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Abstract—Small-signal and large-signal modeling of high elec-
tron mobility transistors (HEMTs) are developing day-by-day
where accurate model extractions rely on characterizing the
behaviour of transistors appropriately. Determining the suitable
and optimal model structure with component values is not
straightforward and requires significant effort especially at high
frequencies. This modeling task is becoming more sensitive
to numerical errors and convergence issues and needs careful
consideration. Recently, neural networks (NNs) prove their ben-
eficial applications in the radio frequencies design leading to
accurate modeling. In this framework, this paper devotes to
provide the comprehensive literature review around the various
methods employed to modeling HEMT transistors through NNs.
By referring to this review, radio designers can get a general
view of HEMT modeling in one glance and can select the most
suitable scheme for their applications.

Index Terms—modeling, high electron mobility transistor
(HEMT), large-signal modeling, neural network (NN), small-
signal modeling.

I. INTRODUCTION

Wireless communication systems for fifth and sixth genera-
tions (5G/6G) are developing day-by-day, leading to improved
data transfer [1]. The deployment of the radio frequency
(RF) front-ends typically require microwave and mm-wave
devices from enabling technologies. The GaN technology is
preferred to silicon, due to its higher operation temperature,
high breakdown electric field and electron saturation velocity
[2]. Dedicated devices such as the high electron mobility
transistors (HEMTs) based on wide bandgap semiconductors
such as GaAs or GaN represent the state of the art for
microwave applications [3], typically targeting 5G and beyond
communication systems, vehicle networks [4], ultra wideband
radar systems and space [5]. Recently, these devices have
shown interesting applications also in heterogeneous engi-
neering fields, including the medical and health areas (e.g.
biosensing for COVID-19 [6]).

High power amplifiers (HPAs), used in the transmit chain
of wireless communication systems, still represent the core of
the applications for GaAs and GaN HEMTs [3], [7], [8]. HPAs
design typically starts with the selection of the active devices
(HEMTs) and develops by configuring the matching networks,
sizing the passive structures by selected design parameters
[9], [10]. Accurate HEMT modelling plays a crucial role in
microwave design [11], [12], and poses significant challenges
especially since GaN HEMTs are still undergoing significant
process and structure optimization, to overcome the relative

immaturity of the GaN technology [13], [14]. Substrate en-
gineering is also actively investigated, where Silicon, SiC or
even diamond systems are used [15], [16], making transistor
modelling even more involved.

Both small and large-signal GaN HEMT models, including
noise and frequency conversion, are required for accurate
circuit design. Besides TCAD physics-based analysis [17],
equivalent-circuit based (compact) models are the first choice
due to their ease of implementation into circuit simulators. At
high frequencies, though, parasitic effects and low frequency
dispersion due to trap dynamics and thermal effects make the
circuit identification and parameter extraction more difficult
[18], [19]. Behavioral models are also popular for nonlinear
HEMT modelling, e.g. using polyharmonic distortion, X-
parameters [20] or the Padé model [21], but their validity
relies on the availability of large characterization data and
the extrapolation capability is poor. The model extraction also
requires significant numerical effort for optimization.

At the physical level, HEMT transistors are analyzed by
Technology Computer Aided Design (TCAD) tools, e.g. Sen-
taurus Synopsys [22]. Despite physical models allow to speed
up the device fabrication process, they are extremely numerical
intensive, and not suited for circuit design. On the other hand,
they provide the ideal platform to generate cheap and accurate
surrogate data for the development of behavioral models [20]
or artificial neural network based models [23], in substitution
to expensive and complicated experimental campaigns [24].

In fact, artificial neural networks (ANNs) seem to be the
ideal framework [25] to retain the high accuracy of de-
vice characterization or physical analysis with the numerical
efficiency required in circuit simulation [26], [27]. Once
trained with data generated from simulation or measurement
platforms, ANNs virtual models can replace electromagnetic
(EM)/physical models in the whole design, accelerating the
circuit design.

