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Abstract

This survey reviews the AIS 2024 Event-Based Eye
Tracking (EET) Challenge. The task of the challenge fo-
cuses on processing eye movement recorded with event cam-
eras and predicting the pupil center of the eye. The chal-
lenge emphasizes efficient eye tracking with event cameras
to achieve good task accuracy and efficiency trade-off. Dur-
ing the challenge period, 38 participants registered for the
Kaggle competition, and 8 teams submitted a challenge
factsheet. The novel and diverse methods from the submit-
ted factsheets are reviewed and analyzed in this survey to
advance future event-based eye tracking research.

1. Introduction
The fast development of augmented reality (AR) and virtual
reality (VR) technologies in industry, has significantly mag-
nified the importance of precise and efficient eye-tracking
systems [15, 16]. Furthermore, eye-tracking and related
tasks, including gaze detection, pupil shape detection, etc,
have tremendous potential in the field of wearable health-

∗ Zuowen Wang, Chang Gao, Zongwei Wu, Marcos V. Conde, Radu
Timofte, Shih-Chii Liu and Qinyu Chen are the challenge organizers, while
the other authors participated in the challenge.
B Qinyu Chen (q.chen@liacs.leidenuniv.nl) is the corresponding author.
Challenge website: https://eetchallenge.github.io/EET.
github.io/. Demonstration code repository: https://github.
com/EETChallenge/challenge_demo_code. Challenge Kaggle
website: https://www.kaggle.com/competitions/event-
based-eye-tracking-ais2024. AIS 2024 host website: https:
//ai4streaming-workshop.github.io/.

care technology, offering novel approaches for diagnos-
ing and monitoring conditions such as Parkinson’s and
Alzheimer’s diseases through the analysis of eye movement
patterns [14, 25, 31].

Energy consumption and computation resources are of-
ten constrained when implementing software and algo-
rithms on mobile platforms. Moreover, the high sensory
sampling rate for eye-tracking tasks also poses challenges
from the sensor side. For mobile applications, ideally, the
eye tracking system should be lightweight enough to fit in
the headset while providing a high sampling rate.

Event cameras, or Dynamic Vision Sensors (DVS) [17,
27, 28, 43], provide a unique type of sensory modality
for potential eye-tracking applications on mobile devices.
Unlike traditional cameras that capture the entire scene
synchronously at a fixed frequency, event cameras asyn-
chronously record log intensity changes in brightness that
exceed a threshold. This different sensing mechanism re-
sults in an inherently sparse spatiotemporal stream of output
events, which, if appropriately exploited with the underly-
ing algorithm [29, 36, 37, 40, 42, 44, 45] and computing
platform [4, 6, 7, 18], can significantly reduce the compu-
tation and energy demands of the hardware platform. The
high temporal resolution of the DVS events can also be use-
ful for the eye-tracking task.

This challenge aims to invite participants to explore al-
gorithms for the event-based eye tracking task on a recorded
eye tracking DVS dataset. By focusing on efficient algo-
rithms capable of extracting meaningful information from
sparse event streams, this challenge aims to pursue advance-
ments in eye tracking technologies that are both energy-
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efficient and suitable for real-time applications in AR/VR
technologies and wearable healthcare devices.

2. Event-based Eye Tracking Challenge
2.1. Introduction of the 3ET+ dataset

The 3ET+ dataset [41] is an event-based eye-tracking
dataset that contains real events recorded with a DVXplorer
Mini [3] event camera. There are 13 subjects in total, each
having 2-6 recording sessions. The subjects are required to
perform 5 classes of activities: random, saccades, read text,
smooth pursuit and blinks. The total data volume is 9.2 GB.
The ground truth is labeled at 100Hz and consists of two
parts for each label: (1) a binary value indicating whether
there was an eye blink or not; (2) human-labeled pupil cen-
ter coordinates.

2.2. Task description

• Input: Raw event stream (xi, yi, ti, pi) of recorded eye
movement.

• Task: Predict the pupil center spatial coordinate (x, y) at
required timestamps (same frequency as the ground truth)
in the input space.

• Metric: The metric used in this work was also used in the
work [8]. The primary metric used on the Kaggle leader-
board was the p-accuracy. If the Euclidean distance be-
tween the spatial coordinates of the predicted label and
the ground truth label is within p pixels, then we classify
it as a successful prediction. On the Kaggle leaderboard,
we set the tolerance as 10 pixels. We also provide p =
{5, 3, 1} in the demonstration code pipeline for evaluat-
ing the model under a stricter tolerance value. After the
Kaggle competition ended, we also provided a script for
the participants to evaluate their results against the test set
ground truth with mean Euclidean distance (ℓ2) and mean
Manhattan distance (ℓ1).

2.3. Provided pipeline for loading data and training

A handy data loading and training pipeline was provided to
the challenge participants. The data loading module (data
loader) is compatible with the Tonic library [26]. The mod-
ule enables the participants to explore various event feature
representations. The data loader can also cache the gener-
ated feature representation on the main memory or on disk
during the first training epoch. For the following epochs, it
can automatically load these pre-made data thus speeding
up the training process.

For the training pipeline, the challenge participants can
easily place in their deep learning architecture and config-
ure the hyperparameters. A machine learning monitoring
library, namely the MLFlow library [2], was provided in the
challenge pipeline code for the participants to monitor var-
ious metrics and to record the hyperparameters, as well as

the checkpoints.

2.4. Challenge phases

The challenge is mainly divided into three phases: (1) be-
fore 5. Feb. 2024, preparation of challenge dataset, code
pipeline, website, and Kaggle setup. (2) 5. Feb. 2024,
the Kaggle competition begins, and teams are allowed to
register and download the dataset. (3) 16. March. 2024,
the submission system closed and the private score was re-
leased. The top-performing teams are then invited to submit
their factsheets and every team was encouraged to submit a
workshop challenge paper.

3. Challenge Results
The evaluation results of the final submissions from partic-
ipating teams are listed in Tab. 1. The primary evaluation
metric used in the Kaggle competition [1] ranking is the
p10 accuracy described in Sec. 2.2. The challenge ranking
is based on the private test split (p10 private (primary)), and
only teams who submit their factsheets will participate in
the final ranking. We also evaluate p10, p5, p3 and p1 accu-
racy and mean Euclidean distance (ℓ2) and mean Manhattan
distance (ℓ1) based on the final submissions of the teams on
the entire test split. Notably, all teams achieved very high
p10 accuracy on the task.

