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Abstract
Recent experimental studies on primary hair follicle formation and feather bud mor-
phogenesis indicate a coupling between Turing-type diffusion driven instability and
chemotactic patterning. Inspired by these findings we develop and analyse a math-
ematical model that couples chemotaxis to a reaction–diffusion system exhibiting
diffusion–driven (Turing) instability. While both systems, reaction–diffusion systems
and chemotaxis, can independently generate spatial patterns, we were interested in
how the coupling impacts the stability of the system, parameter region for patterning,
pattern geometry, as well as the dynamics of pattern formation. We conduct a clas-
sical linear stability analysis for different model structures, and confirm our results
by numerical analysis of the system. Our results show that the coupling generally
increases the robustness of the patterning process by enlarging the pattern region in
the parameter space. Concerning time scale and pattern regularity, we find that an
increase in the chemosensitivity can speed up the patterning process for parameters
inside and outside of the Turing space, but generally reduces spatial regularity of the
pattern. Interestingly, our analysis indicates that pattern formation can also occur when
neither the Turing nor the chemotaxis system can independently generate pattern. On
the other hand, for some parameter settings, the coupling of the two processes can
extinguish the pattern formation, rather than reinforce it. These theoretical findings
can be used to corroborate the biological findings on morphogenesis and guide future
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experimental studies. From a mathematical point of view, this work sheds a light on
coupling classical pattern formation systems from the parameter space perspective.

Keywords Reaction–diffusion · Chemotaxis · Morphogenesis · Biological
development

1 Introduction

The capacity of systems to self-organise has been a long source of fascination, with
examples spanning microbes to landscapes. Embryogenesis is a paradigm of spatial
self-organisation, during which a more or less uniform population of cells arranges
and differentiates into diverse tissues. Various models for self-organisation have been
proposed, with the well-known reaction–diffusion system of Turing (1952) and the
chemotaxis model of Keller and Segel (1970) lying at the forefront. These share a
fundamental capacity to trigger self-organisation within a uniform tissue, yet are built
on different assumptions regarding the behaviour of cells and their interaction with
signalling components (Painter et al. 2021).

The reaction–diffusion theory of morphogenesis postulates that an initially homo-
geneous tissue can pattern solely through chemical reaction and diffusion (Turing
1952). An “active” cell population is not a definite requirement: the chemical system
generates the spatial pattern, providing a blueprint for cell differentiation.Distilled into
a minimum of two reacting and diffusing species, it requires a short-range activator
and a long-range inhibitor (Gierer andMeinhardt 1972, 1974). The activator possesses
autocatalytic properties that drive the reaction, with the inhibitor the brake. Counter-
intuitively, the addition of diffusion breaks the symmetry of the uniform solution:
short-range activator diffusion allows autocatalysis to dominate locally while inhibi-
tion suppresses at a distance and a chemical pattern forms. The last two decades have
witnessed numerous morphogenesis processes in which reaction–diffusion type sys-
tems may play a significant role in patterning, e.g. Harris et al. (2005), Nakamura et al.
(2006), Michon et al. (2008), Cho et al. (2011), Sala et al. (2011), Economou et al.
(2012), Raspopovic et al. (2014), Walton et al. (2016), Glover et al. (2017), Kaelin
et al. (2021).

Chemotaxis models rely instead on an active cell population, in the sense that
the movement dynamics of cells are crucial for generating the patterned state. Orig-
inally developed in the context of slime mold aggregation, the model of Keller and
Segel (1970, 1971) minimally consists of a homogeneous cell population and its
chemical chemoattractant. Cells both secrete andmove up the gradient of the chemoat-
tractant, this autoattraction rounding up a dispersed population into one or more
aggregates. Chemotaxis models have been proposed to explain numerous instances of
self-organisation, including developmental processes ranging from vasculogenesis to
skin patterning, e.g. see Painter (2019).

These two models are often considered in isolation, yet growing evidence sug-
gests that they can operate in tandem. Mammalian and avian skin is characterised by
repetitive hair or feather elements, their placement laid out during early embryonic
development when the essentially uniform embryonic skin self-organises into a peri-
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odic array of bud or placode structures. This accessible system has offered a paradigm
for understanding morphogenesis, in recent years integrating both experiment and
theory (e.g. see Schweisguth and Corson 2019; Painter et al. 2021). Generating the
pattern involves interactions between the tightly packed epithelial cells and the mes-
enchymal cells beneath, with presumptive placodes identified through the expression
of certain genes in the epithelium and an aggregation of mesenchymal cells below.
In the case of mouse hair follicles, Glover et al. (2017) have identified an interact-
ing set of pathways, involving fibroblast growth factors (FGFs), bone morphogenic
proteins (BMPs) and wingless-related integration site (WNTs), capable of inducing
patterning via a reaction–diffusion type mechanism. This chemical pattern foreshad-
ows and subsequently directs mesenchymal cell organisation, with FGF-mediated
chemotaxis leading to mesenchymal aggregation. However, the dermis also has an
autonomous ability to pattern, as demonstrated by mesenchyme cells retaining the
capacity to aggregate on suppression of the epithelial reaction–diffusion mechanism
(Glover et al. 2017) (albeit on a slower timescale, and with less regularity). Further,
it is plausible that feedback into epithelial signalling can result from mesenchymal
aggregation, for example studies of avian skin showing that compression by dermal
aggregation induces signalling in the epithelium (Shyer et al. 2017). Laying out the
feather buds also involves a coupling between chemotaxis and activator/inhibitor-like
molecular components (Painter et al. 2018; Ho et al. 2019), although in that system
chemotaxis-based autoaggregation appears to be the key instigator of the periodic
pattern and there is no clear evidence for an autonomous pattern generator through
reaction–diffusion alone.

Motivated by these examples, the question we address in this work is as follows:
how are the dynamics of pattern formation altered under a mechanism involving two
semi-autonomous patterning systems? In particular, we will examine a dual patterning
system in which a Turing reaction–diffusion mechanism is coupled to a chemotaxis
system, designed such that pattern formation can occur through chemotaxis alone,
through reaction–diffusion alone, through both as competent symmetry breaking sys-
tems, or through neither system alone. The model is not intended to describe details
of the real biological system involving two skin layers and several chemical species,
but in a more abstract setting, explore the interaction of the two classical patterning
processes. As such, we use our study to explore a number of scenarios, such as whether
activator–inhibitor systems that lie outside the pattern forming space can be pushed
inside through increased chemotaxis, or whether systems in which patterning occurs
in the coupled system are unable to pattern when decoupled. Previous modelling has
taken steps in this direction. For example, in Painter et al. (1999) the chemical output
of a reaction–diffusion system was hypothesised to direct the movements of a chemo-
tactic pigment cell population in a model for fish pigmentation patterning. However
in that case there was no reverse feedback from the cells into the reaction–diffusion
system. On a similar note, a more recent study derived a system including both chemo-
taxis and reaction–diffusion from an underlying individual-based model, though again
not considering feedback from the chemotaxis population into the reaction–diffusion
network (Macfarlane et al. 2020). More directly pertinent to the present study, (at
least) two models have been proposed directly with the purpose of explaining experi-
mental observations in the context of feather morphogenesis. InMichon et al. (2008) a
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model based on partial differential equations (PDE) was developed whereby a chemo-
tactic population both responded to and altered the dynamics of a reaction–diffusion
network. More recently, Bailleul et al. (2019) coupled a chemotactic cell population
with a reaction–diffusion network of activator–inhibitor type, with the cell population
upregulating both activator and inhibitor components. Both of these studies, though,
primarily focused on the application of the model to explain experimental observa-
tions, and little formal analysis of the model was undertaken.

In this paper we build on these studies, and in particular use a combination of linear
stability and numerical analysis to obtain a deeper understanding into the implications
of dual patterning mechanisms on pattern formation (Fig. 1).

