.
As for transition delay faults, for each combinational path it is possible to define
two path delay faults, a slow-to-rise and a slow-to-fall, where the rising and falling
transitions are intended at the startpoint of the path. Let us consider, for example,
the circuit in Fig. 5.1.

In this circuit the path B-D-E-F-H-Z is assumed to be affected by a slow-to-fall
path delay fault. Looking at the waveforms in the figure, where full lines are the
waveforms of the fault-free circuit and the dashed lines those of the faulty circuit,
the large delay that affects the signal at the end of the path is not the result of a large
delay affecting one single net, rather, it is the combination of delays introduced by
gates and interconnects. All signals belonging to the path affected by a fault are
called on-path signals, while the others are called off-path signals. Given that we are
dealing with a delay fault model, testing such fault requires a couple of test vectors
(t1, t2). Looking at the circuit, we can deduce that a test vector pair suitable to detect



76 Background

A

B

C

Z

H

G

F
E

D

A

B

C

D

F

H

Z

ti tf

0

1

Fig. 5.1 Circuit affected by a STF path delay fault

an STF fault on the considered path is (011, 001): if a slow-to-fall path delay fault
affects such path, assuming it is possible to sample the logic value on Z at time t f ,
the test vector pair allows to detect the fault as we would observe a logic 1 instead
of the correct logic 0. Differently from transition delay faults, when devising test
vectors for path delay faults it is possible to introduce the concepts of non-robust
and robust tests. When performing path delay fault simulations, it is customary to
consider a single path delay fault at a time, checking whether test vectors are capable
of testing it when that fault is the only one present in the circuit. In practice, however,
it may occur that there are multiple path delay faults present at the same time in the
device under test, and a test vector pair that detects a path delay fault when alone
may not be able to do so when other faults are present at the same time. Non-robust
path delay tests are tests that are guaranteed to detect the presence of a path delay
fault when no other path delay fault is present. An example of a non-robust path
delay test can be observed in Fig. 5.2.

The circuit reported in the figure is a pulse generator, whose pulse width depends
on the inverter delay. If the most salient parameters of this pulse, e.g., the width and



5.1 Path Delay Fault Model 77

A

C

B

C

B

A

tfti

Fig. 5.2 Non-robust test for A-B-C STR fault

position, are important, then analyzing path delay faults on this circuit is necessary.
Let us assume that path A-B-C is affected by a slow-to-rise fault. A test vector pair
capable of detecting such fault is (0, 1), as shown in the figure. If, however, even
path A-C is faulty, the output C may never toggle, or the pulse could be shifted to the
far right, well after the sampling time t f . Either way, the presence of the path delay
fault cannot be noticed, as the output has the correct logic 0 value when sampling is
performed, although for wrong reasons. Such test vector pair, hence, is not-robust.
Robust tests, on the other hand, are guaranteed to detect the presence of path delay
faults even when other faults are present at the same time. Not every path in a circuit
is testable. Generating a test vector pair for the path B-D-E-G-Z highlighted in red
in figure Fig. 5.3 for the slow-to-fall fault is not possible: the second vector of the
pair requires the off-path input C to be set to a non controlling value, i.e., a logic 0,
which however sets the off-path signal H to a controlling value, thus masking the
transition at the observed output Z.

Finally, even though transition delay and path delay fault models are quite
different, the same testing techniques can be defined for the two fault models, both
when resorting to DfT solutions such as Launch on Shift, Launch on Capture or



78 Background

A

B

C

D

E

F

G

H

Z

Fig. 5.3 The STF fault affecting the path in red cannot be tested

Enhanced Scan, or functional solutions such as a Software-Based Self-Test approach
as first described in Section 1.2. As it will be described in Section 5.2, however,
functional solutions for path delay faults are not as mature as DfT ones: an SBST-
based fault simulation on sequential circuits targeting path delay faults is currently
not supported by any commercial fault simulation tool.

5.2 Related Works

Numerous works on path delay faults have been published in literature. Starting
off, the paper [62] reports a comprehensive overview of the state-of-the-art on delay
faults, introducing terms and definitions for several delay fault models, together with
details on delay fault simulation and test generation and new applications where
delay fault testing can be of interest. The work in [63] describes techniques on how
to remove long false paths to improve the final path delay fault coverage. This study
stems from the fact that paths that are fanout free and not non-robustly testable with
respect to at least one transition can be removed from a circuit with no final change
in its functional behavior. The authors introduce algorithms based on the adoption of
Binary Decision Diagrams (BDDs) to determine whether a path is testable or not.
As reported in the experimental results, identifying and removing these paths benefit
the overall testability, as it allows to achieve complete non-robust testability of paths
and to improve robust testability. This approach has been validated on combinational
parts of circuits in the ISCAS-89 benchmark, achieving an increase in path delay fault
testability with a limited gate overhead and even a delay reduction for most circuits.
The article tackles an important issue, as tools used for extracting most critical paths
tend to perform topological analysis on the circuit without considering whether it



5.2 Related Works 79

is actually possible to propagate transitions from its startpoint to its endpoint, thus
artificially lowering fault coverages. However, using BDDs for larger, more complex
circuits may not be a feasible task. The methodology presented in this PhD thesis is
capable of effectively pruning untestable paths through fault simulations only.

Several works focus on path delay fault testing by resorting to DfT-based ap-
proaches. The paper [64] proposes a technique based on the adoption of a single
input change test pattern generator (SIC-TPG) that creates test vector pairs, making
it suitable for path delay fault detection. The SIC-TPG architecture is described as
comprised of a Single Input Change generator, implemented as an n-stage counter
followed by a gray encoder circuit, connected to other circuitry that is responsible
for shifting by one the output of the SIC generator every time it reaches its final
value. This technique is suitable for testing both stuck-at faults and path delay faults,
as demonstrated by experimental results on a set of circuits from ISCAS-85 and
ISCAS-89 benchmarks, showing fault coverages of at least 90% path delay faults on
every circuit, with a limited hardware and timing overhead due to introduction of the
SIC-TPG module. Such technique, although effective for small circuits, does not
lend to complex circuits such as modern pipelined processor cores. When tackling
large circuits, test vectors must be produced in an efficient way either resorting to
ATPG-based pattern generation leveraging on scan chains to apply such vectors or
by converting them into test programs. The SIC-TPG architecture introduced in the
article is rather simplistic and could require large amount of test vectors to reach
sufficient fault coverages. The paper [65] focuses on the generation of functional
test vectors to be applied through broadside (launch on capture) testing targeting
path delay faults. One of the problems associated to DfT techniques is that it can
lead to overtesting, i.e., the detection of faults that will never be excited under any
functional scenario which may lead to a yield loss. Moreover, paths that cannot
be excited with functional vectors do not need to be optimized for speed, having
a propagation delay that may even exceed the clock period. In order to generate
functional test vectors, this approach first identifies an initial state sinit that is a known
state prior to the execution of functional operations and then scans it through scan
chains. After that, two functional input vectors are applied to primary inputs in two
consecutive functional clock cycles while pseudo-primary inputs are taken care of
by the circuit itself as it evolves its internal state from the initial state scanned in and
the input test vectors, thus completing the application of a pair of test vectors. The
test procedure than populates the list of known reachable (thus, functional) states



80 Background

as test vectors are generated, based on the assumption that if <s1, s2> is the pair
of internal states that are reached by the circuit while conducting the test and s1 is
a functional state, the functional vector applied to primary inputs that allows the
internal state transition from s1 to s2 makes the latter reachable as well. In this way,
functional broadside tests avoid the detection of functionally untestable path delay
faults and deals with overtesting. This approach is validated on a set of circuits from
the ISCAS-89 benchmark and supported by experimental results. Finally, the article
presented in [66] defines a methodology to test gate-exhaustive path delay faults
and introduces a path selection procedure to support the test generation. The author
notes that, when dealing with path delay faults, propagating transitions through
lines that belong to a path is similar to testing transition delay faults on those lines.
Two-cycle defect-aware and cell-aware faults are similar to transition delay faults, in
the sense that they model defects that are localized on single lines, but require more
complex activation conditions with respect to the transition delay fault model. The
premises of this study is that, detecting gate-exhaustive faults, which constitute a
superset of cell-aware faults, along a path allows for detecting distributed defects
with more complex activation conditions than transition delay faults. The author
first proceeds to first define the fault model, than provides techniques for extracting
such paths, also addressing the issue of untestable paths by including techniques
to identify and remove untestable faults. Experimental data gathered from a set of
ISCAS-89 and ITC-99 circuits show that detecting gate-exhaustive path delay faults
is a feasible task. DfT-based approaches can achieve significant results on circuits,
but present all the downsides mainly related to the problem of power consumption,
overtesting if functional vectors are not generated, area and timing overhead and
even test application time that may be large enough not to be executed in the idle
time slots that may present during the operative lifetime of the device to be tested. In
addition to that, processor cores are much more complex than benchmark circuits,
thus requiring different testing approaches.

Functional, Software-Based Self-Test solutions for path delay faults have been
investigated as well. The work presented in [67] proposes a methodology to generate
assembly programs targeting path delay faults on processor cores by exploiting an
evolutionary algorithm. Paths are initially grouped into structurally coherent path-
delay fault lists, so that the evolutionary algorithm can generate test programs more
efficiently: since paths belonging to the same group share the registers from which the
startpoint, the endpoint, and the off-path signals originate, it is highly probable that



5.2 Related Works 81

the same code portion is able to sensitize all those paths. The evolutionary algorithm
is initially fed with this information and, starting from a population of randomly
generated assembly programs, applies a series of genetic operations, i.e., crossover
and mutation, to refine those test programs with the aim of obtaining one test program
capable of exciting at least one path from each structurally coherent fault list. For
each generation of test programs, besides improving the fitness parameter, i.e., the
ability of sensitizing paths, the tool aims at reducing the execution time of each
program. The final step consists of running the previously generated test programs
on an hardware accelerated fault simulator implemented on an FPGA to refine them
so that they can achieve the highest possible path delay fault coverage. Experimental
data has been gathered on an open source implementation of an Intel 8051 core,
for which the evolutionary algorithm required more than 4 days to generate a set
of test programs capable of detecting most of the testable path delay faults. The
article in [9] is an extension of [67], including a Binary Decision Diagram step
that allows to quickly identify and remove structurally untestable faults. Another
approach largely used when developing STLs resorts to the adoption of ATPG for
test pattern generation. Work [13] proposes an automatic method to generate self-test
programs based on three steps. An initial step consists in the application of a path
classification algorithm through which paths whose faults that cannot be tested by
instructions from the ISA are identified and not taken into account in subsequent
steps. This step is important, as merely checking whether a path is structurally
testable is not sufficient due to the fact that functionally testable paths are a subset
of structurally testable paths. The second step employs a constrained gate-level
ATPG that is launched in order to generate deterministic test vectors for functionally
testable paths. In and of itself, an ATPG is not aware whether the test vectors it
generates must be used in functional scenarios or not, hence why constraints on
the signals that are extracted in the first phase are applied to get vectors that can
be translated into instructions. The final step is the conversion of such vectors
into instructions, finally obtaining the test program that comprises of a signature
generation algorithm so that values are compacted and stored into a non-volatile
memory. This technique is validated on two example microprocessors, an 8-bit
Parwan processor and a 32-bit DLX processor, both non-pipelined. Results achieved
on these two processors show that this technique can detect 99.80% and 96.30%
of testable path delay faults on the Parwan and DLX processors, respectively. The
work in [10] presents a technique to develop test programs based on the adoption



82 Background

of virtual constraint circuits (VCCs) targeting path delay faults belonging to critical
paths found in the datapath of processor cores. Virtual constraint circuits are small
modules that are attached before and after the circuit under test. The authors first
employ a set of functional patterns that are used as training tests. By observing and
analyzing the input and output values on the interface of the circuit to be tested,
input and output VCCs are produced. The input VCC is used to summarize the
input constraints on the module under test based on the simulated test patterns, and
similarly on the output ports for the output VCC. Once the VCC are ready, they
are connected to the input and output ports of the module to be tested, and then a
structural ATPG is applied on the module to be tested wrapped by the two VCCs
to generate test vectors for the targeted path delay faults. VCCs are also used to
prune false paths, thus avoiding any computational effort on faults that cannot be
tested in any way. The approach is validated on the Open RISC 1200 (OR1200) core,
and is capable of detecting 97.6% of path delay faults that can be structurally, i.e.,
with the adoption of DfT techniques, faults. The authors also provide a comparison
with verification-oriented patterns, showing how they cannot be used as is given
that they are intended for a different use and are not optimized neither in terms of
fault coverage nor in terms of execution time. The authors in [11] propose a method
for developing test programs on pipelined processor cores for path delay faults by
using RT and gate level information. The first step of the approach presented in [11]
consists of manually generating a Pipelined Instruction Execution (PIE) graph based
on the RT level description of the core to be tested and its instruction set architecture.
Such graph is used to classify paths into four groups, namely functionally testable
(FT), functionally untestable (FUT), potentially functionally testable (PFT), and
parity check functionally untestable (PCFUT) paths, and a set of constraints for
the subsequent test pattern generation. The constrains generated through this step
are then used in conjunction with an ATPG is used to generate test vectors for PFT
paths. A Path-Oriented Decision Making (PODEM) based test generation algorithm
is used to generate test vectors under functional constraints. Finally, such vectors
are converted into instructions and stored in the test program. This approach can
be used for paths found in the datapath and controller unit. This technique is tested
on two pipelined processors, a 5-stage pipelined, 16-bit RISC core (VPRO) and a
5-stage pipelined, 32-bit DLX processor and is capable of testing all testable path
delay faults. [68] presents a technique to generate instructions to test delay faults
on pipelined processor cores. This is done in three steps, namely an ATPG-based



5.2 Related Works 83

delay test generator to be applied to the combinational portion of the device under
test, a verification engine based instruction mapper, and a feedback mechanism. The
generation of functional instructions to test delay fault is done by means of a set of
Verilog properties to be fed to a bounded model checker. This, however, can be quite
taxing, as properties are built looking at inputs of paths to be tested, leading to a large
number of properties to be fed to the bounded model checker. Moreover, writing
all these properties requires a non-negligible amount of manual work. In this paper,
we propose a semi-automatic methodology to developing functional constraints,
capable of identifying all inputs that cannot be controlled once sub-modules of the
DUT are provided. [69] proposes an algorithm, based on formal techniques, that
takes the gate-level description of a pipelined processor as input and generates a
sequence of assembly instructions able to stress any module within it by maximizing
the switching activity. Although effective, this methodology is geared towards the
generation of stress-oriented assembly instructions, while our goal is to excite and
propagate faults affecting paths inside CPUs. In addition, formal techniques may
require a non-negligible amount of time. [70] introduces an approach to generate
instruction sequences for SBST, and makes use of a Validity Checker Module to
limit test sequences to valid RISC-V instructions and the given environment. This
approach deals with the well-known stuck-at fault model, which is quite different
with respect to the path delay fault one. Moreover, for larger circuits it was not
able to complete the generation of SBST-based routines. My contributions in STL
generation for path delay fault testing are presented in [18, 71] and are described in
details in Chapter 7 and Chapter 8, respectively.

The functional, SBST approaches described above show that SBST can be
effectively used to test path delay faults on processor cores. Papers [67, 9, 13],
however, do not deal with the presence of pipeline registers, a feature that most
modern processor cores have, thus not tackling the additional complexity introduced
by such registers. Moreover, evolutionary algorithms presented in [67, 9] may
require a higher amount of time for larger, more complex designs. The methodology
discussed in [10] only focuses on faults stemming from paths in the datapath: as
shown later, however, faults associated to critical paths do not necessarily all come
from the execution unit and require additional care. Finally, deriving graphs in [11]
is still a manual task, and may be non-trivial when dealing with larger cores.



Chapter 6

Main Contributions

The path delay fault model is more accurate than the transition delay model in
representing the effects of small delay defects along paths in a circuit, but SBST
solutions for it are not as mature. The majority of works resorts to DfT approaches
on benchmark circuits, a different scenario than testing a processor core through
functional methods as test vectors applied through SBST techniques require to be
mapped into instructions, i.e., must be functional test vectors, a significant constraint
that is not present in DfT approaches. Even in the case of works tackling the issue of
developing STLs for processor cores targeting path delay faults, they either focus
on non-pipelined circuits or require a non-negligible manual effort. Prior to that, it
is noted that no commercial fault simulation tool even supports the functional path
delay fault simulation on sequential circuits.

The final goal of my PhD thesis in this field consists of developing a systematic
methodology to generate Self-Test Libraries for path delay faults in modern in-order
pipelined processor cores that require as little manual effort as possible. In order to
do so, the work conducted during my PhD mainly focuses on two aspects:

• The development of a test framework that allows to perform path delay fault
simulations on sequential circuits when test stimuli come from the execution
of Self-Test Libraries by leveraging commercial fault simulation tools,

• The generation of a methodology to generate effective STLs for path delay
faults on in-order pipelined processor cores, providing and discussing in details
the related fault coverage figures.



85

Chapter 7 presents the test framework implementation, describing the details and
providing the rationale behind all steps. The test framework is validated by launching
path delay fault simulations on a processor core based on a set of STLs developed
for other fault models, which also provides a reference coverage that can be reached
with state-of-the-art STLs for other fault models. Last, Chapter 8 outlines the STL
development strategies and presents the achieved results on a modern pipelined CPU,
proving its effectiveness.



