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a b s t r a c t

We study an SAIRS-type epidemic model with vaccination, where the role of
asymptomatic and symptomatic infectious individuals is explicitly considered in
the transmission patterns of the disease. We provide a global stability analysis for
the model. We determine the value of the basic reproduction number R0 and prove
that the disease-free equilibrium is globally asymptotically stable if R0 < 1. If
R0 > 1, the disease free equilibrium is unstable and a unique endemic equilibrium
exists. We investigate the global stability of the endemic equilibrium for some
variations of the original model under study and answer an open problem proposed
in Ansumali et al. (2020). In the case of the SAIRS model without vaccination,
we prove the global asymptotic stability of the disease-free equilibrium also when
R0 = 1. We provide a thorough numerical exploration of our model to illustrate
our analytical results.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The recent Covid-19 pandemic has demonstrated the extent to which the study of mathematical models of
infectious disease is crucial to provide particularly effective tools to help policy-makers combat the spread of
the disease. Many large scale data-driven simulations have been used to examine and forecast aspects of the
current epidemic spreading [1,2], as well as in other past epidemics [3–5]. However, the study of theoretical
effective epidemic models able to catch the salient transmission patterns of an epidemic, but that are yet
mathematical tractable, offers essential insight to understand the qualitative behavior of the epidemic, and
provides useful information for control policies.

A peculiar, yet crucial feature of the recent Covid-19 pandemic is that “asymptomatic” individuals,
despite showing no symptoms, are able to transmit the infection (see e.g., [6–9], where a considerable
fraction of SARS-Cov-2 infections have been attributed to asymptomatic individuals). This is one of the
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main aspects that has allowed the virus to circulate widely in the population, since asymptomatic cases
often remain unidentified and presumably have more contacts than symptomatic cases, given that lack of
symptoms often implies a lack of quarantine. Hence, the contribution of the so-called “silent spreaders” to
the infection transmission dynamics should be considered in mathematical epidemic models [10].

Models that incorporate an asymptomatic compartment already exist in literature [11–13], but have not
been analytically studied as thoroughly as more famous compartmental models. In this work, we consider an
SAIRS (Susceptible–Asymptomatic infected–symptomatic Infected–Recovered–Susceptible) model based on
the one proposed in [10, Sec. 2], in which the authors provide only a local stability analysis. An SAIR-type
model is studied in [14] with application to SARS-CoV-2. After a global stability analysis of the model, the
authors present a method to estimate the parameters. They apply the estimation method to Covid-related
data from several countries, demonstrating that the predicted epidemic trajectories closely match actual
data. The global stability analysis in [14] regards only a simplified version of the model in [10]: first, recovered
people do not lose their immunity; moreover, the infection rates of the asymptomatic and symptomatic
individuals are equal, as well as their recovery rates, while in [10] these parameters are considered to be
potentially different.

Thus, the main scope of our work is to provide a global stability analysis of the model proposed in [10],
and for some variations thereof. In addition, we include in our model the possibility of vaccination. In the
investigation of global stability, we answer an open problem left in [14]. In particular, we study the global
asymptotic stability (GAS) of the disease-free equilibrium (DFE) and provide results related to the global
asymptotic stability of the endemic equilibrium (EE) for many variations of the model, as we will explain
in detail in Section 1.1.

The rigorous proof of global stability, especially for the positive endemic equilibrium, becomes a challeng-
ing mathematical problem for many disease models due to their complexity and high dimension [15].

The classical, and most commonly used method for GAS analysis is provided by the Lyapunov stability
theorem and LaSalle’s invariance principle. These approaches are successfully applied, for example, to the
SIR, SEIR and SIRS models (see, e.g. [15–17]). Unfortunately, it is often difficult to construct such Lyapunov
functions and no general method is available. However, some classes of Lyapunov functions have proven
useful. For example, a well known form of Lyapunov functions used in the literature of mathematical biology
is V (x) =

∑
i=1,...,n cix

∗
i

(
xi
x∗

i
− 1 − ln xi

x∗
i

)
, coming from the first integral of a Lotka–Volterra system [15].

ther techniques have appeared in literature and were successfully applied to global stability arguments for
arious epidemic models. For example, the Li–Muldowney geometric approach [18,19] was used to determine
he global asymptotic stability of the SEIR and SEIRS models [20–22], of some epidemic models with bilinear
ncidence [23], as well as of SIR and SEIR epidemic models with information dependent vaccination [24,25].
pplications of Li–Muldowney geometric approach can also be found in population dynamics [26].
Unlike the more famous and studied epidemic models, much less attention has been paid to the SAIR(S)-

ype models. Thus, we think that a deeper understanding of these kind of models is needed, and could prove
o be very useful in the epidemiological field. Indeed, in various communicable diseases, such as influenza,
holera, shigella and Covid-19, an understanding of the infection transmission by asymptomatic individuals
ay be crucial in determining the overall pattern of the epidemic dynamics [12,27].
In our model, the total population is partitioned into four compartments, namely S, A, I, R, which rep-

esent the fraction of Susceptible, Asymptomatic infected, symptomatic Infected and Recovered individuals,
espectively, such that 1 = S+A+I +R. The infection can be transmitted to a susceptible through a contact

with either an asymptomatic infectious individual, at rate βA, or a symptomatic individual, at rate βI . This
aspect differentiates an SAIR-type model from the more used and studied SEIR-type model, where once
infected a susceptible individual enters an intermediate stage called “Exposed” (E), but a contact between

a person in state E and one in state S does not lead to an infection.
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In our model instead, once infected, all susceptible individuals enter an asymptomatic state, indicating in
any case a delay between infection and symptom onset. We include in the asymptomatic class both individ-
uals who will never develop the symptoms and pre-symptomatic who will eventually become symptomatic.
The pre-symptomatic phase seems to have a relevant role in the transmission: for example, in the case of
Covid-19, empirical evidence shows that the serial interval tends to be shorter than the average incubation
period, suggesting that a significant proportion of secondary transmission can occur prior to symptoms
onset [2]; the importance of the pre-symptomatic phase in the transmission is underlined also for other
diseases, such as dengue [28], and H1N1 influenza [29].

From the asymptomatic compartment, an individual can either progress to the class of symptomatic
infectious I, at rate α, or recover without ever developing symptoms, at rate δA. An infected individual
with symptoms can recover at a rate δI . We assume that the recovered individuals do not obtain a long-life
immunity and can return to the susceptible state after an average time 1/γ. We also assume that a proportion
ν of susceptible individuals receive a dose of vaccine which grants them a temporary immunity. We do not
add a compartment for the vaccinated individuals, not distinguishing the vaccine-induced immunity from
the natural one acquired after recovery from the virus. Moreover, we consider the vital dynamics of the entire
population and, for simplicity, we assume that the rate of births and deaths are the same, equal to µ; we do
ot distinguish between natural deaths and disease-related deaths.

