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COMPRESSIVE SENSING USING EXTROPY MEASURES OF RANKED SET

SAMPLING

SAEID TAHMASEBI*, MOHAMMAD REZA KAZEMI**, AHMAD KESHAVARZ***,
ALI AKBAR JAFARI****, AND FRANCESCO BUONO*****

Abstract. The aim of this paper is to consider the extropy measure of uncertainty proposed
by Lad, Sanfilippo and Agrò for the problem of compressive sensing. For this purpose, two

sampling designs, i.e., simple random sampling (SRS) and a modified version of ranked set

sampling, known as maximum ranked set sampling procedure with unequal samples (MRSSU)
are utilized and some uncertainty measures such as extropy, cumulative extropy and residual

extropy are obtained and compared for these sampling designs. Also, some results of extropy

in record ranked set sampling data are developed. Then, a study on comparing the behavior of
estimators of cumulative extropy in MRSSU and SRS using simulation method is obtained. As an

example, two sampling methods MRSSU and SRS are utilized for compressive sensing technique

and their performances are compared via signal to noise ratio (SNR), correlation coefficient of
reconstructed and the original signal and cumulative extropy measure of uncertainty. The results

show that the values of SNR and correlation coefficient for MRSSU are higher than those of SRS.
Furthermore, it is shown that MRSSU scheme can efficiently reduce the uncertainty measure of

cumulative extropy.

1. Introduction

Compressive sensing is a signal processing technique which is used to construct a signal using
a small number of measurements (see [9]). This has received lots of attention in signal processing,
statistics and computer science. The purpose of compressive sensing is to reconstruct a sparse
signal using a linear random projection. A signal is considered sparse if it has very few non-zero
elements. When a signal is not sparse in the time domain, its transform to another domain may
be sparse. Common approaches for this purpose are discrete Fourier transform, discrete cosine
transform (DCT) and wavelet transform. To achieve this goal, a signal of electrocardiography is
utilized.

Ranked set sampling (RSS) design is a cost-effective sampling for situations where taking actual
measurements on units is expensive but ranking of units is easy. McIntyre [21] indicated that
RSS is a more efficient sampling method than SRS method for estimating the population mean.
RSS and some of its variants are sampling designs that allow the experimenter to span the full
range of values in the population and those have been applied widely in industrial, economics,
environmental and ecological studies, biostatistics and statistical genetics.

Biradar and Santosha [5] proposed MRSSU to estimate the mean of the exponential distribution
and indicated that an estimator based on MRSSU is better than an estimator based on SRS. In the
MRSSU, we draw m simple random samples, where the size of the i-th sample is i, i = 1, . . . ,m.
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The one-cycle MRSSU involves an initial ranking of m samples of size m as follows:

1 : X(1:1)1 → X̃1 = X(1:1)1

2 : X(1:2)2 X(2:2)2 → X̃2 = X(2:2)2

...
...

...
. . .

...
...

...

m : X(1:m)m X(2:m)m · · · X(m:m)m → X̃m = X(m:m)m

where X(i:l)j denotes the i-th order statistic from the j-th SRS of size l. The resulting sample

is called one-cycle MRSSU of size m and denoted by X
(m)
MRSSU = {X̃i : i = 1, . . . ,m}. Note

that X̃i has the same distribution as X(i:i)i with probability density function (pdf) f(i:i)i(x) =

if(x)[F (x)]i−1, where f and F are the pdf and cumulative distribution function (cdf) of the parent

distribution, respectively. In reliability theory, X̃i measures the lifetime of a parallel system. Since
the ranking may be done for example by using an easily measurable covariate, then it is not difficult
to identify the maximum of ranked individuals in each subset. So, it can be stated that MRSSU
is a very useful adjustment of RSS.

Salehi and Ahmadi [28] introduced a new sampling design for generating record data. Suppose
we have m independent sequences of continuous random variables. The i-th sequence sampling is
terminated when the i-th record is observed. Let us denote the last (upper or lower) record for
the i-th sequence by Ri,i, then the record ranked set sampling (RRSS) of size m can be displayed
as follows:

1 : R(1)1 → R1,1 = R(1)1

2 : R(1)2 R(2)2 → R2,2 = R(2)2

...
...

...
. . .

...
...

m : R(1)m R(2)m · · · R(m)m → Rm,m = R(m)m

where R(i)j is the i-th ordinary record in the j-th sequence. Note that Ri,i’s are independent
random variables, but not necessarily ordered. Several authors have worked on measures of in-
formation for RSS and its variants. Jozani and Ahmadi [16] explored the notions of information
content of RSS data and compared them with their counterparts in SRS data. Tahmasebi et al.
[32] obtained some results of residual (past) entropy for ranked set samples. Eskandarzadeh et al.
[11] considered information measures of MRSSU in terms of Shannon entropy, Rényi entropy and
Kullback-Leibler information. Eskandarzadeh et al. [12] studied information measures for RRSS.
Recently, Raqab and Qiu [27] considered the problems of uncertainty and information content of
RSS data based on extropy measure and the related monotonic properties and stochastic com-
parisons. Qiu and Eftekharian [26] obtained some results of extropy for maximum and minimum
ranked set sampling with unequal samples. Kazemi et al. [18] studied uncertainty measures of
minimum ranked set sampling procedure with unequal samples in terms of cumulative residual
extropy and its dynamic version.