Chapter 7

Path Delay Fault Simulation Flow

The path delay fault model and fault simulations targeting it are currently supported
by commercial fault simulation tools only through the adoption of scan chains, and
for manufacturing test, only. This implies that, tests vectors are scanned in and out
through scan chains, and only a few functional clock cycles can be applied to the
DUT for each test vector. Ideally, a functional fault simulation on sequential circuits
for path delay faults would require (i) the definition of a set of paths from which
path delay faults are derived, (ii) reading of a set of stimuli applied to primary inputs
derived from the execution of an STL, usually in the form of a VCD file, and finally
(iii) a fault simulation process where stimuli are fed to the circuit as it evolves for
as many functional clock cycles as the test needs, looking for possible mismatches
at primary outputs that would signal the detection of faults. What commercial fault
simulation tools offer, after extracting paths and generating faults from there, is
summarized as follows:

• Load a test vector through scan chains,

• Apply a finite number (usually small) of functional clock cycles for the vector
to propagate through the circuit and capture the response,

• Download the response through scan chains, then repeat for all test vectors.

This mode is capable of fault simulating the circuit under test in a functional
fashion, provided that such circuit is equipped with scan chains. The amount of
functional clock cycles, however, is rather small compared to those needed by a



7.1 Synthesis 87

typical STL; moreover, it requires the presence of DfT hardware. This is not sufficient
for a full sequential fault simulation targeting path delay faults. For this reason,
prior to the definition of strategies to develop STLs for path delay faults, a detailed
description of the architecture of a test flow that allows functional fault simulations
on path delay faults is provided.

This flow is devised such that, by providing the RT-level description of the DUT
and a test program to be executed, the behaviour produced by each fault is evaluated.
This allows identifying faults detected by the test program. It is important to notice
that, since this flow is devised for functional testing, the netlist is not required to be
equipped with any scan chain architecture as it will not be used for testing purposes.
This implies that any fault is only observable, and hence detectable, through at
least one primary output. Alternative observation mechanisms for test programs
exist, such as checking the memory content at the end of the program execution
[72], or observing the response of available safety mechanisms for in-field testing of
safety-critical systems.

A schematic representation of the path delay fault simulation flow is given in
figure 7.1. The test flow can be divided into a series of preliminary steps, required
to prepare all the necessary data, followed by the actual fault simulation. The
preliminary steps consist of a synthesis of the DUT, followed by the path extraction
by means of a Static Timing Analysis (STA) tool and the generation of input stimuli
obtained by performing a logic simulation of the test program. Then, the fault
simulation process can be launched targeting path delay faults on the extracted paths.
The fault simulation is divided into two steps, the first one is performed on the
combinational modules of the DUT, the other one propagates faults observed at the
combinational level to the POs through the pipeline stages of the sequential circuit.

In the following sections, a thorough explanation of all different steps is given.

7.1 Synthesis

The first preliminary step required by the proposed test flow is the synthesis of the
circuit to be tested based on its RT-level description. The most important aspect of
this procedure is that the circuit is synthesized in a way such that the combinational
cells of the gate-level netlist are grouped together separately from the sequential



88 Path Delay Fault Simulation Flow

Top level

netlist

Preliminary Step 2 :

Static Timing Analysis

Preliminary Step 3 :

Logic Simulation

Sequential

ports vcd

List of patterns

(Combinational level)

Fault list with multiple

injections

Partial result:

Fault detected 

if directly

affects POs, CK

or Enable inputs 

Final result:

Path Delay fault coverage

(Sequential level) 

Fig. 7.1 Path delay test flow diagram



7.2 Logic simulation 89

Combinational

Module

Sequential

Cells

Primary Inputs Primary Outputs

Pseudo-Primary

Outputs

Pseudo-Primary

Inputs

Fig. 7.2 Huffman model for a generic sequential circuit

ones. In this way, we create a large submodule within the CPU that comprises all
combinational cells; such submodule is then connected to sequential cells in the
processor gate-level netlist, also known as Huffman model Fig. 7.2. Besides this
aspect, no further constraints are required for the synthesis process.

Two netlists are then produced, one that is specific for the submodule holding all
combinational cells, hereinafter referred to as combinational netlist, and one for the
top-level module including both the combinational submodule and sequential cells,
hereinafter referred to as top-level netlist. The output signals of the combinational
netlist are either POs or PPOs, in case they are connected to the output signals of
the top-level netlist or to inputs of sequential cells, respectively. Generating both
the combinational and top-level netlists is important, as because in Section 7.4 the
combinational netlist will be used as the module under test, while in Section 7.5 the
top-level netlist will be the one used for simulations.

7.2 Logic simulation

The second preliminary step consists in performing a logic simulation of test pro-
grams using any available logic simulation tool, with the main goal of generating
input patterns for the subsequent fault simulation process. This step requires that the
top-level netlist is instantiated as a component in the testbench, so that test program
golden responses can be recorded both for combinational and top-level circuits,
usually in a VCD format. From now on, such golden responses are referred to as



90 Path Delay Fault Simulation Flow

patterns lists. Such lists contain the value held by every combinational/top-level
input and output port at any clock cycle during the execution of the test program,
and will be used in Section 7.4 as test vectors for the fault simulation.

7.3 Static Timing Analysis

As a last preliminary step, the test flow generates the list of paths to be tested during
the fault simulation. As described in Section 5.2, several techniques for extracting
paths have been investigated. This test flow uses a Static Timing Analysis (STA)
tool to produce a list of combinational paths in ascending order of slack. In this way,
in case the amount of extracted paths is too high, only the subset of combinational
paths with the most stringent timing requirements is considered. The advantage of
using a Static Timing Analysis tool is that it only requires the gate level netlist of the
DUT, thus being easily automatable with respect to other solutions that may require
manual effort from the test engineer. Nevertheless, it is worth mentioning that STA
tools are very pessimistic in performing their analysis and are not able to recognize
false paths; such paths cannot be sensitized in the final design and would introduce
untestable faults in the fault list. Therefore, a subsequent pruning of those paths from
the initial path list is needed; this is only partially performed by commercial fault
simulators as a preliminary phase of the fault simulation. The benefits of refining
the path list are non-trivial: if the list contains paths that cannot be tested by any
means, the test engineer will fruitlessly try to activate and detect faults whose effects
cannot be observed in any way, and the fault coverage will artificially drop. Pruning
of false paths is a topic that has been studied in literature, with several available
approaches. As an example, the authors of [73] developed an algorithm to prune
untestable paths, taking into account the circuit topology, process variations, and
aging effects; remarkably, this reduced the path count by 70.87%.

Path pruning is performed by employing a commercial Static Timing Analysis
tool in conjunction with a path delay fault oriented ATPG in an iterative way. The
slack range is divided into sub-ranges, then for each sub-range the STA tool extracts
a list of paths that is then tested by the ATPG taking the combinational netlist as a
device under test. A detailed explanation of this process is reported in Fig. 7.3.

The rationale behind this approach is that there exist a relationship between
structurally testable faults, i.e., faults that can be tested by the ATPG without any



7.3 Static Timing Analysis 91

Select minimum
and maximum

slack values

Can the ATPG
test it?

Divide the slack
range into

several
sub-ranges

Select one
sub-range

Pick one path
and test it through

ATPG

Is there any
path left in the

sub-range?

Yes

No

Yes

Is there any
sub-range

left?

End

Yes

No

No

Save the path
into the paths list

Fig. 7.3 Paths extraction flow



92 Path Delay Fault Simulation Flow

constraint on the type of test vector, and functionally testable faults, i.e., faults that
can be tested by test vectors that can be obtained in functional scenarios: if a fault
is functionally testable then it is structurally testable too, vice versa, a structurally
untestable fault is functionally untestable as well. Iterating through several small
slack intervals allows to carefully pick the largest amount of testable paths throughout
the whole slack range. In this way, we are sure that structurally untestable faults are
excluded. Excluding all structurally untestable faults, however, is not enough when
resorting to functional in-field testing approach, e.g., for safety-critical applications,
as there may be some structurally testable faults that cannot be properly simulated or
observed within functional scenarios and usually identified as functionally untestable.
Consequently, it is crucial to identify as many functionally untestable faults as
possible, removing them from the list of target faults to be considered.

The path list that is generated in this preliminary step is then used in the following
fault simulation steps. Hereinafter, the set of produced paths is referred to as path
definition list. Once the path definition list has been generated, it can be modified
as needed: the proposed flow accepts any path definition list, hence every possible
optimization or subset extraction is allowed.

When extracting paths for the subsequent fault simulation, timing information
such as the slack associated to the path may be included as well. When performing
path delay fault simulations, however, current commercial tools tend to neglect such
timing information. For this reason, all data regarding slack or timing behaviors can
be safely omitted in the path definition list.

7.4 Combinational-level fault simulation

Once the preparatory steps are cleared, the test flow moves on to the fault simulation
process that is divided into two steps. The reason for dividing the fault simulation
process in two stems from the fact that, similar to what has been outlined for transition
delay faults in Chapter 3, the act of testing a path delay fault can be decoupled in:

• Checking whether a couple of test vectors is capable of sensitizing a path and
propagating the required transition towards its endpoint,

• Propagating the faulty value due to the presence of a fault in a path towards
one of the primary outputs where it can be observed.



7.4 Combinational-level fault simulation 93

The proposed test flow leverages on the fact that both steps can be carried out with
commercial fault simulation tools, taking care of correctly setting and coordinating
both simulation steps. In the first step, a fault simulation tool is used to feed, at any
clock cycle, the input ports of the combinational netlist with patterns produced by the
test program and stored in the Patterns list. This process allows to identify all path
delay faults that produce a difference on at least a PO or a PPO when the considered
test program is executed. Moreover, this first fault simulation step allows to identify
the clock periods when this happens and the specific POs or PPOs affected by each
fault. This information will be used at a later time on the top-level netlist. Fault
simulators can also report, given any detected fault, which and how many patterns
are able to detect it; however, for optimization reasons the simulators might drop,
i.e., remove from the active fault list and hence stop considering, some faults that
are either already covered in other vector or that are not getting detected in a given
time window. This analysis is accurate only when fault simulations are performed
without fault dropping, that is, whenever a fault belonging to the active fault list is
never dropped from it after being detected by any pattern.

The fault simulator reads the combinational netlist, the library files, the path
definition list, and the combinational patterns list. More in detail, netlist and library
files are used to build an internal model of the device under test, while the path
definition list is analyzed to exclude false paths — hence, untestable faults — from
the simulation. Lastly, signals included in the patterns list are interpreted as a list of
pairs of vectors to be applied in sequence.

More accurate results in the overall flow can be achieved by running fault simula-
tion without fault dropping; disabling fault dropping, however, significantly increases
the fault simulation time. For this reason, by default, fault simulation tools drop
every fault after being detected once. As previously mentioned, enabling the no
fault-dropping option consists in never deleting faults, even when detected, from the
active fault list. As a consequence, for each fault, it is possible to obtain all patterns
detecting it at the combinational level, instead of just the first one. This allows us
to consider, in the following fault simulation step, the propagation of fault effects
through the sequential logic not only for the first pattern, but for the whole test set.



94 Path Delay Fault Simulation Flow

7.5 Sequential-level fault simulation

Once we know which output of the combinational netlist is possibly affected by a
certain fault at a specific time step or clock cycle, the final step that is required to
complete the fault simulation flow is to propagate the fault effect throughout the
sequential logic and check whether it reaches an observable point. The way this
final step is implemented in the test flow is by means of bit-flips injected in the
sequential elements that capture the fault effect. If the fault simulation tool used
in the previous step is capable of performing this task, then it can be used for the
second step as well, else another tool must be used and data from the combinational
and the sequential fault simulations must be adapted so that data produced from
the first tool is understandable from the second one. To the best of my knowledge,
no single tool is capable of performing these two steps, hence the need for using
a commercial tool different from the one used in the previous step. The detected
faults list obtained with previous strategies was made compatible with the tool used
for the sequential-level fault simulation. In details, that means that each detected
fault, together with its possible propagation endpoint and the time instant at which it
reaches the sequential element, were translated into a bit-flip, applied to the faulty
path endpoint at the aforementioned time instant.

It is worth noting that it is not obvious that each detected fault from the combina-
tional circuits that could provoke a bit-flip can, in turn, be propagated to the POs.
This is why, in the previous step, the fault-dropping option needs to be disabled: by
allowing the generation of more patterns for each fault, it is also possible to generate
several bit-flips at different time instants, hence increasing the accuracy of fault
coverage evaluation. As a consequence, there may be more than one time instant at
which a given fault is detected at combinational level.

Due to this reason, for each fault detected in the sequential-level fault simulation,
the minimum number of patterns required to detect a fault can be defined. This value
can be described in terms of the number of patterns generated by the functional fault
simulation at the combinational level needed until the effect of the detected fault
is propagated to the POs. The smaller this value is, the easier its test generation at
sequential level is.



7.6 STL performance evaluation on Path Delay Faults 95

7.6 STL performance evaluation on Path Delay Faults

In order to validate the described test flow, a set of five test programs developed
for the stuck-at fault model has been used to test path delay faults on the RISC-V
core found in the PULPino system on chip. This serves two purposes, checking
the correctness of the proposed path delay fault simulation flow and understanding
how well test programs written for other fault models perform for path delay faults.
Moreover, in order to make sure that results were not tool dependent, each step has
been cross-validated with similar EDA tools from different vendors.

The test programs suite consists of four programs written by test engineers and
one test program generated randomly. The test programs written by test engineers
have been implemented following diverse approaches, and represent the state-of-
the-art for STLs targeting stuck-at faults in modern in-order pipelined CPUs. The
presented experiments have been run on 5 cores of an Intel Xeon CPU E5-2680 v3.
The whole functional simulation flow required indicatively 48 to 72 hours for each
program.

In order to set a reference for the following analysis, an analysis on the com-
binational logic of the RI5CY core only was performed, i.e., assuming that its
input/output signals are fully controllable/observable with an ATPG process. This
first analysis was conducted by simply extracting paths with a slack range from 0,
i.e., the critical path, to 5ns, the processor’s clock period, through a Static Analysis
Tool and feeding them to the ATPG, together with the combinational netlist to see
how many path delay faults can be detected in the best case scenario. The ATPG
engine produced a PDF coverage of 38.79%, with 13,762 detected faults, and 21,714
untestable faults. This is the ideal upper-bound for the achievable fault coverage that
can hardly be achieved even when adopting SBST approaches or even scan-based
— i.e., LOC — tests, due to constraints imposed by the test procedure. This result
can also be read in another way: more than 60% paths that were extracted by the
Static Timing Analysis tool in this design were not testable, thus reinforcing the
importance of performing path pruning as described in Section 7.3.



96 Path Delay Fault Simulation Flow

Table 7.1 Combinational-level fault simulation results

Progr. 1 Progr. 2 Progr. 3 Progr. 4 Random Cumulative

Test patterns 64,502 36,394 17,269 118,098 32,416 268,679
Detected faults 6,816 6,973 6,856 7,554 6,573 8,085
Fault coverage% 49.50 50.67 49.81 54.89 47.76 58.75

7.6.1 Combinational-level fault simulation

Once the reference is set through the ATPG engine, it is possible to evaluate the
fault coverage obtained by running already developed STLs. Given that the fault
simulation step is divided in combinational and sequential fault simulations, data
regarding the combinational fault simulation is discussed first. Fault simulation
results of the test programs on the combinational logic are summarized in Table 7.1.

For each test program, the table reports information about the amount of test
patterns corresponding to its execution, the number of detected faults and the fault
coverage with respect to the reference experiment. The last column, Cumulative,
reports the aforementioned data in a cumulative fashion, as if all test programs could
be collapsed into a single program.

The fault coverage values of Program 1, 2, and 3 differ by at most one percentage
point, although Program 3 is faster. This is of particular importance when considering
that the test programs have been devised with different techniques and structures
being also very heterogeneous in terms of duration and number of instructions. It
also suggests that no correlation between SAF and PDF functional coverages may
exist.

7.6.2 Detected by Implication faults

Once the list of path delay faults detected at combinational level is obtained as a
result from the previous step, it is possible to categorize them based on the path’s
endpoints they are related to. This is important, because depending on the endpoint
type some faults might belong to the Detected by Implication group. When adopting
SBST techniques, primary outputs are usually set to be the observation points. A
fault directly affecting a primary output is hence automatically marked as detected.
The same, however, can be concluded for faults affecting very sensitive signals such



7.6 STL performance evaluation on Path Delay Faults 97

Table 7.2 Number of detected faults per endpoint type

Endpoint Type Program 1 Program 2 Program 3 Program 4 Random

PO 298 167 193 453 206
FF/D 440 409 209 623 188
FF/Clock 1 1 1 1 1
Latch/D 6,044 6,363 6,339 6,444 6,145
Latch/Enable 33 33 33 33 33

as clock gating or enable signals: a delay fault affecting those signals could provoke
serious synchronization issues that would most likely cause the whole circuit to fail.
Hence, these faults are labeled as Detected by Implication in the following, avoiding
their further explicit fault simulation.