.1. Outline and main results

In Section 2, we present the system of equations for the SAIRS model with vaccination, providing its
ositive invariant set. In Section 3, we determine the value of the basic reproduction number R0 and prove
hat if R0 < 1, the DFE is GAS, and unstable if R0 > 1.

In Section 4, we discuss the uniform persistence of the disease, the existence and uniqueness of the endemic
quilibrium, and we investigate its stability properties. In particular, first we provide the local asymptotic
tability of the EE, then we investigate its global asymptotic stability for some variations of the original
odel under study. We start by considering the open problem left in [14], where the global stability of

n SAIR model with vital dynamics is studied. The authors consider a disease which confers permanent
mmunity, meaning that the recovered individuals never return to the susceptible state. Moreover, they
mpose the restrictions βA = βI and δA = δI , and leave the global stability of the endemic equilibrium
hen βA ̸= βI and δA ̸= δI , as an open problem. Thus, in Section 4.1.1, we directly solve the open problem

eft in [14], by considering an SAIR model (i.e., γ = 0), with βA ̸= βI and δA ̸= δI , including in addition the
ossibility of vaccination. We consider the basic reproduction number R0 for this model and prove that if
0 > 1 the EE is GAS. In Section 4.1.2, we study the GAS of the EE for an SAIRS model (i.e., γ ̸= 0) with

accination, with the restrictions βA = βI and δA = δI , proving that if R0 > 1 the EE is GAS. Thus, we
xtend the global analysis in [14] to a model including vaccination and loss of immunity. In Section 4.1.3,
e investigate the global stability of the SAIRS model with βA ̸= βI or δA ̸= δI , i.e., the model proposed

n [10], with in addition the possibility of vaccination. In this case, we use a geometric approach to global
tability for nonlinear autonomous systems due to Lu and Lu [30], that generalizes the criteria developed
y Li and Muldowney [18,19]. We prove that if R0 > 1 and βA < δI , the EE is GAS.

In Section 4.2, we are able to prove the GAS of the DFE also in the case R0 = 1, assuming that no
accination campaign is in place. In Section 5, we validate our analytical results via several numerical
imulations and deeply explore the role of parameters.

We stress that, particularly in the context of the current Covid-19 pandemic, whether symptomatic and
symptomatic individuals are equally infectious or not remains a controversial topic [31]. However, one can
onsider that unidentified asymptomatic individuals have more contacts than the symptomatic ones, who

ay be forced to isolation, in many infectious diseases. Consequently, one can give more weight to this

3
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Fig. 1. Flow diagram for system (1).

henomenon and consider different transmission rates (e.g., in [10]). The assumption δA = δI is subject
to debate, as well. Thus, we remark that our primary aim is to provide a global stability analysis under
different mathematical assumptions to study some variations of the original SAIRS model, which is lacking
in the literature. However, we think that this study may reveal useful also for data-driven models, in which
the assumptions considered should be those that best fit the disease under investigation and the available
medical knowledge.

2. The SAIRS model with vaccination

We consider an extension of the SAIRS model presented in [10].
The system of ODEs which describes the model is given by

dS(t)
dt

= µ −
(

βAA(t) + βII(t)
)

S(t) − (µ + ν)S(t) + γR(t),

dA(t)
dt

=
(

βAA(t) + βII(t)
)

S(t) − (α + δA + µ)A(t),

dI(t)
dt

= αA(t) − (δI + µ)I(t),

dR(t)
dt

= δAA(t) + δII(t) + νS(t) − (γ + µ)R(t),

(1)

ith initial condition (S(0), A(0), I(0), R(0)) belonging to the set

Γ̄ = {(S, A, I, R) ∈ R4
+|S + A + I + R = 1}, (2)

here R4
+ is the non-negative orthant of R4. The flow diagram for system (1) is given in Fig. 1.

Assuming initial conditions in Γ̄ , S(t)+A(t)+I(t)+R(t) = 1, for all t ≥ 0; hence, system (1) is equivalent
o the following three-dimensional dynamical system

dS(t)
dt

= µ −
(

βAA(t) + βII(t)
)

S(t) − (µ + ν + γ)S(t) + γ(1 − A(t) − I(t)),

dA(t)
dt

=
(

βAA(t) + βII(t)
)

S(t) − (α + δA + µ)A(t),

dI(t)
dt

= αA(t) − (δI + µ)I(t),

(3)

with initial condition (S(0), A(0), I(0)) belonging to the set

Γ = {(S, A, I) ∈ R3 |S + A + I ≤ 1}.
+

4
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System (3) can be written in vector notation as

dx(t)
dt

= f(x(t)),

here x(t) = (S(t), A(t), I(t)) and f(x(t)) = (f1(x(t)), f2(x(t)), f3(x(t))) is defined according to (3).

heorem 1. Γ is a positively invariant set for system (3). That is, for all initial values x(0) ∈ Γ , the
olution x(t) of (3) will remain in Γ for all t > 0.

The proof can be found in Appendix A.1.

. Disease elimination

In this section, we provide the value of the basic reproduction number, that is defined as the expected
umber of secondary infections produced by an index case in a completely susceptible population [32,33].
his numerical value gives a measure of the potential for disease spread within a population [34]. Then, we

nvestigate the stability properties of the disease-free equilibrium of the system (3), that is equal to

x0 = (S0, A0, I0) =
(

µ + γ

µ + ν + γ
, 0, 0

)
. (4)

Lemma 2. The basic reproduction number R0 of (3) is given by

R0 =
(

βA + αβI

δI + µ

)
γ + µ

(α + δA + µ)(ν + γ + µ) . (5)

roof. Let us use the next generation matrix method [35] to find R0. System (3) has 2 infected
ompartments, denoted by A and I. We can write

dA(t)
dt

= F1(S(t), A(t), I(t)) − V1(S(t), A(t), I(t)),

dI(t)
dt

= F2(S(t), A(t), I(t)) − V2(S(t), A(t), I(t)),

here

F1(S(t), A(t), I(t)) =
(

βAA(t) + βII(t)
)

S(t), V1(S(t), A(t), I(t)) = (α + δA + µ)A(t),

F2(S(t), A(t), I(t)) = 0, V2(S(t), A(t), I(t)) = −αA(t) + (δI + µ)I(t).

Thus, we obtain

F =

⎛⎜⎝∂F1

∂A
(x0) ∂F1

∂I
(x0)

∂F2

∂A
(x0) ∂F2

∂I
(x0)

⎞⎟⎠ =
(

βAS0 βIS0
0 0

)
, where S0 = γ + µ

γ + µ + ν
, (6)

V =

⎛⎜⎝∂V1

∂A
(x0) ∂V1

∂I
(x0)

∂V2

∂A
(x0) ∂V2

∂I
(x0)

⎞⎟⎠ =
(

α + δA + µ 0
−α δI + µ

)
, (7)

rom which

V −1 =

⎛⎜⎜⎝
1

α + δA + µ
0

α 1

⎞⎟⎟⎠ .
(α + δA + µ)(δI + µ) δI + µ

5
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The next generation matrix is defined as M := FV −1, that is

M =

⎛⎝ βAS0

α + δA + µ
+ αβIS0

(α + δA + µ)(δI + µ)
βIS0

δI + µ

0 0

⎞⎠ .