The main findings of our study can be summarized as follows: (a) coupling
diffusion–driven patterning and chemotaxis as proposed in our model generally
enlarges the pattern region in the parameter space, and thus enhances the robust-
ness of the patterning process, (b) an increase in chemosensitivity generally reduces
the spatial regularity of the pattern in the considered simulation time, (c) on the other
hand, increased chemosensitivity can speed up the patterning process for parameters
inside and outside of the Turing space, (d) pattern formation in the coupled system can
occur for parameter ranges where neither the Turing nor the chemotaxis system alone
can independently generate pattern, (e) for some parameter settings, the coupling of
the two processes can extinguish the pattern formation, rather than reinforce it.

2 Mathematical Model

The formation of follicles and feathers demands interactions between two cell popula-
tions and numerous signalling molecules, that reside and operate across epithelial and
mesencyhmal skin layers and potentiate pattern formation through reaction–diffusion
and/or chemotaxis or othermechanical processes (Glover et al. 2017; Shyer et al. 2017;
Ho et al. 2019; Bailleul et al. 2019; Painter et al. 2021). To facilitate a tractable model,
we forsake a detailed model and instead distil the complexity into a more abstract for-
mulation. Specifically, we consider a generic cell population (amalgamating cells of
epithelial and mesenchymal layers) and two generic morphogens, respectively of acti-
vator and inhibitor nature (amalgamating signalling interactions). We assume cells
display positive chemotaxis in response to the gradient of the activator, as well as
directly modulating the signalling network through up/down-regulation of activator
or inhibitor components. Further, we disregard cell proliferation, supposing the time
scale of patterning is fast compared to cell proliferation; in the context of feather and
hair follicle formation, the initial transformation from uniform to patterned state takes
place over a relatively short time scale, i.e. the order of hours (Glover et al. 2017).

We formulate this model as a system of PDEs, where we denote the cell density
by u = u(t, x, y), the activator concentration by v = v(t, x, y) and the inhibitor
concentration by w = w(t, x, y). Note that the position (x, y) ∈ � ⊂ R

2 assumes
patterning takes place across an effectively 2D layer, and we assume time t ∈ [0, T ].
The general model combines a Keller and Segel (1970) and Turing/reaction–diffusion
(Turing 1952) framework, specifically
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Fig. 1 Graphical overview. a Epidermis and dermis interact via signalling components. Pattern formation
starts with an activator (WNT/FGF) and an inhibitor (BMP), secreted by the epidermis. Dermal cells
chemotax along the FGF gradient, whereby chemotaxis is mediated by TGFβ. This leads to regularly
distributed cell clusters at the positions where the hair follicles are formed later on. Adding FGF and
inhibiting BMP prevents the Turing pre-patterning from forming, leaving chemotaxis as the only active
patterning process. The cells still form patterns and the hair follicle grows, but the cell condensates are
less regularly distributed and vary in diameter (Glover et al. 2017). b Images showing pattern formation
in mouse skin after day 13.5 of development (+0, +18, +36 and +48h). The experiments considered the
full system (top row), as well as a setup with a blocked Turing system (bottom row) (Glover et al. 2017).
Scale bar: 250µm. c Schematic representation of the model approach, coupling a Turing reaction–diffusion
system and chemotaxis. Our simplified model considers only one cell population, one activator and one
inhibitor. d Results of a linear stability analysis and numeric simulations: Linear stability analysis provides
parameter regions for pattern formation. 2D simulations confirm the analytic results and show the variety
of evolving patterns. 1D simulations show the temporal evolution of these patterns. A pattern measure M
is defined to quantify the pattern variance (Color figure online)
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u

∂t
= Du∇2u − χ∇ · (u(1 − u/β)∇v)

∂v

∂t
= Dv∇2v + f (u, v, w)

∂w

∂t
= Dw ∇2w + g(u, v, w) .

(1)

For the reaction–diffusion part, Dv and Dw represent the diffusion coefficients of the
activator and inhibitor, respectively. The functions f = f (u, v, w) and g = g(u, v, w)

describe activator and inhibitor kinetics. Note that f and g are assumed to have a form
capable of generating Turing-type instabilities (Eqs. 24–27), independently of the cell
population.

For the cellular dynamics, Du is a diffusion coefficient describing random cell
movement, while χ denotes the chemotactic sensitivity, i.e. a measure of the strength
of the chemotactic response, with respect to the activator (as indicated by experiments
where cells follow the gradient of FGF20, see Glover et al. 2017). Because there is
no indication of chemotaxis towards the inhibitor in experimental studies it is omitted
here. We note that the 1 − u/β factor describes a “volume-filling” form (Painter and
Hillen 2002), inhibiting cells from accumulating beyond a critical cell density thresh-
old, β; from a mathematical perspective, this limits the potential for “blow-ups”, i.e.
where unrealistically concentrated cell densities emerge at the site of an aggregation.

Equation1 require closure through appropriate initial and boundary conditions. For
boundary conditions at the domain boundary, ∂�, we adopt the standard assumption
of periodic boundary conditions; for tissues such as the skin, which form a closed
surface around the body, this would seem a reasonable choice. For initial conditions
we choose the classic self-organising scenario of patterning from a homogeneous pos-
itive steady state, i.e. investigating the possibility of Turing instabilities. As such, we
consider small randomised perturbations about a non-negative steady state. For values
close to zero we enforce non-negativity in all simulations. Denoting the steady state
as (u∗, v∗, w∗), we therefore assume initial conditions of the form

u0 = u∗ + δ1 , v0 = v∗ + δ2 , w0 = w∗ + δ3 . (2)

where 0 < u0 < β, as β controls the limit of the volume filling term. The δi ’s denote
uniformly distributed random numbers in the interval −10−2 ≤ δi ≤ 10−2, e.g., with
zero mean and variance 10−4

3 . Note that the zero mean of δ1 implies that the perturbed
initial condition u0 has the same mass as the cell population steady state u∗, in line
with the mass conservation property of the equation for the cells; we also ensure this
condition in our numerical simulations.

2.1 Case Study Kinetics—The Schnakenberg-System

As a specific case studywe consider reaction terms based on Schnakenberg-type kinet-
ics (Schnakenberg 1979), albeit modified to allow cellular feedback through cellular
stimulation of the activator and/or inhibitor. Following a non-dimensionalisation, see
“Appendix B”, the system we consider is given by
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u

∂t
= Du∇2u − ∇ · (χu(1 − u/β)∇v)

∂v

∂t
= ∇2v + γ (a(1 + ε1u) − v + ε3v

2w)

∂w

∂t
= Dw ∇2w + γ (c(1 + ε2u) − ε3v

2w) .

(3)

The parameter γ denotes a scaling parameter, such that changing γ allows acti-
vator and inhibitor reactions to operate on a distinct time scale to that of movement
processes (Murray 2003). Observe that in “Appendix B” the nondimensionalised dif-
fusion coefficients are D∗

u = Du/Dv , D∗
w = Dw/Dv . In the case study kinetics we

drop the asterisks for all parameters in Eq.36 for simplicity of notation.
The nondimensionalisation as given in “Appendix B” is suitable for our purposes,

but is certainly not unique. Our guiding principle has been to eliminate as many
parameters of the model as possible in order to simplify the subsequent analysis. In
particular, we have scaled the cell density by the spatially homogeneous steady state
density u∗, which results in a fixed homogeneous steady state density (equal to one) in
the nondimensional system. However, as we do not have cell proliferation, any value
of u∗ is permissable and the nondimensionalisation removes that freedom, limiting
study into the effect of the initial cell mass on the pattern performing potential of the
coupled system. This might be of interest for future work, given the importance of the
initial cell mass for, say, pattern formation in classical Patlak-Keller-Segel systems
(e.g. see Horstmann 2003). Alternative nondimensionalisations, for instance, could
use the maximum cell density umax = β as a scaling value for the cell density.

We note that in the case ε1 = ε2 = 0 and ε3 = 1, the reaction–diffusion compo-
nent of Eq.3 forms a classical Turing system of Schnakenberg-type with background
production of the chemicals through a and c, and pattern formation is possible under
a relatively simple set of conditions for a, c, Dw. Coupling the system through either
ε1 > 0 or ε2 > 0 assumes that the cell population regulates the signalling system
through directly or indirectly upregulating activator or inhibitor. The parameter ε3 is
instead used to control the autocatalytic interactions between activator and inhibitor,
critical for Turing-type patterning. In particular, we note that by setting ε3 = 0, the full
system becomes unable to pattern through the reaction–diffusion sub-system. How-
ever, if ε1 > 0 then patterning remains possible through a classical chemotaxis-driven
mechanism, whereby the cell population produces its own attractant.