3.1. Architectures and main ideas

The participating teams proposed many different methods.
This shows that there is no yet conclusive best approach
for processing event data specifically for the eye tracking
task. We summarize and discuss the major findings from
the submitted methods.

Stateful models and spatial-temporal processing.
Most teams selected architectures with state as their back-
bones, including gated recurrent units (GRU) [11], recur-
rent visual transformer [19] with convolutional long short-
term memory [38] (ConvLSTM), bidirectional LSTM (biL-
STM) and the newly emerged state-space model variant
Mamba [20]. Stateful models are chosen due to the need to
integrate event history and preserve the eye tracking states
when very few events are generated, i.e., static or very slow
eye movement. The other class of choices for handling the
property of event data is using certain spatiotemporal tech-
niques, including having a memory channel in the event rep-
resentation preprocessing or temporal processing blocks in
the convolution architecture.

Computation and parameter efficiency. This chal-
lenge emphasizes efficiency and task performance as
equally important. Most teams have considered compu-
tation and parameter efficiency in their method designs.
One team (Sec. 4.3) designed a temporal causal layer that
could be implemented with a buffer for online inference.
The team Go Sparse (Sec. 4.4) implemented their method,
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Team Rank p10 private (primary) p10 p5 p3 p1 ℓ2 ℓ1

USTCEventGroup 1 99.58 99.42 97.05 90.73 33.75 1.67 2.11
FreeEvs 2 99.27 99.26 96.31 83.83 23.91 2.03 2.56
bigBrains 3 99.16 99.00 97.79 94.58 45.50 1.44 1.82
Go Sparse 4 98.74 99.00 77.20 47.97 7.32 3.51 4.63
MeMo 4 98.74 99.05 89.36 50.87 6.53 3.2 4.04
ERVT 6 97.60 98.21 94.94 87.26 28.80 1.98 2.48
EFFICIENT 6 97.60 97.95 80.67 49.08 7.79 3.51 4.43
GTechVision 8 91.86 92.26 61.08 31.70 4.16 4.94 6.18

Table 1. Final results from the top performing teams on Kaggle leaderboard. p10 private (primary) was evaluated on the private test set and
all the rest metrics were evaluated on the entire test set.

which implements sparse convolution [9, 10], on an FPGA
board, achieving sub-millisecond inference latency. Most
teams provided inference latency, model parameters and
FLOPs needed for inference as part of their result.

Event representations and spatial feature extraction.
Converting raw event data into representations that can be
processed by synchronous deep learning architectures is an
important first step for any event-based tasks. In this chal-
lenge, the participants selected different ways to implement
this step. Two teams aggregate sequential event frames us-
ing binary map representation to compress the input data
sent to the model. The team MeMo (Sec. 4.5) proposes
using a memory channel to preserve historical event infor-
mation better. Different from other teams, the team EFFI-
CIENT (Sec. 4.7) uses point-based network [32–34] to pro-
cess the raw event data as spatiotemporal event cloud. They
also propose to use techniques that subsample the event
cloud to reduce the computation.

Other novel components. Apart from backbone de-
sign, hardware consideration, and event representation, the
teams also propose other innovations during the challenge.
This includes implementation of an affine transformation on
event data (Sec. 4.3), sequence splitting and reordering data
augmentation (Sec. 4.5) and different regularization tech-
niques (Sec. 4.2, Sec. 4.3).

3.2. Participants

There were, in total, 38 user accounts registered and partic-
ipated in the Kaggle competition [1] of the challenge, and 8
teams with private p10 accuracy over 90% submitted fact-
sheets describing their methods. The institutions of the team
members for the submitted factsheets are located in regions
including Asia, Europe and North America.

3.3. Inclusiveness and fairness

Several measures were implemented to maintain the inclu-
siveness and fairness of the challenge. First and most im-
portantly, the dataset and task are preprocessed and config-
ured to keep the hardware requirement for training models
possibly low. Second, an out-of-box usable training and
testing pipeline was provided so that even teams with little

event-based data experience could easily start experiment-
ing. Thirdly, code submission is required for the factsheets
submission to ensure reproducible results.

3.4. Conclusions

We summarize the insights obtained during the challenge
and from the challenge results as follows:
1. The field of event-based visual processing, more specif-

ically event-based eye tracking, is a newly emerged
field. Unlike many other computer vision fields where
transformer-based methods dominate, there is a large va-
riety in event data processing. There is plenty of room
for achieving a better trade-off for task performance and
model efficiency.

2. Hardware consideration is always essential for re-
searchers developing algorithms for event cameras due
to its compatibility with mobile platforms. Algorithm-
hardware co-design is an important research direction in
this field.

3. This challenge and existing works proved the feasibility
of using an event camera for the eye-tracking task. Pro-
totyping and more realistic settings are needed to step
towards more mature event-based eye tracking systems.

Related Challenges This challenge is one of the AIS
2024 Workshop associated challenges on: Event-based
Eye-Tracking [41], Video Quality Assessment of user-
generated content [13], Real-time compressed image super-
resolution [12], Mobile Video SR, and Depth Upscaling.
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4. Challenge Methods and Teams
In the following sections we describe the best challenge so-
lutions. Note that the method descriptions were provided by
each team as their contribution to this survey.

4.1. Team: USTCEventGroup

Zheng-jun Zha, Wei Zhai, Han Han,
Bohao Liao, Yuliang Wu

University of Science and Technology of China
Contact: zhazj@ustc.edu.cn

Description. The USTCEventGroup proposed the Mam-
baPupil method as shown in Fig. 1. This lightweight and
time-efficient network comprises two main parts: the Spa-
tial Feature Extractor and the Dual-Recurrent Module for
position prediction. In the Spatial Feature Extractor there
are a series of convolutional blocks, which are designed as
follows:

xt = Pool(ReLU(BatchNorm(Conv(Be)))), (1)
Larger convolutional kernels (7 or 5) are employed, and
extracted features are fed into the Dual Recurrent Mod-
ule after an adaptative global pooling layer and a Spatial-
Dropout layer. The Dual Recurrent Module consists of a bi-
directional GRU module and an LTV-SSM module, recently
known as a Mamba block. This bi-directional structure is
beneficial to capturing contextual information compared to
a uni-directional one, and the additional Linear-time-variant
State-Space Model (LTV-SSM) module models the behav-
ior patterns of eye movements selectively to cast more at-
tention into the valid phase. The LTV-SSM module can be
described by the formula:

∆, B,C = Linear(x), (2)
∆A = exp(∆ ∗A), (3)
∆B = ∆ ∗B. (4)
∆x = ∆A ∗ x+∆B ∗ u, (5)
y = Cx+Du, (6)

Furthermore, to reduce computational complexity and
avoid uncorrelated events negatively affecting the model,

Figure 1. MambaPupil network by Team USTCEventGroup.