The basic reproduction number R0 is defined as the spectral radius of M , denoted by ρ(M). Thus, with a
direct computation, we obtain (5). □

In the following, we recall some results that we will use to prove the global asymptotic stability of the
disease-free equilibrium x0 of (3).

Lemma 3. The matrix (F − V ) has a real spectrum. Moreover, if ρ(FV −1) < 1, all the eigenvalues of
F − V ) are negative.

roof. From (6) and (7)

(F − V ) =
(

βAS0 − (α + δA + µ) βIS0
α −(δI + µ)

)
. (8)

Since (F − V ) is a 2 × 2 matrix whose off-diagonal elements have the same sign, it is easy to see that its
eigenvalues are real. Indeed, for a generic matrix A =

(
a b
c d

)
with sign(b) = sign(c), the eigenvalues can

be easily shown to be real by explicitly computing them:

λ1,2 =
(a + d) ±

√
(a − d)2 + 4bc

2 ,

nd noticing that the radicand is the sum of two non-negative values. Now, if ρ(FV −1) = R0 < 1 all
igenvalues of (F − V ) are negative as a consequence of [34, Lemma 2]. □

heorem 4. The disease-free equilibrium x0 of (3) is locally asymptotically stable if R0 < 1, and unstable
f R0 > 1.

roof. See [34, Theorem 1]. □

heorem 5. The disease-free equilibrium x0 of (3) is globally asymptotically stable in Γ if R0 < 1.

roof. Since Γ is an invariant set for (3) and in view of Theorem 4, it is sufficient to show that for all
(0) ∈ Γ

lim
t→∞

A(t) = 0, lim
t→∞

I(t) = 0, and lim
t→∞

S(t) = S0,

ith S0 as in (4). From the first equation of (3) follows that

dS(t)
dt

≤ µ + γ − (µ + ν + γ)S(t).

It is easy to see that S0 is a global asymptotically stable equilibrium for the comparison equation

dy(t)
dt

= µ + γ − (µ + ν + γ)y(t).

Then, for any ε > 0, there exists t̄ > 0, such that for all t ≥ t̄, it holds

S(t) ≤ S + ε, (9)
0

6
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t→∞
S(t) ≤ S0. (10)

ow, from (9) and second and third equation of (3), we have that for t ≥ t̄

dA(t)
dt

≤
(

βAA(t) + βII(t)
)

(S0 + ε) − (α + δA + µ)A(t),

dI(t)
dt

= αA(t) − (δI + µ)I(t).

Let us now consider the comparison system
dw1(t)

dt
=
(

βAw1(t) + βIw2(t)
)

(S0 + ε) − (α + δA + µ)w1(t),

dw2(t)
dt

= αw1(t) − (δI + µ)w2(t), w1(t̄) = A(t̄), w2(t̄) = I(t̄),

hat we can rewrite as
dw(t)

dt
= (Fε − Vε)w(t),

here w(t) = (w1(t), w2(t))T and Fε − Vε is the matrix in (8), computed in x0(ε) = (S0 + ε, 0, 0). Let us
ote that if R0 = ρ(FV −1) < 1, we can choose a sufficiently small ε > 0 such that ρ(FεV −1

ε ) < 1. Then, by
pplying Lemma 3 to (Fε − Vε), we obtain that it has a real spectrum and all its eigenvalues are negative.
t follows that limt→∞ w(t) = 0, whatever the initial conditions are (see, e.g., [36]), from which

lim
t→∞

A(t) = 0, and lim
t→∞

I(t) = 0.

ow, for any ε > 0 there exists t̄1 such that for any t ≥ t̄1, I(t) < ε and A(t) < ε. So, for t ≥ t̄1 we have
dS(t)

dt
≥ µ − ε(βA + βI)S(t) − (µ + ν + γ)S(t) + γ(1 − 2ε).

It is easy to see that µ+γ(1−2ε)
ε(βA+βI )+(µ+ν+γ) is a global asymptotically stable equilibrium for the comparison

quation
dy(t)

dt
= µ − ε(βA + βI)y(t) − (µ + ν + γ)y(t) + γ(1 − 2ε).

Thus, for any ζ > 0, there exists t̄2 > 0 such that for all t ≥ t̄2,

S(t) ≥ µ + γ(1 − 2ε)
ε(βA + βI) + (µ + ν + γ) − ζ.

Then, for any ε > 0, we have

lim inf
t→∞

S(t) ≥ µ + γ(1 − 2ε)
ε(βA + βI) + (µ + ν + γ) .

Letting ε go to 0, we have lim inft→∞ S(t) ≥ S0, that combined with (10) gives us

lim
t→∞

S(t) = S0. □

4. Global stability of the endemic equilibrium

In this section, we discuss the uniform persistence of the disease, the existence and uniqueness of an
endemic equilibrium, and we investigate its stability properties.

We say that the disease is endemic if both the asymptomatic and infected fractions in the population
remains above a certain positive level for a sufficiently large time. The notion of uniform persistence can be
used to represent and analyze the endemic scenario [20]. In the following, with the notation Θ̊ , we indicate
the interior of a set Θ .
7
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Definition 6. System (3) is said to be uniformly persistent if there exists a constant 0 < ε < 1 such that
ny solution x(t) = (S(t), A(t), I(t)) with x(0) ∈ Γ̊ satisfies

min{lim inf
t→∞

S(t), lim inf
t→∞

A(t), lim inf
t→∞

I(t)} ≥ ε. (11)

To address the uniform persistence of our system, we need the following result.

emma 7. The DFE x0 is the unique equilibrium of (3) on ∂Γ .

roof. Let us assume that x̄ = (S̄, Ā, Ī) is an equilibrium of (3) on ∂Γ . Then, there are three possibilities:
Case 1: S̄ = 0. It follows from the second equation of (3) that Ā = 0 and, consequently, from the third

quation that Ī = 0. Then, from the first equation of (3) we have γ(Ā + Ī) = µ + γ > 0, and a contradiction
ccurs.

Case 2: Ā = 0. It follows from the third equation of (3) that Ī = 0, and from the first that S̄ = S0.
Case 3: Ī = 0. Analogously to Case 2, we find that Ā = 0 and S̄ = S0.
Case 4: S̄ + Ā + Ī = 1. By summing the equations in (3), we have δAĀ + δI Ī + νS̄ = 0, a contradiction.
By combining the above discussions the statement follows. □

Theorem 8. If R0 > 1, system (3) is uniformly persistent and there exists at least one endemic equilibrium
in Γ̊ .