The PDE system Eq.1, both generally and under the specific kinetics given in
Eq.3, will be analysed via standard linear stability analysis in the next sections. We
subsequently study the system behaviour numerically, exploring longer time scale
dynamics once the system has evolved beyond the region of validity for the linear
stability analysis.

3 Results

3.1 Linear Stability Analysis for the Full Model

In the following we conduct a linear stability analysis to predict the scenarios under
which Eq.1 can lead to pattern formation. Before starting, we note a number of con-
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veniences that have been adopted, primarily to simplify presentation of the analysis.
First, we restrict to a one-dimensional domain which is implicitly assumed to be large
with respect to the characteristic scale of any potential spatial patterns (in effect, “infi-
nite”). This minimises any influence from the boundary conditions or domain size
on patterning, and is also reasonable in the context of follicles and feathers, where
structures emerge with a separation of about 200 microns, but the tissue itself spans
millimetres. Second, we presume β is large (i.e. β −→ ∞), equivalent to assuming
that the cell density remains far below the packing density. We note that it is relatively
straightforward to relax these simplifications, but they do not substantially alter the
nature of the conclusions stated below.

First, we lay down some terminology to describe parameter regimes in which stan-
dard linear stability analysis (e.g. Murray 2003) indicates possible pattern formation.
As noted, the model 1 builds on two classic pattern formation subsystems. In the
absence of the cell population (u = 0) we reduce to a standard two-variable reaction–
diffusion model of Turing type (Turing 1952), see Eq. 23; classic textbook analysis
yields a well-known set of conditions for the so-called diffusion driven instability and
we refer to the corresponding parameter space underwhich this occurs for this twovari-
able model simply as the Turing space, see “Appendix A”. In the absence of reactions
between the twomolecular species ( f (u, v, w) = f (u, v), g(u, v, w) = g(u, w)), the
system reduces to a simple chemotaxis model of Keller–Segel type (Keller and Segel
1970), see Eq. 29; pattern formation can arise through a chemotaxis-driven instability,
andwewill refer to the corresponding parameter space for this two variablemodel sim-
ply as the chemotaxis space, see “Appendix A”. System 1 nontrivially combines these
two classic models. The conditions for instability replace those for each of the sub-
models 23 and 29, althoughwe note that theywill coincide in specific cases. The corre-
sponding parameter space for patterning in 1, which we refer to as the combined model
space, cannot be trivially deduced from the Turing or chemotaxis space: conceivably,
a set of parameters defining molecular reaction rates that lie outside (inside) the Tur-
ing space of the two species Turing model could potentially lie inside (outside) the
combined spacewhen combinedwith the cell population and chemotaxismechanisms.

For Eq.1 under general functions f and g, we assume (at least one) positive homo-
geneous steady state solution (u∗, v∗, w∗), where conservation of mass determines u∗
from the initial cell distribution as above, and v∗ and w∗ satisfy

f (u∗, v∗, w∗) = 0 (4)

g(u∗, v∗, w∗) = 0 . (5)

We perform a standard Turing type linear stability analysis, as described above. Let-
ting Ū = (ū, v̄, w̄) denote the small perturbations of the steady state, linearising
and looking for solutions of the form Ū ∼ eλt eikx , leads to the eigenvalue problem
det (S − λI ) = 0, where the stability matrix S is given by:

S =
⎡

⎣
−Duk2 χu∗k2 0

fu −Dvk2 + fv fw
gu gv −Dwk2 + gw

⎤

⎦ , k ∈ R
+ . (6)
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Conditions for the steady state to be stable under a homogeneous perturbation cor-
respond to conditions for the eigenvalues to have negative real parts when k = 0. It
is easily shown that this leads to the same first two conditions in the Turing space
above, i.e. conditions in Eqs. 24 and 25. For instability following an inhomogeneous
perturbation, we return to the stability matrix Eq.6 and consider the eigenvalue prob-
lem det (S − λI ) = 0 for wavenumbers k > 0. We require at least one root of the
characteristic polynomial p(λ) to have a positive real component for at least one value
of k, where

p(λ) = λ3 + Aλ2 + Bλ + C = 0 , (7)

and A, B, andC are coefficient functions of the wave numbers k2 (see “Appendix C”).
Given that we require at least one eigenvalue with real positive part, one of the Routh–
Hurwitz conditions should be broken, which in this case can beC < 0 or AB−C < 0,
due to positivity of A.We note that here that we consider instabilities both of stationary
pattern type, i.e. eigenvalues have positive real parts and negligible imaginary compo-
nents, and of Turing-wave type, with nonneglible imaginary components. In the latter
case, emerging patterns may initially oscillate in time but still form a spatially periodic
pattern and can therefore represent a plausible path towards laying out a pattern. These
two conditions are studied in the following two subsections.

3.1.1 The Condition C<0

Considering the case C < 0 we find two possible routes to pattern formation (for
details see “Appendix C”). In particular, patterns can arise either in the case

χu∗(gu fw − fugw) > Du( fvgw − fwgv). (8)

where the right hand side is positive fromEq.25. Alternatively, patterns can arise when
the following coupled pair of conditions is satisfied:

χu∗Dw fu + Du(Dw fv + Dvgw) > 0 (9)
(
χu∗Dw fu + Du(Dw fv + Dvgw)

)2
> 4DuDvDw

× [
χu∗( fugw − fwgu) + Du ( fvgw − fwgv)

]
(10)

Let us first consider these conditions in light of the results from the classic mod-
els (“Appendix A”). Suppose χ = 0 (no chemotaxis). Clearly, there exists no route
to pattern formation through Eq.8, while Eqs. 9–10 simply reduce to the Turing
space instability conditions, i.e. Eqs. 26–27. This is logical, since any boost from
chemotaxis is eliminated and patterning must be driven through activator/inhibitor
interactions alone. The same scenario occurs under f (u, v, w) = f (v,w) and
g(u, v, w) = g(v,w), i.e. where there is no cellular regulation of the signalling
network. This effectively decouples the chemotactic population from the signalling
system and, again, pattern formation must be driven through activator/inhibitor inter-
actions alone. Finally, consider g(u, v, w) = 0, i.e. no kinetics for the inhibitor
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component. Here, we reduce down to the single condition Eq.31, i.e. the condition
for instability for the chemotaxis space of chemotaxis-driven autoaggregation. This is
again as we would intuitively expect, since the critical activator–inhibitor interactions
have been eliminated and chemotaxis can only be driven through chemotaxis-driven
aggregation.

3.1.2 The Condition AB-C<0

Our approach here is very similar to the one in Othmer and Scriven (1969). Denoting
q = k2, we write AB − C as a third degree polynomial R(q),

R(q) = a2q
3 + b2q

2 + c2q + d2 (11)

with turning points q̄1,2 and the inflection point q̄3. As shown in “AppendixC”, R(q) <

0 for at least one q, if its coefficients satisfy:

b2 < 0 and R(q̄1) < 0 , or

c2 < 0 and b2 > 0 and R(q̄3) < 0 . (12)

Stating these in an algebraic form as in Eqs. 8–10 is of limited usefulness. Rather,
we remark on some special configurations. We are looking for the case in which at
least one real positive root is possible (Table 3). First, note that b2 depends on the
sign of the functions fu , fv and gw, and when all of them are negative, b2 will be
positive. The case c2 > 0 happens for Dw fv + Dvgw < 0 and fu fv + fwgu > 0.
Taking Dw = Du = 1 and fu = 0, it is only possible to have b2 > 0. For b2 > 0,
reaction–diffusion instability is possible only if c2 < 0 is satisfied. However, in the
same special case for c2 < 0, if fwgu < 0, there is a critical chemosensitivity given
by

χ > χc = 2
( fv + gw)2 + ( fvgw − fwgv)

fwgu
, (13)

while for gu = 0 there is no critical chemosensitivity.