A vast set of ANN-based HEMT modeling or, more in
general, ANN-aided GaN circuit design, are present in the
literature, making the overall scenario very crowded. It is
becoming increasingly difficult to identify and classify the
ANN approaches and modeling solutions. This paper provides
a comprehensive review over the diverse surrogate techniques
in the recently published literature, highlighting the pros, cons
and challenges. This research aid designers in selecting the
most suitable modeling approach for their applications.

This comprehensive review is organized as follows: Section



II provides a general descriptions of the adopted neural net-
works. Section III summarizes the various methods employed
for HEMT modeling with ANNs. Finally, Sec. IV concludes
this manuscript.

II. ANN INVESTIGATION MODELLING IN A NUTSHELL

The intelligent-based networks have various subsets as pre-
sented in Fig. 1. Due to the requirements of various modeling,
the suitable network type can be selected. As depicted in
Fig. 1, machine learning (ML) includes any type of computer
program and it is subset of artificial intelligent (AI) that
can be fitted to the human interference. Deep learning (DL)
is placing inside of ML where it uses the neural networks
for matching to the learning process of the human brain.
Additional specifications of each type are summarized in the
appointed figure.

There are various kind of ANNs namely: multilayer per-
ceptrons (MLPs), knowledge-based neural networks (KBNNs),
and deep neural networks (DNNs) that are employed for vari-
ous microwave applications such as: microwave filter designs
[28]–[32], microwave antenna designs [33]–[35], RF amplifier
designs [36]–[38], digital predistortion (DPD) [39], [40]. ANN
with space mapping optimization method are employed e.g.
in [19], [41] for learning electromagnetic (EM) and physics
behaviour of RF designs. In this paper we focus on transistor
modeling, which is the aim of Sec. III.

DNNs are the most widely used structures, which can be
furhter subdivided into classes.

• Deep neural networks (DNN);
1) Deep multilayer perceptrons (MLPs) [42]
2) Convolutional neural network (CNN) [43]
3) Deep belief network (DBN) [44]
4) Knowledge-Based Neural Network [45]

A typical feature of microwave models, both at the device
and circuit level, is that they must represent widely different
data, ranging from DC, small-signal and multi-tone (usually
represented in the frequency domain) or modulated signals
(usually in a mixed time-frequency domain). This leads to
exploiting a vast set of possible ANN structures. Feed-Forward
Neural Networks are the simplest solutions usually adopted
to model DC or frequency domain responses that are not
adaptive in time. More complex ANN structures, such as the
recurrent or Long Short-Term Memory ANNs are more apt
to be trained with time-domain wave-forms or to be adaptive
with the environment conditions (e.g. for energy-harvesting
applications). The following scheme provides some examples
of ANN structures proposed in the recent literature in this
scenario.

• Feedforward Neural Networks (FFNNs) for passive and
active circuit modeling, e.g. in DC or in the frequency
domain [46], [47];

• Time-domain ANNs for time domain or mixed time-
frequency domain modelling

1) Dynamic neural networks [48]
2) Recurrent neural networks (RNNs) [44]

Artificial intelligent

Machine learning

 Neural network

Deep learning

  Modeling of microwave 

designs with high 

accuracy

 Matching to 

behavior of humans 

 Learning from data  

 Enhancing with 

experience

Fig. 1. AI, ML, and DL sub-sections.

3) Time-delay neural networks (TDNNs) [49]
4) Long Short-Term Memory (LSTM)-based DNN

[36], [50]
Any engineer can develop the ANN by proper training,

which can be done following the steps as below:
1) Determining the specifications of input layer;

• each microwave design has its own characteristics.
For example, they can be design parameters or input
data of circuits [33], [36], [51], [52].

2) Providing the hyperparameters of ANN;
• Hyperparameters include number of hidden layers

and number of neurons in each layer [53].
3) Defining activation function with loss function [54];
4) Concluding the specifications of output layer;

• The final layer includes characteristics that are tar-
geted to be predicted [55].