The USTCEventGroup utilizes binary map representation
of events and encodes the order of events in the sequence.
The binary map representation, usually referred to as bina-
rep, is aggregated from multiple sequential event frames.
These frames are firstly binarized and stacked by bits form-
ing a bina-rep. Additionally, several data enhancement
methods are introduced, including Event-Cutout, which ap-
plies spatial random masking to the event image and extends
it across the entire sequence in the data augmentation stage
to enhance the generalization ability. As for the loss crite-
rion, RMSE loss is applied:

Loss =

√√√√ 1

L

L∑
i=1

(Predi − Labeli)2, (7)

Implementation Details. All the experiments were im-
plemented using PyTorch, and Cosine Annealing Warm
Restart was utilized as a learning-rate scheduler, beginning
at an initial rate of 0.002. The training and evaluation are
performed entirely on the 3ET++ dataset, and the time cost
for 1000 epochs with a batchsize of 32 is about 1.5 hours on
a single RTX 2080Ti GPU.

Results. We scored best on the leaderboard, performed
far exceeded the baseline with a p10 accuracy above
0.995. Our visualization shows the elegant tracking process
even in difficult scenario. Visualization results and code
is available in https://github.com/hh-xiaohu/Event-based-
Eye-Tracking-Challenge-Solution.

The results are obtained from the validation set:

p 5 p 10 p 15 p error
MambaPupil 0.9192 0.9846 0.9926 2.1799

Table 2. Validation results of MambaPupil.
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4.2. Team: FreeEvs

Zengyu Wan, Zhong Wang, Yang Cao,
Ganchao Tan, Jinze Chen

University of Science and Technology of China

Contact: wanzengy@mail.ustc.edu.cn

Description. The FreeEvs Team proposed the lightweight
and efficient model, Consistent Eye Tracking Model
(CETM), as shown in 2. The whole framework consists of
the following components: 1. Event representation; 2. Rep-
resentation enhancement; 3. Tracking predictor; 4. Motion
consistency loss. Given the event stream, the CETM will
first convert it into the binary map representation [5], which
is compact and informative. The binary map first generates
a spatially binarized event clip based on the event frames
aggregated and accumulated over a period of time, after
which it encodes each frame in the clip using a temporal bi-
narization mask. And then, the spatio-temporally binarized
encoded clip is accumulated at corresponding locations to
form the final Bina-rep Be. This approach brings two bene-
fits: 1) it reduces storage and computational costs, improv-
ing the training and inference speed of the network.; 2) it
reduces the impact of noise and redundant information on
prediction results to some extent. Next, the Bina-rep will be
enhanced for effective training. The adopted data enhance-
ment techniques contain spatial shift, spatial flip, temporal
shift, and temporal flip. The spatial operations improve the
model localization ability with more spatial variation sam-
ples, and the temporal operations endow the model’s con-
sistent tracking ability with more temporal variation sam-
ples. Next, the tracking predictor is utilized to localize the
pupil efficiently. The predictor consists of the stacked con-
volution blocks, the global pooling layer, the gated recurrent
unit (GRU), and the final full connection layer (FC) to pre-
dict the result. Among them, the team used 3 convolution
blocks, each composed of the 2D convolution, batch nor-
malization, ReLU activation function, and average pooling
layer, to extract the corresponding pupil space information.
And then, the spatial information will be transported into
the GRU module in time order to extract the temporal con-
textual clues. The spatial-temporal clues are finally trans-
formed into the prediction by the FC layer. In the training
stage, the motion consistency loss Lmc is adopted to super-
vise the tracking result not only on the original prediction
(the localization) but also on the one-order difference result
for smoothness. The motion consistency is formulated as

Figure 2. Schematic of the Consistent Eye Tracking Model, in-
cluding the event representation, preprocessing and the tracking
predictor.

follows,
Lmc = L0 + L1, (8)

L0 =
√
(xpred − xgt)2 + (ypred − ygt)2, (9)

L1 =
√
(∆txpred −∆txgt)2 + (∆typred −∆tygt)2,

(10)

∆tp = pt − pt−1, (11)
where the xpred, ypred are the spatial prediction, xgt, ygt are
the corresponding ground truth. The motion consistency
loss endows the model smoothing tracking ability by super-
vised constraining the change in prediction over time.

Implementation Details. The whole framework is imple-
mented by PyTorch and the experiments were conducted on
a single NVIDIA RTX2080Ti GPU. During training, the
Adam optimizer is adopted, and the learning rate is set to
5e-4 with a batch size of 8. And the training epoch is set to
800 for full training. For efficiency consideration, the res-
olution of the input event is downsampled to 80x60. In all,
the proposed CETM has 7.1M parameters and needs 2.9G
flops in the inference stage.

Results. Our method eventually achieved 99.27 accuracy
on the test dataset, ranking third on the benchmark. The
results in detail are below.

P5 acc P10 acc P15 acc Euc Dist
CETM 91.8 97.6 98.5 2.50

Table 3. Validation results of Team FreeEvs.
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Figure 3. A. A lightweight spatiotemporal architecture for efficient eye tracking. The backbone is composed of a succession of 5 spa-
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4.3. Team: bigBrains

Yan Ru Pei, Sasskia Brüers, Sébastien Crouzet, Douglas
McLelland, Olivier Coenen

Brainchip Inc.