This work develops some results of extropy measures for the MRSSU and RRSS designs.
For reconstructing the signal, the sampling methods SRS and MRSSU are used and their perfor-

mances are compared using two concepts: signal to noise ratio (SNR) and the correlation coefficient
of reconstructed and original signal. A design with higher values of SNR and the correlation co-
efficient outperforms another one. It is shown that using MRSSU sampling design can improve
both SNR and the correlation coefficient of reconstructed and original signal instead of SRS one.
Moreover, the performances of these sampling designs for compressive sensing in electrocardiogra-
phy in term of extropy measure are investigated. Furthermore, we show how MRSSU scheme can
efficiently reduce the uncertainty measure comparing with SRS design.
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This paper is organized as follows: Section 2 deals with the results of extropy measure for
MRSSU data by comparing with its counterpart under SRS data. Similar results related to cu-
mulative extropy in MRSSU and SRS designs are presented in Section 3. Also, some properties in
terms of residual and past extropy of MRSSU are developed. In Section 4 the extropy measure in
RRSS data is discussed. In Section 5, an estimator for cumulative extropy in MRSSU design using
empirical approach is proposed and a simulation study is performed to compare the cumulative
extropy of MRSSU and SRS designs. In Section 6, a real example with the concept of compressive
sensing is analyzed in details by comparing the effects of MRSSU and SRS schemes. Section 7
concludes the paper.

2. Extropy of MRSSU

Let X denote a continuous random variable with pdf f and cdf F . Lad et al. [19] introduced a
new measure of uncertainty, known as extropy, associated to X and defined as

J(X) = −1

2

∫ +∞

−∞
[f(x)]2dx = −1

2

∫ 1

0

f(F−1(u))du, (2.1)

where F−1(·) is the quantile function of X. The quantile function is an efficient alternative to the
cdf in modelling and analysis of statistical data, see [14] for some applications, and it is defined by

Q(u) = F−1(u) = inf{x : F (x) ≥ u}, 0 ≤ u ≤ 1.

The extropy was introduced as a measure of uncertainty dual to the well-known Shannon entropy
[30]. Qiu [24] explored some characterization results, monotone properties, and lower bounds of
extropy of order statistics and record values. The residual extropy of order statistics was studied
in [25]. In this section, we compare the extropy of SRS data with its counterpart MRSSU of the

same size. From (2.1), the extropy of X
(m)
SRS is given by, see [26]

J(X
(m)
SRS) = −1

2
[−2J(X)]m. (2.2)

In the sequel, under the MRSSU, it is easy to show that

J(X
(m)
MRSSU ) = −1

2

m∏
i=1

[−2J(X(i:i))]

= −1

2

m∏
i=1

i2
∫ 1

0

f(F−1(u))u2i−2du

= −1

2

m∏
i=1

i2E
[
U2i−2f(F−1(U))

]
, (2.3)

where U ∼ Uniform(0, 1). In the following examples, we compare the J(X
(m)
MRSSU ) with J(X

(m)
SRS)

of size m.

Example 1. If U ∼ Uniform(0, 1), then

J(U
(m)
MRSSU ) = −1

2

m∏
i=1

i2

2i− 1
= −1

2

( √
π(m!)2

2mΓ(m+ 1
2 )

)
< −1

2
= J(U

(m)
SRS),

where Γ(·) is the Gamma function.
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Example 2. Let Z follows the exponential distribution with mean 1
θ . Then, f(F−1(u)) = θ(1 −

u), 0 < u < 1, and

J(Z
(m)
MRSSU ) = −1

2

(
θ

2

)m m∏
i=1

i

2i− 1
= −1

2

(
θ

2

)m( √
πm!

2mΓ(m+ 1
2 )

)
> −1

2

(
θ

2

)m
= J(Z

(m)
SRS).

Now, we state important properties of J(X
(m)
MRSSU ) using the stochastic ordering. For that we

present the following definitions (for more details, one may refer to [29]).

Definition 1. Let X and Y be two non-negative random variables with pdf’s f and g, cdf’s F
and G, survival functions F̄ = 1 − F and Ḡ = 1 − G, and hazard rate functions λX and λY ,
respectively. Then

(1) X is said to be smaller than Y according to usual stochastically ordering (denoted by
X ≤st Y ) if P (X ≥ x) ≤ P (Y ≥ x) for all x ∈ R.

(2) X is smaller than Y in the hazard rate order (denoted by X ≤hr Y ) if λX(x) ≥ λY (x) for
all x.

(3) X is smaller than Y in the dispersive order (denoted by X ≤disp Y ) if f(F−1(u)) ≥
g(G−1(u)) for all u ∈ (0, 1), where F−1 and G−1 are right continuous inverses of F and G,
respectively.

(4) A non-negative random variable X is said to have increasing (decreasing) failure rate [IFR
(DFR)] if λX(x) is increasing (decreasing) in x.

(5) X is smaller than Y in the convex transform order (denoted by X ≤c Y ) if G−1(F (x)) is
a convex function on the support of X.

(6) X is smaller than Y in the star order (denoted by X ≤∗ Y ) if G−1F (x)
x is increasing in

x ≥ 0.
(7) X is smaller than Y in the superadditive order (denoted by X ≤su Y ) if G−1(F (t+ u)) ≥

G−1(F (t)) +G−1(F (u)) for t ≥ 0, u ≥ 0.