III. HEMT MODELING TECHNIQUES

This section devotes to summarize the methods and tech-
niques used for modeling the active devices as HEMT tran-
sistors. In the recently published studies, various methods are
reported for HEMT small-signal and large-signal modeling.
Accurate analytical expressions can be used to develop cor-
responding compact models [11]. Analytic functions are not
an effective modelling approach since they require significant
effort for finding and fitting the model parameters depending
on the device technology [56], [57]. To tackle this problem,
artificial intelligent (AI) becomes a promising solution as
it provides the relationship between the input and output
data [25]. Table I at the end of this paper, presents the
comprehensive view around these methods that are based on
the the neural networks.

The main advantage of the ANN is to deal with large
amount of data and to find the optimal solutions for the real-
time engineering applications [58]. The construction of the
ANN can be varied mostly based on the type of feedback,
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Fig. 3. Improved Large-signal model of GaN HEMT, as in [61].

number of neurons and the number of layers. Following
presents these varied types and methods.

A significant amount of works deal with equivalent circuit
models [59]: a typical example is the one reported in Fig. 2,
where the thermal effects are modelled by means of a simple
RC thermal circuit.

Additional RC blocks can be added to model trap effects:
separate blocks mimic the emission and capture trap character-
istic times. Nonlinear charge components replace in this case
the nonlinear capacitances, as shown in Fig. 3.

One of the benefits of the ANN is to be substituted into
the equivalent circuit of transistor to improve the model
accuracy. In fact, selected parts of the equivalent circuit (e.g.
the controlled current source for IDS or the thermal or trap
circuits) can be replaced by a trained neural network, to
generate global surrogate models that show high accuracy over
a wide range of operating conditions and are prone to be
implemented into circuit simulator since the ANN activation
functions are usually continuous and well behaved functions
(tanh).

Starting with the IV device characteristics, the most simple
ANN implementation is by substituting the drain current
generator by a Feed-Forward Neural Network (FFNN) with a
single layer, as in Fig. 4: this structure (with three neurons) is
the one selected in [62] to model the isothermal drain current.

The ANN can also account for thermal and trap effects. In
[60], a feedback-based ANN is used for modeling the current-
voltage (IV) characteristics of GaN HEMT: the input layer
features are VGS and VDS while the feature of the output layer
is Ids, as shown in Fig 5. Notice that in this case temperature
feedback in the electrical circuit is substituted by the feedback
in the ANN structure. On the other hand, in [62] temperature
is used as an extra input of the FFNN of Fig. 4, while the

Fig. 4. Simple FFNN for the current generator (gate or drain).

Ids

VGS

VDS

Fig. 5. ANN method for modeling the self-heating specification in [60].

Vdso

Vgs

Vds

Vgso

Layer with 

bias

Ids,diff

Fig. 6. ANN structure presented in [62] to model the trap induced dispersion.
The ANN is used as a part of the global ANN in the GaN HEMT modeling.

thermal feedback is modelled by a dedicated ANN.
Again in [62], separate ANN models are used for provid-

ing the characteristics of GaN HEMT in terms of intrinsic,
self-heating-induced and trapping-induced nonlinearities. The
example of the ANN used for trap effects on Ids is shown
in Fig. 6. Here, the inputs are not only the gate and drain
static voltages, but also the quiescent points used in pulsed IV
characterization. Compared to conventional RC trap models,
ANNs can be optimized on a wider set of quiescent conditions,
also in conjunction with thermal effects, see again [62],
yielding more accurate HEMT modelling.

Extensions of [62] exploit DNN FFNN with 2 hidden layers.
Furthermore, various advanced optimization techniques have
been proposed and compared. In [63], a large signal HEMT
model at high frequencies is presented where the temperature
dependency is accounted for by memory-less ANN blocks
coupled to resistor-capacitor (RC) filtering blocks. The dy-
namic trapping effects are presented by the RC circuits in the
gate and drain of HEMT transistor. Hybrid Genetic algorithm
(GA)-ANN, particle swarm optimization (PSO) with Support
Vector Regression (SVR) and Gaussian Process Regression
(GPR)-Based Approaches are used.