Proof. By Lemma 7, the largest invariant set on ∂Γ is the singleton {x0}, which is isolated. If R0 > 1, we
know from Theorem 4 that x0 is unstable. Then, by using [37, Thm 4.3], and similar arguments in [20, Prop.
3.3], we can assert that the instability of x0 implies the uniform persistence of (3). The uniform persistence
and the positive invariance of the compact set Γ imply the existence of an endemic equilibrium in Γ̊ (see,
e.g., [38, Thm 2.8.6] or [15, Thm. 2.2]). □

Lemma 9. There exists an endemic equilibrium x∗ = (S∗, A∗, I∗) in Γ̊ for system (3) if and only if R0 > 1.
Furthermore, this equilibrium is unique.

Proof. We equate the right hand sides of (3) to 0, and assume A∗, I∗ ̸= 0. From the third equation we
obtain

A∗ = δI + µ

α
I∗, (12)

nd replace it in the second equation(
βA

δI + µ

α
+ βI

)
I∗S∗ − (α + δA + µ)δI + µ

α
I∗ = 0.

ince I∗ ̸= 0, it follows that

S∗ = (α + δA + µ)(δI + µ)
βA(δI + µ) + βIα

. (13)

et us substitute the expressions (12) and (13) in the first equation, then we obtain

µ −
(

βA
δI + µ

α
+ βI

)
(α + δA + µ)(δI + µ)

βA(δI + µ) + βIα
I∗

− (µ + ν + γ) (α + δA + µ)(δI + µ)
βA(δI + µ) + βIα

+ γ

(
1 − δI + µ

α
I∗ − I∗

)
= 0,
8
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which implies that

I∗ =
µ − (µ + ν + γ) (α + δA + µ)(δI + µ)

βA(δI + µ) + βIα
+ γ

1
α

(βA(δI + µ) + βIα) (α + δA + µ)(δI + µ)
βA(δI + µ) + βIα

+ γ
δI + µ

α
+ γ

= (µ + γ)(βA(δI + µ) + βIα) − (µ + ν + γ)(α + δA + µ)(δI + µ)
βA(δI + µ) + βIα

α
((α + δA + µ + γ)(δI + µ) + γα)

=
(δI + µ)

(
(µ + γ)

(
βA + βI

α

δI + µ

)
− (µ + ν + γ)(α + δA + µ)

)
βA(δI + µ) + βIα

α
((α + δA + µ + γ)(δI + µ) + γα)

=
(δI + µ)(µ + ν + γ)(α + δA + µ)

(
(µ + γ)

(µ + ν + γ)(α + δA + µ)

(
βA + βI

α

δI + µ

)
− 1
)

βA(δI + µ) + βIα

α
((α + δA + µ + γ)(δI + µ) + γα)

= α(δI + µ)(µ + ν + γ)(α + δA + µ)
(βA(δI + µ) + βIα) ((α + δA + µ + γ)(δI + µ) + γα) (R0 − 1). (14)

The endemic equilibrium in Γ̊ exists if A∗ > 0 and I∗ > 0. We obtain that I∗ > 0, and consequently
A∗ > 0, if and only if R0 − 1 > 0. □

Theorem 10. The endemic equilibrium x∗ = (S∗, A∗, I∗) is locally asymptotically stable in Γ̊ for system
3) if R0 > 1.

roof. Note that the expression of (13) and (14) may be written as a function of R0; using the expression
ound in (5), we obtain

S∗ = h4

R0
, (15)

I∗ =αh0h1h2(R0 − 1)
h3(βAh2 + βIα) , (16)

where we have set h0 = µ + ν + γ, h1 = α + δA + µ, h2 = δI + µ, h3 = γα + (h1 + γ)h2, h4 = γ + µ

h0
≤1.

oreover, we can compute

βAA∗ + βII∗ = βAh2 + βIα

α
I∗ = h0h1h2(R0 − 1)

h3
. (17)

o determine the stability of the endemic equilibrium x∗, we need to compute the Jacobian matrix of (3)
valuated in x∗, that is

J|x∗ =

⎛⎜⎜⎜⎝
−h0h1h2(R0 − 1)

h3
− h0 −βAh4

R0
− γ −βIh4

R0
− γ

h0h1h2(R0 − 1)
h3

βAh4

R0
− h1

βIh4

R0
0 α −h2

⎞⎟⎟⎟⎠ ,

here we have used (15)–(17). With the same arguments as in [10, Sec. 2.1], we can conclude that x∗ is
ocally asymptotically stable if R > 1. □
0

9
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4.1. Global stability

4.1.1. Global stability of the endemic equilibrium in the SAIR model
In this section, we focus on the global asymptotic stability of the endemic equilibrium of the SAIR model,

i.e., system (3) with γ = 0, representing a disease which confers permanent immunity. Here, we answer
directly to the open problem left in [14]. Let us note that in our model we have in addition, with respect to
the model proposed in [14], the possibility of vaccination.

The dynamic of an SAIR model of this type is described by the following system of equations:

dS(t)
dt

= µ −
(

βAA(t) + βII(t)
)

S(t) − (µ + ν)S(t), (18)

dA(t)
dt

=
(

βAA(t) + βII(t)
)

S(t) − (α + δA + µ)A(t),

dI(t)
dt

= αA(t) − (δI + µ)I(t),

he basic reproduction number is

R0 =
(

βA + αβI

δI + µ

)
µ

(α + δA + µ)(ν + µ) .

The endemic equilibrium x∗ = (S∗, A∗, I∗) satisfies the equation

µ =
(

βAA∗ + βII∗
)

S∗ + (µ + ν)S∗, (19)

(α + δA + µ)A∗ =
(

βAA∗ + βI(r)I∗
)

S∗, (20)

αA∗ = (δI + µ)I∗. (21)

Theorem 11. The endemic equilibrium x∗ = (S∗, A∗, I∗) of (18) is globally asymptotically stable in Γ̊ if
R0 > 1.

Proof. For ease of notation, we will omit the dependence on t. Let us consider c1, c2 > 0 and the function

V = c1V1 + c2V2 + V3,

where
V1 = S∗ · g

(
S

S∗

)
, V2 = A∗ · g

(
A

A∗

)
, V3 = I∗ · g

(
I

I∗

)
,

nd g(x) = x − 1 − ln x ≥ g(1) = 0, for any x > 0. Let us introduce the notation

u = S

S∗ , y = A

A∗ , z = I

I∗ .