Table 7.2 reports data on how many faults affect each endpoint type that can be
found in the design under test. The endpoints reported in the table are the top-level
netlist’s primary outputs and clock/enable and data pins of sequential elements, like
flip-flops and latches. These data are reported for each test program. As shown in
Table 7.2, the program that achieved the best results in every field was Program 4,
as it detected 453 faults at POs, 623 faults at FF/D pins and 6,444 faults at Latch/D
pins. On the other hand, program random achieved the worst result in terms of faults
detected at FF/D pins (188) while program 2 was the worst in terms of faults detected
at POs (167) and program 1 the worst in terms of faults detected at Latch/D pins
(6,044).

From this data, it is possible to conclude that, among all faults detected at
combinational level, 332 faults are detected by implication in Program 1, 201 faults
are detected by implication in Program 2, 227 faults are detected by implication
in Program 3, 487 faults are detected by implication in Program 4 and 206 faults
are detected by implication in the Random program, thus not needing any further
simulation.

7.6.3 Sequential-level fault simulation

All faults that do not belong to the detected by implication group must now be
checked to see if their effects are noticeable at the primary outputs of the whole
device under test, thus constituting the set of faults to be tested in the sequential level



98 Path Delay Fault Simulation Flow

Table 7.3 Functional fault simulation results

Parameter Program 1 Program 2 Program 3 Program 4 Random

Injected 6,484 6,772 6,629 7,067 6,333
Det. by Simulation 4,797 5,420 4,781 6,660 5,011
Det. by Implication 332 201 227 487 206
Fault Coverage% 37.27 40.84 36.39 51.93 37.91
Prop. Coefficient% 75.25 80.61 73.04 94.61 76.23

fault simulation. In order to decrease the fault simulation cost, all faults producing a
bit-flip on the same pseudo-primary output during the same clock cycle have been
grouped together. This is done because, even though faults may stem from different
portions of the device under test, in the sequential-level fault simulation they are
equivalent since they affect the same flip-flop at the same time. Table 7.3 presents
results of the sequential-level fault simulation.

Row Injected reports the amount of injected faults in this last fault simulation
process which is equal, for each program, to the total amount of faults detectd at
the combinational level minus the faults detected by implication, reported in the
Det. by Implication row. The absolute value of faults detected at the sequential level
as a result of the fault simulation process is reported in row Det. by Simulation.
Fault Coverage% row gives the fault coverage calculated as the sum of Det. by
Simulation and Det. by Implication faults over the total amount of faults. Finally,
the Propagation Coefficient is the percentage of faults that have been successfully
propagated to a primary output among those faults detected at combinational level.

It is possible to see that program 4 achieved the best results in terms of both
faults detected at combinational level (7,554) and propagation coefficient (94.61%).
This result may be partly due to the longer duration of the program 4. Program
Random shows very interesting results as well. Despite the large gap in terms of
fault coverage for SAF and TDF, the functional test results are comparable to what
has been achieved with other test programs. This brings us again to the conclusion
that no correlation among the considered fault models coverage exists.



7.6 STL performance evaluation on Path Delay Faults 99

Table 7.4 Most critical detected faults per program

Program Scope Path ID # Gates Slack (ns) Fault

Prog. 1
Comb. 4,323 95 1.776 str
Seq. 4,323 95 1.776 str

Prog. 2
Comb. 4,321 95 1.770 str
Seq. 4,321 95 1.770 str

Prog. 3
Comb. 10,873 23 4.199 str
Seq. 10,873 23 4.199 str

Prog. 4
Comb. 4,321 95 1.770 str
Seq. 4,321 95 1.770 str

Random
Comb. 7,158 38 3.542 str
Seq. 11,330 20 4.305 stf

7.6.4 Test programs effectiveness

Finally, an analysis of the effectiveness of the test programs was performed, with the
goal of understanding how delay faults on paths with different slacks are covered.
Moreover, with this analysis it is possible to see if there is a correlation between
detected faults and the associated path slack value.

The results of this analysis are shown in Table 7.4. This table shows, for each
test program, the most critical PDF — i.e., the fault associated to the path with the
smallest slack — together with its gate counts and slack. Faults were ranked in
ascending order according to the slack of the paths they are related to, i.e., the path
ranked first has te smallest slack, and an ID was assigned to each fault. For example,
the fault with ID #10 is associated to the path with the tenth smallest slack in the
ranking.

Programs 2 and 4 were those that achieved the best results as they both detected
the same longest faulty path, #4,321, followed by Program 1, with the longest
detected faulty path being #4,323. Program 3, on the other hand, did not perform
that well, as the longest detected faulty path was ranked #10,873. Remarkably, the
random program performed differently between the combinational and the sequential-
level fault simulations, where the longest detected faulty paths were #7,158 and
#11,330, respectively. Looking at the netlist of the device under test, paths #4,323,
#4,321, and #7,158 are located in one of the arithmetic modules instantiated in the



100 Path Delay Fault Simulation Flow

Table 7.5 Fault Coverage per slack range

Slack
intervals
[ns]

Total
faults

Comb.
ATPG
FC%

Functional
test programs

FC%

[0.0 - 0.5] 4,672 0.0 0.0
[0.5 - 1.0] 3,228 0.0 0.0
[1.0 - 1.5] 640 0.0 0.0
[1.5 - 2.0] 248 79.4 7.2
[2.0 - 2.5] 388 66.0 7.0
[2.5 - 3.0] 422 64.6 6.6
[3.0 - 3.5] 4,670 5.8 0.5
[3.5 - 4.0] 7,176 12.7 0.3
[4.0 - 4.5] 3,968 56.1 3.6
[4.5 - 5.0] 10,064 95.0 75.1

divider circuit featured inside the ALU; paths #10,873 and #11,330, on the other
hand, go through two different arithmetic modules, both being inside the logic circuit
used to address the memory stage.

The distribution of the considered PDFs with respect to slack intervals is pre-
sented in Table 7.5. Each line takes into account a 0.5ns step interval; if a path owns
a slack ranging in that interval, it will be counted in the row. This table reports how
many faults were extracted by the Static Timing Analysis tool in the first column,
while the second column reports the percentage of faults detected by the ATPG and
the third column the percentage of faults cumulatively detected by the test programs.
Interestingly, all faults belonging to the slack interval [0.0-1.5]ns were not detected
by any test method. These numbers are in accordance with data shown in previous
publications [74, 75].

In order to identify the most critical faults and how they are covered by means of
functional SBST methods (test programs) and through the adoption of the ATPG,
a further analysis on the faults affecting the arithmetic blocks within the processor
core under test was performed. Table 7.6 reports such information. It is noted that
not all faults from the fault list traverse one of these modules; in some cases, one
path could traverse more than one arithmetic block.

Furthermore, it is of interest to understand how much effort is required to propa-
gate each fault from a pseudo-primary output to a primary output, i.e., how many



7.6 STL performance evaluation on Path Delay Faults 101

Table 7.6 Fault Coverage per module

Module name
Total
faults

ATPG
comb.
FC%

Functional
fault sim.

FC%

id_stage_i_add_531 160 100.0 0.0
alu_i_int_div_div_i_sub_100 12 50.0 33.3
alu_i_int_div_div_i_add_100 446 25.8 25.8
ex_stage_i_mult_i_add_109_2 1,580 0.0 0.0
ex_stage_i_mult_i_mult_109 1,580 0.0 0.0
cs_registers_i_add_775 132 100.0 0.0
load_store_unit_i_mult_add_463_aco 1,884 72.4 21.8
load_store_unit_i_add_463_aco 1,994 73.5 24.6
r1589 868 100.0 0.0
ex_stage_i_alu_i_add_168 6,960 0.0 0.0
ex_stage_i_alu_i_add_182 6,960 0.0 0.0

detections are required for a fault to be propagated from the combinational to the
sequential level. As described in Section 7.4, ideally a no-fault dropping simulation
would yield the most accurate results, as the more pairs of flip-flops reached by
faulty values and time instant at which such event occurs are produced for each
fault, the higher the chance that the fault is detected at the end of the sequential fault
simulation as well. This however may lead to very time and resource consuming
simulations, hence why resorting to a n-detect fault simulation, i.e., a fault simulation
where a fault is dropped after being detected n times, is often the adopted solution.
The aim of this last analysis is understanding how many detections are required for
faults that were detected at a combinational level to be detected at the sequential
level too. Table 7.7 reports such information focusing on Program 4 specifically.
Most of the faults (nearly 80%) are immediately detected, as soon as they produce
a difference on a PPO. Only a subset composed of about 20% of the faults require
a significant number of differences on PPOs at different clock cycles before being
detected. Currently, we are unable to state whether we could speed-up the detection
of the latter subset of faults by a more careful design of the test programs, or whether
their detection strictly requires longer test programs.

Finally, to summarize, Table 7.8 collects the fault coverage percentages for each
program on the three fault models mentioned in this chapter.



102 Path Delay Fault Simulation Flow

Table 7.7 Number of detected faults vs. number of detections on PPOs

Differences on PPOs 1 10 30 64

Fault detected 5,712 6,552 6,918 7,146
(%) 79.9 91.7 96.8 100.0

Table 7.8 Fault coverage summary

Parameter Program 1 Program 2 Program 3 Program 4 Random

Clock cycles 64,527 36,500 17,308 181,370 32,455
SAF FC% 86.77 81.79 81.37 82.97 59.44
TDF FC% 41.90 44.21 63.16 61.90 24.41
PDF FC% 37.27 40.84 36.39 51.93 37.91

7.7 Chapter Summary

This chapter presents and describes in details a fault simulation flow that is capable
of performing a path delay fault simulation on a generic sequential circuit when
resorting to a functional, SBST approach. The reason for developing such flow
is that, at the time of writing, there is no way to generate fault coverage figures
for functional tests of path delay faults through the adoption of commercial fault
simulation tools. The goal of this PhD thesis for this part is to provide techniques to
test path delay faults on processor cores; nevertheless, the same approach described
in this thesis can be used to perform functional tests on any sequential circuit.

The presented fault simulation test flow is divided among three preliminary steps,
required for generating all the required data, followed by the actual fault simulation
process that has been divided into two sub-steps. The first preliminary process con-
sists of synthesizing the core to be tested, making sure that the combinational logic
and the sequential elements are grouped separately, thus creating a combinational
netlist where only combinational elements are present and a top-level netlist that
encompasses the combinational module connected to the sequential elements. Fol-
lowing, the second preliminary step consists of running a logic simulation of the core
to be tested executing the STL, with the goal of recording the input stimuli into a pat-
tern list that will later be used in the fault simulation process as source of test vectors
to test path delay faults. Finally, the last preliminary step requires the extraction of
paths on which STR and STF path delay faults will be tested. This is done by means



7.7 Chapter Summary 103

of an iterative approach that features a Static Timing Analysis tool paired with an
ATPG. Since the Static Timing Analysis tool is not capable of identifying untestable
paths, the path extraction process first produces a list of paths through the STA tool
and then discards all paths whose faults cannot be tested through ATPG, following
the idea that a fault that cannot be tested with the ATPG cannot be tested through
SBST methods, too. Once the preliminary steps are cleared, a first combinational-
level fault simulation is performed. The aim of this fault simulation step is to test
path delay faults generated from paths in the path list in the combinational level
only, thus obtaining a first indication of how many path delay faults are observed at
the pseudo primary outputs and primary outputs of the combinational logic. Faults
observed at primary outputs are marked as detected, while all the other faults are to
be simulated in the sequential level fault simulation, whose goal is to check whether
the test program is capable of propagating a fault effect from the pseudo-primary
outputs to the primary output. The only set of faults observed at pseudo-primary
outputs that are exempted from the latter fault simulation are faults whose values
affect sensitive signals, e.g., clock-gating or enable signals, that may cause obvious
malfunctioning if reached by a faulty value. Such faults are defined as Detected by
Implication. In order to maximize the probability of a fault detected at combinational
level to be detected in the sequential fault simulation too, the no-fault dropping, or an
n-detect if the no-fault dropping is too time and resource consuming, option should
be enabled while performing the combinational fault simulation.

The proposed test flow has been validated with a set of test programs previously
devised for stuck-at faults on the PULPino core, a 32-bit in-order pipelined PCU.
The set of test programs is comprised of four programs developed by test engineers
and one program randomly generated for comparison. Experimental results show
that the proposed test flow is capable of correctly performing fault simulation for
path delay faults and demonstrates how, even in the best case scenario, 51.93% of
path delay faults are detected by already available test programs, thus reinforcing
the need for defining techniques for developing STLs that target path delay faults
specifically.

Before concluding the discussion on the path delay fault simulation flow pre-
sented in this PhD thesis, some final considerations should be made. When transi-
tioning from the combinational to the sequential fault level simulations, the test flow
records the effects of path delay faults on registers which constitute the endpoint of
paths they are associated to, and then propagates those effects by means of bit-flips



104 Path Delay Fault Simulation Flow

in the top-level circuit. It is to be noted, however, that when a path delay fault is
present, its effects may compromise values of flip-flops other than the endpoint of
the path affected by the fault. The path delay fault simulation flow presented in this
PhD thesis constitutes a first approach in developing a flow to tackle path delay faults
in sequential circuits, and will include such mechanism in future developments.



Chapter 8

STL Development for Path Delay
Faults

8.1 Proposed Approach

This chapter is devoted to the description of an STL development methodology for
processor cores targeting path delay faults. In order to validate the effectiveness
of this methodology, the previously presented fault simulation flow is used. Such
STL development strategy is divided into three steps: functional constraint identifi-
cation, test patterns generation using ATPG, and conversion of those patterns into
instructions. This approach is summarized in Fig. 8.1.

In the following subsections, the three steps are described in detail.

8.1.1 ATPG pattern extraction

To test PDFs, test patterns must be able to generate and propagate specific transitions
through the targeted paths. This task, however, cannot be fulfilled by any generic
couple of vectors: very few patterns are capable of driving all PIs and PPIs properly.
This is especially true when dealing with long paths: using random programs or
even programs developed for other fault models, such as stuck-at faults (SAFs) or
transition delay faults (TDFs), does not work effectively, and leads to a very small



106 STL Development for Path Delay Faults

Patterns

extraction
through ATPG

Paths List

Comb.

Netlist

Functional

Test Patterns

Functionally

Untestable
Paths

Patterns

conversion into
instructions

Functional

Constraints
Definition

Fig. 8.1 Patterns generation flow

coverage. For this reason, special emphasis on the test pattern generation step should
be placed.

The adopted strategy for generating test vectors is summarized in Fig. 8.2.

The pattern generation task is managed by an ATPG, that requires the DUT’s
combinational netlist and the path list to produce the aforementioned test patterns.
This allows producing effective and reliable patterns in a relatively short amount
of time. Test vectors generated by ATPG usually feature some don’t-care values.
Typically, the number of don’t care signals is reversely proportional to the path’s
length. Moreover, it is noted that the more don’t care values are found within the test
vectors, the easier it is to convert test patterns into instructions, as more degrees of
freedom are provided when looking for instructions that can drive signals as specified
by the ATPG. For this reason, it would be inconvenient to use fully specified test
vectors. If the ATPG supports the generation of multiple test patterns for each fault,
enabling such option is beneficial as it increases the pattern-to-instruction conversion
rate. Having multiple test patterns provides a higher probability that one test vector
can be successfully converted into an instruction. If such an option is available,
multiple candidate test patterns for each fault are generated, allowing to select the



8.1 Proposed Approach 107

Yes No

Can the

ATPG
test it?

Configure the ATPG

with functional
constraints

Pick the

first path

Pick the

next path
Yes

No

Are there any

more paths?

Mark it as

detected and
store its test vectors

Mark it as ATPG

untestable

End

Fig. 8.2 ATPG-based test vectors generation



108 STL Development for Path Delay Faults

most convenient vector to convert, e.g., the one showing the most don’t-care values.
In case the ATPG does not support this feature and is not capable of providing a
vector that can be translated into an instruction, other techniques can be used, e.g.,
refining functional constraints so that a new, easier to convert, pattern is generated.
As test vectors are generated through the ATPG, their properties, e.g., whether they
are robust or non-robust tests for path delay faults, depend on the ATPG capabilities.
In most cases, the ATPG tries to generate robust tests and, if not possible, resorts to
non-robust test vectors. The test engineer can, eventually, configure the ATPG so
that it discards non-robust test vectors, at the expense of the final fault coverage.

It is however important to highlight that the ATPG is not aware of the fact that
these patterns have to be functionally applicable: this could lead to the generation of
test patterns that cannot be translated into instructions. To mitigate this problem, a
set of functional constraints must be applied to the ATPG in order to promote the
generation of test patterns that can be mapped into instructions belonging to the
CPU’s instruction set architecture (ISA). Such feature is described thoroughly in
Section 8.1.2.

Faults managed by the ATPG following this approach may belong to one of the
following categories:

• Detected group: the fault has been detected and the relative couple of test
vectors have been produced,

• ATPG Untestable group: the ATPG could not generate test vectors capable of
testing the fault under the specified constraints.

The latter category requires some observations. Based on what is presented in
Section 7.3, faults produced by this flow are known to be testable by the ATPG when
no constraint is applied. As a consequence, if a fault is marked as ATPG untestable
it means that this fault is also functionally untestable, as the ATPG cannot produce
test vectors when functional constraints are applied. In this way, the flow is able to
remove a portion of FUFs from the fault list, obtaining a list of faults whose patterns
can be converted into instructions. Nevertheless, it is still possible that there might
be a non-negligible subset of functionally untestable faults among the detected ones.
The reason for this lies in the architecture of the DUT, but also on how instructions
are issued and executed by the processor core. To give an example, let us consider a
fault that affects the arithmetic unit of a pipelined, in-order processor and the test



8.1 Proposed Approach 109

pair produced by the ATPG requires launching a division followed by another ALU
operation. Given this premise, the targeted fault is a FUF: divisions require more
than one clock cycle to complete, and their execution stalls the whole CPU, hence
it will be impossible to execute an ALU operation at the clock cycle following the
issuing of the division. It is worth reiterating, however, that functionally untestable
faults cannot be detected by SBST means, due to the fact that they cannot be excited
under functional scenarios.