(8) X is said to have increasing failure rate average (IFRA) if
∫ x
0
λX(t)
x dt is increasing in x > 0.

Note that IFR distributions belong to the class IFRA.
(9) X is new better than used (NBU) if F̄ (t+ u) ≤ F̄ (t)F̄ (u) for t ≥ 0 and u ≥ 0.

We recall the following result given in [26] in order to obtain some corollaries.

Theorem 2.1. Let X and Y be two non-negative random variables. If X ≤disp Y , then J(X
(m)
MRSSU )

≤ J(Y
(m)
MRSSU ) for m > 1.

Corollary 2.1.1. If X ≤hr Y , and X or Y is DFR, then J(X
(m)
MRSSU ) ≤ J(Y

(m)
MRSSU ) for m > 1.

Proof. If X ≤hr Y , and X or Y is DFR, then X ≤disp Y , due to [4]. Thus, from Theorem 2.1, the
desired result follows. �

Corollary 2.1.2. Let X and Y be two non-negative random variables. If X ≤su Y (X ≤∗
Y or X ≤c Y ) and f(0) ≥ g(0) > 0, then J(X

(m)
MRSSU ) ≤ J(Y

(m)
MRSSU ) for m > 1.

Proof. If X ≤su Y (X ≤∗ Y or X ≤c Y ) and f(0) ≥ g(0) > 0, then X ≤disp Y , due to [1]. So,
from Theorem 2.1, the desired result follows. �

Corollary 2.1.3. Let X be a non-negative random variable with decreasing pdf f such that f(0) ≤
1. Then J(X

(m)
MRSSU ) ≥ J(U

(m)
MRSSU ), m > 1, where J(U

(m)
MRSSU ) is defined in Example 1.
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Proof. A non-negative random variable X has a decreasing pdf if, and only if, U ≤c X, where
U ∼ Uniform(0, 1) (see [29]). Hence, from Theorem 2.1 and Corollary 2.1.2, the desired result
follows. �

Theorem 2.2. Let X and Y be two independent non-negative random variables. If X and Y have
log-concave densities, then

J(X
(m)
MRSSU + Y

(m)
MRSSU) ≥ max{J(X

(m)
MRSSU ), J(Y

(m)
MRSSU )}.

Proof. Suppose that X have a log-concave density, and be independent of random variable Y .
From Theorem 3.B.7 of [29], we can conclude that X ≤disp X + Y . Hence, from Theorem 2.1,

J(X
(m)
MRSSU ) ≤ J(X

(m)
MRSSU + Y

(m)
MRSSU ). Similar result also holds when Y has a log-concave

density, i.e., J(Y
(m)
MRSSU ) ≤ J(X

(m)
MRSSU + Y

(m)
MRSSU ). Therefore, the proof is completed. �

Remark 1. Suppose X ∼ Uniform(α, β). Then

J(X
(m)
MRSSU ) = (β − α)−mJ(U

(m)
MRSSU ), J(X

(m)
SRS) = (β − α)−mJ(U

(m)
SRS),

where J(U
(m)
MRSSU ) and J(U

(m)
SRS) are as in the Example 1.

About the quantile function, note that F (Q(u)) = u and differentiating it with respect to u
yields q(u)f(Q(u)) = 1, where q(u) is the derivative of Q(·) with respect to u. Let X be a non-
negative random variable with pdf f and quantile function Q. Then f(Q(u)) is called the density
quantile function and q(u) = Q′(u) is known as the quantile density function of X (see [23]). Using

(2.3), the corresponding quantile based extropy of X
(m)
MRSSU is obtained as

J(X
(m)
MRSSU ) = −1

2

m∏
i=1

i2E
[
U2i−2

q(U)

]
. (2.4)

The hazard rate and reversed hazard rate functions are important concepts in reliability theory,

see, for instance, [3, 6]. The quantile versions of these measures are defined by R(u) = f(Q(u))
1−F (Q(u)) =

[(1− u)q(u)]−1 and Λ(u) = f(Q(u))
F (Q(u)) = [uq(u)]−1, respectively. Hence, by using (2.4), J(X

(m)
MRSSU )

can be expressed in terms of the hazard quantile function, R(u), and the reversed hazard quantile
function, Λ(u), respectively, as

J(X
(m)
MRSSU ) = −1

2

m∏
i=1

i2E
[
R(U)(U2i−2 − U2i−1)

]
,

J(X
(m)
MRSSU ) = −1

2

m∏
i=1

i2E
[
Λ(U)U2i−1] .