Contact: ypei@brainchip.com

Description. The bigBrains team from Brainchip Inc.
proposed a lightweight spatio-temporal network for online
eye tracking with event camera [30], depicted in Fig. 3.A.
We use a causal spatio-temporal convolutional network
(with (1+2)D-style factorized temporal plus spatial convo-
lutions) that can be configured to perform online inference
very efficiently on streaming data (i.e. event streams). The
detector head of the network consists of two spatial convo-
lutional layers inspired by CenterNet. Our temporal lay-
ers are causal, meaning that during inference, the layers
can accept streaming input features and store them using
a FIFO buffer (Fig. 3.B). For data processing, we convert
the event data into 10 ms “frames” using a causal event-
volume binning strategy to minimize latency for online in-
ference (Fig. 3.C). Data augmentation during training in-
cludes spatio-temporal affine augmentations directly on the
events (including temporal + polarity flips, but excluding
spatial reflections).

Implementation Details. For training, we use a batch
size of 32, where each batch consists of 50 event frames.
We train for 200 epochs with the AdamW optimizer with
a base learning rate of 0.002 and a weight decay of 0.005.
We use the cosine decay with linear warmup scheduler, with
warmup steps equal to 0.025 of the total training steps. We
use automatic mixed-16 precision along with PyTorch com-
pilation during training.

Note that our model is trained with the temporal dimen-
sion (number of frames) T = 50, but this number can be
anything. For training, a longer T will reduce the implicit
pre-padding artifacts of a sample, but will reduce the robust-
ness of the batch statistics (assuming batch size goes down
with increasing T ). For inference and model evaluation, we
feed entire segments to the network without splitting be-
cause we want to eliminate the artifacts of implicit padding
as our network is agnostic to the number of input frames.

The training is done on a single NVIDIA A30 GPU, wi-
hch took 0.309 hours for a total of 200 epochs. The stream-
ing inference is done on a single thread of an AMD EPYC
7543P processor (CPU) which takes 3.384 ms per frame,
with an event frame corresponding to a 10 ms time-window
binning of events. The inference pipeline is shared with the
training pipeline in PyTorch, and is still highly unoptimized.
For inference on the NVIDIA A30 GPU, it takes 659 ms per
1000 frames.

Our backbone model used during development contains
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only 164 thousand parameters, and by itself was able to per-
form quite well on the test metrics (same position on the pri-
vate leaderboard). For submission however, we chose to use
a larger backbone combined with a heavily parameterized
detection head, yielding a total of 1.1 million parameters,
which is the largest model we have tested. In our report,
we will provide a detailed ablation study testing the model
variants.

We measured activation sparsity in the network (over the
validation set), and found it to average around 50%, about
what one would expect given ReLU activation functions.
Reasoning that much of this activity may not be informa-
tive, given the very high spatial sparsity of input to the net-
work, we applied L1 regularization to activation layers. By
adding this regularization loss with a weighing factor of 0.1
to the total loss function, the network can achieve a sparsity
of 90% while suffering little performance drop.

The final output feature of the network is a 3 × 4 grid
overlaid on top of the event frames, each grid-cell in each
frame containing a prediction of: 1) the probability of a
pupil being inside the cell, and 2) the relative x and 3) y
offset of the pupil in the cell. We apply the following loss
function to each grid-cell

loss =

{
−(1− p̂)γ log(p̂) + regression loss if p = 1

p̂γ log(1− p̂) if p = 0
,

where the focal loss parameter γ = 2 and p̂ is the predicted
probability of pupil presence and p is the ground truth pres-
ence. The regression loss is the summed SmoothL1Loss for
the x̂ and ŷ offset predictions of the network in each grid
cell. For example, the SmoothL1Loss between the x̂ pre-
diction and the x ground truth is,

SmoothL1Loss =

{
0.5× (x̂−x)2

β if |x̂− x| < β

|x̂− x| − 0.5× β otherwise
,

where β = 0.11. The total loss is computed by averaging
over all grid-cells and valid frames (where the eye is open
and within bounds).

Results. Table 4 reports the validation metrics for various
configurations. We see that the event processing choices
had very little impact on accuracy, but our benchmark
(with causal event volume binning) ensures causality (see
Fig. 3.C). For network architectural choices, we see that us-
ing a CenterNet like head led to a boost of 0.027, compared
with the “no detector” (a simpler head with global average
pooling and 2 dense layers). Similarly, using a larger tem-
poral kernel led to a small boost in p10 accuracy (0.008)
at a small computation cost (8.3M MACs). Using full 3D
convolutions can boost performance slightly (Table 4) but
at the cost of significantly increased memory and computa-
tional load.

Table 4. Ablation study results for modifications of the model
architecture and event processing methods. The default param-
eters are highlighted in italics. CenterNet with DWS temporal
means the temporal smoothing layer before the head is depthwise-
separable. MACs is the number of multiply-accumulate operations
done per event frame, not accounting for sparsity. Results are the
average of 10 repeats.

p10 dist. params MACs

Benchmark 0.963 2.79 809K 55.2M

Event-processing - Causal event volume
→ Event volume 0.959 2.77 - -
→ Binning 0.959 2.74 - -

Model head - CenterNet with DWS temporal
→ Full temporal 0.964 2.72 1.07M 58.3M
→ No detector 0.936 3.52 216K 47.4M

Temporal kernel size - 5
→ 3 0.955 3.20 801K 46.9M

Spatiotemporal block - (1+2)D
→ Conv3D 0.969 2.50 1.21M 267M

4.4. Team: Go Sparse

Baoheng Zhang, Yizhao Gao, Jingyuan Li,
Hayden Kwok-Hay So

The University of Hong Kong
Contact: bhzhang@eee.hku.hk

Description. We propose an eye-tracking system deploy-
ing on FPGA achieving 1ms latency. The model uses a
lightweight MobilenetV2-based architecture to extract fea-
tures, which will then be fed to a GRU and a fully connected
layer to generate the eye center location. We conduct data
augmentation like random shifting and flipping to boost the
performance. The system is co-designed with submanifold
sparse convolution that only processes non-zero spatial fea-
ture activations. We conduct integer-only quantization al-
lowing the overall design to be more efficient. The hard-
ware dataflow accelerator can leverage the sparsity and de-
liver low-latency, low-power performances, achieving sub-
millisecond inference for each prediction.

Implementation Details. To address the eye-tracking
problem efficiently, we propose SEE, a hardware-software
co-optimization solution. On the software side, our model
comprises a SCNN-based backbone for feature extraction,
a GRU layer for temporal feature fusion, and a fully con-
nected (FC) layer for eye center regression. Our hardware
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Figure 4. Hardware design of SEE

Table 5. Implementation Details of SEE.