3.2 Some Insights from the Linear Stability Analysis of the Full Model

The range of scenarios under which pattern formation becomes possible for more
general interactions clearly becomes more complex, and we will primarily resort to a
specific case study below. However, it is possible to make some general remarks as
follows:

3.2.1 Pattern Formation is Possible When Dv = Dw , or Even Dw = 0

The coupling of the system to chemotaxis raises the possibility that pattern for-
mation can occur when signalling components have equal diffusion coefficients, a
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complicating requirement in classical activator–inhibitor systems. These observations
most straightforwardly follow from Eq.8, which provide a route to pattern formation
independent of Dw and essentially defining a level of chemotaxis for which pattern
formation will arise. In the light of this, Eq. 8 can be viewed somewhat analogously
to the simple chemotactic instability condition Eq.31: the chemoattractant produc-
tion ( fu in Eq.31) is now replaced by a term that amalgamates the cellular regulation
of both activator and inhibitor components, while the chemoattractant decay ( fv in
Eq.31) is now a “system-level decay” based on the activator–inhibitor signalling inter-
actions. We stress, though, that Eq.8 does not necessarily represent a minimum on
the chemotaxis strength for for pattern formation to occur. As highlighted above, for
χ = 0 patterning remains possible through Eqs. 9 and 10, if signalling interactions lie
within the Turing space. Indeed, we could even have pattern formation for χ < 0.

3.2.2 The Strict Requirements on Activator–Inhibitor Interactions for Patterning can
be Relaxed

Adding chemotaxis also relaxes the strict requirements placed on activator–inhibitor
interactions, i.e. the specific sign structures Eq.28 and the necessity of autocatalyis
of the activator. In other words, an activator could simply correspond to a network
component that upregulates the inhibitor, without self-activating properties ( fv > 0),
provided the chemotactic sensitivity is sufficiently strong to satisfy either Eq.8 or the
pair conditions Eqs. 9 and 10.

3.2.3 The Addition of Chemotaxis can Suppress Diffusion–Driven Pattern Formation

To observe this, consider the case where fu = 0, gu 
= 0 (no cellular regulation
of the activator, but regulation of the inhibitor) and parameters lying in the Turing
space (Eq.26, 27). The Eq.8 is not satisfied, while Eqs. 9 and 10 reduce to the single
condition

Du (Dw fv + Dvgw)2 > 4DvDw

[−χu∗ fwgu + Du ( fvgw − fwgv)
]

Lying in the Turing space, the above is satisfied when χ = 0. However, for fwgu > 0
it is clear that a threshold χ > 0 can be found that excludes the above. Of course,
we should note that this does not guarantee no patterning in this case (as we have not
yet considered the polynomial arising from the Routh-Hurwitz condition, see Eq.37),
however it does demonstrate the capacity of chemotaxis to suppress known routes to
pattern formation.

3.3 Linear Stability Analysis for the Chemotaxis-Schnakenberg System

The previous section supposed general functions f and g and, while some insight is
possible, deeper analysis and understanding is hindered by the array of potential sign
combinations in the various derivatives (i.e. fu , etc.). To allow for a more focused
analysis we turn to a case study that restricts the form in the kinetic interactions.
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Specifically, chemical reaction kinetics are modelled using the analytically convenient
Schnakenberg system (Schnakenberg 1979; Gray and Scott 1983), adapted to include
cellular upregulation of the activator and/or inhibitor components, i.e. fu ≥ 0 and
gu ≥ 0. This upregulation could either occur directly (e.g. through cells secreting
signalling components) or indirectly (e.g. compression from cell aggregation inducing
upregulation of signalling components Shyer et al. 2017). It is also possible, of course,
that cells could downregulate signalling components, but we do not consider this at
present. Following nondimensionalisation, the system is as presented in Eq.3.

To investigate the distinction between Turing-driven or chemotaxis-driven pattern
formation, two parameter regimes are considered with either fv positive or neg-
ative. As noted in “Appendix A”, two species activator–inhibitor systems require
self-upregulation of the activator, i.e. fv > 0. Parameters yielding fv < 0 will there-
fore precludepattern formationdriven through the activator–inhibitor systemalone, but
the possibility remains for pattern formation through the chemotaxis boost. As a sec-
ond point of focus we consider Dw = 1, which stipulates activator and inhibitor have
equal diffusion coefficients. The diffusion coefficients of freely diffusing molecules
of similar size will have similar magnitude (Pearson 1993), making the case of equiv-
alent molecular diffusion coefficients of practical relevance. For convenience we also
generally set Du = 1 and ε3 = 1, except where stated otherwise.

Straightforward calculation yields a single steady state (u∗, v∗, w∗), given by

(u∗, v∗, w∗) =
(
1 , a(1 + ε1) + c(1 + ε2) ,

c(1 + ε2)

ε3[a(1 + ε1) + c(1 + ε2)]2
)

(14)

where we note that u∗ = 1 follows from the initial conditions which, via the nondi-
mensionalisation, are scaled to unity at themean value. Note that biologically plausible
parameters (i.e. generating a positive steady state) demand a > 0, c > 0, ε1 ≥ 0,
ε2 ≥ 0, and ε3 > 0.

Evaluating fu, fv . . ., we find

fu = aε1 ≥ 0 (15)

fv = −1 + 2c(1 + ε2)

a(1 + ε1) + c(1 + ε2)
(16)

fw = ε3[a(1 + ε1) + c(1 + ε2)]2 > 0 (17)

gu = cε2 ≥ 0 (18)

gv = − 2c(1 + ε2)

a(1 + ε1) + c(1 + ε2)
< 0 (19)

gw = −ε3[a(1 + ε1) + c(1 + ε2)]2 < 0 . (20)

Observe that under biologically feasible parameters, signs of all the above derivatives
are determined with the exception of fv (Eq. 16), which can be either positive or
negative. In the case that the activator–inhibitor system decouples from the chemotaxis
system (ε1 = ε2 = 0), this simply requires a > c: given this, the sign structure of the
submatrix formed from the v and w components is of the form of a cross activator–
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inhibitor system. For a < c, the autocatalytic process is not sufficiently powerful
to allow for Turing pattern formation through the activator inhibitor system. The
eigenvalues of the Jacobian matrix have a negative real part for ε3 sufficiently large.
While when ε3 = 1 the steady-state is always stable, decreasing ε3 can lead to a
neutral centre or even an unstable steady state; that is, in the diffusion-advection-free
scenario the Jacobian matrix exhibits complex eigenvalues with a positive real part.

Exploiting the known sign structure for the terms forming the Jacobian matrix, we
apply the linear stability analysis to the Schnakenberg model with secretion. Notably,
the potential pattern forming route through AB − C < 0 (Eq.12) appears to be less
significant: for example, letting fu = 0 and taking Dw and Du at unity, we certainly
have both b2 > 0 (Eq.46), and c2 > 0 (Eq.47), since here fwgu > 0. Even when
fu > 0, overcoming all other positive terms would require very large fu > 0 or χ . As
such, within the range of analysed parameters the condition C < 0 (Eq.43) appears
to be sufficient.

3.4 Insights from the Analysis of the Chemotaxis-Schnakenberg-System

3.4.1 The Coupled System Exhibits Pattern Conditions Beyond Classical Turing
(Dw > 1) and Classical Chemotaxis (fu �= 0) Conditions

For the Schnakenberg system with secretion, fwgu ≥ 0 and we can always find a
critical positive chemosensitivity when at least one of the coupling parameters ε1 or
ε2 is non-zero. Suppose further that ε1 = 0, i.e. there is no cellular upregulation of
the activator ( fu = 0). This places the system outside the chemotaxis space (Eqs. 30,
31, where autoaggregation requires upregulation of the attractant by the chemotactic
population). Outside the Turing space, Eqs. 9 and 10 are not satisfied, yet a critical
chemosensitivity can still be deduced from Eq.8. For this system, this reduces to the
simple requirement

χ > χc = Du/(cε2).

Thus, patterning is possible in the coupled system outside the individual patterning
regimes of the two uncoupled processes. The above condition indicates that increasing
ε2, hence, increasing the amount of inhibitor, can induce patterning, somewhat coun-
terintuitive on first sight. This arises through the cross-activator–inhibitor nature of
the signalling interactions, a system of substrate-depletion type in which the inhibitor
w provides the fuel for activator production. Thus, upregulation of inhibitor by the
cells allows more activator to be created, in turn leading to cell aggregation.