Differentiating V along the solutions of (18), and using (19)–(21), we have

c1
dV1

dt
=c1

(
1 − S∗

S

)[
µ − (βAA + βII)S − (µ + ν)S

]
= c1

(
1 − S∗

S

)[
−(µ + ν)(S − S∗) − βA(AS − A∗S∗) − βI(IS − I∗S∗)

]
= c1

(
1 − 1

)[
−(µ + ν)S∗(u − 1) − βAA∗S∗(uy − 1) − βII∗S∗(uz − 1)

]
,

(22)
u

10
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c2
dV2

dt
=c2

(
1 − A∗

A

)[
(βAA + βII)S − (α + δA + µ)A

]
= c2

(
1 − 1

y

)[
βAA∗S∗uy + βII∗S∗uz − (βAA∗ + βII∗)S∗y

]
= c2

(
1 − 1

y

)[
βAA∗S∗(uy − y) + βII∗S∗(uz − y)

]
,

(23)

dV3

dt
=
(

1 − I∗

I

)[
αA − (δI + µ)I

]
=
(

1 − I∗

I

)(
αA − αIA∗

I∗

)
= αA∗

(
1 + A

A∗ − I

I∗ − AI∗

A∗I

)
≤ αA∗

(
− ln y + y − z + ln z

)
= αA∗(g(y) − g(z)),

(24)

here we have used the inequality 1 − y/z ≤ − ln(y/z). Thus, from (22),(23), and (24),

dV

dt
= − c1

(
1 − 1

u

)
(µ + ν)S∗(u − 1) + c1βAA∗S∗

[(
1 − 1

u

)
(1 − uy) + c2

c1

(
1 − 1

y

)
(uy − y)

]
+ c1βII∗S∗

[(
1 − 1

u

)
(1 − uz) + c2

c1

(
1 − 1

y

)
(uz − y)

]
+ αA∗(g(y) − g(z)).

(25)

ow, for the second and third term in (25), we have(
1 − 1

u

)
(1 − uy) + c2

c1

(
1 − 1

y

)
(uy − y)

=
(

1 + c2

c1

)
− 1

u
− uy

(
1 − c2

c1

)
+ y

(
1 − c2

c1

)
− c2

c1
u

= −g

(
1
u

)
− g (uy)

(
1 − c2

c1

)
+
(

g(y)
(

1 − c2

c1

)
− g(u)

)
,

(26)

and (
1 − 1

u

)
(1 − uz) + c2

c1

(
1 − 1

y

)
(uz − y)

=
(

1 + c2

c1

)
− 1

u
+ z − uz

(
1 − c2

c1

)
− c2

c1
y − c2

c1

uz

y

= − g

(
1
u

)
− c2

c1
g

(
uz

y

)
+
(

g(z) − c2

c1
g(y)

)
− uz

(
1 − c2

c1

)
.

(27)

hus, substituting (26) and (27) in (25), we obtain

dV

dt
= − c1

(
1 − 1

u

)
(µ + ν)S∗(u − 1)

− c1βAA∗S∗
[
g

(
1
u

)
+ g(uy)

(
1 − c2

c1

)]
+ c1βAA∗S∗

[
g(y)

(
1 − c2

c1

)
− g(u)

]
− c1βII∗S∗

[
g

(
1
u

)
+ c2

c1
g

(
uz

y

)]
+ c1βII∗S∗

[
g(z) − c2

c1
g(y) − uz

(
1 − c2

c1

)]
+ αA∗(g(y) − g(z)).
11
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Now, by taking c1 = c2 = αA∗

βI I∗S∗ , we have

dV

dt
= − c1

(u − 1)2

u
(µ + ν)S∗ − c1βAA∗S∗

(
g

(
1
u

)
+ g(u)

)
− c1βII∗S∗

(
g

(
1
u

)
+ g

(
uz

y

))
.

ence, dV
dt ≤ 0. Moreover, the set where dV

dt = 0 is Z = {(S, A, I) : S = S∗, I = AI∗

A∗ }, and the only compact
invariant subset of Z is the singleton {x∗}. The claim follows by LaSalle’s Invariance Principle [39]. □

4.1.2. Global stability of the SAIRS model when βA = βI := β and δA = δI := δ

In this section, we conduct a global stability analysis in the case βA = βI := β and δA = δI := δ. In [14],
the authors study a SAIR model (without vaccination) in this specific case, i.e. when the disease transmission
and the recovery rates are the same for asymptomatic and symptomatic individuals. Here, we extend their
analysis to the SAIRS model with vaccination.

In this case, from (5), the expression of the basic reproduction number becomes

R0 = β(γ + µ)
(δ + µ)(ν + γ + µ) .

heorem 12. Let us assume that βA = βI =: β and δA = δI =: δ. The endemic equilibrium x∗ = (S∗, A∗, I∗)
is globally asymptotically stable in Γ̊ for system (3) if R0 > 1.

Proof. Let us define M(t) := A(t) + I(t), for all t ≥ 0. Then, we can rewrite (3) as

dS(t)
dt

= µ − βM(t)S(t) − (µ + ν + γ)S(t) + γ(1 − M(t)),

dM(t)
dt

= βM(t)S(t) − (δ + µ)M(t).

At the equilibrium it holds that

µ + γ = βM∗S∗ + (µ + ν + γ)S∗ + γM∗, (28)
δ + µ = βS∗, (29)

here M∗ = A∗ + I∗. In the following, for ease of notation, we will omit the dependence on t. Consider the
ollowing positively definite function

V = 1
2(S − S∗)2 + w

(
M − M∗ − M∗ ln

(
M

M∗

))
,

here w is a non negative constant.
Differentiating along (3) and using the equilibrium conditions (28)–(29) we obtain

dV

dt
=(S − S∗) (β(M∗S∗ − MS) − (µ + ν + γ)(S − S∗) +

+ γ(M∗ − M)) + w

(
1 − M∗

M

)
βM(S − S∗)

= β(S − S∗)(M∗S∗ − MS∗ + MS∗ − MS) − (µ + ν + γ)(S − S∗)2+
+ γ(M∗ − M)(S − S∗) + wβ(M − M∗)(S − S∗)

= βS∗(S − S∗)(M∗ − M) − (βM + µ + ν + γ)(S − S∗)2+

12
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4

T

+ γ(M∗ − M)(S − S∗) + wβ(M − M∗)(S − S∗)
≤ (βS∗ + γ − wβ) (S − S∗)(M − M∗).

Choosing w := βS∗+γ
β > 0, it follows that dV

dt ≤ 0. The claim follows from the same argument used in
14, Thm 7]. □

.1.3. Global stability of the SAIRS model with βA ̸= βI or δA ̸= δI : a geometric approach
In this section, we use a geometric approach for the global stability of equilibria of nonlinear autonomous

differential equations proposed in [30], that is a generalization of the approach developed by Li and
Muldowney [18,19]. We briefly report the salient concepts in Appendix A.2.

Theorem 13. Under the assumptions (H1)-(H4), the unique endemic equilibrium x∗ of (35) is globally
asymptotically stable in D ⊂ Ω .

For our system (1), we have that the invariant manifold (36) is the set Γ̄ in (2), so n = 4, m = 1, and
N(x) = −µ. It is easy to see that (H1) holds, and that for R0 > 1, by Theorem 8 and Lemma 9, (H2)-(H3)
follows.

Theorem 14. Assume that R0 > 1 and βA < δI . Then, the endemic equilibrium x∗ is globally asymptotically
stable in ˚̄Γ for system (1).

Proof. Let us recall that from (11), there exists T > 0 such that for t > T ,

ε ≤ S(t), A(t), I(t), R(t) ≤ 1 − ε. (30)

he Jacobian matrix of (1) may be written as

J = −µI4×4 + Φ,

where I4×4 is the 4 × 4 identity matrix and

Φ =

⎛⎜⎜⎝
−(βAA + βII + ν) −βAS −βIS γ

βAA + βII βAS − (δA + α) βIS 0
0 α −δI 0
ν δA δI −γ

⎞⎟⎟⎠ .