Accuracy (%)
p5 p10

Dist.
(Pixel)

#
Param.

Latency
(ms)

MobileNetV2 87.36 99.53 3.15 797K 1.45
SEE-A 80.83 99.60 3.77 465K 0.64
SEE-B 83.32 99.53 3.39 372K 0.94
SEE-C 75.92 98.39 4.05 180K 0.60
SEE-D 81.37 99.53 3.71 178K 0.70

is heterogeneous, as the FPGA programmable fabric is used
for SCNN acceleration and Arm Cortex-A series for GRU
and FC layers. This heterogeneous architecture allows us to
fully exploit the strengths of different hardware devices and
deliver an overall low-latency performance. In addition, we
also employ hardware-software co-optimization to search
for compact models with better tradeoffs between accuracy
and hardware latency.

The software architecture is depicted in Figure 5, the
event clips in a fixed-time interval usually are spatially
sparse, which means most of the pixels are completed zero.
These sparse inputs are fed into the SCNN backbone to ex-
tract global features. Subsequently, these features undergo
further processing through a GRU layer, which captures the
temporal information between event frames. The hidden
features are then fed into the FC layer, yielding the normal-
ized coordinates of the eye center location, ranging from 0
to 1. The actual eye location pixel coordinates can be ob-
tained directly by multiplying these normalized coordinates
with the height and width of the input size.

The hardware implementation is shown in 4 built upon

Time

Y

X

Sparse
Representation

SCNN

Feature Embedding

GRU GRU GRU GRU

GRU Hidden State

SCNN SCNN SCNN

FC FC FC FC
[x, y] [x, y] [x, y] [x, y]Eye centers

Events

FPGA SCNN 
Accelerator (Int8)

CPU SIMD 
Engine (Float)

Figure 5. Software architecture of SEE

a Xilinx Zynq UltraScale+ MPSoC device. The proposed
hardware system primarily consists of two components: the
sparse dataflow SCNN accelerator and the Arm Cortex-A53
processor host. The event-based input is initially fed into
the SCNN accelerator to propagate through the submanifold
sparse convolutional [9, 10] neural network backbone. Sub-
sequently, the GRU and fully connected layers processes
are executed by the host CPU with the Arm NEON SIMD
(Single Instruction, Multiple Data) engine.

Results. We trained MobileNetV2 (width multiplier =
0.5) and our SEE-series models with 4 different structures.
The measured accuracy and efficiency are shown in Tab. 5.
When evaluating with p10 accuracy, we observe that our
MobileNetV2 and the SEE-series networks achieve compa-
rable high accuracies, mostly exceeding 98%. While con-
sidering the p5 accuracy and the mean Euclidean distance,
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the baseline MobileNetV2 slightly outperforms the SEE-
series models. This difference could be attributed to the
higher number of network parameters since a larger model
size generally provides more capacity to capture richer fea-
tures.

In terms of efficiency, our selected SEE-series model
significantly outperforms MobileNetV2 by a large margin.
MobileNetV2 achieves a latency of 1.4 ms, which is more
efficient than the previous work. However, our SEE-series
model can even achieve a latency of less than 1 ms. Specif-
ically, our SEE-D model achieves a comparable accuracy
with MobileNetV2 with 2× speedup (0.7 ms vs. 1.45 ms).
Our SEE-C model (0.6 ms) achieves around 2.5× speedup
over MobileNetV2 with only 1% p10 accuracy drops. This
highlights the capability of our SEE-framework to push
more optimal latency accuracy trade-offs than baseline.

4.5. Team: MeMo

Philippe Bich, Chiara Boretti, Luciano Prono
Polytechnic of Turin

Contact: philippe.bich@polito.it

Description. We present an eye-tracking system depicted
in Figure 6, composed of two main parts: an input pre-
processing pipeline and a model for estimating the eye’s
pupil position.

Our methodology centers on the concept of memories
of events, wherein we integrate the events in multiple sur-
faces to obtain enriched input data. Starting from the events
stream, we isolate the events in a time range ∆t set to 50ms
(20Hz) and we represent positive and negative events using
two independent time surfaces [24] that are then averaged
obtaining a tensor of shape [1, H,W ] with H = 60 and
W = 80.

Unfortunately, not every time surface obtained like this
contain enough information to estimate the position of the
eye’s pupil in the given time range. One possible solution
to this problem is the usage of recurrent neural networks
(RNNs) [8]. However, RNNs are typically more complex
and computationally intensive to train compared to non-
recurrent models. Therefore, our proposed solution enables
the use of non-recurrent DNNs for estimating the position
of the eye’s pupil.

This can be done by enriching the information of the
events collected in the time range ∆t with older events that
are stored in multiple memories with different forgetting
rates. Following this idea, the input of the DNN consists
of multiple channels generated with a negligible time over-
head as

M t+1
i = ki

[
M t

i +
St
p + St

n

2

]1
0

(12)

Memory 1

Time Surface

Event Volume

t − 1

Memory 2

Input
TRAINED MODULE

INPUT PRE-PROCESSING

Memory 3

MobileNet (x, y)

k1

k2

k3

0 1

0
1

t

0
1

FC

1Figure 6. Schematic of the method used to solve the event-based
eye-tracking task. Starting from a volume of events collected in
the time range (t − 1, t), a time surface is created and then en-
riched with memory channels built starting from events that were
collected in the time range (0, t − 1). The input of the network
is then the concatenation of the three enriched time surfaces while
the output is the pupil’s position where x, y ∈ [0, 1]. In this work
k1 = 0.8, k2 = 0.6 and k3 = 0.4. The final FC block in the sub-
mitted solution includes two fully-connected layers with 220 and
2 neurons respectively.

where M t
i indicates the i-th channel of the memory of

events at time t, ki ∈ (0, 1) is the forgetting factor of the i-th
channel, St

p and St
n are the positive and negative time sur-

faces at time t and operator [·]10 saturates the argument be-
tween 0 and 1. In this work we use three channels with for-
getting constants k1 = 0.8, k2 = 0.6 and k3 = 0.4, so the
input of the DNN estimator is a tensor of shape [3, H,W ].