As previously mentioned, for the coupled system pattern formation is possible both
in regimes fv < 0 and fv > 0, the latter a strict requirement in the activator–inhibitor
system on its own. In Fig. 2 we demonstrate parameter spaces for these two regimes.
In Fig. 2a–c, we consider a regime fv > 0, showing parameter spaces for the coupling
parameters (ε1,ε2) under different choices of Dw and χ . Notably, broad regions of
the parameter space show patterning under Dw = 1 (Fig. 2a), with the size of this
space increasing as the chemotactic sensitivity χ strengthens. Larger values of Dw
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(Dw = 40, Fig. 2b, or Dw = 600, Fig. 2c) move the system towards the Turing space.
Please note that in all figures the parameters γ = 2200, β = 4, Du = 1, and ε3 = 1
are fixed unless stated otherwise. For a general overview of parameters used for every
figure also see “Appendix E”.

3.4.2 Dw Affects Patterning Only Within the Turing Space

For the system considered here, through Eq.8 we can generate pattern formation for

χ > χc = Du/(aε1 + cε2),

which, in essence, links chemotaxis-driven patterning to a threshold level of the
combined upregulation of both the activator and the inhibitor. This follows on from
above, where through the substrate-depletion system, upregulation of both activator
and inhibitor components acts to fuel autocatalysis of the activator, in turn driving
chemotactic aggregation. The capacity of this chemotaxis-driven condition to induce
patterning is independent of inhibitor diffusion (Fig. 2). On the other hand, for high
inhibitor diffusion (Dw = 600, Fig. 2f), pattern formation occurs through a com-
bination of chemotaxis and Turing-driven instability. Through the contribution of
Turing-driven instability the critical chemosensitivity drops to χ = 0 if the inhibitor
secretion rate 3 < ε2 < 12, and the activator’s production rate ε1 = 0 (Fig. 2f).

3.4.3 Increasingly Influential Activator–Inhibitor Dynamics can Extinguish
Chemotaxis-Driven Patterning

The parameter ε3 was introduced as a means of controlling the critical autocatalysis
within the activator–inhibitor system: in the extreme scenario of ε3 = 0, inhibitor
dynamics decouples from those for cells and activator, so that the model essentially
reduces to a classical autoaggregation model, with pattern formation possible only
via condition in Eq.31. Increasing ε3 increases the coupling between activator and
inhibitor and, within certain parameter regimes, this can reduce the patterning space.
An example of this is provided in Fig. 4a where, for example, a parameter combination
(ε1, ε2, χ) that generates pattern formation for negligible ε3 is pushed outside the
pattern forming space for larger ε3.

Generally, increasing cell-signalling coupling parameters increases the pattern-
formation space. As shown in the previous section, coupling chemotaxis to a
reaction–diffusion system increases the number of routes to pattern formation and,
intuitively, generally acts to increase the pattern space. In the following we explore
the χ ×Dw parameter space under regimes fv > 0 (Fig. 3a–c), and fv < 0 (Fig. 3d–f)
as the degree of coupling is changed.

3.4.4 System Parameters Distinctly Affect the Parameter Space Inside and Outside
the Turing Space

For given ε1 > 0 and ε2 = 0, we have a dependency on both Dw and χ . Hereby, we
observe a transition point around χ ≈ 1 and Dw ≈ 20: for χ and Dw below the tran-
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Fig. 2 Parameter space for pattern formation for the Schnakenberg system. a–f Parameter space ε1 × ε2
for different choices of χ and three values of Dw : Dw = 1 (left), Dw = 40 (middle), and Dw = 600
(right). Darker shades of purple correspond to smaller χ -values. In a, for χ = 0, pattern formation does
not occur, for χ = 10 patterning occurs for all combinations of ε1 and ε2. In c, χ = 10 is not shown, since
already for χ = 0.4 patterning occurs for all combinations of ε1 and ε2. a–cWe fixed a = 0.2 and c = 1.3
( fv > 0), and chose χ ∈ {0, 0.05, 0.1, 0.4, 10}. Note that these figures were generated with parameters
for which fv > 0, i.e., a system inside the Turing space. d–f We fixed a = 1.0 and c = 0.5, and chose
χ ∈ {0, 0.1, 0.15, 0.5, 10}. Note that these figures were generated with parameters for which fv < 0, i.e.,
a system outside the Turing space. For the cases d and e patterning is not possible for χ = 0 (Color figure
online)

sition point, increasing ε2 decreases the pattern region, while for χ and Dw above the
transition point increasing ε2 increases the pattern region (Fig. 3a). For increasing ε2 we
still observe a transitionpoint, but the effect ofχ andDw on thepattern region for differ-
ent ε1 is smaller. The cases ε2 = 0.5 and ε2 = 1 exhibit a chemosensitivity-dependent
region; increasing the inhibitor’s production rate decreases the critical chemosensitiv-
ity, but increases the critical Dw (Fig. 3b, c). When the parameters a and c are set such
that the system is outside the Turing space, the pattern region depends mostly on the
chemosensitivity, and patterns appear only for at least one of the coupling parameters
ε1 
= 0 or ε2 
= 0. Also, the critical chemosensitivity for fixed ε1 = 0 is smaller for
ε2 = 1. This makes sense, because for parameters in which fv < 0, the condition
c1 < 0 in this parameter case (ε1 = 0, c = 0.5, and a = 1) is described in terms of a
critical chemosensitivity χ > χc = 1/(0.5ε2), and therefore increasing ε2 decreases
χc (Fig. 3d, f). Finally, taking both coupling parameters ε1,2 equal to zero results in
the diffusion coefficient Dw being the only parameter that affects the pattern region.

3.4.5 Increasing the Activator–Inhibitor Reaction Parameter�3 can Decrease the
Pattern-Formation Space

For small chemosensitivities (χ = 0.2) we observe that increasing ε3 can decrease the
pattern-formation space (Fig. 4a). For larger chemosensitivities (χ = 0.5 or χ = 1)
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Fig. 3 Parameter space for pattern formation for the Schnakenberg system. a–f Parameter space Dw × χ

and three values of ε2: ε2 = 0 (left), ε2 = 1.5 (middle), and ε2 = 12 (right). In all panels the parameter
ε1 assumes the values ε1 ∈ {0, 1.5, 6, 2000}, whereby the pattern region for ε1 = 2000 corresponds in
all cases to the entire domain and is indicated by the lightest shade of purple. In c, all smaller values of ε1
result in a very similar pattern region, only the very large value of ε1 = 2000 yields patterning in entire
Dw × χ space. a–c We fixed a = 0.2 and c = 1.3 ( fv > 0), and varied ε1 in {0, 1.5, 6, 2000}. Note that
the axis Dw lies on the interval 0 to 200 for all plots, while the χ axis interval is different for each panel;
d–f We fixed a = 1.0 and c = 0.5 ( fv < 0), and varied ε1, e.g., ε1 ∈ {0, 1.5, 6, 2000}. Note that the axis
Dw lies on the interval 0 to 2000 for all plots, while the χ axis interval is different for each panel (Color
figure online)

the same effect can be observed, but to a lesser extent (Fig. 4b, c). Interestingly, for
small χ (χ = 0.2) and small ε2 pattern formation occurs only for small or large
values of ε1, but is absent for an intermediate range of ε1 (Fig. 4a). In addition, even
though we are outside the Turing space, pattern formation depends on the secretion
parameters ε1,2, as well as on Dw, which reflects, in the nondimensionalised system,
the relation between the diffusion coefficients of the activator and inhibitor (Fig. 4e,
f). The reason is that all three parameters affect the gradient of the activator, which is
used by the cells as a chemotaxis cue.