Proposition 2.3. Let the quantile density function q(w) = 1
M < +∞, where w = sup{u : q(u) ≥

1
M } is the distribution mode of a random variable X. Then,

J(X
(m)
MRSSU ) ≥ −M

m

2

m∏
i=1

i2

2i− 1
, m > 1. (2.5)

Proof. The proof is straightforward and hence it is omitted. �
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3. Cumulative extropy of MRSSU

Let X denote the lifetime of a system with cdf F and finite support (α, β), where 0 ≤ α < β <
+∞. Recently, a new measure of information was proposed in the literature by replacing the pdf
by F in the definition of extropy (2.1). This new measure is called cumulative extropy (CEX) and
defined as

CJ (X) = −1

2

∫ β

α

F 2(x)dx, (3.1)

see [22] for further details. Random variables with finite support have finite CEX and it is always
non-positive. If the CEX of X is less than that of another random variable, say Y , that is
CJ (X) ≤ CJ (Y ), then X has more uncertainty than Y . For the MRSSU and SRS designs, we
have

CJ (X
(m)
MRSSU ) = −1

2

m∏
i=1

[−2CJ (X(i:i))] = −1

2

m∏
i=1

∫ 1

0

u2i

f(F−1(u))
du

= −1

2

m∏
i=1

E
[

U2i

f(F−1(U))

]
, (3.2)

where U ∼ Uniform(0, 1), and

CJ (X
(m)
SRS) = −1

2
[−2CJ (X)]m. (3.3)

To compare the above measures, let us consider the following examples.

Example 3. If U ∼ Uniform(0, 1), then

CJ (U
(m)
MRSSU ) = −1

2

m∏
i=1

1

2i+ 1
= −1

2

( √
π

2m+1Γ(m+ 3
2 )

)
> CJ (U

(m)
SRS) = −1

2

(
1

3

)m
. (3.4)

Example 4. Let Z be a random variable with the cdf F (z) = za, 0 < z < 1, a > 1. Then,

f(F−1(u)) = au1−
1
a , 0 < u < 1, and we have

CJ (Z
(m)
MRSSU ) = −1

2

m∏
i=1

1

2ia+ 1
> CJ (Z

(m)
SRS) = −1

2
(2a+ 1)−m. (3.5)

Example 5. Let X be a random variable with the pdf f(x) = 5(1 − x)4, 0 < x < 1. Then, we
have

CJ (X
(m)
MRSSU ) = − 1

2

(
1

5
Γ

(
1

5

))m m∏
i=1

Γ(1 + 2i)

Γ( 6
5 + 2i)

> CJ (X
(m)
SRS) = −0.5

(
25

33

)m
. (3.6)

Theorem 3.1. Let X
(m)
MRSSU be the MRSSU from population X with cdf F and finite support

(α, β). Then, CJ (X
(m)
MRSSU ) ≥ CJ (X

(m)
SRS) for m > 1.

Proof. Since F 2(x) ≥ F 2i(x) for i ≥ 1, we have(∫ β

α

F 2(x)dx

)m
≥

m∏
i=1

∫ β

α

F 2i(x)dx.

The proof follows from Equations (3.2) and (3.3). �

In the following, we provide some results on the cumulative extropy of X
(m)
MRSSU in terms of

stochastic ordering properties.
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Theorem 3.2. If X ≤st Y , then CJ (X
(m)
MRSSU ) ≤ CJ (Y

(m)
MRSSU ), m > 1.

Proof. By the assumption on the stochastically ordering, F 2i(x) ≥ G2i(x) for all x ≥ 0. Now using
(3.2), for m > 1, we get the desired result. �

Theorem 3.3. Let X and Y be two non-negative random variables. If X ≤disp Y , then CJ (X
(m)
MRSSU )

≥ CJ (Y
(m)
MRSSU ) for m > 1.

Proof. The proof is similar to the one of Theorem 2.1 and based on the characterization of dispersive
ordering in terms of cdf’s and hence it is omitted. �

Proposition 3.4. If f(F−1(u)) ≥ 1, 0 < u < 1, then CJ (X
(m)
MRSSU ) is increasing in m ≥ 1.

Proof. From (3.2), we get

CJ (X
(m+1)
MRSSU )

CJ (X
(m)
MRSSU )

=

∫ 1

0

u2m+2

f(F−1(u))
du ≤ 1

2m+ 3
≤ 1,

and the result follows readily, since the extropy is negative. �

Theorem 3.5. If X ≤hr Y , and X or Y is DFR, then CJ (X
(m)
MRSSU ) ≥ CJ (Y

(m)
MRSSU ) for m > 1.

Proof. The proof is similar to Corollary 2.1.1 and based on the characterization of hazard rate
ordering in terms of cdf’s. �

Theorem 3.6. Let X and Y be two non-negative random variables with pdf’s f and g, respectively.

If X ≤su Y (X ≤∗ Y or X ≤c Y ) and f(0) ≥ g(0) ≥ 0, then CJ (X
(m)
MRSSU ) ≥ CJ (Y

(m)
MRSSU ) for

m > 1.

Proof. The proof is similar to Corollary 2.1.2 and based on the characterization of superadditive
ordering in terms of cdf’s. �

In the following propositions, the cumulative extropy of MRSSU is studied for linear transforma-
tion and it is shown a connection with the cumulative residual extropy for symmetric distributions.
The proof of the results are straightforward and hence they are omitted.

Proposition 3.7. Let Y = aX + b with a > 0 and b ≥ 0. Then,

CJ (Y
(m)
MRSSU ) = amCJ (X

(m)
MRSSU ).

Proposition 3.8. Let X be a symmetric random variable with respect to the finite mean µ = E(X).
Then

CJ (X
(m)
MRSSU ) = EJ (X

(m)
MRSSU ),

where EJ (X) = −1
2

∫ +∞
0

[F̄X(x)]2dx is the cumulative residual extropy and F̄X(x) = 1 − FX(x)
(see [15]).