In [61] a different modelling approach for trap effects is
used: two extra inputs to the FFNN represent the ”status”



S

G
D

Lg1

Lg2

Rg

CGT

RGT

Cgs

Rgs

Ids

RgdCgd

Igs

Cds

Igd

CDT

RDT

Rs

Ls

Cpd2 Cpd1

Ld1

Ld2

Rd

Cpg1 Cpg2

Pdiss
CthRth
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(potential) of gate and drain traps [18], paying attention to the
gate and drain lag effects. In the generated model, the extrinsic
parasitic parameters are achieved based on the artificial bee
colony algorithm. For this case, the ANN is constructed to
estimate the drain current values that are achieved from the
I-V measurements.

In [64], an accurate consistent gate charge model is pre-
sented for modeling the GaN HEMT, again through a FFNN.
The circuit parameters are extracted through multi-objective
Gray-Wolf optimization (GWO) and the neural network is
used for modeling the bias and temperature-dependent gate
charges.

Further extending the above concepts, ANNs are employed
in [65] for modeling HEMTs of AlGaN/GaN technologies
affected by significant buffer-related trapping effects. Such
effects are especially difficult to model with analytic models.
Fig. 7 presents the proposed topology of the equivalent circuit
to include these effects. Here also, the use of ANN is preferred
to identify the Ids model as well as the trap and thermal mod-
els. First, a hybrid small-signal parameter-extraction method is
used to extract the parasitic parameters. Then, the ANNs are
introduced to describe trapping, breakdown, and self-heating
effects. Finally, a new empirical equation is used for modeling
the low-frequency dispersion, using the S-parameters to verify
the buffer trap model.

Turning to small-signal models, the key elements to be ex-
tracted for accurate comparison with scattering parameters are
the nonlinear capacitances or charges. In [66], ANN models
for the gate and drain charges are performed with particle
swarm optimization and it is verified using S-parameters.

In another study based on the genetic algorithm (GA)
[67], temperature-dependent small-signal modeling methods
are presented and verified with the S-parameters. Fig. 8
presents the structure of ANN used, with the input layers
include four specifications of VGS , VDS , T , and f , and
the output layer presents the real and imaginary parts of S-
parameters.

Alternatively, for electrothermal small-signal modeling, [68]
employs the scheme represented in Fig. 9, which includes
various neural networks to represent S-parameter in terms of
magnitude and phase. Temperature dependency is represented
here by dedicated blocks cascaded to the ANNs.

Gray-Wolf optimization (GWO), inspired by grey wolves

VDS

T

f

VGS

Re[S]

Im[S]

Fig. 8. Conceptual view of trained neural network for modeling the temper-
ature dependent small-signal of GaN HEMT in [67].

NN

NN

NN

NN

NN

NN

NN

NN

VGS

VDS

f

Fig. 9. NN presented in [68] for predicting the S-parameters in terms of
magnitude, phase and temperature.

[69], is nowadays extensively used for modeling the GaN
HEMT. Interestingly, the widespread of optimization methods
needed for ANN training, has also fostered new and robust
optimization methods to extract circuit elements of conven-
tional equivalent circuits (Figs. 2-3). In Ref. [70], distributed
parasitic capacitance are optimized with the GWO method
in which the fitness function is maximized in terms of S-
parameters, achieved through simulation and measurement.
In [71]–[73], GWO method is employed for determining the
values of components in HEMT model.

The above discussion has focused on equivalent circuits:
these models, once made bias and temperature dependent,
turn out to be also accurate and flexible large-signal HEMT
modeling approaches. Despite this, more accurate, dedicated
large-signal models (LSMs) are often required for HEMT
models to be used in power amplifiers with large compression,
self-heating and wideband modulated signals.