3.5 Simulations

Numerical simulations are performed as a means of both testing the results from the
linear stability analysis and exploring long-term dynamics. The numerical method is
described in “AppendixD”, andwe focus on the nondimensional secretion-chemotaxis
Schnakenberg system (Eq.3) where the parameters γ = 2200, β = 4, Du = 1, and
ε3 = 1 are fixed for all simulations, unless stated otherwise. Initial conditions consist
of a random perturbation (Eq.2) around the steady-states (Eq. 14) and we simulate
the system up to a maximum non-dimensional time T = 0.5 (2D) or T = 0.4 (1D).
For how this translates to dimensional time, under plausible parameter choices, please
refer to the discussion.
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Fig. 4 Parameter space for pattern formation for the Schnakenberg system with fixed a = c = 0.2. In all
panels the parameter ε3 assumes the values ε3 ∈ {10−16, 0.05, 0.5, 1}, whereby the pattern region for
ε3 = 10−16 corresponds in all cases to the region indicated by the lightest shade of purple. a–c The contour
lines indicate ε3 for varying ε1 × ε2 with fixed Dw = 1 and considering different choices of χ : χ = 0.2
(left), χ = 0.5 (center), and χ = 1 (right). In b, c, all smaller values of ε3 result in a very similar pattern
region. Note the different choice of plotting range for each panel. d–f The contour lines indicate ε3 for
varying Dw ×χ with fixed ε1 = 1.5 and considering different values of ε2: ε2 = 0 (left), ε2 = 1.5 (center),
and ε2 = 12 (right). Note the different choice of χ plotting range for each panel (Color figure online)

Furthermore, we define a heterogeneity measurement M (Eq.21), quantifying the
average distance of the cell density from themean density (with similarmeasurements,
not stated, for the chemical concentrations). Specifically,

M(t) = 1

|�|
∫

�

|u(x, y, t) − ū(t)| dxdy, (21)

where

ū(t) = 1

|�|
∫

�

u(x, y, t) dxdy. (22)

For other possible heterogeneity measurements see, e.g., Berding (1987), Murray
(2003), Krause et al. (2020). Note that conservation of the cell population means
ū(t) = 1, following nondimensionalisation. Values reported for the heterogeneity
measurement M are those determined at the end of the simulation.

2D simulations were performed for four scenarios, as summarised in Table 1. First,
we investigated the impact of coupling chemotaxis with a Turing system for four
possible coupling parameter combinations ε1,2, and varying chemosensitivity. Second,
we considered a case in which the Turing system alone would not exhibit patterns,
but where pattern formation can be induced by coupling with chemotaxis. In the
third and fourth scenarios the influence of critical activator–inhibitor interactions was
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Table 1 Four different parameter scenarios considered in the 2D simulations

Scenario a c ε1 ε2 ε3 Dw χ

1 0.2 1.3 {0,1} {0,1} 1 40 0–50

2 1.0 0.5 {0,1} {0,1} 1 1 0–50

3 0.2 0.2 1 1 0.05–1 1 {2,5,20,50}

4 0.2 0.2 1 0 0.05–1 1 {2,5,20,50}

The remaining parameters are fixed as γ = 2200, β = 4, and Du = 1 unless stated otherwise. Set notation
indicates a specific set of chosen values, while interval notation indicates a range of values explored or a
costant value picked within this range

investigated. Specifically, we varied the parameter ε3 for cases in which upregulation
of the inhibitor is present or not.

3.6 Confirmation of Analytical Results and Insights from Simulations

3.6.1 2D Simulations Indicate that Chemotaxis can Speed Up Pattern Formation, but
at a Cost of Reduced Pattern Regularity and Temporal Stability

Simulations from Scenario 1 (Table 1) for ε1,2 = 0 (Fig. 5a), show patterns form-
ing around t = 0.05, resolving into a regular pattern. Introducing a coupling, by
either upregulation of the activator or upregulation of the inhibitor, or both, accel-
erates pattern formation, with clear patterns at t � 0.03 (Fig. 5b–d). Nevertheless,
this acceleration comes at an apparent cost of lower pattern regularity: aggregates at
the end of the simulation are less evenly spaced, with different sizes and occasional
fusions. In Fig. 5e–h we consider parameters from Scenario 2, i.e. outside the Tur-
ing space. As expected, pattern formation is not possible in the absence of coupling
(ε1,2 = 0, Fig. 5e). Coupling the systems, either by setting ε1 or ε2 or both to a non-
zero value, allows for pattern formation (Fig. 5f–h). Note the relatively late pattern
formation in (Fig. 5f), when upregulation via the inhibitor only is given. Notably, the
patterns formed are much less regular than those generated within the Turing space,
which is characteristic for chemotaxis systems (Hillen and Painter 2009).

3.6.2 Simulations Confirm the Analytical Finding that Increasing ChemoSensitivity
Facilitates Pattern Formation Inside and Outside of Turing Space

We consider the heterogeneity measurement for 2D simulations in Scenario 1 and
Scenario 2 (Table 1). In both cases we observe that cell density heterogeneity increases
with chemosensitivity, eventually reaching a constant value (Fig. 6a, d), likely a result
of the boundedness on the cell density due to the presence of volumefilling. In Scenario
1, for the activator concentration, taking ε2 = 0 leads to a smaller value of M for all
χ when compared to ε2 = 1 (Fig. 6b); this behaviour is reversed for the inhibitor
(Fig. 6c). In Scenario 2, for ε1,2 
= 0, we observe that M is more responsive to the
chemosensitivity in the sense that there is a maximum for a given χ value (Fig. 6e).
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Fig. 5 Some results for the parameter choices of Scenarios 1 and 2 from Table 1, with the exception of
using a fixed chemosensitivity χ = 5. We show the cell density evolution (from t = 0.01 to t = 0.5) in a
2D domain for different choices of coupling parameters: ε1,2 = (0, 0), (0, 1), (1, 0), (1, 1). a–d Scenario
1: Dw = 40, a = 0.2, and c = 1.3. The coupling parameters are ε1 = 0 and ε2 = 0 (a), ε1 = 0 and ε2 = 1
(b), ε1 = 1 and ε2 = 0 (c), ε1 = 1 and ε2 = 1 (d). e–h Scenario 2. Here Dw = 1, a = 1.0, and c = 0.5,
and the coupling follows the same order as before (Color figure online)

For ε1,2 = 1 we obtain the largest values of M for the activator, and smallest M for
ε1,2 = 0 (Fig. 6b, e).

3.6.3 Simulations Confirm the Analytical Finding that Turing Interaction can
Destabilise the Pattern Formation Process

For 2D simulations in Scenario 3 (ε2 = 1) and Scenario 4 with (ε2 = 0), see Table 1,
the strength of the reaction between activator and inhibitor (ε3) is varied for fixed
chemosensitivities χ ∈ {2, 5, 20, 50}. In Scenario 3, for small chemosensitivities
(χ = 2) we observe that for ε3 < 0.1 the heterogeneity measurement M is nonzero,
but for ε3 > 0.1 it drops to zero. This same behaviour is not observed for larger
chemosensitivities χ ∈ {5, 20, 50} (Fig. 7a–c). These simulations confirm our ana-
lytical findings that the Turing system, for low chemosensitivity, can destabilise the
pattern formation process (Fig. 4a–c). Taking the inhibitor secretion to zero ε2 = 0
prevents the system from exhibiting pattern formation for any ε3 and small chemosen-
sitivities (χ ∈ {2, 5}). Specifically, for χ = 5 the heterogeneity measurement M
drops to zero for ε3 > 0.3. For larger chemosensitivities (χ = 20 or χ = 50) pattern
formation occurs for all values of ε3 (Fig. 7d–f).