Let X be the random lifetime of a system, then we recall that X[t] = [t−X | X ≤ t] describes
the inactivity time of the system. For all t ≥ 0 the mean inactivity time is given by [13]

µ̃(t) = E[t−X | X ≤ t] =
1

F (t)

∫ t

0

F (x)dx.

Now, we can define a generalized measure of cumulative residual extropy called the dynamic
failure extropy as, see [22] for details,

CJ (X; t) = −1

2

∫ t

0

[
F (x)

F (t)

]2
dx. (3.7)
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Note that CJ (X; t) ≥ −µ̃(t)2F (t) . Moreover

CJ (X
(m)
SRS ; t) = −1

2
[−2CJ (X, t)]m. (3.8)

Under the MRSSU design, one can show that

CJ (X
(m)
MRSSU ; t) = −1

2

m∏
i=1

[−2CJ (X(i:i); t)]

= −1

2

m∏
i=1

∫ t

0

[
F (x)

F (t)

]2i
dx

= −1

2

m∏
i=1

E
[

U2iF (t)

f(F−1(UF (t)))

]
, (3.9)

where U ∼ Uniform(0, 1).

Theorem 3.9. Let X be a non-negative random variable. Then, for m > 1

CJ (X
(m)
MRSSU ; t) ≥ CJ (X

(m)
SRS ; t). (3.10)

Proof. The proof is similar to Theorem 3.1. �

3.1. Residual extropy of MRSSU. In reliability theory, the data are generally truncated and
in such situations J(X) is not applicable to a system which has survived for some unit of time.
Ebrahimi [10] defined uncertainty of the residual lifetime of the random variable Xt = [X − t |
X > t] as

H(X; t) = −
∫ +∞

t

f(x)

F̄ (t)
log

(
f(x)

F̄ (t)

)
dx. (3.11)

Analogous to the residual entropy, the entropy of [X | X ≤ t], called the past entropy at time t,
has also drawn attention in the literatures. The past entropy is given in [8] as

H̄(X; t) = −
∫ t

0

f(x)

F (t)
log

(
f(x)

F (t)

)
dx. (3.12)

By analogy to (3.11) and (3.12), the residual extropy and its past form can be written in this way
as

RJ (X; t) = −1

2

∫ +∞

t

(
f(x)

F̄ (t)

)2

dx,

RJ (X; t) = −1

2

∫ t

0

(
f(x)

F (t)

)2

dx,

one may refer to [25] for the residual extropy and to [17] for the past extropy and related properties.
Moreover, those measure of uncertainty are connected with another interesting one known as
interval extropy [7]. For mutually independent random variables X1, X2, . . . , Xm, with cdf Fi for
i = 1, . . . ,m, we have

RJ (X1, . . . , Xm; t) = −1

2

m∏
i=1

[−2RJ (Xi; t)] .

Therefore, the residual extropy of X
(m)
SRS is

RJ (X
(m)
SRS ; t) = −1

2
[−2RJ (X; t)]

m
. (3.13)
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The residual extropy associated with the i-th order statistic in a sample of size i has the form

RJ (X(i:i); t) = − 1

2B̄2
F (t)(i, 1)

∫ +∞

t

f2(x)F 2i−2(x)dx,

where B̄t(a, b) =
∫ 1

t
ua−1 (1− u)

b−1
du is the incomplete beta function. So, the residual extropy of

X
(m)
MRSSU can be written as

RJ (X
(m)
MRSSU ; t) = −1

2

m∏
i=1

[
−2RJ (X(i:i); t)

]
. (3.14)

Proposition 3.10. Let X be a random variable with pdf f and cdf F . If f(F−1(u)) ≥ 1, 0 < u < 1,

then RJ (X
(m)
MRSSU ; t) is decreasing in m ≥ 1.

Proof. From (3.14), we get

RJ (X
(m+1)
MRSSU ; t)

RJ (X
(m)
MRSSU ; t)

=
(m+ 1)

2

(1− [F (t)]m+1)
2

∫ 1

F (t)

f(F−1(u))u2mdu

≥ (m+ 1)
2

2m+ 1
× 1− [F (t)]2m+1

(1− [F (t)]m+1)
2 .

Since 1 − [F (t)]2m+1 > 1 − [F (t)]m+1 >
(
1− [F (t)]m+1

)2
and (m+1)2

2m+1 ≥ 1, then the proof follows
by the fact that the extropy is negative. �

Similarly, the past extropy for X
(m)
MRSSU and X

(m)
SRS are obtained as follows:

RJ (X
(m)
MRSSU ; t) = −1

2

m∏
i=1

∫ F (t)

0

i2f(F−1(u))u2i−2

[F (t)]2i
du,

RJ (X
(m)
SRS ; t) = −1

2

[
−2RJ (X; t)

]m
.

In the following proposition, it is shown a sufficient condition to have a decreasing past extropy of
MRSSU as a function of m. The proof is similar to the that of Proposition 3.10 and hence it is
omitted.

Proposition 3.11. Let X be a non-negative random variable with pdf f and cdf F . If f(F−1(u)) ≥
1, 0 < u < 1, then RJ (X

(m)
MRSSU ; t) is decreasing in m ≥ 1.