The enriched events representation allows to use classi-
cal CNNs architectures that are already optimized for edge
applications. In this work, we choose MobileNet-V3L, a
widely known lightweight DNN already used in production-
grade applications. This model is tuned for edge CPU-based
devices thanks to a combination of hardware-aware network
architecture search (NAS) and pioneering architectural en-
hancements [21].

Implementation Details. The proposed approach moves
the time dependency of our model entirely to the input
pipeline, meaning that it is possible to apply to this task
any non-recurrent (time-independent) vision model. In
particular, we utilized MobileNet-V3L [21] pretrained on
ImageNet-1K, and we fed the model with information at
different time resolutions by combining multiple memory
of events, with different forgetting factors, as input chan-
nels. We report in Table 6 details about the time required to
create the memory of events used as input of the model and
the inference time of the network.

For training, we used only the 2024 Event Eye Tracking
Challenge (EET) dataset. Each event stream is divided into
small chunks containing events in a time range ∆t = 50ms.
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Table 6. Computational complexity of the proposed method

FLOPS Inference time

Memory creation 24 k 0.1ms (CPU – Intel Xeon Gold)
MobileNet-V3L 0.23G 4.9ms (GPU – Nvidia A100)

From each chunk, a time surface is created. In Figure 7
the term “Sequence” indicates the collection of all the time
surfaces extracted from a recording. During training, these
time surfaces are organized in subsequences, as construct-
ing meaningful input memories of events requires consec-
utive time surfaces. The subsequences are then fed to the
DNN in a random order. For what concerns the validation
and the test set, each sequence is not subdivided into smaller
subsequences to emulate the behavior of the system.

Time surface Time surface

Train Validation/Test

Sequence

Subsequence 1 Subsequence 2

Sequence

Memory Memory

1
Figure 7. For training, original sequences of time surfaces are di-
vided in subsequences which are then fed to the DNN in a random
order. For validation/test data, the original sequence is not subdi-
vided to emulate the behavior of the final system.

The network underwent training for 200 epochs using
the Adam optimizer [23] and an initial learning rate of 2.8×
10−4. The training process lasts almost 2 hours on a V100
GPU.

The best-performing model, in terms of validation accu-
racy (p10), was saved during training. In addition, to ensure
robustness and avoid over-fitting, we largely used data aug-
mentation on the training set.

Results. We evaluate the proposed system based on mem-
ory channels on the full test set. The results obtained are the
following: 99.53% of p15 accuracy, 99.05% of p10 accu-
racy, 89.36% of p5 accuracy and a mean euclidean distance
of 3.2.

Moreover, we also evaluate the effectiveness of our pre-
processing methodology against the use of simple time sur-
faces as inputs. When using time surfaces only, the input of
the estimator is composed of three channels, which are Sp,
Sn and their average. Table 7 compares the performance
of MobileNet-V3L on the full test set of the EET dataset,

Table 7. P10 accuracy and Mean Eucledian distance of the eye-
tracking system on the full EET test set, both with the use of time
surfaces only or incorporating the input pipeline based on three
memory channels with ∆t = 50ms.

p10 Accuracy Mean Eucledian distance

TS only Ours TS only Ours

MobileNet-V3L 94.9% 99.1% 3.7 3.2

measured by means of the p10 accuracy and the mean Eu-
clidean distance with ∆t = 50ms. The results consistently
demonstrate a significant improvement when using memory
channels over simple time surfaces.

As far as we know, the input pipeline we propose based
on memory channels is novel and the entire proposed solu-
tion is production-ready since it uses a DNN that is already
optimized for edge devices, while the input pipeline is im-
plementable in a few lines of code.

4.6. Team: ERVT

Mircea Lică, David Dinucu-Jianu, Cătălin Grı̂u
Delft University of Technology

Contact: M.T.Lica@student.tudelft.nl

Description. We propose a lightweight model, Efficient
Recurrent Vision Transformer (ERVT), inspired by prior
work in event-based object detection [19], tailored for real-
time eye tracking applications. To accurately predict the po-
sition of the pupil, we designed a hierarchical model based
on multiple stages working at different feature resolutions.
Each stage employs a spatial feature extraction module and
a spatio-temporal module. Compared to the Recurrent Vi-
sion Transformer [19], ERVT does not completely sepa-
rate spatial and temporal feature extraction, employing a
ConvLSTM to capture spatio-temporal relations between
consecutive timestamps. Moreover, we replace the block-
grid attention introduced in [39] with pixel-wise multi-head
self-attention to better capture global information. ERVT
achieves a P10 accuracy of 97.6% on the private competi-
tion dataset with only 150K parameters, 37M MACs, 0.157
GFLOPs and an inference time of 1.06ms on a RTX 3060
Laptop GPU.

Implementation Details. The Efficient Recurrent Vision
Transformer (ERVT) is an adaptation of the Recurrent
Vision Transformer (RVT) [19] with an emphasis on
efficiency in terms of inference time and size, such that
it could ultimately be used in real-time applications. The
model is composed of two stages that operate at different
spatial resolutions and followed by a prediction head which
produces the (x, y) coordinates corresponding to the pupil.
Each stage of the network consists of a strided convolution,
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Figure 8. Model architecture diagram proposed by Team ERVT, showing the two stages of the model and over two timesteps.

a spatial feature extraction module and a ConvLSTM [38],
as seen in Fig 8. The stage starts with a strided convolution
in order to exploit the inductive biases given by the spatial
structure of the image while downsampling the feature
maps for more efficient computation. The spatial feature
extraction module takes inspiration from [39] and is de-
signed to capture global relationships between pixels in the
corresponding feature maps using self-attention. Contrary
to the original Recurrent Vision Transformer, we find that
the model performs significantly better without completely
separating spatial and temporal feature extraction. Thus,
each stage ends with a ConvLSTM that aggregates the
information extracted at the current timestamp with the
information from the previous timestamp.

The model is trained from scratch on the dataset
provided by the competition. Similarly to the baseline
provided by the organizers, we pre-process the event stream
into a voxel grid representation with T = 3 discretization
steps of time to make it compatible with the convolutions
required for ERVT. During training, we split the dataset
in sequences of 30 frames (voxel grids) corresponding to
50ms of accumulated events. To alleviate the problem of
exploding/vanishing gradients specific to RNNs, we use
a Truncated Backpropagation Through Time (TBPTT)
optimization technique. At inference time, we process
frames in a sequential manner, keeping track of the hidden
h and cell c states of the ConvLSTM for the next timestamp.