From the definition of the third additive compound matrix (see, e.g., [20, Appendix]), we have

J [3] = Φ[3] − 3µI4×4,

with
Φ[3] =

(
ϕ

[3]
1 , ϕ

[3]
2 , ϕ

[3]
3 , ϕ

[3]
4

)T

,

where
ϕ

[3]
1 = (−(βAA + βII + ν) + βAS − (δA + α) − δI , 0, 0, γ)T

,

ϕ
[3]
2 = (δI , −(βAA + βII + ν) + βAS − (δA + α) − γ, βIS, βIS)T

,

ϕ
[3]
3 = (−δA, α, −(βAA + βII + ν) − δI − γ, −βAS)T

,

[3] T

ϕ4 = (ν, 0, βAA + βII, βAS − (δA + α + δI + γ)) .

13
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Let P (x) be such that
P (x) = diag(R, cI, A, S),

here c is a constant such that δI +µ
βI ε+ν+δI +µ < c < 1, then from (37) by direct computation we have

B(t) = Pf P −1 + PJ [3]P −1 + µI4×4 = diag
(

R′

R
,

I ′

I
,

A′

A
,

S′

S

)
+ PΦ[3]P −1 − 2µI4×4,

where
PΦ[3]P −1 =

(
ζ

[3]
1 , ζ

[3]
2 , ζ

[3]
3 , ζ

[3]
4

)T

,

and
ζ

[3]
1 =

(
−(βAA + βII + ν) + βAS − (δA + α) − δI , 0, 0, γ

R

S

)T

,

ζ
[3]
2 =

(
c
δII

R
, −(βAA + βII + ν) + βAS − (δA + α) − γ, c

βIIS

A
, cβII

)T

,

ζ
[3]
3 =

(
−δAA

R
,

αA

cI
, −(βAA + βII + ν) − δI − γ, −βAA

)T

,

ζ
[3]
4 =

(
νS

R
, 0, (βAA + βII) S

A
, βAS − (δA + α + δI + γ)

)T

.

From the system of Eqs. (1), we obtain
γR

S
= µ

(
1 − 1

S

)
+ (βAA + βII) + ν + S′

S
,

βIIS

A
= α + δA + µ − βAS + A′

A
, (31)

αA

I
= δI + µ + I ′

I
,

δII

R
= γ + µ − δII

R
− νS

R
+ R′

R
. (32)

onsequently, by using (30) and (31)–(32), we have

h1(t) = b11(t) +
∑
j ̸=1

|b1j(t)|

= −(βAA + βII + ν) + βAS − (δA + α) − δI − 2µ + R′

R
+ γR

S

= βAS − δA − α − δI − µ

S
+ R′

R
+ S′

S

≤ βA − δA − α − δI + R′

R
+ S′

S
=: h̄1(t),

h2(t) = b22(t) +
∑
j ̸=2

|b2j(t)|

= −(βAA + βII + ν) + βAS − (δA + α) − γ − 2µ + I ′

I
+ c

δII

R
+ c

βISI

A
+ cβII

≤ −εβA − ν − γ − µ + c(γ + µ) + c
I ′

I
+ c

R′

R
+ A′

A
=: h̄2(t),

h3(t) = b33(t) +
∑
j ̸=3

|b3j(t)|

= −(βAA + βII + ν) − δI − γ − 2µ + A′

A
+ δAA

R
+ αA

cI
+ βAA

≤ −εβI − ν − δI − µ + δI + µ

c
+ A′

A
+ R′

R
+ I ′

cI
=: h̄3(t),

h4(t) = b44(t) +
∑
j ̸=4

|b4j(t)|

= βAS − (δA + α) − δI − γ − 2µ + S′

S
+ νS

R
+ βAS + βISI

A

≤ −δI + βA + S′
+ R′

+ A′
=: h̄4(t).
S R A
14



S. Ottaviano, M. Sensi and S. Sottile Nonlinear Analysis: Real World Applications 65 (2022) 103501

b

I
c

c
w

C

4

s
R
H
s

t

T

P

a

T

w

Then, we can take the matrix C in condition (H4) as

C(t) = diag
(
h̄1(t), h̄2(t), h̄3(t), h̄4(t)

)
,

ased on (30) and by the assumption βA < δI , we can assert that

lim
t→∞

1
t

∫ t

0
h̄i(s)ds = H̄i < 0, i = 1, . . . , 4,

where

H̄1 = βA−δA−α−δI , H̄2 = −εβA−ν−γ−µ+c(γ+µ), H̄3 = −εβI −ν−δI −µ+ δI + µ

c
, H̄4 = −δI +βA.

ndeed, if βA < δI holds, both H̄2 and H̄4 are less than zero; moreover, H̄1 and H̄2 are less than zero by the
hoice of c. The claim then follows from Theorem 13. □

We proved the global asymptotic stability of the endemic equilibrium for the SAIRS model with a
ondition on the parameters, that is βA < δI . However, supported also by numerical simulations in Section 5,
e are led to think that this assumption could be relaxed. Thus, we state the following conjecture.

onjecture 15. The endemic equilibrium x∗ is globally asymptotically stable in ˚̄Γ for system (1) if R0 > 1.

.2. SAIRS without vaccination (ν = 0)

Let us note that in the SAIRS-type models proposed so far, we have obtained results for the global
tability of the DFE equilibrium when R0 < 1 and for the global stability of the endemic equilibrium when

0 > 1 (with further conditions), but we are not able to study the stability of our system in the case R0 = 1.
owever, if we consider the SAIRS model without vaccination, i.e. the model (3) with ν = 0, we are able to

tudy also the case R0 = 1. From (5), in the case ν = 0, we have

R0 =
(

βA + αβI

δI + µ

)
1

(α + δA + µ) , (33)

he DFE is x0 = (1, 0, 0), and we obtain the following result.

heorem 16. The disease-free equilibrium x0 is global asymptotically stable in Γ if R0 ≤ 1.

roof. We follow the idea in [40, Prop. 3.1]. Let

C =
(

α + δA + µ 0
−α δI + µ

)
,

nd
Y = (A, I)T .

hus, we have
dY

dt
= (C(M(S) − I2×2)) Y,

here

M(S) =
( βAS

α+δA+µ
βI S

α+δA+µ

αβAS αβI S

)
.

(δI +µ)(α+δA+µ) (δI +µ)(α+δA+µ)

15
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Fig. 2. Asymptotic values of S, A, I, and R as a function of βA and βI . Values of the parameters: µ = 1/(70 · 365), meaning an
average lifespan of 70 years; βA ∈ [0.01, 0.8], βI ∈ [0.01, 0.95], ν = 0.01, γ = 1/100, meaning the immunity lasts on average 100 days;
α = 0.15, δA = 0.1, δI = 0.15.