In the following, we evaluate and compare the residual and past extropies for MRSSU and SRS
using two examples.

Example 6. If U ∼ Uniform(0, 1), then

RJ (U
(m)
MRSSU ; t) = −1

2

m∏
i=1

i2

2i− 1
× 1− t2i−1

(1− ti)2
, RJ (U

(m)
SRS ; t) = −1

2

(
1

1− t

)m
,

RJ (U
(m)
MRSSU ; t) = −1

2

m∏
i=1

i2

(2i− 1)t
= −1

2

( √
π(m!)2

2mΓ(m+ 1
2 )

)
t−m,

RJ (U
(m)
SRS ; t) = −1

2
t−m.

Also, let

δ
(m)
t = RJ (U

(m)
MRSSU ; t)−RJ (U

(m)
SRS ; t) =

1

2tm

(
1−

√
π(m!)2

2mΓ(m+ 1
2 )

)
.
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Figure 1. The Values of δ
(m)
t ,m = 2, 3, . . . , 6 for exponential distribution in

Example 7: (a) θ < 2 and 0 < t < 1 and (b) θ > 2 and t > 1.

It is easily found that δ
(m)
t < 0, i.e., RJ (U

(m)
MRSSU ; t) < RJ (U

(m)
SRS ; t).

Example 7. Let Z follows exponential distribution with mean 1
θ . Then

RJ (Z
(m)
MRSSU ; t) =

−1

2

(
θ

2

)m m∏
i=1

i2B̄1−e−θt(2i− 1, 2)

(1− (1− e−θt)i)2
,

RJ (Z
(m)
SRS ; t) =

−1

2

(
θ

2

)m
,

RJ (Z
(m)
MRSSU ; t) =

−1

2

(
θ

2

)m m∏
i=1

i[1− (e−θt)(1− 2i)]

(2i− 1)(1− e−θt)
,

RJ (Z
(m)
SRS ; t) =

−1

2

(
θ

2

)m(
1− e−2θt

(1− e−θt)2

)m
.

Define δ
(m)
t = RJ (Z

(m)
MRSSU ; t)−RJ (Z

(m)
SRS ; t). Figure 1 shows the the behavior of δ

(m)
t for different

values of t. Our findings beside this figure show that for θ < 2 and 0 < t < 1, the RJ for MRSSU
is smaller than that of for SRS and also, for θ > 2 and t > 1, this measure for MRSSU is bigger
than that of for SRS design.
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4. Extropy for RRSS

Let L
(m)
RRSS = (L1,1, L2,2, . . . , Lm,m) and U

(m)
RRSS = (U1,1, U2,2, . . . , Um,m) be the lower and upper

RRSS, respectively. The joint pdf’s of L
(m)
RRSS and U

(m)
RRSS respectively are given by

f
L

(m)
RRSS

(lr) =

m∏
i=1

{− logF (li,i)}i−1

(i− 1)!
f(li,i),

f
U

(m)
RRSS

(ur) =

m∏
i=1

{− log F̄ (ui,i)}i−1

(i− 1)!
f(ui,i),

respectively, where lr = (l1,1, l2,2, . . . , lm,m) and ur = (u1,1, u2,2, . . . , um,m) (see [2]). For L
(m)
RRSS

and U
(m)
RRSS designs, we have

J(L
(m)
RRSS) = −1

2

m∏
i=1

[−2J(Li,i)] = −1

2

m∏
i=1

1

[Γ(i)]2

∫ 1

0

f(F−1(u))[− log u]2i−2du

= −1

2

m∏
i=1

τiE
[
f(F−1(e−V ))

]
, (4.1)

J(U
(m)
RRSS) = −1

2

m∏
i=1

τiE
[
f(F−1(1− e−V ))

]
, (4.2)

where τi =
(
2i−2
i−1
)

and V ∼ Gamma(2i− 1, 1) with pdf fV (v) = 1
(2i−2)!v

2i−2e−v, v ∈ (0,+∞).

Example 8. If U ∼ Uniform(0, 1), then

J(L
(m)
RRSS) = −1

2

m∏
i=1

τi = J(U
(m)
RRSS).

Comparing with the results of Example 1, it is found that the uncertainty measure based on L
(m)
RRSS

is more than its SRS counterpart. Also, the extropy measures of lower and upper RRSS are equal.

Example 9. Let Z follows exponential distribution with mean 1
θ . Therefore, f(F−1(u)) = θ(1−u),

and

E
[
f(F−1(e−V ))

]
= θ (1− φV (−1)) = θ

(
1− 2−(2i−1)

)
,

E
[
f(F−1(1− e−V ))

]
= θ (φV (−1)) = θ2−(2i−1),

where φV (·) is the moment generating function of the random variable V . For L
(m)
RRSS and U

(m)
RRSS

designs, we obtain

J(L
(m)
RRSS) = − θm

2

m∏
i=1

τi

(
1− 2−(2i−1)

)
,

J(U
(m)
RRSS) = − θm

2

m∏
i=1

τi2
−(2i−1).