HEMT behavioral models are black-box flexible and general
models that can fit wide sets of experimental data, including
the time domain waveforms. As such, they are especially
suited for large-signal modelling of devices operated with
harmonic loads or fed by amplitude modulated wideband
signals. Behavioral models are usually extremely difficult to



TABLE I
SUMMARY OF VARIOUS METHODOLOGIES USED FOR MODELING THE GAN HEMT THROUGH NEURAL NETWORKS

Ref. ANN type / optimization method Kind of application

[60] Feedback-based ANN Modeling the IV characteristics
[63] GA-based ANN and PSO-based SVR Large modeling of HEMT and considering the dynamic trapping effects
[65] LSM-based ANN Large-signal modeling with a hybrid small-signal parameter-extraction

[70]–[72] GWO method Achieving the optimal values of HEMT’s design parameters
[62] GA-based ANN IV characteristic and electrothermal modeling of HEMT
[67] GA-based ANN DC modeling of HEMT and presenting HEMT with S-parameter
[68] Feedforward-based ANN Presenting HEMT with S-parameter in terms of magnitude and phase
[61] ANN-based bee colony algorithm Large signal electrothermal model with IV characteristics
[64] Feedforward ANN with GWO method Modeling the bias and temperature-dependent gate charges
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Fig. 10. The method presented in [81] for generating ANN where the input
layer include incident waves and auxiliary variables to describe memory (time
samples) and the output layer is the discrete time-sampled reflected wave.
Input and output data min-max normalization is used.

extract, despite recently space mapping techniques have been
proven successful [74]. A Wiener-type behavioral model based
on ANN is reported in [48]. Behavioral models are also
tightly related to the kind of measurement used for fitting. The
DynaFET model [75] from Keysight exploits Nonlinear Vector
Analyzer data to directly extract analytic expressions for Id and
Qd as a function of the on temperature, two trap states, and
instantaneous terminal voltages and implements them into the
circuit simulator ADS by means of ANNs. X-parameters, also
introduced by Keysight [76], are also a successful behavioral
model for HEMTs, but they require large data files. In [77],
X-parameters have been successfully coupled to ANNs to
improve numerical efficiency. Large signal S-parameter based
models are reported using real valued FFNN in [78]. Ref. [79]
presents a review of large-signal ANN HEMT models based on
load-pull systems. In particular two support vector regression
(SVR) machines take incident waves (real and imaginary parts)
as in input and return scattered waves as output. Time domain
approaches including memory through waveform time samples
are e.g. presented in [80]. The optimization is done based on
the Z-parameter measurements. Space mapping is employed
e.g. in [41] while in [19] for learning electromagnetic (EM)
and physics behaviour of RF designs.

To be considered in the circuit-level, in [81] the multi-tone
distortion based on time-domain is presented for modeling and
predicting the transistors used in amplifier stages. For this
case, the ANN is implemented and is used in a harmonic
balance simulator (Keysight ADS). The general structure of
the presented ANN is described in Fig. 10, as well.

IV. CONCLUSION

Designing RF circuits especially at high frequencies, is a
challenging task and requires accurate modeling. The HEMT
transistors are typically used in the design of amplifiers
and have strong frequency dispersion. For this case, recently
various modeling methods have been presented leading to
consider the trapping effects of transistors. This paper devotes
to provide a general view on various employed methodologies
for providing small-signal and large-signal equivalent models
of HEMT transistors. Due to the beneficial aspects of the
ANN, this paper describes the physical knowledge and param-
eter extractions of HEMT transistors that are based on ANN
network. Any designer by considering the various presented
methods in modeling the HEMTs, can get benefit for their
problems.
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nents using padé via lanczos and EM sensitivities,” IEEE Transactions
on Microwave Theory and Techniques, vol. 68, no. 6, pp. 2215–2233,
2020.

[52] G. Cheng, M. Wang, W. Zhang, and X. Liu, “Advanced deep neural
network technique for microwave parametric modeling,” in 2021 IEEE
MTT-S International Wireless Symposium (IWS), 2021, pp. 1–3.

[53] L. Kouhalvandi and L. Matekovits, “Hyperparameter optimization of
long short-term memory-based forecasting dnn for antenna modeling
through stochastic methods,” IEEE Antennas and Wireless Propagation
Letters, vol. 21, no. 4, pp. 725–729, 2022.