3.6.4 Decreased Cell Motility with Respect to the Chemical System Leads to Stable
and Distinct Patterns

We next performed an examination of the effect of the parameters on the time scale
of patterning. For easier visualisation of the pattern formation dynamics we reduce to
a 1D scenario. All 1D simulations use β = 4 and γ = 2200.
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Fig. 6 Pattern measurement M as a function of chemosensitivity χ . M is displayed together with a fitted
curve for visualisation purposes (F(x) = c1

c2+e−c3(x−c4) + c5
x2

) fitted using the Levenberg–Marquardt

algorithm Levenberg 1944; Marquardt 1963). The first column shows the results for the cells u, the second
column the activator v, and the third column the inhibitor w. a–c Simulations for Scenario 1 (inside Turing
space); Dw = 40, a = 0.2, and c = 1.3. d–f Simulations for Scenario 2 (outside Turing space); Dw = 1,
a = 1.0, and c = 0.5 (Color figure online)

Fig. 7 Pattern measurement M as a function of coupling the reaction Turing system parameter ε3 for
different chemosensitivities χ . The first column shows the results for the cells u, the second column the
activator v, and the third the inhibitorw. a–c Simulations for Scenario 3; Dw = 1, ε1 = 1, ε2 = 1, a = 0.2,
and c = 0.2. d–f Simulations for Scenario 4; Dw = 1, ε1 = 1, ε2 = 0, a = 0.2, and c = 0.2 (Color figure
online)

Experiments show that inmice skin patterning theTuring-based patterning develops
first, with cells subsequently accumulating underneath activator foci via chemotaxis
(Glover et al. 2017). Influential here will be the relative rates of cellular movement to
chemical diffusion, for example some studies estimating cell diffusion coefficients to
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be several orders of magnitude below chemical diffusion coefficients (Chettibi et al.
1994). In this sense, it is relevant to consider the scenario in which the cells are
less motile than the reacting chemicals. In order to investigate this, we decrease the
cells diffusion coefficient Du and the chemosensitivity χ , choosing for both the values
{0.1, 0.01, 0.001}. Further,wefixed the inhibitor diffusion coefficient to Dw = 40 and
chose a = 0.2, c = 1.3, and ε1,2,3 = 1. With this parameter setting the Turing pattern
forms first and guides cells to locations of higher activator concentration: chemotaxis
is effectively enslaved to the Turing pattern formation, and cell accumulation forms
after a molecular prepattern is generated, in line with observations. The Turing process
determines completely the location of cell clusters and the resulting patterns are more
stable (Fig. 8d–i) than in the case of early and strong chemotaxis (Fig. 8a–c). Notably,
though chemotaxis remains strong enough such that the emerging cell clusters become
more compact and hence the patterns are more distinct (Figs. 8d–f).

Generally, the magnitude of the largest real part of the eigenvalues (max{R(λ)})
determines the initial rate of growth of the patterns, and hence provides an indicator of
the timescale of patterning (Fig. 9a–c). The eigenvalue plots and simulations are shown
for γ = 2200. The 1D simulations provide information on the time scale of patterning
for three setups: (i) varying chemosensitivity (χ ∈ {0.1, 2, 5}) for parameters inside
the Turing space Dw = 40, a = 0.2, c = 1.3, and ε1,2,3 = 1 (Fig. 10a–c); (ii)
varying chemosensitivity (χ ∈ {2, 3, 5}) for parameters outside the Turing space,
i.e., Dw = 1, a = 1.0, c = 0.5, and ε1,2,3 = 1 (Fig. 10d–f); (iii) a varying reaction
term (ε3 ∈ {0.01, 0.1, 1}) using Dw = 1, a = c = 0.2, and ε1,2 = 1 for the low
chemotaxis regime χ = 4 (Fig. 10g–i).

3.6.5 All Parameters Influence the Magnitude of the Largest Eigenvalue Inside and
Outside of the Turing Space

We observe a dependence on ε2 and χ such that if both values are small we have slow
pattern formation, and if both are large we have fast pattern formation (Fig. 9a, b).
Considering a small fixed ε2 we notice that max{R(λ)} increases faster for increasing
χ when the system is outside the Turing space (Fig. 9a) than when it is inside (Fig. 9b).
So, as we increase from χ = 0 to χ = 20, for instance, the system outside the Turing
space will have a bigger max{R(λ)} than the one inside the Turing space for ε2 = 1.
On the other hand, we observe an opposite behaviour for a larger secretion of the
inhibitor (Fig. 9a, b). Furthermore, the impact of ε3 is very strong, and dominates the
effect of any change on χ on the pattern formation dynamics, hereby the patterns form
significantly faster for small values of ε3, i.e. weak Turing interaction (Fig. 9c).

3.6.6 Turing Interaction and Chemotaxis have Opposite Effects on Pattern Formation
Dynamics and Long-Term Pattern Stability

The 1D simulations show that inside (Fig. 10a–c) and outside the Turing space
(Fig. 10d–f) increasing χ speeds up pattern formation. Only for very small χ , the
Turing process is able to stabilise the pattern in time (Fig. 10a).We also observe
that increasing the coupling of the Turing system slows down the patterning process
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Fig. 8 Effect of cell motility being slower than diffusion of chemical components. In the 1D simulations we
decreased thediffusion coefficientDu and the chemosensitivityχ of the cellswhile the parametersDw = 40,
a = 0.2, c = 1.3, and ε1,2,3 = 1 remained fixed. Shown are in each case the cells concentration (u), the
activator concentration (v), and the inhibitor concentration (w). a–c Du = χ = 0.1. d–f Du = χ = 0.01.
g–i Du = χ = 0.001. Note the different scaling of the colorbar, and that the time axes are displayed in
logarithmic scale (Color figure online)

(Fig. 10g–i), and leads to a stable pattern for strong interaction (Fig. 10i). Unstable pat-
terns, i.e., merging spots, are characteristic for chemotaxis systems and are observed
when chemotaxis dominates (Fig. 10b–h). In turn, the patterns are stabilised when the
Turing process dominates, e.g., for χ = 0.1 (Fig. 10a) or ε3 = 1 (Fig. 10i).

Key observationsOverall, the 1D and 2D simulations confirm the findings from the
linear stability analysis: (a) chemotaxis can act as a backupmechanism in case the Tur-
ing patterning fails, (b) when chemotaxis is coupled to a Turing system, the patterning
is very robust, (c) cellular production of the activator has a stronger impact on pattern
formation than production of inhibitor, but inhibitor production is also relevant, (d)
increasing the reaction rate ε3 between the chemicals can lead to a stable system with-
out pattern formation when chemosensitivity is low, (e) high chemosensitivity leads
to robust pattern formation also for large ε3, (f) decreased cell motility with respect to
the chemical system leads to stable and distinct patterns, with the chemotaxis enslaved
by the Turing system.
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Fig. 9 The absolute value of the maximum real part eigenvalue max{R(λ)}. a–c The absolute value of the
maximum real part eigenvalue obtained usingMatlab for varying parameters. a Inside Turing space. Impact
of χ and ε2 for fixed Dw = 40, ε1,3 = 1, a = 0.2, and c = 1.3. b Outside Turing space. Impact of χ and
ε2 for fixed Dw = 1, ε1,3 = 1, a = 1, and c = 0.5. c Impact of the reaction term. We varied χ and ε3 but
kept the parameters Dw = 1, ε1,2 = 1, a = 0.2, and c = 0.2 fixed (Color figure online)

Fig. 10 1D simulations for the time scale of pattern formation. a–c The 1D cell concentration for parameters
in Fig. 9a, ε2 = 1, and varying χ ∈ {0.1, 2, 5}. d–f The 1D cell concentration for parameters in Fig. 9b,
ε2 = 1 and varying χ ∈ {2, 3, 5}. g–i The 1D cell concentration for parameters in Fig. 9c, χ = 4 and
varying ε3 ∈ {0.01, 0.1, 1}. Note the different scaling of the colorbar, and that the time axes are displayed
in logarithmic scale (Color figure online)
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4 Discussion

Inspired by recent experimental results, we have considered a coupled reaction–
diffusion–chemotaxis system. Stability analysis was carried out for a relatively general
formulation, and conditions for pattern formation were obtained. To illustrate these
within a specific system, we focussed on a standard set of reaction terms and pattern
forming regions were identified for various parameter combinations, including the
chemosensitivity, inhibitor diffusion coefficient, and the coupling constants. Pattern-
ing could be either enhanced or inhibited through the coupling, indicating a potentially
complex set of patterning outcomes when these mechanisms operate in tandem.