It is obvious that 1−2−(2i−1) > 2−(2i−1), and therefore J(L
(m)
RRSS) < J(U

(m)
RRSS). Straightforward

simplifications yields

J(U
(m)
RRSS) = − 1

2

(
θ

2

)m
δm,
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where δm =

m∏
i=1

τi

2m(m−1) . It can be shown that δm is decreasing in m and δm < 1. So, J(U
(m)
RRSS) >

J(Z
(m)
SRS), where J(Z

(m)
SRS) is the extropy measure of SRS samples from exponential distribution

computed in Example 2. Similar discussions show that J(L
(m)
RRSS) < J(Z

(m)
SRS). So, in general we

can say that

J(L
(m)
RRSS) < J(Z

(m)
SRS) < J(U

(m)
RRSS).

Define

Λ(1)
m =

J(Z
(m)
MRSSU )

J(L
(m)
RRSS)

, Λ(2)
m =

J(U
(m)
RRSS)

J(L
(m)
RRSS)

, Λ(3)
m =

J(U
(m)
RRSS)

J(Z
(m)
MRSSU )

. (4.3)

Figure 2 shows the values of Λ
(α)
m , α = 1, 2, 3. It can be found that all Λ

(α)
m are less than 1. Since

all of the extropy measures are negative then, J(L
(m)
RRSS) < J(Z

(m)
MRSSU ) < J(U

(m)
RRSS).

1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

m

Λ
m(α

)

Λm

(1)

Λm

(2)

Λm

(3)

Figure 2. The Values of Λ
(α)
m , α = 1, 2, 3 in (4.3).

In the sequel, we provide some results on the extropy of L
(m)
RRSS and U

(m)
RRSS in terms of ordering

properties.

Proposition 4.1. Let L
(m)
RRSS and L̃

(m)
RRSS be the lower RRSS’s from populations X and Y with

pdf’s f and g, respectively. If X ≤disp Y , then J(L
(m)
RRSS) ≤ J(L̃

(m)
RRSS).

Proof. The proof is similar to Theorem 2.1. �

Proposition 4.2. Suppose that X is a random variable with cdf F and pdf f . If f(F−1(e−V ))

≥ 1, then J(L
(m)
RRSS) is decreasing in m > 1.

Proof. From (4.1), we have

J(L
(m+1)
RRSS )

J(L
(m)
RRSS)

=

(
2m

m

)
E
[
f(F−1(e−V ))

]
≥ 1.

Thus, the result follows readily. �
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Remark 2. For a random variable X with cdf F and pdf f , J(U
(m)
RRSS) is decreasing in m > 1, if

f(F−1(1− e−V )) ≥ 1.

In the following propositions, some properties of extropy of upper RRSS are studied in con-
nection with stochastic orders. The proof of the results are straightforward and hence they are
omitted.

Proposition 4.3. Let U
(m)
RRSS and Ũ

(m)
RRSS be the upper RRSS’s from populations X and Y with

pdf’s f and g, respectively. If X ≤hr Y , and X or Y is DFR, then J(U
(m)
RRSS) ≤ J(Ũ

(m)
RRSS).

Proposition 4.4. Let U
(m)
RRSS and Ũ

(m)
RRSS be the upper RRSS’s from populations X and Y with

pdf’s f and g, respectively. If X ≤su Y (X ≤∗ Y or X ≤c Y ), and f(0) ≥ g(0) ≥ 0, then

J(U
(m)
RRSS) ≤ J(Ũ

(m)
RRSS) for m > 1.

5. Empirical measure of CJ (X)

Let X1, X2, ..., Xm be a random sample of size m from cdf F . If X(1) ≤ X(2) ≤ · · · ≤ X(m)

represent the order statistics of the sample X1, X2, ..., Xm, then the empirical measure of F is
defined as

F̂m(x) =


0, x < X(1),
k
m , X(k) ≤ x ≤ X(k+1), k = 1, 2, . . . ,m− 1,
1, x > X(m).

Thus, the empirical measure of CJ (X) is obtained as

CJ (F̂m) = − 1

2

∫ X(m)

X(1)

F̂ 2
m(x)dx

= − 1

2

m−1∑
k=1

∫ X(k+1)

X(k)

(
k

m

)2

dx

= − 1

2

m−1∑
k=1

Uk+1

(
k

m

)2

, (5.1)

where Uk = X(k) −X(k−1), k = 1, 2, . . . ,m and X(0) = 0. It can be shown that CJ (F̂m) almost
surely converges to the CEX of X (3.1):

CJ (F̂m)
a.s.→ CJ (X) as m→ +∞,

(see, for example, [15] and [20]). A simulation study is performed to evaluate the performance of the

proposed CJ (F̂m) in both SRS and MRSSU schemes. We denote by ĈJ (X
(m)
SRS) and ĈJ (X

(m)
MRSSU )

the empirical versions of (3.3) and (3.2), respectively. Based on (3.2), (3.3) and (5.1), we obtain

ĈJ (X
(m)
SRS) = −1

2

(
m−1∑
k=1

Uk+1

(
k

m

)2
)m

,

ĈJ (X
(m)
MRSSU ) = −1

2

m∏
i=1

m−1∑
k=1

Zk+1

(
k

m

)2i

,

where Zk = Y(k) − Y(k−1) and Y(k)’s are the ordered values of the MRSSU sample. To verify

the validity of ĈJ (X
(m)
SRS) and ĈJ (X

(m)
MRSSU ), we obtain the mean value, bias and the root of

mean square error (RMSE) of them for three examples 3–5 presented in Section 3. We consider
the sample sizes m = 3, 4, . . . , 10. For each case, the simulation has been performed with 5000
replications.
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Figure 3. The Mean Value (a), Bias (b) and RMSE (c) of ĈJ (X
(m)
SRS) and

ĈJ (X
(m)
MRSSU ) in Example 3.