[54] L.-Y. Xiao, W. Shao, F.-L. Jin, B.-Z. Wang, W. T. Joines, and Q. H.
Liu, “Semisupervised radial basis function neural network with an
effective sampling strategy,” IEEE Transactions on Microwave Theory
and Techniques, vol. 68, no. 4, pp. 1260–1269, 2020.

[55] Z. Lin, R. Guo, M. Li, A. Abubakar, T. Zhao, F. Yang, and S. Xu, “Low-
frequency data prediction with iterative learning for highly nonlinear
inverse scattering problems,” IEEE Transactions on Microwave Theory
and Techniques, vol. 69, no. 10, pp. 4366–4376, 2021.

[56] A. Patnaik, N. K. Jaiswal, and P. Sharma, “Role of device parame-
ters in optimizing 2DEG charge density in β-(AlxGa1−x)2O3/Ga2O3

HFET: An analytical approach,” IEEE Transactions on Electron Devices,
vol. 69, no. 7, pp. 3876–3883, 2022.

[57] J. Waldron and T. P. Chow, “Physics-based analytical model for high-
voltage bidirectional GaN transistors using lateral GaN power HEMT,”
in 2013 25th International Symposium on Power Semiconductor Devices
IC’s (ISPSD), 2013, pp. 213–216.

[58] S. S. Indharapu and K. C. Durbhakula, “Analysis of training data sets
in artificial neural networks applied to a radio frequency problem,” in
2020 IEEE International Symposium on Antennas and Propagation and
North American Radio Science Meeting, 2020, pp. 1043–1044.

[59] M. Quitadamo, D. Piumatti, M. Sonza Reorda, and F. Fiori, “Faults
detection in the heatsinks mounted on power electronic transistors,”
International Journal of Electrical and Electronic Engineering Telecom-
munications, pp. 206–212, 01 2020.

[60] A. Jarndal, “GaN HEMT electrothermal modeling using feedback neural
networks technique,” in 2019 International Conference on Electrical and
Computing Technologies and Applications (ICECTA), 2019, pp. 1–4.

[61] A.-D. Huang, Z. Zhong, W. Wu, and Y.-X. Guo, “An artificial neural
network-based electrothermal model for GaN HEMTs with dynamic
trapping effects consideration,” IEEE Transactions on Microwave Theory
and Techniques, vol. 64, no. 8, pp. 2519–2528, 2016.

[62] A. Jarndal, “On neural networks based electrothermal modeling of GaN
devices,” IEEE Access, vol. 7, pp. 94 205–94 214, 2019.

[63] A. Jarndal, S. Husain, M. Hashmi, and F. M. Ghannouchi, “Large-
signal modeling of GaN HEMTs using hybrid GA-ANN, PSO-SVR,
and GPR-Based Approaches,” IEEE Journal of the Electron Devices
Society, vol. 9, pp. 195–208, 2021.

[64] W. Hu, H. Luo, X. Yan, and Y.-X. Guo, “An accurate neural network-
based consistent gate charge model for GaN HEMTs by refining intrinsic
capacitances,” IEEE Transactions on Microwave Theory and Techniques,
vol. 69, no. 7, pp. 3208–3218, 2021.

[65] X. Du, M. Helaoui, A. Jarndal, T. Liu, B. Hu, X. Hu, and F. M.
Ghannouchi, “ANN-based large-signal model of AlGaN/GaN HEMTs
with accurate buffer-related trapping effects characterization,” IEEE
Transactions on Microwave Theory and Techniques, vol. 68, no. 7, pp.
3090–3099, 2020.

[66] A. H. Jarndal and S. Muhaureq, “A particle swarm neural networks
electrothermal modeling approach applied to GaN HEMTs,” Journal of
Computational Electronics, vol. 18, no. 4, pp. 1272–1279, Dec 2019.