8.1.2 Functional constraints identification

Functional constraints are a crucial component of the ATPG pattern extraction
process, as they ensure that the produced test vectors can be effectively translated
into instructions belonging to the DUT’s instruction set architecture (ISA). For this
reason, identifying and defining a set of functional constraints is a key task in our
methodology, and is presented separately. The functional constraint identification
algorithm that is used in this thesis is briefly summarized in Algorithm 4.

In order to describe this algorithm, it is first important to highlight that, in this
PhD thesis, the set of functional constraints needed to generate valid test patterns is
directly applied to the ATPG. Such constraints come in the form of values applied to
the PIs and PPIs of the DUT: for this reason, prior to any further step, we perform an
off-path inputs analysis, i.e., for each path we analyze the path’s input cone logic,
starting from off-path inputs and moving towards the cone of influence inputs. This,
together with a list of sub-modules into which the DUT is divided, are the input of
our functional constraint identification algorithm.

The presented algorithm adopts a semi-automatic approach to tackle the problem
of generating functional constraints. For each sub-module Si, all paths within the
sub-module and the input cone logic for each path are identified first and grouped
into a set D of paths Pi and its input cone logic Ci. Next, an automatic tool capable of
performing logic simulations of a suite of carefully devised programs is employed,
each program targeting a specific sub-module of the device under test. While
simulating, the automatic tool records all input values. Once all simulations are
completed, it identifies all the input pins that cannot be controlled when running test
programs. Once this is cleared, the last step consists of annotating the set of input
signals, together with their value, into a list of constraints to be fed to the ATPG. In



110 STL Development for Path Delay Faults

Algorithm 4: Functional Constraint Identification
Input :A set S:=(Si), where Si is a sub-module of the device under test
Input :A set D:=(Pi,Ci), where Pi is a path to be tested and Ci is the list of the i-th

path’s input cone logic
Output :A list of functional constraints to be applied to the ATPG
begin

F := empty list of functional constraints
/* Repeat for every sub-module */
foreach Si in S do

NC:= empty set of non-controllable input signals;
select all paths Pi belonging to Si;
extract all Ci related to paths Pi;
run logic simulation of ad-hoc programs;
store non-controllable input signals into NC;
/* Check whether non controllabe inputs belong to the Ci

of a Pi within the considered Si */
foreach signal in NC do

if signal in Ci then
add signal with its tied value to F ;

end
end

end
return F

end

this way, it is possible to make sure that the produced test patterns only involve those
pins that can be driven through SBST means with replicable values. The proposed
functional constraints identification method is conservative in the sense that, given
its nature, there still may be a set of signals that can be constrained that are not
identified. This can be further refined by means of other techniques, e.g., by using
SAT solvers.

The time complexity of Algorithm 4 scales linearly with the number of sub-
modules that are found within a CPU, as each sub-module requires one logic simula-
tion to be launched, plus some processing time to extract information about signals
that cannot be driven with any functional program, which is however negligible with
respect to the logic simulation time. Moreover, since simulators allow dumping
information on all signals in a single file, it is also possible to run a single simulation
and then post-process such file to extract constraints. In this case, the time scales
linearly with the product of signals to monitor and number of clock cycles required
for the logic simulation to execute.



8.1 Proposed Approach 111

8.1.3 Patterns-to-instructions mapping

Once the test pairs have been generated, it is necessary to translate them into instruc-
tions. The very first step in performing such conversion consists of mapping the
values stored in the test patterns into signal groups, e.g., the opcode, ALU operands,
registers, etc. Afterwards, the test engineer must choose a set of instructions that
is capable of replicating the generated test pair. This process is quite complex for
two reasons. First, for each available instruction, it is necessary to understand which
signals are controllable and how the instruction affects them; this could be non-trivial
depending on the signal group. The second reason is due to the fact that values
from the test vector must be applied concurrently on CPU pipeline stages. As a
consequence, a single vector has to be mapped to several instructions, each one
controlling signals in one pipeline stage. This has to be carefully selected such that
they reproduce a test vector in a given clock cycle. In this methodology, this is
done employing a semi-automated approach: a parser maps the test vectors into
the aforementioned signal groups, while the test engineer defines a sequence of
instructions and simulates them to make sure that they reproduce the required values.

A generic sequence of instruction is divided into three blocks:

1. Initialization instructions: mainly in the form of load instructions, they are
used to initialize the DUT so that the test can be effectively applied.

2. Test instructions: once the DUT is prepared, these instructions generate and
propagate the intended transition through the targeted path.

3. Store instructions: to propagate data affected by errors to POs, where mis-
matches due to faults are finally observed.

To better clarify, in the following an example of pattern conversion of a real test
vector couple is reported, depicted in a simplified version in Fig. 8.3. To give some
reference, the path targeted by the ATPG in the figure belongs to an adder embedded
in the jump address sub-module. To start off, in the upper table we reported a portion
of the two test vectors, namely First Vector and Second Vector, whose values have
already been mapped into their respective signal groups. Among all groups, those
that can easily be identified with modules that are found in the processor core are
reported. The first 8 groups refer to portions of registers in the register file, while the
latter 6 groups refer to fields of fetched instructions. The dash symbol, ’-’, has been



112 STL Development for Path Delay Faults

used to represent the "don’t-care" value, while in all other cases hexadecimal values
are reported. The different fields into which the instruction is divided are strictly
dependent on the processor’s Instruction Set Architecture: in this specific example,
we identify the following fields:

• id_instruction[6:0]: contains the opcode of the instruction (bold black text),

• id_instruction[14:12]: contains a special function field (func3) or the lower
portion of the immediate field depending on the type of instruction (bold pink
text),

• id_instruction[19:15]: contains the register source 1 field or a portion of the
immediate field depending on the type of instruction (bold green text),

• id_instruction[24:20]: contains the register source 2 field or a portion of the
immediate field depending on the type of instruction (bold red text),

• id_instruction[31:25]: contains a special function field (func7) or the upper
portion of the immediate field depending on the type of instruction (bold brown
text).

Looking at the values reported for the first and second vectors, it is possible
to notice that numerous don’t-care are associated to signal groups. Let us start by
considering signals mapped to registers, first. It is possible to see that for each
register, one of the two vectors allows for a don’t-care value while the other is fully
specified. This means that those registers can be initialized to the required values in
the aforementioned block of initialization instructions, without needing to further
drive them in the test instructions block as they already store values that satisfy
the test vectors. Instruction fields, on the other hand, are for the most part fully
specified both in the first and second test vector, hence why we need the two test
instructions to drive the appropriate fields accordingly. The opcode points to what
couple instructions must be generated, namely a load byte instruction followed by a
jump and link register. The remaining instruction fields identify immediate values
and registers that must be employed with these two instructions, and allow to fully
determine what couple of instructions must be placed in the test instructions block.
Finally, it is necessary to introduce a store instruction to propagate the effects of
the previously excited faults towards one of the POs, hence observing data affected
by the targeted path delay fault. This is done so that the faulty value can be stored



8.1 Proposed Approach 113

Signal

Name

First

Vector

Second

Vector

register_25[11:3] 0x000 -

register_21[23:11] 0x0000 -

register_20[27:19] 0x000 -

register_17[30:0] 0x00000000 -

register_16[27:19] 0x000 -

register_15[31:0] - 0x80000001

register_9[0] 0x0 -

register_1[0] 0x0 -

id_instruction[31] 0x0 0x1

id_instruction[30:25] - 0x3F

id_instruction[24:20] - 0x1F

id_instruction[19:15] 0x11 0x0F

id_instruction[14:12] 0x0 0x0

id_instruction[6:0] 0x03 0x67

lb x0,0(x17)
000000000000 10001 000 00000 0000011

jalr x4,x15,0xFFF

111111111111 01111 000 00100 1100111

Instructions block

li x25,0x0

li x9,0x0
li x1,0x0

li x21,0x0

li x20,0x0
li x17,0x0

li x16,0x0
li x15,0x80000001

lb x0, 0(x17)

jalr x4,x15,0xFFF

sw x15,4(sp)

Fig. 8.3 Example of test program



114 STL Development for Path Delay Faults

into a non-volatile memory, possibly after being compacted into a signature, to
be compared against the golden circuit’s one. In this sense, observing a faulty
value at the primary output equals to detecting its relative fault. In this example,
instructions able to test a path delay fault affecting the jump mechanism of the
CPU were generated quite easily thanks to the presence of several don’t-care values.
In general, however, choosing the right instructions is not trivial as they must be
carefully picked to replicate all the signals in the test vectors without any mismatch,
bearing into mind how they behave across all pipeline stages. This is why, in this
PhD thesis, the process of converting patterns to instructions still requires some
manual effort. It is possible, however, to make this process more automatic, e.g., by
identifying all those signals that have a don’t-care value in one of the two vectors
so that instructions for them can easily be generated for the initialization block, as
well as implementing mechanisms to store the instructions format defined in the
Instruction Set Architecture so that the tool can come up with instructions without
manual intervention.

Finally, the STL consists of every sequence of instructions generated for each
path. One of the strengths of this approach consists in being modular: depending
on the length of the test slot, i.e., the time slot in which the DUT can be tested, the
test engineer can decide whether to run the test program as a whole, or split it into
several submodules. The only rule to be observed is not to split a single instruction
block that must always be run as a whole, since the ability of testing a path strictly
depends on the execution of the instruction sequence without interruptions.

8.2 Experimental Results

8.2.1 Case Study

To validate the STL development methodology presented in the previous chapter,
the choice fell on PULPino, a 32-bit RISC-V core developed by ETH Zurich and
Università di Bologna. For these experiments, PULPino was configured to use
the RI5CY core, an in-order, single-issue core with 4 pipeline stages, capable of
supporting the RV32ICM instruction set which includes integer, compressed, and
multiplication instructions, as thoroughly described in Section 3.2.1.



8.2 Experimental Results 115

Table 8.1 Case study general info

Parameter Value

Number of gates 46,850
Total Area (eq. gates) 51,001.65
Clock Period (ns) 5.00
Number of seq. elements 2,325

Table 8.2 Paths report

Paths class #Paths extracted Slack range (ns)

Long paths 5,009 [ 1.3 : 2.5 ]
Short paths 5,137 [ 4.8 : 4.97 ]

This processor core was synthesized using the open hardware 45nm Nangate
OpenCell Library provided by Silvaco[61]. Data regarding the synthesized core can
be found in Table 8.1.

Row Number of seq. elements include all flip-flops and latches found in the
design. Table 8.2 reports additional information on the extracted paths. These paths
are the result of the extraction process described in Section 7.3; as a consequence,
only paths that can be tested through ATPG are reported here and targeted in our fault
simulation experiments. Two types of paths were extracted: long paths, whose slack
is small, and short paths, with a larger slack. Paths from both of these categories
have been targeted in our fault simulation experiments.

Longer paths have been extracted by looking at all paths in the slack range
[0 : 2.5]ns: the reason for not having any path in the [0 : 1.3]ns slack range lies in the
fact that the ATPG did not find any testable path among those. From a topological
point of view, long paths are divided into three groups:

1. 45 paths in an adder of the divider module of the ALU,

2. 540 paths in an adder of the load/store unit,

3. 4,424 paths in an adder inside the jump address module of the decode stage.

Shorter paths, on the other hand, have been limited to those belonging to the
[4.8 : 5.0]ns slack range. As there are plenty of short paths in a circuit, the extracted



116 STL Development for Path Delay Faults

ones do not belong to single modules of the CPU, rather they are scattered throughout
the whole processor core.

As for the test programs, since we are working with two different classes of paths
– long paths and short paths – we decided to develop two separate STLs.

Starting with the long paths STL, this set of procedures was developed completely
from scratch, and it can be thought of as three independent procedures that aim at
testing faults in the three aforementioned submodules. For the vast majority of faults,
this methodology was capable of producing appropriate testing instructions that
excite faults and propagate their effects towards primary outputs. For a very small
percentage of all faults (45 out of 10,018, to be found in the divider unit), however,
the test vectors could not be replicated due to physical constraints: such couples
required a division promptly followed by another ALU-related instruction, which
cannot be executed at the immediately following clock cycle as divisions take more
than one clock cycle to complete, making those 45 faults functionally untestable.

As for the short paths STL, experimental data from [17] shows that programs
developed for SAFs and TDFs are somehow capable, although not with high cov-
erages, to test short paths. For this reason, we decided to start from the already
available SAF and TDF-oriented programs. In this way, we could discard the faults
that are already covered by them, and focus on the remaining ones through the
proposed methodology. Thanks to this approach, we were able to easily identify a
large number of FUFs, as well as to further increase the number of detected faults.
These results validate the proposed approach, as it succeeded in producing effective
STLs even though long and short paths are quite different in terms of topological
distribution and functionalities.

8.2.2 Achieved Results

The experimental results reported in this thesis have been obtained through the
adoption of several different commercial tools coordinated through the usage of
Bash and Python scripts as described in Chapter 7. Regarding the preliminary steps
Design Vision, a tool provided by Synopsys, was used for the synthesis step, together
with Questasim by Mentor Graphics for logic simulations and PrimeTime for path
extraction in conjunction with TetraMAX, both by Synopsys, for path refinement.
The combinational-level fault simulation has been performed using TetraMAX, while



8.2 Experimental Results 117

the sequential-level fault simulation makes use of Z01X, a fault simulator specifically
designed for functional safety by Synopsys. It is reported that TetraMAX ATPG
preferably generates robust test vectors and resorts to non-robust vectors if and only
if robust vectors cannot be generated for the fault. In this thesis the tool has been
configured so that non-robust test vectors are discarded, thus producing robust test
vectors, only.

The experimental results we gathered are referred to the processor core and
synthesis library described in Section 8.2.1, and are reported separately for long and
short paths. The STLs we generated were capable of covering 100% of testable long
paths and 87.31% of testable short paths of the chosen DUT. In both cases, the STL
generation required about 8 days of ATPG time, using 5 cores of an Intel Xeon CPU
E5-2680 v3 server.

Starting with the long paths STL, the whole test program requires 26kB of
memory space, and a total amount of 45,605 clock cycles to execute. The amount of
clock cycles has been computed by executing the whole STL in a single simulation;
depending on the situation, the test engineer can then split the STL into several
shorter testing sub-routines to adapt them to the available idle time slots, matching
the strict time constraints of in-field test. The generation and simulation of the whole
test program required no more than four days worth of CPU time to complete. Since
no methodologies to develop STLs for all PDFs in a processor core are currently
available in literature, to assess the validity of the proposed methodology we decided
to compute the fault coverage figures for STLs intended for other fault models –
namely, SAFs and TDFs – used as a reference case. Stuck-at fault oriented test
vectors are not compatible with delay faults when generating test patterns for scan
chains through ATPG. Nevertheless, throughout this thesis the SBST paradigm is
always adopted, thus ensuring that test vectors are applied through functional at-speed
clock cycles throughout the whole STL duration. For this reason, it is appropriate
to compare our results with those achieved by SAF-oriented test programs. In
particular, we run 5 different SAF programs and 1 TDF program, able to achieve
90.91% (cumulatively) and 74.25% wrt their target faults, respectively. Test programs
for stuck-at faults and transition delay faults target the same fault list (one for stuck-at
and the other for transition delay faults). In both cases, all faults from the processor
core are targeted. In order to ensure a diverse test suite, even though the fault list is
the same for any given fault model, the test programs were developed using different
approaches by multiple test engineers, thus consisting in a different set of test vectors



118 STL Development for Path Delay Faults

Table 8.3 Long path fault coverage

Program #Clock Cycles
Combinational
Fault Coverage

Final Fault
Coverage

SAF Program 1 64,502 0.33% 0.32%
SAF Program 2 36,394 0.27% 0.27%
SAF Program 3 42,970 0.27% 0.22%
SAF Program 4 118,098 0.40% 0.32%
SAF Program 5 17,269 0.09% 0.08%

TDF Program 23,451 0.27% 0.23%

PDF Program 45,605 99.50% 99.50%

Table 8.4 Long path fault coverage per module

Module #Faults
Combinational
Fault Coverage

Final Fault
Coverage

Testable Fault
Coverage

ALU_Div Adder 90 50.00% 50.00% 100.00%
LoadStore Adder 1,080 100.00% 100.00% 100.00%
Jump_Addr Adder 8,848 100.00% 100.00% 100.00%

Total 10,018 99.50% 99.50% 100.00%

for every program. We decided to pick five test programs for stuck-at faults as this
fault model is the most widely adopted in industry and the most mature in terms of
SBST solutions. All these data are reported in Table 8.3. The Combinational Fault
Coverage column shows the path delay FC achieved on the combinational portion of
the DUT while Final Fault Coverage reports the fault coverage for the whole CPU.
The last row reports information about the test program generated by the proposed
method.