We apply both temporal and spatial sub-sampling with
a factor of α = 0.2 and β = 0.125 for the temporal and
spatial dimension, respectively. To limit overfitting on the
dataset, we augment the data with 2 different techniques:
random horizontal flip and random noise. The horizontal

flip has a probability of 0.5 while the noise is applied
pixel-wise based on a normal distribution N (µ, σ2) where
the mean and standard deviation are applied per input
channel. Our method does not use the eye open/closed
information additionaly provided in the dataset.

We use PyTorch for training and inference of ERVT
and Tonic library to process the event dataset provided
by the competition. The model is trained to minimize the
weighted RMSE loss between the predicted (x̂, ŷ) and the
ground truth (x, y) using Adam [22] as the optimizer with
an exponential learning rate scheduler with γ = 0.98.

The training procedure consists of 150 epochs over the
competition dataset with data augmentation included. The
initial learning rate is set to 0.001 and we use a batch size of
1 to avoid overfitting on the train set. As mentioned before,
truncated backpropagation through time is used as an opti-
mization strategies, with the goal of removing the effects of
exploding/vanishing gradients caused by the recurrent com-
ponent. Thus, we split the sequence of 30 frames in two
equal parts and stop the gradients when passing from one
part to the next, as the standard TBPTT is implemented. Us-
ing these settings, the training time for ERVT is 5.4 hours,
Lastly, we use a dropout probability of 0.6. All the exper-
iments are performed on a laptop with Nvidia RTX 3060 6
GB.

4.7. Team: EFFICIENT

Xiaopeng Lin, Hongwei Ren, Bojun Cheng
The Hong Kong University of Science and Technology

(Guangzhou)
Contact: bocheng@hkust-gz.edu.cn
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Description. The EFFICIENT team utilizes the efficient
Point-based Network named PEPNet [34] for Eye Tracking
with Event Cameras. The raw point cloud is directly lever-
aged as the network input to fully utilize the high-temporal
resolution and inherent sparsity of events. An Intra Group
Aggregation Module is designed to extract the local spa-
tial and temporal features. The global information is aggre-
gated through Inter Group Aggregation Module, which con-
sists of the Bi-directional Long Short-Term Memory. The
Point-based Network can achieve excellent performance at
high inference speed with a lightweight design principle,
only 0.64 Million parameters and the inference time is 6.7
ms/sample. Additionally, the parameter and floating-point
operations (FLOPs) in our model remain constant regard-
less of the input camera’s resolution, in contrast to frame-
based methods.

The network architecture is shown in Fig. 9, encompass-
ing Data Processing, Sampling and Grouping, Intra-Group
aggregation, Inter-Group aggregation, and Regression. The
initial phase leverages the sparsity and high temporal reso-
lution of event data, processing the event stream into non-
overlapping 10 ms samples, each associated with a 100 Hz
label. To address challenges associated with data sparsity,
the methodology includes expanding the sample window
size to 50 ms, maintaining the original labeling frequency to
align with evaluation metrics. The Sampling and Grouping
phase employs advanced techniques such as Farthest Point
Sampling (FPS) and K-Nearest Neighbors (KNN) to cap-
ture essential spatial and temporal information efficiently
[33].

To enhance feature extraction and integration, the
methodology includes two novel aggregation modules. The

Intra Group Aggregation module leverages an extractor
coupled with an attention mechanism to distill and consol-
idate local spatial-temporal information. Concurrently, the
Inter Group Aggregation module employs a Bi-directional
LSTM network, synergized with an attention mechanism,
to elucidate temporal relationships across different event
groups. This bifurcated aggregation strategy enables a com-
prehensive synthesis of local and global features, facilitat-
ing precise pupil position regression within a lightweight
model architecture.

The Efficient Point-based Eye Tracking Method exhibits
capabilities for high-frequency tracking operations. Lever-
aging a lightweight asynchronous architecture, this method-
ology demonstrates remarkable adaptability. It enables pre-
cision tracking across a diverse range of frequency bands,
with operational effectiveness maintained up to frequencies
as high as 1 kHZ. This adaptability, coupled with its high-
frequency tracking capabilities, positions the method as a
robust solution for applications requiring precise eye move-
ment tracking under varying operational frequencies.

Implementation Details. Our server leverages the Py-
Torch deep learning framework and selects the AdamW op-
timizer with an initial learning rate set to 1 · e−3, which
is reduced at the 100th and 120th epochs, accompanied
by a weight decay parameter of 1 · e−4. This configura-
tion is meticulously chosen to enhance the model’s conver-
gence and performance through adaptive learning rate ad-
justments. Training is conducted on an NVIDIA GeForce
RTX 4090 GPU with 24GB of memory, enabling a batch
size of 256. The model size is contingent upon the dimen-
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sionality of MLPs at each stage. The MLPs’ dimensions
for the standard structure are [64, 128, 256]. Moreover, the
Bi-LSTM hidden layer dimension is 128.

The validation and testing protocol is meticulously de-
signed to assess the solution’s accuracy and robustness com-
prehensively. Testing involves processing motion data into
non-overlapping 50 ms samples for 20 Hz tracking, with a
pre-processing step of random sampling 1024 event points
per sample. Initial tests without post-processing achieves
93% P10 accuracy, which is further enhanced through a
novel confidence score mechanism, boosting the tracking
accuracy to over 98% P10 accuracy. This mechanism ac-
counts for the number of event points per sample, improv-
ing prediction reliability significantly.

Results. The Efficient Point-based Eye Tracking Method
showcases impressive performance across various metrics,
achieving P5 accuracy at 80.67%, P10 at 97.95%, and P15
at 99.74%, with a mean Euclidean distance of 3.51 and a
mean Manhattan distance of 4.43. The innovation of this re-
search lies in its effective utilization of point clouds within
the event-based eye tracking paradigm, exploiting the high
temporal resolution of event data to achieve high tracking
frequency and accuracy on a streamlined model. This in-
novative approach enables high-frequency, high-accuracy
tracking on a lightweight model, marking a significant con-
tribution to the field of eye tracking technology.