[67] A. Jarndal, S. Husain, and M. Hashmi, “Genetic algorithm initialized
artificial neural network based temperature dependent small-signal mod-
eling technique for GaN high electron mobility transistors,” International
Journal of RF and Microwave Computer-Aided Engineering, vol. 31,
no. 3, p. e22542, 2021.

[68] A. Jarndal, “Neural network electrothermal modeling approach for
microwave active devices,” International Journal of RF and Microwave
Computer-Aided Engineering, vol. 29, no. 9, p. e21764, 2019.

[69] L. Kouhalvandi, I. Shayea, S. Ozoguz, and H. Mohamad, “Overview of
evolutionary algorithms and neural networks for modern mobile commu-
nication,” Transactions on Emerging Telecommunications Technologies,
vol. 33, no. 9, p. e4579, 2022.

[70] A. Jarndal, “Gray Wolf optimization-based modeling technique applied
to GaN high mobility electron transistors,” IEEE Journal of the Electron
Devices Society, vol. 9, pp. 958–965, 2021.

[71] A. H. Jarndal and M. B. al Sabbagh, “On modeling of substrate/buffer
loading in GaN HEMT using Grey-Wolf optimization technique,” in
2019 8th International Conference on Modeling Simulation and Applied
Optimization (ICMSAO), 2019, pp. 1–5.

[72] A. Abushawish and A. Jarndal, “Hybrid particle swarm optimization-
Gray-Wolf optimization based small-signal modeling applied to GaN
devices,” International Journal of RF and Microwave Computer-Aided
Engineering, vol. 32, no. 5, p. e23081, 2022.

[73] A. H. Jarndal and A. S. Hussein, “Hybrid small-signal model parameter
extraction of GaN HEMTs on Si and SiC substrates based on global
optimization,” International Journal of RF and Microwave Computer-
Aided Engineering, vol. 29, no. 10, p. e21555, 2019.

[74] J. Cui, F. Feng, Z. Zhao, W. Liu, W. Na, and Q.-J. Zhang, “Recent
advances in space mapping technique modeling GaN HEMT,” in 2021
14th UK-Europe-China Workshop on Millimetre-Waves and Terahertz
Technologies (UCMMT), 2021, pp. 1–3.

[75] J. Xu, J. Horn, M. Iwamoto, and D. E. Root, “Large-signal fet model
with multiple time scale dynamics from nonlinear vector network ana-
lyzer data,” in 2010 IEEE MTT-S International Microwave Symposium,
2010, pp. 417–420.

[76] J. Horn, D. E. Root, and G. Simpson, “Gan device modeling with x-
parameters,” in 2010 IEEE Compound Semiconductor Integrated Circuit
Symposium (CSICS), 2010, pp. 1–4.

[77] N. Lei, F. Jiang, and L. Sun, “X-parameter modelling of GaN HEMT
based on neural network,” The Journal of Engineering, vol. 2019, 12
2019.

[78] J. Louro, C. Belchior, D. R. Barros, F. M. Barradas, L. C. Nunes, P. M.
Cabral, and J. C. Pedro, “New transistor behavioral model formulation
suitable for Doherty PA design,” IEEE Transactions on Microwave
Theory and Techniques, vol. 69, no. 4, pp. 2138–2147, 2021.

[79] J. Cai, J. Su, and J. Liu, “Large signal behavioral modeling of power
transistor from active load-pull systems,” in 2019 IEEE International
Symposium on Radio-Frequency Integration Technology (RFIT), 2019,
pp. 1–3.

[80] S. Zhang, X. Hu, Z. Liu, L. Sun, K. Han, W. Wang, and F. M. Ghan-
nouchi, “Deep neural network behavioral modeling based on transfer
learning for broadband wireless power amplifier,” IEEE Microwave and
Wireless Components Letters, vol. 31, no. 7, pp. 917–920, 2021.

[81] A.-R. Amini and S. Boumaiza, “A time-domain multi-tone distortion
model for effective design of high power amplifiers,” IEEE Access,
vol. 10, pp. 23 152–23 166, 2022.