Since, in this case, S0 = 1, we have that 0 ≤ S ≤ S0, and 0 ≤ M(S) ≤ M(S0), meaning that each element
of M(S) is less than or equal to the corresponding element of M(S0).

At this point, let us consider the positive-definite function

V (Y ) = w C−1Y,

where w is the left-eigenvector of M(S0) corresponding to ρ(S0); since M(S0) is a positive matrix, by Perron’s
theorem, w > 0. It is easy to see that ρ(M(S0)) = R0 in (33), thus if R0 ≤ 1, we have

dV

dt
= w C−1 dY

dt
= w (M(S) − I2×2) Y

≤ w (M(S0) − I2×2) Y = (ρ(M(S0)) − 1)wY ≤ 0.

If R0 < 1, then dV
dt = 0 ⇐⇒ Y = 0. If R0 = 1, then

wM(S)Y = wY. (34)

ow, if S ̸= S0, wM(S) < wM(S0) = ρ(M(S0))w = w: Thus, (34) holds if and only if Y = 0. If S = S0,
M(S) = wM(S0) = w, and dV

dt = 0 if S = S0 and Y = 0. It can be seen that the maximal compact
invariant set where dV

dt = 0 is the singleton {x0}. Thus, by the LaSalle invariance principle the DFE x0 is
lobally asymptotically stable if R ≤ 1. □
0

16
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Fig. 3. Behavior of system (1) as γ, the rate of loss of immunity, varies. Values of the parameters: µ = 1/(70 · 365), meaning an
verage lifespan of 70 years; βA = 0.8, βI = 0.95, ν = 0.01, γ varying as shown; α = 0.15, δA = 0.125, δI = 0.15.

emark 1. Note that the expression of R0 in (33), i.e. for the SAIRS model with ν = 0, does not depend
n the parameter γ. Thus, when ν = 0, the SAIR (γ = 0) and SAIRS (γ > 0) models have the same R0. On
he contrary, when we consider the vaccination, the expression of R0 depends both by γ and ν, as in (5).

By denoting the expression in (5) as Rvacc
0 and that in (33) as Rno-vacc

0 , we have

Rvacc
0 = Rno-vacc

0
µ + γ

µ + γ + ν
.

Hence, we can find the minimum vaccination proportion of susceptible individuals that will eradicate the
disease in the long-run, namely

νcrit = (µ + γ) (Rno-vacc
0 − 1) .

n increase of γ, meaning a shorter immunity time-window, corresponds to an increase in the minimum
accination effort necessary to keep R0 below 1.

. Numerical analysis

In this Section, we provide numerous realizations of system (1). In particular, to back the claim we made
n Conjecture 15, in all the figures we chose βA > δI , with the exception of Fig. 7, still obtaining numerical
convergence towards the endemic equilibrium when R0 > 1.

Considering all the other parameters to be fixed, R0 becomes a linear function of βA and βI ; in particular,
the line R (β , β ) = 1 is clearly visible in all the subfigures of Fig. 2, in which we visualize the equilibrium
0 A I
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Fig. 4. Behavior of system (1) as α, the rate of symptoms onset, varies. Values of the parameters: µ = 1/(70 · 365), meaning an
average lifespan of 70 years; βA = βI = 0.9, ν = 0.01, γ = 1/100, meaning the immunity lasts on average 100 days; α varying as
shown, δA = 0.125, δI = 0.15.

values of S, A, I, R as functions of βA and βI . When R0 < 1, the values of βA and βI do not influence the
value of the equilibrium point (4), and the value of the fraction of individuals in each compartment remains
constant. For values of R0 > 1, we can see the influence of the infection parameters on each components of
the endemic equilibrium (see (12)–(14)).

Figs. 3(a), 3(b), 3(c) and 3(d) confirm our analytical results on the asymptotic values of the fraction of
individuals in each compartment. In particular, the endemic equilibrium value of S (13) does not depend on
γ, the loss of immunity rate, as shown by the time series corresponding to γ = 0.01, 0.02 and 0.05, whereas
the disease free equilibrium value of S (4), corresponding to the γ = 0.001 plot, does. Increasing the value of
γ, which corresponds to decreasing the average duration 1/γ of the immunity time-window, results in bigger
asymptotic values for the asymptomatic and symptomatic infected population A and I, and in a smaller
asymptotic value for the recovered population R. This trend is quite intuitive: indeed, by keeping the other
parameters fixed, if the average immune period decreases (i.e., γ increases), a removed individual quickly
returns to the susceptible state, hence the behavior of the SAIRS model approaches that of a SAIS model.

Next, we explore the effect of changing α, the rate of symptoms onset, in three scenarios: equally infectious
asymptomatic and symptomatic individuals (βA = βI), in Fig. 4; asymptomatic individuals more infectious
than symptomatic individuals (βA > βI : this case can be of interest if we consider that asymptomatic
individuals can, in principle, move and spread the infection more than symptomatic ones) in Fig. 5; and
vice-versa (β < β ), in Fig. 6. If R > 1, A∗ and I∗ are related by A∗ = δI +µ I∗ (12). This means that,
A I 0 α
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Fig. 5. Behavior of system (1) as α, the rate of symptoms onset, varies. Values of the parameters: µ = 1/(70 · 365), meaning an
average lifespan of 70 years; βA = 0.9, βI = 0.5, ν = 0.01, γ = 1/100, meaning the immunity lasts on average 100 days; α varying as
shown, δA = 0.125, δI = 0.15.

regardless of the values of βA and βI , A∗ > I∗ if and only if δI +µ
α > 1. This is evident in Figs. 4(b), 5(b) and

(b), where the smallest value of that ratio, corresponding to α = 0.9, is smaller than 1, results in I∗ > A∗;
he biggest value of that ratio, and the only one significantly bigger than 1 is attained for α = 0.01, and
esults in I∗ < A∗. Increasing α leads to a smaller asymptotic value for A, and a bigger asymptotic value for
. Effectively, by keeping fixed the other parameters and increasing α leads to a decreasing of the average
ime-period before developing symptoms, thus the behavior of the SAIRS model approaches that of the SIRS
ne, as α increases.

Finally, in Fig. 7, we compare the effect of varying ν, the vaccination rate, on the epidemic dynamics. In
articular, the parameter values chosen satisfy the assumption of Theorem 14, i.e. R0 > 1 and simultaneously
A < δI . We observe that the asymptotic values of A and I are decreasing in ν, whereas the endemic
quilibrium value of S is independent of this parameter, as we expect from (13), and the endemic equilibrium
alue of R is increasing in ν.

. Conclusions

We analyzed the behavior of an SAIRS compartmental model with vaccination. We determined the
alue of the basic reproduction number R0; then, we proved that the disease-free equilibrium is globally
symptotically stable, i.e. the disease eventually dies out if R < 1. Moreover, in the SAIRS-type model
0
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Fig. 6. Behavior of system (1) as α, the rate of symptoms onset, varies. Values of the parameters: µ = 1/(70 · 365), meaning an
average lifespan of 70 years; βA = 0.5, βI = 0.9, ν = 0.01, γ = 1/100, meaning the immunity lasts on average 100 days; α varying as
shown, δA = 0.125, δI = 0.15.

without vaccination (ν = 0), we were able to generalize the result on the global asymptotic stability of the
DFE also in the case R0 = 1.