The table clearly shows that the method dramatically improves the FC figures of
existing test programs. The reason for this significant difference is that in our test
program’s instructions and values are carefully chosen to test specific paths; other
test programs, instead, can be approximated to a random – and thus ineffective –
approach due to the significant differences between the three fault models. We also
analyzed the FC figures on the three submodules of the CPU into which the longest
paths are found, as reported in Table 8.4.



8.2 Experimental Results 119

Table 8.5 Short path fault coverage

Program #Clock Cycles
Combinational
Fault Coverage

Final Fault
Coverage

SAF Program 1 64,502 71.98% 50.10%
SAF Program 2 36,394 73.76% 58.00%
SAF Program 3 42,970 74.78% 55.70%
SAF Program 4 118,098 76.51% 67.60%
SAF Program 5 17,269 73.16% 51.25%

TDF Program 23,451 73.60% 56.70%

PDF Program 279,253 83.77% 77.15%

We achieved a 100% FC in both the load/store unit and the jump address adder,
while we were able to cover 45 out of the 90 faults of the divider. The remaining 45
faults have been identified as FUFs, as previously explained. Consequently, if we
exclude such FUFs from the final fault coverage, we obtain a testable fault coverage
for all three modules – and, thus, for all long paths – equal to 100%. It is important
to notice that the long paths we test are not the longest path from a topological
standpoint in this DUT. Looking at Table 8.2, it is possible to notice that the set
of long paths we are targeting falls within the [1.3-2.5] ns range slack, and this is
because all paths with smaller slack have been deemed structurally untestable by
the ATPG. Our approach tests all path delay faults stemming from those paths. In
principle, the same approach could be used with short paths (those whose range is
almost equal to the clock period), but as discussed in Section 8.2.1, test programs
written for other fault models constitute a good starting point for testing these faults,
hence why it would be more efficient and timesaving to harden those test programs
to make them more suitable to test path delay faults.

Table 8.5, on the other hand, reports data for the STL developed for short paths
(last row). This program requires 18kB of memory space and a total amount of
279,253 clock cycles to execute completely. Since short paths are distributed among
the whole CPU, we decided to associate them to the module, or set of PIs, from
which the path’s startpoint stems, also reporting the relative FC. Table 8.6 reports
such data.

For each module, we show the total amount of faults, the combinational and final
fault coverages, as well as the testable fault coverage achieved by removing FUFs



120 STL Development for Path Delay Faults

Table 8.6 Short path faults coverage per module

Startpoint #Faults
Combinational
Fault Coverage

Final Fault
Coverage

Testable Fault
Coverage

Debug_PIs 666 0.00% 0.00% 100.00%
Other_PIs 299 92.31% 81.60% 81.60%
CS_Registers 290 69.56% 34.48% 41.38%
Debug_Module 287 0.00% 0.00% 100.00%
ID_Stage 7,714 97.54% 94.28% 94.82%

Controller 80 0.00% 0.00% 50.00%
Pipeline_Regs 744 94.35% 69.22% 69.49%
Registers 6,890 99.01% 98.08% 98.08%

EX_Stage 652 57.05% 22.38% 22.65%
ALU 182 11.53% 11.53% 17.37%
Multiplier 48 33.33% 33.33% 43.33%
Sparse_logic 422 79.38% 25.82% 25.82%

LoadStore_Unit 366 81.15% 81.15% 84.70%

Total 10,274 83.77% 77.15% 87.31%

from the final FC. Most paths belong to the ID_Stage, which is well covered by our
STL. Two blocks of faults are marked as completely untestable, namely those that
stem from debug-related circuitry, as they are not controllable by functional programs.
Faults that originate from non-debug PIs are easily controllable – hence a 92.31%
combinational coverage – but not always easily propagated to primary outputs, with
a final 81.60% coverage. Moving to faults related to CS_Registers, 20 of them are
also affected by clock gating circuitry and, hence, untestable. As for faults belonging
to the EX_Stage, in most cases they are found in control-related logic, making it
hard to either control or observe them. Lastly, looking at the LoadStore_Unit, some
faults could not be properly excited due to the presence of off-path inputs from
other modules and PIs; observability however is quite easy to achieve, as every fault
detected at the combinational level is also observed at the POs.

Comparing the path delay fault coverages achieved with our test programs against
those obtained by test programs for stuck-at and transition delay fault, it is possible to
see that the latter are generally much worse than the former, especially for long paths.
This is to be expected, given the significant difference between the fault models.
This could lead to the possibility of adopting this approach for the generation of
functional test programs for other fault models, too. If we exclude the tasks that



8.3 Chapter Summary 121

are strictly related to path delay faults, e.g., the path generation process that is not
required for stuck-at and transition delay faults, the constrained, functional ATPG
test pattern generation process followed by test vectors conversion into instructions
can be used for other fault models. However, given the vast number of methodologies
for developing stuck-at and transition delay fault oriented Self-Test Libraries, rather
than developing test programs from scratch it might be interesting to apply such
technique to harden STLs [76, 77, 60], so that faults that were not detected by the
test programs can be covered, too.

The fault list we produced and used throughout all fault simulation steps is a
generic one, not depending on the application the DUT is executing. This detail is
relevant as, based on the application, some working modes, and hence circuitry, of
the DUT might never be used. Consequently, faults located in the unused circuitry
can be effectively marked as Safe Faults (i.e., FUFs), as per ISO26262 standard. The
results achieved in this work can thus be enhanced by a careful analysis of those
working modes that we can neglect, e.g., identifying a set of constraints to be fed to
a formal verification tool that identifies the aforementioned FUFs, as described in
[78].

8.3 Chapter Summary

This chapter presented a novel methodology on STL development for processor
cores targeting path delay faults. This methodology makes use of an ATPG engine to
generate a set of test vectors which is then converted into instructions to be put into
the final test programs by means of a semi-automated tool. Generating test vectors
through ATPG allows to (i) produce effective and reliable vectors in a timely manner
and (ii), remove untestable faults from the fault list, thus focusing the effort on those
faults for which it is possible to generate test programs. Moreover, in most cases
ATPGs are capable of generating vectors that are not fully specified, i.e., that contain
some don’t-care values, thus easing the vector to instruction conversion, as more
degrees of freedom are left for the tool to find suitable instructions. If possible, the
ATPG can be configured to discard non-robust test vectors, thus leaving us with a
final STL that is comprised of robust test vectors, only. The main drawback of using
an ATPG consists in the fact that, by default, it produces non-functional vectors, i.e.,
vectors that are assumed to be applied through the usage of scan chains and cannot



122 STL Development for Path Delay Faults

be replicated with instructions from the processor’s ISA. For this reason, the chapter
introduces an algorithm to derive functional constraints to be applied to the ATPG,
so that test vectors can be effectively mapped into instructions. Once patterns are
obtained, the final step consists in mapping them into instructions. This is done by
first adopting an automatic tool that is capable of identifying and categorizing signals
into groups, e.g., opcode, ALU operands, registers, so that instructions that satisfy
the groups’ values can be chosen. Then, for each fault, a test engineer must define a
sequence of instructions capable of testing the aforementioned fault. Such sequence
is divided into three main blocks, the first being responsible for the initialization
phase where the DUT is brought to a state where the test vector pair can be effectively
applied, followed by the actual test instructions that apply the transition required
to excite and propagate towards the endpoint the path delay fault, with a final store
instruction that makes the fault effect observable at the primary outputs of the DUT.
This approach has been tested on PULPino, a 32-bit pipelined RISC-V core, showing
that it is capable of testing 100% of testable faults affecting long paths, and it has
been used to improve the coverage on path delay faults affecting short paths too,
where a set of previously devised test programs developed for other fault models,
namely stuck-at and transition delay faults constituted the starting point, reaching a
final fault coverage of 87.31% of path delay faults affecting short paths. This proves
that the proposed methodology can produce effective STLs for modern processor
cores targeting path delay faults.

As a last note, I would like to focus on limitations and areas for improvement
of the proposed STL development methodology. Most of the proposed approach
is carried out in an automatic fashion, namely the path generation, ATPG patterns
extraction and part of the instruction conversion processes. With the due timing
overhead related to the complexity of the device under test, I believe that it can be
extended to larger designs. Currently, a task to be improved to scale this method
for larger cores is the functional constraint generation process, as it requires some
manual effort from the test engineer and a batch of logic simulations to identify
what signals cannot be controlled under functional constraints. Future works will
tackle this issue, so that it can be automated and improved to support more complex
designs.



Part III

Testing an aged integrated circuit





Chapter 9

Background

Modern digital integrated circuits are designed and manufactured leveraging on
advanced semiconductor technology and nodes. An empiric law introduced by
Gordon Moore describes how, at a first approximation, the number of transistors
found on microchips doubles every two years circa, showing the trend described in
Fig. 9.1.

Increasing the number of transistors on an integrated circuits not only greatly
affects the physical size and geometry of each transistor, but it also has repercussions
on the power supply at which the circuit operates and parasitic capacitance and
resistances, thus impacting the power consumption and operating frequency of the
integrated circuit. While this enabled the production of very large scale integrated
circuits that are capable of operating at high frequencies with limited power con-
sumption, it also impacted the reliability of such devices. Physical phenomenon that
were negligible on larger technology nodes became more and more relevant with
newer technologies, and parameters shift in time influence the behavior of the device
as it ages, possibly leading to its failure as the circuit is stressed over time. Given
that many fields require safety-critical devices to correctly behave on a large period
of time, e.g., the automotive field where replacing a faulty device many times over
the operative lifetime of the vehicle is not feasible, it is crucial to tackle the issue of
ensuring the safety and reliability of integrated circuits as they age.

Indeed, there are several works in literature that focus on the study of aging in
circuits and how it affects their timing behavior [79–84]. Aging and performance
degradation of an integrated circuit is the consequence of several physical phenomena



126 Background

Fig. 9.1 Number of transistors on microchips over time [3]



127

p

Gate Oxide

n+ n+

Gate

DrainSource

Body

Fig. 9.2 Silicon model of a MOSFET

that occur concurrently, impacting the device in different ways. Although the scope
of this thesis does not include the study of the physics of semiconductors, to provide
an overview on this topic it is still worth introducing and discussing the effect of Bias
Temperature Instability (BTI), Hot Carrier Injection (HCI), and Time-Dependent
Dielectric Breakdown (TDDB) as the main causes for degradation over time in
modern integrated circuits. BTI is a destructive phenomenon that can be further
divided into Negative Bias Temperature Instability (NBTI) [85] and Positive Bias
Temperature Instability (PBTI). The former affects PMOS transistors mostly, and
it induces a more significant degradation with respect to the latter which affects
NMOS transistors mostly. When a transistor is affected by BTI, many of its physical
properties are impacted, e.g., its threshold voltage Vth, saturation current Id,sat and
transconductance gm. HCI occurs whenever an electron or a hole gains sufficient
kinetic energy to overcome the potential barrier, thus penetrating the dielectric oxide
layer that is found below the gate plane in a MOSFET [86–88], as showed in Fig. 9.2.
As transistor size scales, the voltage at which they operate does not scale accordingly
which causes large electrical fields inside the device. The larger such fields, the
higher the probability a hot carrier, may it be electron or hole, is injected in dielectric
films, thus degrading the device over prolonged periods and impacting its physical
properties.

Finally, TDDB affects the dielectric film of transistors, and it is described as a
change in properties of the dielectric due to the presence of electric fields, shifting



128 Background

from a material with insulating properties to one with more conductive features [89].
This affects leakage currents when the device is supposed to be off and threshold
voltage too, and it is a major reliability issue in MOSFETS [90].

In order to tackle these issues, researchers have worked on producing a mathe-
matical model that could predict the shift in propagation delay of any given cell in a
circuit. Such model can be obtained by integrating formulas described in literature
and actual data gathered on logic gates implemented on silicon wafers. Let us start
by considering a model for delay estimation on MOSFET devices first introduced
and described in [79], also known as the alpha-power law. Such model states that
the propagation delay is proportional to the output capacitance the cell is subjected
to times the voltage supply at which it operates over its drain current as follows:

dcell ∝ Cout
V
Id

(9.1)

Starting from Eq. (9.1), it is possible to derive an equation that describes the
propagation delay of an inverter gate as follows:

dinv(V,T ) ∝ Cout
V

µ(T )(V −Vth(T ))α
(9.2)

where µ(T ) is the carrier mobility that depends on the temperature at which
the gate operates, V the supply voltage, Vth(T ) the threshold voltage depending on
the temperature and α a positive constant (carrier velocity saturation). Such model
effectively describes how the inverter delay changes with the temperature and supply
voltage, but it does not account for the time effects. For this reason, Eq. (9.2) has
been further developed in [83] so that time is factored in as well. The final formula
allows to define the delay of an inverter cell as:

dinv(V,T, t) = pβ + pµ−1(T )
V

(V − (pVth(T )+∆pVth(V,T, t)))pα
(9.3)

where pβ and pα are constants, while pµ−1(T ) is related to the transistors mobil-
ity and pVth(T ), ∆pVth(V,T, t) are factors related to the threshold voltage, the latter
describing a shift in threshold voltage depending, among the other parameters, to
time. The transistors mobility and threshold voltage factors can be described by



129

means of equations with an exponential dependence to temperature:

pµ−1(T ) =Cµ + kµT nµ (9.4)

pVth(T ) =CVth− kVthT nVth (9.5)

while the ∆pVth(V,T, t) contribution can be expanded as:

∆pVth(V,T, t) = (c1 · tN1+a1log(V )+ c2 · tN2+a2log(V )) ·V γ · e−Ea/kT (9.6)

With the exception of γ (voltage acceleration factor), Ea (temperature activation
energy) and k (Boltzmann’s constant), all the other parameters defined in Eq. (9.4),
Eq. (9.5) and Eq. (9.6), namely, Cµ , kµ , nµ , CVth , kVth , nVth, c1, N1, a1, c2, N2 and
a2 are fit parameters defined for a given technology, e.g., FDSOI 28nm, that are
obtained with a high degree of confidence.

Eq. (9.3), although effective, has some important limitations. First, it only
describes the delay of an inverter gate, while any integrated circuit worth discussing
has several different gates within its design. Second, it does not factor in the effect of
switching activity, i.e., how much the cell toggles throughout the operative lifetime
of the device under test. If certain portions of a circuit have a higher switching
activity, that is, they toggle more as a consequence of a more intensive usage, it
follows that those portions will age faster than other, less-used ones. Finally, even
though this is not an actual limitation per se, it is worth reiterating the fact that the
physical parameters that are used in the aforementioned equations strictly depend
on the technology on top of which a library of cell gates is defined. This implies
that each library produced by different manufacturers, or even two libraries defined
with different technologies belonging to the same manufacturer, will have its own
set of parameters. While the last observation is tied to how these set of equations are
defined and cannot be dealt with without changing the underlying model, extending
Eq. (9.3) so that other gates are defined too, together with weighting in the effect of
the switching activity, is possible and has been investigated in [84].

Let us start by tackling the task of extending the delay equation to a generic cell.
In order to generalize Eq. (9.3) from the delay of an inverter to that of a generic cell,
it is necessary to introduce the concept of logical effort. As extensively described in
[91], the logical effort of a logic gate is defined as the ratio of its input capacitance



130 Background

to that of an inverter that delivers equal output current. If a standard cell library has
been used to synthesize a design, calculating the logical effort for a given gate is quite
straightforward. For each gate, several parameters are defined. Among them three
are needed to extract the logical effort, namely the input capacitance Cin, usually
expressed in pF, the intrinsic delay ti, usually expressed in ns, and the propagation
delay with respect to the load capacitance Kload which is usually expressed in ns/pF.
With the exception of the input capacitance, these parameters are defined for each
input of the logic gate and for both rising and falling transitions from the input to the
output. For instance, in a 2-input AND gate where the two inputs are A and B and
the output is Y, the standard cell library documentation provides an intrinsic delay
associated to the rising transition from A to Y and another associated to the falling
transition from A to Y, and similarly for B and Y.

The average propagation delay of a logic gate from an input X to the output Y
driving a fanout of h, calculated by averaging the propagation delay for the rising
and falling transitions, can be defined as:

tpd(X ,Y ) =
ti,rise + ti, f all

2
+Cin ·

Kload,rise +Kload, f all

2
(h gates) (9.7)

The second term of this equation, namely Cin ·
Kload,rise+Kload, f all

2 is also referred
to as τ . Then, the logical effort for a generic logic gate associated to a pair of
input-output pins (X, Y) is defined as the ratio of the gate’s τ over the inverter’s:

LEgate =
τgate

τinv
(9.8)

To clarify the concept, Table 9.1 reports the aforementioned physical parameters
for an INV and AND gate. In both cases, they have a drive strength of 1 and, for the
sake of simplicity, only the A input is considered in the AND gate.

The average propagation delay of both gates is:

tpdINV (A,Y ) =

(
0.0253+0.0146

2
+0.0036 · 4.5257+2.3675

2
(h gates)

)
ns

tpdAND(A,Y ) =

(
0.0313+0.0195

2
+0.0042 · 4.5288+2.8429

2
(h gates)

)
ns



131

Table 9.1 Physical parameters of an INV and AND gate

INV_X1 AND2_X1

ti (A→ Y ↑) [ns] 0.0253 0.0313
ti (A→ Y ↓) [ns] 0.0146 0.0195
Cin [pF] 0.0036 0.0042
Kload (A→ Y ↑) [ns/pF] 4.5257 4.5288
Kload (A→ Y ↓) [ns/pF] 2.3675 2.8429

which is equal to:

tpdINV (A,Y ) = (0.0200+0.0124h)ns

tpdAND(A,Y ) = (0.0254+0.0155h)ns

We can finally obtain the logical effort for the AND2_X1 gate related to the A
input, which is equal to:

LEAND =
τAND

τINV
=

0.0155
0.0124

= 1.25

Now that the logical effort has been introduced and defined, extending the delay
formula to a generic gate through the following identity:

dgate(V,T, t) = dinv(V,T, t) ·LEgate (9.9)

where dinv(V,T, t) is Eq. (9.3).