4.8. Team: GTechVision

Xinan Zhang, Valentin Vial, Anthony Yezzi, James Tsai
Georgia Institute of Technology

Contact: xzhang979@gatech.edu

Description. Our methodology can be divided in three
steps :
• With the real-time edge applications taken into account,

we adopted and adjusted three light-weighted models for
this task, including the baseline (CNN+GRU), convolu-
tional LSTM network, and spiking LSTM model based
on spiking neural network.

• A comprehensive hyper-parameter search on these Model
has been performed, resulting in the identification of
hyper-parameter impacting performances and further se-
lection of the best combination of the hyper-parameter.

• The four-layer convolutional LSTM network achieved
the best performance with the selected hyper-parameters,
with a moderately high p10 accuracy of 92.63 percent and
fast inference speed less than 1ms per event on a RTX
3090 Ti GPU.
In our methodology, the principle of grid search plays a

pivotal role, unfolding in two distinctive dimensions. First,
we confronted the constraints set by the realities of edge

computation in real-world decentralized applications, lead-
ing us to limit our model selection to those with a size
of generally less than twenty million and the final submit-
ted model has merely 0.41 million learnable parameters.
Among these, the baseline, convolutional LSTM [8, 38],
and spiking LSTM [35] stands out as notably effective and
lightweight, drawing from insights gleaned from prior liter-
ature on analogous tasks.

Subsequently, to optimize the performance of these cho-
sen models to their fullest potential, we conducted a meticu-
lous grid search across a spectrum of hyperparameters, local
structures, loss functions, etc. This systematic exploration
aimed to fine-tune the models, ensuring to boost their per-
formance in event based eye tracking. The baseline, con-
volutional LSTM, spiking LSTM will be discussed below
with different emphasis.

The baseline, as shown in Fig.10 consists of three layers
of 2D convolution as the backbone and one layer of GRU
to extract the semantic information and further the tempo-
ral dependency between adjacent timestamps. Finally, one
fully connected layer regress the pupil center coordinates.
As mentioned above, a set of grid search has been per-
formed and it shows that 6 time dimension channels in the
voxel representation can yield best p10 performance for the
baseline with L1 loss.

The second model we reported here is convolutional
LSTM model in Fig.11, with convolutional LSTM layer
as its fundamental building block, which takes in the fea-
ture maps at the current timestamp from the previous layer
(voxel representation if it is the first layer) and the previ-
ous hidden feature (a list of zero tensors if it is the first
layer), utilizes 2D convolution layers to extract high-level
feature maps given to the LSTM to generate new hidden
features. The newly generated hidden features will be used
for regressing the coordinates as well as input to the next
convolutional LSTM cell sequentially. We experimented
with different structures for the feature map (2D convolu-
tion and 3D convolution) and temporal dependency extrac-
tion (LSTM, Bi-LSTM), different number of convolutional
LSTM layers (2 ,3, 4) and loss functions (MSE, Weighted
MSE, L1) and finally found that 4 layers with each con-
sisting of 2D convolution and uni-directional LSTM gives
the best p10 performance with 3 time channels in the voxel
representation and Weighted MSE loss.

We also explored the spiking LSTM model as shown in
Fig.12, which shares a similar structure with the baseline
but uses a spiking LSTM instead of GRU to extract the
temporal dependency. In Spiking LSTM, a set of spiking
activation functions are applied to neurons at forget gate,
input gate and another assisting layer on input. Membrane
potential of the neurons are inputs to the spiking activation
functions which eventually output a spike or null in the or-
der of a time series. Further, the activation functions in the
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backbone were also experimented with either regular ReLU
or Leaky Integrate-and-Fire (LIF) Neurons. The final re-
sults show that integration of spiking neurons and a spiking
LSTM architecture by 5%, reaching 87.68% P10 accuracy
with 6 time channels in the voxel representation and L1 loss.

Implementation Details. We adhered to the data prepara-
tion pipeline outlined in the official demo, which involved
spatial and temporal sampling, division of sub-recordings,
aggregation of sparse events over consecutive frames to
construct a voxel representation within one sub-recording.
This approach allowed us to condense both spatial and tem-
poral information within the prepared data. The voxel rep-
resentations in a sub-recording are inputted to the networks
sequentially as a time series, which are expected to regress
the coordinates while considering the temporal dependency
between adjacent voxel representations. Besides, the anno-
tated data was divided into training and validation sets sub-
sequently. Notably, we refrained from incorporating any
extra data beyond the original one but decreased the de-
fault train stride from 15 to 5, which means the next sub-
recording will start 250us after the current one instead of
750us, in order to generate more data for training from the
raw recordings. For the training process, we employed a
single RTX 3090 Ti GPU. Utilizing the Adam optimizer,
we set the learning rate at 0.001, and the training proceeded
through a total of 200 epochs. This setting also aligned with
the demo.

Figure 10. Baseline Architecture

Results. The trio of models we selected provides a natu-
ral framework for discerning the difference between various
RNN structures. Within this set, the baseline model utilizes
the GRU instantiation, while its counterparts leverage the
convolutional LSTM and spiking LSTM architectures re-
spectively. The best P10 performance of the three models
are reported in Table 8.

Notably, the convolutional LSTM model emerged as the
top performer among the three, with the fewest trainable
parameters, which underscores the efficacy of employing

Figure 11. Convolutional LSTM Architecture

Figure 12. Spiking LSTM Architecture

Method Optimizer Learning Rate Epochs Dataset P10 Accuracy

4-Layer Convolutionnal LSTM Adam 0.001 200 Challenge dataset 92.63%
Spiking LSTM Adam 0.001 200 Challenge dataset 87.68%
Baseline Adam 0.001 200 Challenge dataset 83.99%

Table 8. P10 Performance of The Three Models by Team
GTechVision.

convolutional LSTM within a constrained model size. The
strength of the convolutional LSTM architecture lies in its
ability to retain more spatial information within the LSTM
cell with 2D convolution so that the feature maps are flat-
tened at later stages than other models, which could be ben-
eficial to 2D coordinate regression and future timestamps.
Furthermore, our findings also shed light on the promise of
the spiking LSTM model in this task. While not superior to
the convolutional LSTM model, it outperformed the base-
line by 3.69% in p-10 accuracy.
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