Furthermore, we proved the uniform persistence of the disease and the existence of a unique endemic
equilibrium if R0 > 1. Later, we analyzed the stability of this endemic equilibrium for some subcases of the
model.

The first case describes a disease which confers permanent immunity, i.e. γ = 0: the model reduces to
an SAIR. In this framework, we answered the open problem presented in [14], including the additional
complexity of vaccination: we proved the global asymptotic stability of the endemic equilibrium when
R0 > 1.

We then proceeded to extend the results provided in [10] on the local stability analysis for a SAIRS-type
model. We first considered the SAIRS model with the assumption that both asymptomatic and symptomatic
infectious have the same transmission rate and recovery rate, i.e., βA = βI and δA = δI , respectively. We were
able to show that the endemic equilibrium is globally asymptotically stable if R0 > 1. Moreover, we analyzed
the model without restrictions; we used the geometric approach proposed in [30] to find the conditions under
which the endemic equilibrium is globally asymptotically stable. We proved the global stability in the case
R > 1 and β < δ .
0 A I
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Fig. 7. Behavior of system (1) as ν, the vaccination rate, varies. Values of the parameters: µ = 1/(70 · 365), meaning an average
ifespan of 70 years; βA = 0.5, βI = 0.9, ν varying as shown, γ = 1/50, meaning the immunity lasts on average 50 days; α = 0.9,
A = 0.1, δI = 0.51. The condition βA < δI is satisfied.

We leave, as an open problem, the global asymptotic stability of the endemic equilibrium without any
estriction on the parameters: we conjecture that the global asymptotic stability for the endemic equilibrium
nly requires R0 > 1, as our numerical simulations suggest.

Many generalizations and investigations of our model are possible. For example, we considered the vital
ynamics without distinguish between natural death and disease related deaths; an interesting, although
omplex, generalization of our model could explore the implications of including disease-induced mortality.

A natural extension of our SAIRS model could take into account different groups of individual among
hich an epidemic can spread. One modeling approach for this are multi-group compartmental models. Other
ore realistic extensions may involve a greater number of compartments, for example the “Exposed” group,

r time-dependent parameters which can describe the seasonality of a disease or some response measures
rom the population, as well as non-pharmaceutical interventions.
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Appendix

A.1. Proof of Theorem 1

We recall that a compact set C is invariant for the system dx(t)/dt = f(x(t)) if at each point y ∈ ∂C

the boundary of C), the vector f(y) is tangent or pointing into the set [41].
The boundary ∂Γ consists of the following 4 hyperplanes:

H1 = {(S, A, I) ∈ Γ | S = 0}, H2 = {(S, A, I) ∈ Γ | A = 0},

H3 = {(S, A, I) ∈ Γ | I = 0}, H4 = {(S, A, I) ∈ Γ | S + A + I = 1}

hose respective outer normal vectors are:

η1 = (−1, 0, 0), η2 = (0, −1, 0), η3 = (0, 0, −1), η4 = (1, 1, 1).

Thus, let us consider a point x ∈ ∂Γ . To prove the statement, we distinguish among four cases.

ase 1: S = 0. Then, since A + I ≤ 1

⟨f(x), η1⟩ = −µ − γ(1 − A − I) ≤ 0.

ase 2: A = 0. Then, since S ≥ 0, I ≥ 0

⟨f(x), η2⟩ = −βIIS ≤ 0.

ase 3: I = 0. Then, since A ≥ 0
⟨f(x), η3⟩ = −αA ≤ 0.

Case 4: S + A + I = 1. Then, since S ≥ 0, A ≥ 0, I ≥ 0

⟨f(x), η4⟩ = −νS − δAA − δII ≤ 0.

Thus, any solution that starts in ∂Γ will remain inside Γ .

A.2. Geometric approach

We recall the salient concepts of the geometric approach proposed in [30] for the global stability of
equilibria of nonlinear autonomous differential equations, that generalizes the criteria developed by Li and
Muldowney [18,19].

Consider the following autonomous system

′ n
x = f(x), x ∈ D ⊂ R , (35)
22
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where f : D → Rn is a continuous differentiable function on D. Let x(t, x(0)) be the solution of system (35)
ith the initial value x(0, x(0)) = x(0). We assume that system (35) has an n − m dimensional invariant
anifold Ω defined by

Ω = {x ∈ Rn|g(x) = 0}, (36)

here g(x) is an Rm-valued twice continuously differentiable function with dim( ∂g
∂x ) = m when g(x) = 0.

In [19], Li and Muldowney proved that if Ω is invariant with respect to system (35), then there exists a
continuous m × m dimensional matrix-valued function N(x), such that

gf (x) = ∂g

∂x
· f(x) = N(x) · g(x),

here gf (x) is the directional derivative of g(x) in the direction of the vector field f . Moreover, let us define
he real valued function σ(x) on Ω , by

σ(x) = tr(N(x)),

nd make the following assumptions:

(H1) Ω is simply connected;
(H2) There is a compact absorbing set K ⊂ D ⊂ Ω ;
(H3) x∗ is the unique equilibrium of system (35) in D ⊂ Ω which satisfies f(x∗) = 0.

Now, consider the following linear differential equation, associated to system (35)

z′(t) =
[
Pf P −1 + PJ [m+2]P −1 − σI

]
z(t) =: B(x(t, x(0)))z(t), (37)

here x ↦→ P (x) is a C1 nonsingular
(

n
m+2

)
×
(

n
m+2

)
matrix-valued function in Ω such that ∥P −1(x)∥ is

niformly bounded for x ∈ K and Pf is the directional derivative of P in the direction of the vector field f ,
nd J [m+2] is the m+2 additive compound matrix of the Jacobian matrix of (35). Assume that the following
dditional condition holds:

(H4) for the coefficient matrix B(x(t, x(0))), there exists a matrix C(t), a large enough T1 > 0 and some
ositive numbers α1, α2, . . . , αn such that for all t ≥ T1 and all x(0) ∈ K it holds

bii(t) +
∑
i ̸=j

αj

αi
|bij(t)| ≤ cii(t) +

∑
i ̸=j

αj

αi
|cij(t)|,

nd
lim

t→∞

1
t

∫ t

0
cii(s) +

∑
i ̸=j

αj

αi
|cij(s)| ds = hi < 0,

here bij(t) and cij(t) represent entries of matrices B(x(t, x(0))) and C(t), respectively. Basically, condition
H4) is a Bendixson criterion for ruling out non-constant periodic solutions of system (35) with invariant
anifold Ω . From this, by a similar argument as in Ballyk et al. [42], based on [19, Thm 6.1], the following

heorem can be deduced (see [30, Thm 2.6]).
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