In order to include the switching activity contribution, the authors in [92] intro-
duce a formula that is described as follows:

d(SA) = d(0.5) · tanh(xα)

tanh(1)
(9.10)

where SA is the switching activity, d(0.5) is the 50% switching activity delay
value, x is SA/(1−SA) and α is a cell dependent fit parameter. This formula can be
integrated in Eq. (9.9) to get the final equation:

dgate(V,T, t,SA) = dinv(V,T, t) ·d(SA) ·LEgate (9.11)



132 Background

Through Eq. (9.11) it is finally possible to estimate how the delay of a gate
degrades in time with respect to voltage, temperature, time and switching activity,
closely emulating to what happens in an actual circuit implemented on silicon.
Although effective, this approach has a main drawback as it needs large quantities of
data that can only be gathered by means of experiments on devices implemented on
silicon. Taking Eq. (9.10) as an example, the cell fit parameter α varies with the duty
cycle and it cannot be calculated in an exact way by means of mathematical formulas.
As a consequence, the available options are to either launch a massive amount
of experiments on silicon devices and record the value of all physical parameters
accordingly, or employ some mathematical model to interpolate the delay whenever
real data is not available. The work in [84] proposes a multiple linear regression
algorithm through which it is possible to create a continuous function [93], i.e., the
delay of a gate cell, in the form of:

y = α +β1 · x1 +β2 · x2 + ...+βn · xn (9.12)

where y is the delay of a given gate cell, α is the y-intercept value, (x1, x2, ...,
xn) is the set of gate features (voltage, time, switching activity, temperature), and
(β1, β2, ..., βn) the coefficients of gate parameters. The idea behind this approach
is that, once the parameters are tuned so that the error sum of squared errors (SSE)
between observed and predicted results is minimized [94], such model can be used
to generate reliable delay values for aged cells, thus aging the whole circuit.

In order to validate the proposed methodology, the aging framework is applied to
two different circuits, namely a Finite Impulse Response (FIR) filter and an Advanced
Encryption Standard (AES) crypto-processor that performs a set of encryption and
decryption operations. For the FIR filter, the author provides data on how the most
critical path ages in time over the course of 10 years, together with information on
the delay degradation over 6 months of a set of 21 nearly critical paths. Data for
the AES device includes information on how the propagation delay of 150 critical
paths evolves after 6 months and 1 year of use. Results achieved in these two devices
under test are quite different: while the delay degradation on paths belonging to
the FIR filter amounts, on average, to a 1% increase with respect to the original
value, the AES ages much faster, with an increase equal to, on average, an additional
50% of the original propagation delay on all critical paths after one year of use.
Both circuits have been synthesized on a proprietary FDSOI 28nm library provided



133

by STMicroelectronics, that also provided all the physical parameters required to
generate the aging model. Such results show that this aging framework can be
effectively used to age integrated circuits, providing a means to extract aged critical
paths that takes into account the fact that portions of the circuit toggle, and hence
age, more than others.



Chapter 10

Main Contributions

The aging framework presented in Chapter 9 has proven effective in evaluating how
critical paths’ propagation delay evolve in time, thus providing a mean to easily age
an integrated circuit. Nevertheless, it is possible to expand on some areas that are
still not covered by the work presented in [84], thus strengthening this tool so that it
can become a key aspect in delivering SBST solutions that are capable of ensuring
the safety and reliability of integrated circuits over long periods of time. As a matter
of facts, thanks to the proposed aging framework, it is possible to analyze how the
path delay fault coverage changes as critical paths evolve in time, thus proving the
importance of taking aging into account when writing test procedures.

The work carried out on the field of aging in this PhD thesis can be summarized
into three main points:

1. The generation of an automatic tool that is capable of aging an integrated
circuit with a limited amount of input data,

2. The definition of a flow that allows to generate a list of critical paths given
an aged circuit and compare the list of critical paths of the aged circuit with
respect to those found in the fresh circuit,

3. The identification of strategies that ensure that high path delay fault coverages
are achieved throughout the operative lifetime of the device under test.



135

The aging tool proposed in this PhD thesis has been developed so that it can be
used in conjunction with any commercial synthesis and static timing analysis tool,
thus making it easily reusable.

Chapter 11 presents the automatic aging tool that allows to obtain a list of aged
critical paths, describing in details each step of the aging process. The tool is
validated by gathering data on a RISC-V processor core, showing how critical paths,
and hence path delay fault coverage, change over time. This provides test engineers
a metric on how STLs for path delay faults should be developed so that they can be
effectively used over long time periods.



Chapter 11

Automatic Aging Tool

The automatic aging tool developed in this PhD thesis aims at providing a unified
and automatic device that is capable of generating aged delays for each cell in a
circuit starting from data generated by commercial tools currently used in research
and industry. This tool has been developed in collaboration with the Grenoble INP
university, where the studies [84, 95, 83] were conducted. At its core, the proposed
aging tool implements the set of equations and linear regression model presented
in [84] and provides a wrapper that acts as an interface capable of parsing input
information and generating output information seamlessly. Fig. 11.1 summarizes
the structure of the proposed automatic aging tool, and shows some necessary
preliminary steps that are required for the tool to function correctly.

The very first step that is required for this tool to work is performing a synthesis
of the device under test with a technology library for which physical parameters are
known or available. This is an important aspect, as the whole mathematical model
on top of which this approach is built requires that these parameters are known
for calculating the propagation delay for each cell. No constraint is placed on the
synthesis process, thus leaving the test engineer full freedom in customizing such
step as required. The synthesis step is required in order to obtain information on the
propagation delay of each cell of design at time 0, also referred to as fresh delay
information, which will constitute the starting point for calculating the aged delay.
Usually, such information is automatically generated at the end of the synthesis
process in the form of a Standard Delay Format (SDF) file, where information on the
cell name, i.e., the name of the cell found in the syntesized circuit, the cell type, i.e.,



137

Preliminary Step 1:

DUT Syntehsis

Preliminary Step 2:

Logic Simulation

Standard Delay

Format (SDF) file

Switching Activity

Interfile Format
(SAIF) file

Fresh Cell Delay

dictionary

Aging Step 1:

Delay Information
Acquisition

Cell Switching

Activity dictionary

Aging Step 2:

SA Information
Acquisition

Aging Step 3:

Aging Model
Generation

Synthesis Library

Physical
parameters

Aged SDF file

Fig. 11.1 Automatic Aging Tool flow diagram



138 Automatic Aging Tool

Fig. 11.2 An example of SDF syntax for two cells

whether it is an AND, INV, OR gate, and slow, typical and fast propagation delays
from each input to each output are reported, also reporting the logic values of other
inputs. A snippet of an SDF file is reported in Fig. 11.2.

The second preliminary step is the execution of a logic simulation where the
device under test performs its tasks and activities. This is achieved by compiling all
the source files of the main application the device under test executes in its operative
state and feeding the compiled binaries to the processor during a logic simulation.
In this way, it is possible to recreate the working environment where the DUT is
supposed to operate throughout its operative lifetime The reason for doing so lies
in the fact that aging depends, among other factors, on how much the circuit is
stressed, i.e., on how much its internal nodes toggle, which can be easily tracked
by evaluating the switching activity on each cell. Two identical circuits, if applied
in different scenarios, may show different aging patterns over time, hence why this
step is required. While the logic simulation unfolds, a Value Change Dump file is
recorded, storing information on the value stored by every cell of the device under
test at each time instant. Such file is then converted into a Switching Activity Interfile
Format (SAIF) file, that reports for each cell how many toggles have occurred. A
snippet from a SAIF file is shown in Fig. 11.3.

Once the preliminary steps are cleared, the tool can proceed in aging the DUT.
Initially, the tool parses the information stored in the SDF and SAIF files so that it



139

Fig. 11.3 Snippet from a SAIF file



140 Automatic Aging Tool

Fig. 11.4 An example of an entry from the fresh cell delay dictionary

can use that data as a starting point to calculate the aging delay. First, the SDF file is
read, transposing the data stored into the SDF into a fresh cell delay dictionary where
each instance name is associated to the cell type and the delay data, a sub-dictionary
that maps conditions on input ports to two triples of slow, typical and fast delays for
rising and falling transitions from an input to the output. An example of the structure
of the dictionary is reported in Fig. 11.4, where only one condition is shown for
simplicity.

In a similar fashion, data from the SAIF file too is parsed into a cell switching
activity dictionary, where for each cell in the design the correspondent switching
activity is recorded. As the switching activity value in Eq. (9.10) ranges in the
interval [0,1], rather than using the absolute value reported in the SAIF file, for each
cell the tool calculates the normalized switching activity value with respect to a
reference signal, e.g., the clock signal.

Next, the tool proceeds to generate an aging model for each cell in the design
based on the mathematical equations introduced in Chapter 9 and the switching
activity information stored in the related dictionary. Such models are then used to
calculate the relative increment in delay (RID) for each cell, defined as:

RID = 1+(AD−FD)/FD (11.1)



11.1 Experimental Results 141

where AD is the aged delay and FD is the fresh delay obtained by applying
Eq. (9.11). The RID is multiplied to the fresh delay reported in the SDF file so that
the final aged propagation delay for each cell is obtained. Finally, the tool writes an
aged version of the SDF file so that it can be used by commercial tools to generate
a list of aged critical paths. Given that the automatic aging tool is designed with
the main goal of being easily integrable with any flow that uses commercial tools,
the synthesis process required as input can overlap with that required in Chapter 7,
thus saving time and computational resources. The logic simulation and critical path
extraction processes too can be carried out by following the general ideas described
in Section 7.2 and Section 7.3 respectively, but they need to be launched from scratch
as the logic simulation defined in Chapter 7 requires the STL to be executed while
here the main application must be run, and the critical path extraction process defined
here is used to generate a list of aged paths rather than fresh ones.

In conclusion, it is noted that the reason for introducing and using the relative
increment in delay rather than the aged delay generated through the mathematical
formulas itself lies in the fact that in this way it is possible to achieve more accurate
results in predicting the aged delay. Even though the mathematical model is accurate,
errors are introduced by formulas as they are obtained by fitting processes over
experimental data. Such errors however are mitigated by using the relative values
rather than the absolute ones.

11.1 Experimental Results

11.1.1 Case Study

In order to analyze how aging affects a processor core, the automatic aging tool
has been validated using PULPino, the 32-bit RISC-V core that has been adopted
throughout this PhD thesis. As in other cases, the core was configured to use the
RI5CY core, that provides an in-order, 4 pipeline stages core that supports integer,
complex and multiplication instructions. Constructing an aging model requires, as
a starting block, the knowledge of physical parameters that can only be obtained
by characterizing silicon devices. For this reason, it was not possible to use the
Silvaco 45nm that has been adopted in all other experiments as it lacks this kind of
information. Given that this research activity has been conducted in collaboration



142 Automatic Aging Tool

Table 11.1 Paths distribution per modules in fresh circuit

Module #Paths

ALU_Div Adder 51
LoadStore Adder 2,004
Jump_Addr Adder 4,628

Total 6,683

with the University of Grenoble in cooperation with STMicroelectronics, the library
used for synthesizing the device under test and conducting experiments is the FDSOI
28nm ST proprietary library that has also been used in [84].

Using a different library to create a post-synthesis netlist of a circuit inevitably
leads to generating a different set of critical paths. This is why, even though the
processor core was synthesized using the exact same set of configurations used in
Section 8.2.1, a total of 6,683 critical paths was obtained, with a slack ranging from
0 to 2.5ns, while the clock signal period is 5ns. Although different, the critical paths
can still be grouped in the three main functional groups described in Table 8.4, i.e.,
paths belonging to an adder found within the divider unit of the ALU, those belonging
to an adder belonging to the LoadStore unit and those belonging to an adder that
calculates the address that should be taken after a jump instruction. Table 11.1 shows
how many paths belong to each group. Thanks to this similarities, it was possible
to easily regenerate an STL capable of testing all path delay faults stemming from
these paths, following the methodology described in Chapter 8.

Aging a circuit requires, among other aspects, to provide a SAIF file that con-
tains switching activity data for each cell in the device under test. For this reason,
two programs were chosen so that switching activity data could be extracted from
performing a logic simulation, giving an insight on how much aging depends on the
switching activity parameter. The two programs are basicmath_small and qsort from
the automotive section of the MiBench-Embedded benchmark [96], as other pro-
grams are too large to fit in the device under test’s memory. While basicmath_small
can be run as is, qsort required a slight change in the source C code to remove all
instances related to FILE variables, as they take a considerable amount of instruction
RAM: vectors to sort were hence declared and defined in the code rather than read
from a file as originally intended. Basicmath-small requires 14.73kB of memory



11.1 Experimental Results 143

fresh 1 year 2 years 5 years 10 years

6800

7000

7200

7400

7600

7800

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0# Critical Paths
Fault Coverage [%]

Fig. 11.5 Critical path and path delay fault coverage time evolution for basicmath_small
program

and 1,743,500 clock cycles to execute completely, while qsort requires 16.18kB of
memory and 2,021,548 clock cycles to execute.

11.1.2 Achieved Results

All the experiments whose results are reported in this section have been launched
on 5 cores of an Intel Xeon CPU E5-2680 v3 machine. The Automatic Aging
Tool presented in Chapter 11 has been implemented as a Python class with a set of
methods each implementing all the functionalities listed above. Generating the aged
SDF file takes no longer than a couple of minutes, provided that all other input files
are already available at the start of the experimental session. The extraction of aged
critical paths, on the other hand, requires about 12 hours to complete.

Experimental results for the basicmath_small and qsort programs are reported in
Fig. 11.5 and Fig. 11.6, respectively. In both figures the fault coverage trend over
time, reported as the percentage of detected faults, is shown in red, while the absolute
value of critical paths trend over time is reported in blue.



144 Automatic Aging Tool

fresh 1 year 2 years 5 years 10 years

6800

7000

7200

7400

7600

7800

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0# Critical Paths
Fault Coverage [%]

Fig. 11.6 Critical path and path delay fault coverage time evolution for qsort program

In both cases it is possible to notice that the total amount of critical paths grows in
time: this can be explained noting that most of the paths that are sub-critical at time
zero, i.e., paths whose slack is quite large but not enough for them to be considered
critical, slow with time, thus becoming critical paths. This phenomenon becomes
more accentuated with time, with a steep growth past the 5 years mark. This reflects
on the fault coverage figures as well, showing an overall decrease from the initial
100% fault coverage down to 83.14% for the basicmath_small program and 83.12%
for the qsort program.

In order to better understand how critical paths evolve in time, an additional
analysis concerning how many critical paths in the fresh circuit can still be found
after aging the device under test has been performed, together with one investigating
how many new paths are introduced with aging. Such data is reported in Fig. 11.7
and Fig. 11.8 for the basicmath_small program and the qsort program, respectively.
As for the previous set of data, the two programs show a similar trend over time,
both in terms of how many paths remain unchanged and how many new ones are
introduced. With the exception of the two years mark, the number of critical paths
that never changes over time decreases, losing more than 200 paths with respect to
the fresh circuit, while the number of new paths grows, with slightly more than 1300
paths added after 10 years. Focusing on the new paths introduced by aging, it is



11.1 Experimental Results 145

1 year 2 years 5 years 10 years
6400
6450
6500
6550
6600
6650
6700

# 
Or

ig
in
al
 P
at
hs

1 year 2 years 5 years 10 years
0

250

500

750

1000

1250

# 
Ne

w 
Pa
th
s

Fig. 11.7 Original and new critical paths evolution for basicmath_small program

interesting to investigate their ranking, i.e., whether they are particularly slow or not.
After ten years, 10% of the new paths fall within the top 30% slowest paths for both
programs. This shows that, although the vast majority of paths introduced by aging
are not the slowest ones, there is still a non-negligible amount of paths whose slack is
small enough for them to be among the slowest critical paths. Finally, it is noted that,
for both programs, every set of new paths introduced by aging includes that of the
antecedent time mark, e.g., all new paths introduced after one year are found after
two years, all paths introduced after two years are found after five years and all paths
introduced after five years are found after ten years. Moreover, all paths introduced
by aging can still be grouped in the three categories reported in Table 11.1, that is,
an adder in the ALU divider, an adder in the Load/Store unit and an adder used to
calculate the address if a jump instruction is to be taken.