The results are summarized in Figures 3–5, based on the Examples 3–5. From these results we
can conclude that:

(i) As we see, the result of Theorem 3.1 is also true for experimental values ĈJ (X
(m)
SRS) and

ĈJ (X
(m)
MRSSU ) and one can find that the results of MRSSU are less uncertainty than SRS

counterpart in the sense that ĈJ (X
(m)
MRSSU ) > ĈJ (X

(m)
SRS).

(ii) The bias values of ĈJ (X
(m)
MRSSU ) are less than that of ĈJ (X

(m)
SRS) in all three examples.

(iii) The RMSE values of ĈJ (X
(m)
MRSSU ) are less than that of ĈJ (X

(m)
SRS) in all three examples.

(iv) In all cases, the bias and RMSE tend to zero as m increases.
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Figure 4. The Mean Value (a), Bias (b) and RMSE (c) of ĈJ (X
(m)
SRS) and

ĈJ (X
(m)
MRSSU ) in Example 4.

6. Real Example of Compressive sensing using MRSSU

Here, DCT is used for this example when a signal is not sparse in the time domain. The
signal reconstruction is carried out using measurements by optimization techniques. Least absolute
shrinkage and selection operator (LASSO) is used in this example as the optimization approach
for signal reconstruction (see [31]). Here, a segment of an electrocardiogram (ECG) is shown in
Figure 6. This signal is divided to some segments with 32 samples length. Then each segment is
measured and finally it is reconstructed using LASSO. The signal is formed using the concatenating
of reconstructed segments.

The SRS and MRSSU designs are used for exploiting of random measurements of DCT coef-
ficients of signal. To investigate the performance of the SRS and MRSSU approaches, signal to
noise ratio (SNR) and correlation between the reconstructed and original signals are used in this
example. The results are shown in Figure 7. Figure 7 shows the correlation and SNR increase



16 S. TAHMASEBI, M. R. KAZEMI, A. KESHAVARZ, A. A. JAFARI, AND F. BUONO

3 4 5 6 7 8 9 10

−
5
e
−

0
4

−
4
e
−

0
4

−
3
e
−

0
4

−
2
e
−

0
4

−
1
e
−

0
4

0
e
+

0
0

m

M
e
a
n
 V

a
lu

e

SRS

MRSSU

(a)

3 4 5 6 7 8 9 10

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0

m

B
ia

s

SRS

MRSSU

(b)

3 4 5 6 7 8 9 10

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

5

m

M
S

E

SRS

MRSSU

(c)

Figure 5. The Mean Value (a), Bias (b) and RMSE (c) of ĈJ (X
(m)
SRS) and

ĈJ (X
(m)
MRSSU ) in Example 5.

as the number of measurements (m) increases. Furthermore, it can be seen the performance of
MRSSU measurements is much better than SRS ones. Also the results show the SNR difference
of SRS and MRSSU approaches increases with an increase of the number of measurements for m
less than 8. For correlation difference, this phenomenon is true for m less than 6. Indeed, MRSSU
measurements cause to better performance than SRS ones for small measurements, and there is
no significant difference between them for large measurements. For more investigation, cumulative

extropy of SRS and MRSSU measurements are calculated using ĈJ (X
(m)
SRS) and ĈJ (X

(m)
MRSSU ), re-

spectively, and shown in Figure 8. For each case, a simulation with 1000 replications is performed.
It can be seen that the difference between cumulative extropy of SRS and MRSSU measurements
decreases with an increasing of measurements number. Moreover, one can find that MRSSU
scheme can efficiently reduce the uncertainty measure comparing with SRS design in the sense
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Figure 7. (a) SNR of SRS and MRSSU measurements, (b) correlation of SRS
and MRSSU measurements based on 1000 replications.

that ĈJ (X
(m)
MRSSU ) ≥ ĈJ (X

(m)
SRS). So, it is expected for small number of measurements, MRSSU

causes to better SNR and correlation, as it is shown in Figure 7.

7. Conclusion

In this paper are studied the uncertainty measures of MRSSU, RRSS and SRS data using the
extropy, cumulative extropy and residual extropy. Several results on the above extropy measures
including monotonic properties, stochastic orders and quantile based extropy were obtained for
MRSSU and RRSS compared to SRS data. Also, we provided two empirical cumulative extropy
measures for both SRS and MRSSU data and compared them according to the mean value, bias
and RMSE criteria. It can be seen that the bias and RMSE of MRSSU data are less than that
of SRS data for all configurations. Also, two sampling methods MRSSU and SRS were utilized
for compressive sensing technique and their performances were compared via signal to noise ratio
(SNR), correlation coefficient of reconstructed and the original signal and cumulative extropy
measure of uncertainty. Our results show that the values of SNR and correlation of coefficient
of MRSSU are higher than that of SRS. Furthermore, it was shown that MRSSU scheme can
efficiently reduce the uncertainty measure of cumulative extropy.
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Figure 8. Cumulative extropy of SRS and MRSSU measurements based on 1000
replications .
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