In conclusion, it is possible to state that aging an integrated circuit introduces
a non-negligible amount of critical paths over time, with a steep increase after five
years of use. Such paths are currently not detected through STLs that are developed



146 Automatic Aging Tool

1 year 2 years 5 years 10 years
6400
6450
6500
6550
6600
6650
6700

# 
Or

ig
in
al
 P
at
hs

1 year 2 years 5 years 10 years
0

250

500

750

1000

1250

# 
Ne

w 
Pa
th
s

Fig. 11.8 Original and new critical paths evolution for qsort program



11.2 Chapter Summary 147

tackling faults stemming from paths found in the fresh circuit, thus posing a problem
when it comes to ensuring the safety and reliability of the device under test over long
periods of time. For this reason, test engineers should develop the STL also taking
into account the set of critical paths that are to be tested as the circuit ages, making
sure that it can ensure a satisfactory fault coverage throughout the operative lifetime
of the device, choosing between the possibility of having (i) an all-encompassive
STL since time zero, capable of detecting failures stemming from faults in all critical
paths including those due to aging, or (ii) a modular STL that is capable of enabling
chunks of code, adapting to the paths as they age. Whatever the choice, such STL
can be effectively developed by following the methodology presented in Chapter 8.

11.2 Chapter Summary

This chapter describes a methodology on how to age an integrated circuit, with
the goal of ensuring its safety and reliability over a long period of time. This
methodology complements the work presented in Part II, allowing test engineers
to develop testing solutions, e.g., STLs, that are capable to ensure the safety of the
DUT over its lifetime.

In order to age an integrated circuit few input data are required, namely, physical
parameters of the technology library used to synthesize the circuit to be aged, a
SDF file containing propagation delays for each cell in the fresh circuit, and a SAIF
file storing switching activity information for each cell of the design. Given such
preliminary data, the aging tool implements the set of equations and linear regression
models presented in [84, 95], allowing to automatically generate an aged SDF for
the device under test. The aged SDF has exactly the same structure and syntax of the
first one, with the exception of aged propagation delays for each cell. Thanks to that,
it is possible to generate new lists of aged critical paths, understanding how critical
paths, and thus the path delay fault coverage, change over time. Experimental data
gathered on two programs from the MiBench-Embedded benchmark show that as
the circuit age, more and more paths that once were sub-critical, i.e., their slack was
large but not enough for them to be considered critical, become critical, leading to a
decrease in fault coverage that after 10 years drop from an initial 100% to about 83%
for both programs. Moreover, although most of the new critical paths introduced by
aging are among the fastest of the whole set, there is still a non-negligible amount of



148 Automatic Aging Tool

new critical paths that are quite large, with a 10% of the new paths falling within the
top 30% slowest paths for both programs. Thanks to this information, test engineers
can harden STLs for path delay faults so that they include test vectors for path delay
faults that may originate with time, ensuring that strict levels of reliability are met
throughout the operative lifetime of the device and proving the effectiveness of this
methodology.



Chapter 12

Conclusions and Achievements

This PhD thesis aims at presenting and validating new techniques for detecting and
mitigating the issues that stem in integrated circuits when affected from delay faults,
both in the form of transition and path delay faults, together with an analysis on
how aging affects path delay faults covering. The reason for focusing on this class
of faults resides in the fact that dynamic fault models, such as delay faults, better
represent the actual defects that can be found in modern, state-of-the-art integrated
circuits thanks to the fact that they take into account the DUT’s timing behavior,
differently from static fault models, e.g., the stuck-at fault one. Throughout this PhD
thesis, functional testing solutions in the form of SBST techniques have been used,
as they are cheap, reliable and allow for at-speed tests that are crucial when targeting
delay faults, being a great solutions to be used in conjunction with DfT techniques
to ensure the DUT’s reliability and safety throughout its operative lifetime.

Part I of this thesis is dedicated to solutions for the transition delay fault model.
This fault model shares similarities with the stuck-at one, hence why STLs for
stuck-at faults already provide a good basis for testing transition delay faults. Rather
than focusing on techniques to develop STLs from scratch, two mechanisms to
harden already available STLs are provided in Chapter 3 and Chapter 4 respectively,
so that not-observed transition delay faults are detected, providing an increase in
fault coverage with minimal code additions. The approach in Chapter 3 is purely
software-based, relying on a subdivision of not-observed transition delay faults into
two categories based on where their effects propagate and stop inside the device
under test leading to two different fault detection mechanisms, while the one in



150 Conclusions and Achievements

Chapter 4 proposes two algorithms that leverage the post-silicon debug hardware that
is typically found within modern SOCs to make the effects of the aforementioned
transition delay faults observable. Experimental results show that the methodology
presented in Chapter 3 is capable of recovering up to 99.96% of UAR faults and up to
15.37% HR faults with a limited code size increase, the worst case scenario requiring
an additional 31.74% of the original code size. HR faults can be easily detected
through the approach presented in Chapter 4, with experimental data that shows how
a 32-bit trace buffer helps detecting more than 90% of recoverable transition delay
faults, while larger trace buffers, e.g. 128-bit wide buffers, allow for detecting all
recoverable transition delay faults.

Part II of this thesis presents techniques for developing STLs geared towards
path delay faults. Differently from the transition delay fault model, path delay
faults are quite different to stuck-at faults, and methods to develop STLs for this
fault model are not as mature. Moreover, no commercial fault simulation tool is
capable of performing a sequential fault simulation of path delay faults, that is, a
fault simulation where test vectors are provided by the execution of test programs,
without the usage of scan chains. For this reason, Chapter 7 describes a path delay
fault simulation flow that has been developed from scratch that allows to perform
sequential fault simulations of path delay faults on integrated circuits. The fault
simulation flow is comprised of several steps, starting from a synthesis of the DUT
followed by the extraction of critical paths that can be structurally tested, i.e., by
means of an ATPG engine. Test vectors recorded in the form of VCD files obtained
by performing logic simulations of an STL being executed on the device under test
are then applied first at a combinational level to see how many path delay faults
can be detected at the primary and pseudo primary outputs of the DUT, followed by
another top-level simulation that aims at propagating the effects of the latter group
of faults throughout the DUT, looking to see if it is possible to observe their effects
at primary outputs. The path delay fault simulation tool is used to evaluate how
well STLs written for other fault models perform with path delay faults, showing
how in the best case scenario only 51.93% of path delay faults can be detected.
For this reason, Chapter 8 proposes a systematic and automatic method on how to
develop STLs for path delay faults. To do so, once a set of critical paths — from
which path delay faults will be considered — are extracted, an ATPG is launched to
extract test vectors that are capable of detecting path delay faults at a combinational
level. Since the ATPG is not aware that these test vectors must be applied through



12.1 Future Directions 151

functional means, that is, by embedding them in STLs, it is necessary to provide
functional constraints to it so that the produced vectors can be replicated through
programs. Once the test vectors generation step is completed, such vectors must be
converted in instructions that will constitute the final STL, also making sure to add
store instructions to make the effects observable at primary outputs. Experimental
data shows that all path delay faults found within a 32 bit, in-order 5 stages pipelined
RISC-V CPU can be detected.

Lastly, Part III of this thesis discusses about aging phenomena and how they
affect modern integrated circuits. Chapter 9 provides an extensive background on
the mathematical equations through which it is possible to estimate aging effects
on integrated circuits. Chapter 11 describes the automatic aging framework that is
capable of generating aged delays for each cell of the design, provided physical data
on the technology library used for synthesis together with the fresh VCD and SAIF
file of the circuit to be aged. Since it is not possible to have physical data for each
aging configuration possible, linear regression models are used to interpolate data
and obtain a close estimate of aged propagation delays. Experimental data show
that the number of critical paths increase over time, with several new ones that are
introduced after the 5 years mark. The fault coverage figures degrade accordingly,
starting from an initial 100% on a 32 bit, in-order 5 stages pipelined RISC-V CPU
that evolves to slightly more than 83% fault coverage after 10 years. Such faults
should hence be tested by additional code portions to be added to the original STL
and enable either at time zero or gradually enabled with time, as the circuit ages.

12.1 Future Directions

The work presented in this PhD thesis and its achievements open the way for new
discussions and investigations. Starting from Part I, the techniques presented in
Chapter 3 can be used as a starting point to further improve the fault coverage of
transition delay faults belonging to the Hidden Registers group, while the method-
ology described in Chapter 4 could be tested on an actual SoC with post-silicon
debug circuitry to assess its performance. As for Part II, there is room for improving
the degree of automation in generating STLs for path delay faults as described in
Chapter 8, e.g., in identifying the set of functional constraints to be fed to the ATPG
to generate functional test vectors. Moreover, all the techniques described so far for



152 Conclusions and Achievements

transition and path delay faults can be applied to larger designs, so that they can
be further improved and adapted to more complex circuits. Finally, the automatic
aging tool is strictly dependent on the technology library adopted and it currently
only takes into account the propagation delay of cells, without taking into account
the interconnections between gates. New research can be done in this area, either col-
lecting new data on other libraries and checking if aging occurs differently based on
the library and understanding how interconnections affect the aging of propagation
delay through paths.

I strongly hope, and believe, that the aforementioned research points will be of
interest for new works and investigations.



References

[1] Mohammad Tehranipoor, Ke Peng, and Krishnendu Chakrabarty. Delay Test
and Small-Delay Defects, pages 21–36. Springer New York, New York, NY,
2012.

[2] ETH Zurich and Università di Bologna. PULPino microcontroller system.
https://github.com/pulp-platform/pulpino, 2022.

[3] Hannah Ritchie Max Roser. Moore’s law: The number of transistors on
microchips doubles every two years. https://ourworldindata.org/uploads/2020/
11/Transistor-Count-over-time.png, 2023.

[4] P. Bernardi, M. Bonazza, E. Sanchez, M. Sonza Reorda, and O. Ballan. On-line
functionally untestable fault identification in embedded processor cores. In
Design, Automation & Test in Europe Conference Exhibition (DATE), pages
1462–1467, 2013.

[5] M. Psarakis, D. Gizopoulos, E. Sanchez, and M. Sonza Reorda. Microprocessor
software-based self-testing. IEEE Design Test of Computers, 27(3):4–19, 2010.

[6] M. Psarakis, D. Gizopoulos, M. Hatzimihail, A. Paschalis, A. Raghunathan,
and S. Ravi. Systematic software-based self-test for pipelined processors. In
ACM/IEEE Design Automation Conference (DAC), pages 393–398, 2006.

[7] N. Hage, R. Gulve, M. Fujita, and V. Singh. On testing of superscalar processors
in functional mode for delay faults. In 30th IEEE Intl. Conference on VLSI
Design and 16th IEEE Intl. Conference on Embedded Systems (VLSID), pages
397–402, 2017.

[8] A. S. Oyeniran, R. Ubar, M. Jenihhin, and J. Raik. Implementation-independent
functional test for transition delay faults in microprocessors. In Euromicro
Conference on Digital System Design (DSD), pages 646–650, 2020.

[9] K. Christou, M. K. Michael, P. Bernardi, M. Grosso, E. Sanchez, and M. S.
Reorda. A novel sbst generation technique for path-delay faults in micropro-
cessors exploiting gate- and rt-level descriptions. In 26th IEEE VLSI Test
Symposium (vts 2008), pages 389–394, April 2008.

https://github.com/pulp-platform/pulpino
 https://ourworldindata.org/uploads/2020/11/Transistor-Count-over-time.png
 https://ourworldindata.org/uploads/2020/11/Transistor-Count-over-time.png


154 References

[10] C. H. . Wen, L. . Wang, Kwang-Ting Cheng, Kai Yang, Wei-Ting Liu, and
Ji-Jan Chen. On a software-based self-test methodology and its application. In
23rd IEEE VLSI Test Symposium (VTS’05), pages 107–113, 2005.

[11] V. Singh, M. Inoue, K. K. Saluja, and H. Fujiwara. Instruction-based self-
testing of delay faults in pipelined processors. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 14(11):1203–1215, Nov 2006.

[12] P. Bernardi, R. Cantoro, S. De Luca, E. Sánchez, and A. Sansonetti. Devel-
opment flow for on-line core self-test of automotive microcontrollers. IEEE
Transactions on Computers, 65(3):744–754, 2016.

[13] Wei-Cheng Lai, A. Krstic, and Kwang-Ting Cheng. Test program synthesis for
path delay faults in microprocessor cores. In IEEE Intl. Test Conference, pages
1080–1089, 2000.

[14] P. Bernardi, M. Grosso, E. Sanchez, and M. S. Reorda. A deterministic method-
ology for identifying functionally untestable path-delay faults in microprocessor
cores. In 2008 Ninth Intl. Workshop on Microprocessor Test and Verification,
pages 103–108, Dec 2008.

[15] R. Cantoro, S. Carbonara, A. Floridia, E. Sanchez, M. Sonza Reorda, and
J. Mess. An analysis of test solutions for COTS-based systems in space
applications. In 2018 IFIP/IEEE International Conference on Very Large Scale
Integration (VLSI-SoC), pages 59–64, Oct 2018.

[16] Andreas Riefert, Riccardo Cantoro, Matthias Sauer, Matteo Sonza Reorda,
and Bernd Becker. A flexible framework for the automatic generation of sbst
programs. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
24(10):3055–3066, 2016.

[17] R. Cantoro, D. Foti, S. Sartoni, M. S. Reorda, L. Anghel, and M. Portolan. New
perspectives on core in-field path delay test. In 2020 IEEE International Test
Conference (ITC), pages 1–5, 2020.

[18] Riccardo Cantoro, Patrick Girard, Riccardo Masante, Sandro Sartoni, Mat-
teo Sonza Reorda, and Arnaud Virazel. Self-test libraries analysis for pipelined
processors transition fault coverage improvement. In 2021 IEEE 27th Inter-
national Symposium on On-Line Testing and Robust System Design (IOLTS),
pages 1–4, 2021.

[19] Felipe Augusto da Silva, Ahmet Cagri Bagbaba, Said Hamdioui, and Christian
Sauer. Combining fault analysis technologies for iso26262 functional safety
verification. In 2019 IEEE 28th Asian Test Symposium (ATS), pages 129–1295,
2019.

[20] Daniel Kraak, Mottaqiallah Taouil, Innocent Agbo, Said Hamdioui, Pieter
Weckx, Stefan Cosemans, and Francky Catthoor. Parametric and functional
degradation analysis of complete 14-nm finfet sram. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 27(6):1308–1321, 2019.



References 155

[21] Sandra Irobi, Zaid Al-Ars, and Said Hamdioui. Memory test optimization for
parasitic bit line coupling in srams. In 2011 Sixteenth IEEE European Test
Symposium, pages 205–205, 2011.

[22] M. Grosso, S. Rinaudo, A. Casalino, and M. Sonza Reorda. Software-Based
Self-Test for Transition Faults: a Case Study. In IFIP/IEEE International
Conference on Very Large Scale Integration (VLSI-SoC), pages 76–81, 2019.

[23] A. Apostolakis, D. Gizopoulos, M. Psarakis, D. Ravotto, and M. Sonza Reorda.
Test program generation for communication peripherals in processor-based soc
devices. IEEE Design Test of Computers, 26(2):52–63, March 2009.

[24] Riccardo Cantoro, Sandro Sartoni, and Matteo Sonza Reorda. In-field func-
tional test of can bus controllers. In 2020 IEEE 38th VLSI Test Symposium
(VTS), pages 1–6, 2020.

[25] L. Bolzani, E. Sanchez, M. Schillaci, M. Sonza Reorda, and G. Squillero. An
automated methodology for cogeneration of test blocks for peripheral cores.
In 13th IEEE International On-Line Testing Symposium (IOLTS 2007), pages
265–270, July 2007.

[26] A. van de Goor, G. Gaydadjiev, and S. Hamdioui. Memory testing with a
risc microcontroller. In 2010 Design, Automation Test in Europe Conference
Exhibition (DATE 2010), pages 214–219, March 2010.

[27] A. Cook, D. Ull, M. Elm, H. Wunderlich, H. Randoll, and S. Döhren. Reuse of
structural volume test methods for in-system testing of automotive asics. In
2012 IEEE 21st Asian Test Symposium, pages 214–219, 2012.

[28] Felipe Augusto da Silva, Riccardo Cantoro, Said Hamdioui, Sandro Sartoni,
Christian Sauer, and Matteo Sonza Reorda. A systematic method to generate
effective stls for the in-field test of can bus controllers. Electronics, 11(16),
2022.

[29] Hitex. Microcontroller self-test libraries. https://www.hitex.com/
tools-components/software-components/selftest-libraries-safety-libs/, 2022.

[30] STMicroelectronics. Guidelines for obtaining IEC 60335 Class B certification
for any STM32 application. http://www.st.com/content/ccc/resource/technical/
document/application_note/02/1a/91/78/e4/15/4d/35/CD00290100.pdf/files/
CD00290100.pdf/jcr:content/translations/en.CD00290100.pdf, Mar 2016.

[31] Cypress Semiconductor. FM3 and FM4 Family, IEC61508 SIL2 Self-Test
Library. https://www.cypress.com/file/249196/download, 2022.

[32] Renesas Electronics. SSP Supplemental Add-Ons. https://www.renesas.com/
en-eu/products/synergy/software/add-ons.html, 2022.

[33] Microchip Technology Inc. 16-bit CPU Self-Test Library User’s Guide. http:
//ww1.microchip.com/downloads/en/DeviceDoc/52076a.pdf, 2022.

https://www.hitex.com/tools-components/software-components/selftest-libraries-safety-libs/
https://www.hitex.com/tools-components/software-components/selftest-libraries-safety-libs/
http://www.st.com/content/ccc/resource/technical/document/application_note/02/1a/91/78/e4/15/4d/35/CD00290100.pdf/files/CD00290100.pdf/jcr:content/translations/en.CD00290100.pdf
http://www.st.com/content/ccc/resource/technical/document/application_note/02/1a/91/78/e4/15/4d/35/CD00290100.pdf/files/CD00290100.pdf/jcr:content/translations/en.CD00290100.pdf
http://www.st.com/content/ccc/resource/technical/document/application_note/02/1a/91/78/e4/15/4d/35/CD00290100.pdf/files/CD00290100.pdf/jcr:content/translations/en.CD00290100.pdf
https://www.cypress.com/file/249196/download
https://www.renesas.com/en-eu/products/synergy/software/add-ons.html
https://www.renesas.com/en-eu/products/synergy/software/add-ons.html
http://ww1.microchip.com/downloads/en/DeviceDoc/52076a.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/52076a.pdf


156 References

[34] ARM. What is functional safety? https://www.arm.com/technologies/safety,
2022.

[35] NXP Semiconductors. S32 SDK for S32K1 microcontrollers.
https://www.nxp.com/support/developer-resources/run-time-software/
s32-sdk/s32-sdk-for-s32k1-microcontrollers:S32SDK-ARMK1, 2022.

[36] M.A. Breuer. The effects of races, delays, and delay faults on test generation.
IEEE Transactions on Computers, C-23(10):1078–1092, 1974.

[37] Irith Pomeranz. Skewed-load tests for transition and stuck-at faults. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
38(10):1969–1973, 2019.

[38] J. Savir. Skewed-load transition test: Part i, calculus. In Proceedings Interna-
tional Test Conference 1992, pages 705–, 1992.

[39] S. Patil and J. Savir. Skewed-load transition test: Part ii, coverage. In Proceed-
ings International Test Conference 1992, pages 714–, 1992.

[40] J. Savir and S. Patil. Broad-side delay test. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 13(8):1057–1064, 1994.

[41] J. Savir and S. Patil. On broad-side delay test. In Proceedings of IEEE VLSI
Test Symposium, pages 284–290, 1994.

[42] Irith Pomeranz. Partitioning functional test sequences into multicycle functional
broadside tests. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 29(1):89–99, 2021.

[43] Irith Pomeranz and Sudhakar M. Reddy. Forming multi-cycle tests for delay
faults by concatenating broadside tests. In 2010 28th VLSI Test Symposium
(VTS), pages 51–56, 2010.

[44] Irith Pomeranz. Skewed-load test cubes based on functional broadside tests
for a low-power test set. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 23(3):593–597, 2015.

[45] Irith Pomeranz. Multicycle broadside and skewed-load tests for test compaction.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 39(1):262–266, 2020.

[46] Irith Pomeranz. Generation of mixed broadside and skewed-load diagnostic
test sets for transition faults. In 2011 IEEE 17th Pacific Rim International
Symposium on Dependable Computing, pages 45–52, 2011.

[47] Irith Pomeranz. Direct computation of lfsr-based stored tests for broadside and
skewed-load tests. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 39(12):5238–5246, 2020.

https://www.arm.com/technologies/safety
https://www.nxp.com/support/developer-resources/run-time-software/s32-sdk/s32-sdk-for-s32k1-microcontrollers:S32SDK-ARMK1
https://www.nxp.com/support/developer-resources/run-time-software/s32-sdk/s32-sdk-for-s32k1-microcontrollers:S32SDK-ARMK1


References 157

[48] C. Y. Chen and J. L. Huang. Reinforcement-Learning-Based Test Program
Generation for Software-Based Self-Test. In IEEE Asian Test Symposium (ATS),
pages 73–735, 2019.

[49] Ying Zhang, Zebo Peng, Jianhui Jiang, Huawei Li, and Masamro Fujita.
Temperature-aware software-based self-testing for delay faults. In 2015 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages 423–428,
2015.

[50] Ying Zhang, Yi Ding, Zebo Peng, Huawei Li, Masahiro Fujita, and Jianhui
Jiang. Bmc-based temperature-aware sbst for worst-case delay fault testing
under high temperature. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 30(11):1677–1690, 2022.

[51] A. Ruospo, R. Cantoro, E. Sanchez, P. D. Schiavone, A. Garofalo, and L. Benini.
On-line testing for autonomous systems driven by risc-v processor design
verification. In IEEE International Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFT), pages 1–6, 2019.

[52] A. Jasnetski, R. Ubar, and A. Tsertov. On automatic software-based self-test
program generation based on high-level decision diagrams. In IEEE Latin-
American Test Symposium (LATS), pages 177–177, 2016.

[53] A. Jasnetski, R. Ubar, and A. Tsertov. Automated software-based self-test
generation for microprocessors. In International Conference Mixed Design of
Integrated Circuits and Systems (MIXDES), pages 453–458, 2017.

[54] E. Sanchez, M. Sonza Reorda, G. Squillero, and M. Violante. Automatic
generation of test sets for sbst of microprocessor ip cores. In 2005 18th
Symposium on Integrated Circuits and Systems Design, pages 74–79, 2005.

[55] Riccardo Cantoro, Francesco Garau, Patrick Girard, Nima Kolahimahmoudi,
Sandro Sartoni, Matteo Sonza Reorda, and Arnaud Virazel. Effective techniques
for automatically improving the transition delay fault coverage of self-test
libraries. In 2022 IEEE European Test Symposium (ETS), pages 1–2, 2022.

[56] Joon-Sung Yang and Nur A. Touba. Improved trace buffer observation via
selective data capture using 2-d compaction for post-silicon debug. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 21(2):320–328,
2013.

[57] Binod Kumar, Jay Adhaduk, Kanad Basu, Masahiro Fujita, and Virendra Singh.
A methodology to capture fine-grained internal visibility during multisession
silicon debug. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 28(4):1002–1015, 2020.

[58] Hyunggoy Oh, Taewoo Han, Inhyuk Choi, and Sungho Kang. An on-chip error
detection method to reduce the post-silicon debug time. IEEE Transactions on
Computers, 66(1):38–44, 2017.



158 References

[59] Sandeep Chandran, Preeti Ranjan Panda, Smruti R. Sarangi, Ayan Bhat-
tacharyya, Deepak Chauhan, and Sharad Kumar. Managing trace summaries
to minimize stalls during postsilicon validation. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 25(6):1881–1894, 2017.

[60] Riccardo Cantoro, Francesco Garau, Riccardo Masante, Sandro Sartoni, Viren-
dra Singh, and Matteo Sonza Reorda. Exploiting post-silicon debug hardware
to improve the fault coverage of software test libraries. In 2022 IEEE 40th
VLSI Test Symposium (VTS), pages 1–7, 2022.

[61] Silvaco. Silvaco 45nm open cell library.

[62] J. Mahmod, S. Millican, U. Guin, and V. Agrawal. Special session: Delay fault
testing - present and future. In 2019 IEEE 37th VLSI Test Symposium (VTS),
pages 1–10, 2019.

[63] U.E. Sparmann and L. Koller. Improving path delay fault testability by
path removal. In Proceedings. 16th IEEE VLSI Test Symposium (Cat.
No.98TB100231), pages 200–208, 1998.

[64] Sabir Hussain, M A Raheem, and Afaq Ahmed. Sic-tpg for path delay fault
detection in vlsi circuits using scan insertion method. In 2021 Devices for
Integrated Circuit (DevIC), pages 1–5, 2021.

[65] Irith Pomeranz. On the detection of path delay faults by functional broadside
tests. In 2012 17th IEEE European Test Symposium (ETS), pages 1–6, 2012.

[66] Irith Pomeranz. Gepdfs: Path delay faults based on two-cycle gate-exhaustive
faults. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 41(7):2315–2322, 2022.

[67] P. Bernardi, M. Grosso, E. Sanchez, and M. Sonza Reorda. On the automatic
generation of test programs for path-delay faults in microprocessor cores. In
12th IEEE European Test Symposium (ETS’07), pages 179–184, May 2007.

[68] Sankar Gurumurthy, Ramtilak Vemu, Jacob A. Abraham, and Daniel G. Saab.
Automatic generation of instructions to robustly test delay defects in processors.
In 12th IEEE European Test Symposium (ETS’07), pages 173–178, 2007.

[69] Nikolaos I. Deligiannis, Riccardo Cantoro, Tobias Faller, Tobias Paxian, Bernd
Becker, and Matteo Sonza Reorda. Effective sat-based solutions for generating
functional sequences maximizing the sustained switching activity in a pipelined
processor. In 2021 IEEE 30th Asian Test Symposium (ATS), pages 73–78, 2021.

[70] Tobias Faller, Philipp Scholl, Tobias Paxian, and Bernd Becker. Towards sat-
based sbst generation for risc-v cores. In 2021 IEEE 22nd Latin American Test
Symposium (LATS), pages 1–2, 2021.



References 159

[71] Lorena Anghel, Riccardo Cantoro, Riccardo Masante, Michele Portolan, San-
dro Sartoni, and Matteo Sonza Reorda. Self-test library generation for in-field
test of path delay faults. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, pages 1–1, 2023.

[72] J. Perez Acle, R. Cantoro, E. Sanchez, M. Sonza Reorda, and G. Squillero. Ob-
servability solutions for in-field functional test of processor-based systems: A
survey and quantitative test case evaluation. Microprocessors and Microsystems,
47:392 – 403, 2016.

[73] J. Chen, L. Winemberg, and M. Tehranipoor. Identification of testable repre-
sentative paths for low-cost verification of circuit performance during manufac-
turing and in-field tests. In 32nd IEEE VLSI Test Symposium (VTS), pages 1–6,
April 2014.

[74] N. Ahmed, M. Tehranipoor, and V. Jayaram. Timing-based delay test for
screening small delay defects. In 2006 43rd ACM/IEEE Design Automation
Conference, pages 320–325, 2006.

[75] X. Fu, H. Li, and X. Li. Testable path selection and grouping for faster than
at-speed testing. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 20(2):236–247, 2012.

[76] Riccardo Cantoro, Patrick Girard, Riccardo Masante, Sandro Sartoni, Mat-
teo Sonza Reorda, and Arnaud Virazel. Self-test libraries analysis for pipelined
processors transition fault coverage improvement. In 2021 IEEE 27th Inter-
national Symposium on On-Line Testing and Robust System Design (IOLTS),
pages 1–4, 2021.

[77] Riccardo Cantoro, Patrick Girard, Riccardo Masante, Sandro Sartoni, Mat-
teo Sonza Reorda, and Arnaud Virazel. Effective techniques for automatically
improving the transition delay fault coverage of self-test libraries. In 2022
IEEE European Test Symposium (ETS), 2022 [In press].

[78] F. A. da Silva, A. C. Bagbaba, S. Sartoni, R. Cantoro, M. Sonza Reorda, S. Ham-
dioui, and C. Sauer. Determined-Safe Faults Identification: A step towards
ISO26262 hardware compliant designs. In IEEE European Test Symposium
(ETS), pages 1–6, 2020.

[79] T. Sakurai and A.R. Newton. Alpha-power law mosfet model and its applica-
tions to cmos inverter delay and other formulas. IEEE Journal of Solid-State
Circuits, 25(2):584–594, 1990.

[80] Sachin S. Sapatnekar. What happens when circuits grow old: Aging issues in
cmos design. In 2013 International Symposium onVLSI Design, Automation,
and Test (VLSI-DAT), pages 1–2, 2013.

[81] Basel Halak, Vasileios Tenentes, and Daniele Rossi. The impact of bti aging on
the reliability of level shifters in nano-scale cmos technology. Microelectronics
Reliability, 67:74–81, 2016.



160 References

[82] Yong Zhao and Hans G. Kerkhoff. Highly dependable multi-processor socs
employing lifetime prediction based on health monitors. In 2016 IEEE 25th
Asian Test Symposium (ATS), pages 228–233, 2016.

[83] M. Altieri, S. Lesecq, E. Beigne, and O. Heron. Towards on-line estimation of
bti/hci-induced frequency degradation. In 2017 IEEE International Reliability
Physics Symposium (IRPS), pages CR–6.1–CR–6.6, 2017.

[84] Kalpana Senthamarai Kannan. Management des performances de sûreté et
de sécurité pour les applications automotives et IoT. PhD thesis, Université
Grenoble Alpes, 2021. Thèse de doctorat dirigée par Anghel, Lorena et Por-
tolan, Michele Nanoélectronique et nanotechnologie Université Grenoble Alpes
2021.

[85] Dieter K. Schroder and Jeff A. Babcock. Negative bias temperature instability:
Road to cross in deep submicron silicon semiconductor manufacturing. Journal
of Applied Physics, 94(1):1–18, 2003.

[86] T.H. Ning. Hot-electron emission from silicon into silicon dioxide. Solid-State
Electronics, 21(1):273–282, 1978.

[87] Ho Joon Lee and Kyung Ki Kim. Analysis of time dependent dielectric
breakdown in nanoscale cmos circuits. In 2011 International SoC Design
Conference, pages 440–443, 2011.

[88] J.W. McPherson. Time dependent dielectric breakdown physics – models
revisited. Microelectronics Reliability, 52(9):1753–1760, 2012. Special Issue
23rd European Symposium on the Reliability of Electron Devices, Failure
Physics and Analysis.

[89] Tony Tae-Hyoung Kim, Pong-Fei Lu, Keith A. Jenkins, and Chris H. Kim. A
ring-oscillator-based reliability monitor for isolated measurement of nbti and
pbti in high-k/metal gate technology. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 23(7):1360–1364, 2015.

[90] John Keane, Xiaofei Wang, Devin Persaud, and Chris H. Kim. An all-in-one
silicon odometer for separately monitoring hci, bti, and tddb. IEEE Journal of
Solid-State Circuits, 45(4):817–829, 2010.

[91] Neil Weste and David Harris. CMOS VLSI Design: A Circuits and Systems
Perspective. Addison-Wesley Publishing Company, USA, 4th edition, 2010.

[92] Ajith Sivadasan, S. Mhira, Armelle Notin, A. Benhassain, V. Huard, Etienne
Maurin, F. Cacho, L. Anghel, and A. Bravaix. Architecture- and workload-
dependent digital failure rate. In 2017 IEEE International Reliability Physics
Symposium (IRPS), pages CR–8.1–CR–8.4, 2017.

[93] Jeremy Watt, Reza Borhani, and Aggelos K. Katsaggelos. Machine Learning
Refined: Foundations, Algorithms, and Applications. Cambridge University
Press, USA, 1st edition, 2016.



References 161

[94] Max Kuhn and Kjell Johnson. Applied Predictive Modeling. Springer, 2013.

[95] Mauricio Altieri Scarpato. Estimation de la performance des circuits
numériques sous variations PVT et vieillissement. PhD thesis, Université
Grenoble Alpes, 2017. Thèse de doctorat dirigée par Beigné, Édith et Lesecq,
Suzanne Nano electronique et nano technologies Université Grenoble Alpes
(ComUE) 2017.

[96] Jeremy Bennett. Mibench-embedded benchmark. https://github.com/
embecosm/mibench/tree/master, 2023.

https://github.com/embecosm/mibench/tree/master
https://github.com/embecosm/mibench/tree/master

	Contents
	List of Figures
	List of Tables
	Introduction
	I Transition Delay Fault Oriented Solutions
	1 Background
	1.1 Transition Delay fault model
	1.2 Techniques for testing transition delay faults
	1.3 Related works
	1.3.1 STL development for transition delay faults
	1.3.2 Self-Test Libraries hardening
	1.3.3 Trace Buffers


	2 Main Contributions
	3 STL hardening techniques for transition delay faults
	3.1 Proposed Approach
	3.1.1 Internal Observation Points Extraction
	3.1.2 Observability Study
	3.1.3 Logic Simulation Trace
	3.1.4 Test Program Enhancement

	3.2 Experimental Results
	3.2.1 Case study
	3.2.2 Achieved results

	3.3 Chapter Summary

	4 Improving transition delay fault coverage through post-silicon debug logic
	4.1 Proposed Approach
	4.1.1 Generation of fault dictionary
	4.1.2 Flip-flops selection procedure

	4.2 Experimental Results
	4.2.1 Case study
	4.2.2 Fixed flip-flop selection
	4.2.3 Variable flip-flop selection

	4.3 Chapter Summary


	II Path Delay Fault Oriented Solutions
	5 Background
	5.1 Path Delay Fault Model
	5.2 Related Works

	6 Main Contributions
	7 Path Delay Fault Simulation Flow
	7.1 Synthesis
	7.2 Logic simulation
	7.3 Static Timing Analysis
	7.4 Combinational-level fault simulation
	7.5 Sequential-level fault simulation
	7.6 STL performance evaluation on Path Delay Faults
	7.6.1 Combinational-level fault simulation
	7.6.2 Detected by Implication faults
	7.6.3 Sequential-level fault simulation
	7.6.4 Test programs effectiveness

	7.7 Chapter Summary

	8 STL Development for Path Delay Faults
	8.1 Proposed Approach
	8.1.1 ATPG pattern extraction
	8.1.2 Functional constraints identification
	8.1.3 Patterns-to-instructions mapping

	8.2 Experimental Results
	8.2.1 Case Study
	8.2.2 Achieved Results

	8.3 Chapter Summary


	III Testing an aged integrated circuit
	9 Background
	10 Main Contributions
	11 Automatic Aging Tool
	11.1 Experimental Results
	11.1.1 Case Study
	11.1.2 Achieved Results

	11.2 Chapter Summary

	12 Conclusions and Achievements
	12.1 Future Directions

	References