A primary motivation lay in the complex cellular and molecular interactions that
regulate primary hair follicle patterning in mice. As described in Glover et al. (2017),
epidermal and dermal cells interact with a network of growth factors, responsible
for the pre-patterning of hair placodes, including bone morphogenic protein (BMP),
fibroblast growth factor (FGF), and wingless-related integration site (WNT). Chemo-
taxis of both dermal and epidermal cells is mediated by widespread transforming
growth factor (TGFβ). The model here could be considered to be an abridged descrip-
tion of this system, reduced to the essential coupling between chemotaxis and a
reaction–diffusion prepattern mechanism. A natural extension would be to move
towards an experimentally-informed model with molecular signalling coupled to mul-
tiple distinct cell populations/tissue layers, based on the known interactions (Glover
et al. 2017); of course, at that point the dimensionality of the system increases and
analysis becomes less tractable. Nevertheless, other models have been developed that
consider patterning across separate epithelial and mesenchymal populations, ranging
from a simple description as two separate but overlapping variables (e.g. Painter et al.
2018) to more sophisticated description with interfacial transport between the two
distinct tissues (Diez et al. 2013).

The proposed model extends mathematical descriptions of pattern formation by
including more complex interactions between a spectrum of cellular and molecular
populations. This approach followsother trends towards greater elaboration, including:
models for feather primordia pattern formation that couple multiple cell popula-
tions responding by chemotaxis to interacting molecular regulators (Michon et al.
2008; Painter et al. 2018; Ho et al. 2019; Bailleul et al. 2019); reaction–diffusion
models that are structured across tissue layers, accounting for interfacial transport
(Diez et al. 2013); coupling of stochastic individual-based model of cell movement
to reaction–diffusion models on static and evolving geometries (Macfarlane et al.
2020); reaction–diffusion models extended to multiple (> 2) molecular regulators
(Marcon et al. 2016; Economou et al. 2020; Landge et al. 2020); or, multi-layered and
interlinking reaction–diffusion networks (Barrio et al. 1999; Yang and Epstein 2003).
Our results reinforce a general notion that greater model sophistication can lead to
more flexible patterning: the classic limitations of standard two variable activator–
inhibitor systems—such as the requirement formarkedly distinct diffusion coefficients
and some form of self-catalytic behaviour (Murray 2003)—relax when coupled to a
chemotactic population. Strict self-catalysis may no longer be required, andmolecular
components could have more or less equal diffusion coefficients. On the other hand,
we also find that coupling can sometimes allow pattern elimination, e.g. with increased
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chemotaxis suppressing pattern formation in certain instances. Overall, given that suc-
cessful morphogenesis of many organs is often contingent on precisely coordinated
spatial activity, the interlocking of different patterning mechanisms could allow the
exertion of control at distinct stages of development.

A linear stability analysis for the general model using the Routh-Hurwitz condi-
tions and the Descarte’s Rule of Signs (Murray 2003) results in two major pattern
conditions. However, when applied to the Schnakenberg secretion model, numerical
simulations indicated that within the considered parameter ranges patterning effec-
tively depended only on the simplest condition, which could be described by a second
degree polynomial of the squared wave numbers. This allowed us to derive parameter
ranges supporting pattern formation analytically usingMathematica software. Simula-
tionswere used to validate the analytical findings and to explore the temporal evolution
of the patterning process and pattern regularity. By varying the coupling parameters
εi and the ratio of the diffusion coefficient we studied systems where patterning was
dominated by diffusion–driven or chemotaxis-driven instability, or a combination of
both. In certain configurations, we found that coupling a chemotaxis process to a
reaction–diffusion process could lead to an acceleration in the timescales of pattern
development: intuitively, this could occur if the coupling is implemented such that any
spatially localised regions of self-activation within the reaction–diffusion system are
accompanied by cell accumulations that reinforce this process. Patterning timescales
are often somewhat neglected in modelling studies, but embryonic pattern formation
of course requires not just the establishment of a spatial pattern, but that it develops
within a relevant time scale: visible indications of hair follicles (i.e. gene expression in
the epidermis and mesenchymal condensations below) typically appear some 10–20h
from the undifferentiated skin (for example, 18h in Fig. 1b) and have an interfollicle
spacing ∼ 200µ m (e.g. see Fig. 1b). For a reaction–diffusion model with plausible
values for diffusion coefficients, establishing the spatial patternwithin these timescales
places critical restrictions on other key rate parameters, such as activator/inhibitor half
lives and synthesis rates (see Painter et al. 2012). Since reaction–diffusion pattern for-
mation can be slowed down by various factors, such as gene expression delays (Seirin
Lee et al. 2010), any mechanisms for enhancing the timescale of patterning may play
an important role to achieve morphogenesis within relevant timescales.

In settings where patterning through the Turing reaction–diffusion system dom-
inates, the pattern is relatively stable as it emerges: elements of the pattern do not
significantly shift position, at least during the considered simulation time. Patterning
for parameter scenarios where chemotaxis dominates, however, can be characterised
by significant movement of cellular foci following their first appearance, including
fusion, expansion and extinction events: patterns formed through chemotaxis mod-
els are relatively well known for highly dynamic patterning, since strong attraction
can occur between neighbouring aggregates (e.g. see Painter 2019). Our findings are
consistent with observations from time-lapse microscopy of developing skin. Under
normal conditions,where the chemotaxis process is subordinate to a reaction–diffusion
prepattern, mouse hair follicle cell aggregates form an apparently fixed and static pat-
tern (Glover et al. 2017). When the pre-patterning mechanism is suppressed, however,
the pattern of cell condensates that emerge through chemotaxis in themesenchyme has
a less defined/fused form (Glover et al. 2017). Further, in chicken feather patterning
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where chemotaxis appears to be a critical part of the pattern-forming process, cellular
aggregates are seen to move about and interact after their initial emergence before
settling in position (Ho et al. 2019).

Our model does not account for cell proliferation, which can be justified by experi-
mental studies on skin patterning in chicken. Here, proliferation is required to produce
a sufficiently high cell density to permit patterning, but in conditions where prolifera-
tion is suppressed periodic patterning still occurs in those regions of the tissue where
a high enough cell density has been attained (Ho et al. 2019). Also, patterning of
hair follicles in mice takes about 10h, but here cells divide less than once every 24h
(Riddell et al. 2023 and D. Headon, unpublished observation). Proliferation, however,
is certainly relevant for the biological system on a larger time scale, and could be
included in further work on this system. In the mouse, a space-filling hair develop-
ment can be crucial for survival. Therefore, characterising the spatial arrangement of
the follicles under various chemotaxis effects is relevant for a better understanding of
embryo development and should be investigated further in future studies. The model
can be further extended by a more detailed description of the growth factor inter-
action network consisting of approximately 20 compounds (Glover et al. 2017), by
including mechanical interaction between epithelial and dermal cells, stochasticity, or
three-dimensional effects, like shape or curvature, of the real skin system.
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Appendix A: Classical Systems

To provide context to our findings on the full system,we briefly comment on conditions
for patterning in the two classical sub-models on which Eq.1 is constructed. First,
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consider a two-species reaction–diffusion system of activator(v)–inhibitor(w) type,

∂v

∂t
= Dv ∇2v + f (v,w)

∂w

∂t
= Dw ∇2w + g(v,w).

(23)

and denote by (v∗, w∗) a (positive) homogeneous steady state, i.e. f (v∗, w∗) =
g(v∗, w∗) = 0. Standard diffusion–driven (or Turing) instability analysis involves
(see, for example, Murray 2003): (i) deriving the linearised equations following a per-
turbation about the homogeneous steady state, V̄ = (v̄, w̄) = (v(x, t)−v∗, w(x, t)−
w∗); (ii) looking for solutions to the linearised system of the form V̄ ∼ eλt eikx , where
the wavenumber k relates to the wavelength of patterns, to determine a stability matrix
for the eigenvalues λ; (iii) exploring the conditions under which the steady state is
stable following a homogenous perturbation, but unstable following an inhomogenous
perturbation. The latter step is equivalent to determining the conditions under which
perturbations grow or decay over time, i.e. whether there exist any eigenvalues with
positive real components for any valid wavenumber. The resulting set of conditions
forms what we refer to here as the Turing space, defined in the following.

Definition 1 (Turing space) The Turing space is defined as the parameter region in
which the following inequalities are satisfied (Murray 2003):

fv + gw < 0 (24)

fvgw − fwgv > 0 (25)

Dw fv + Dvgw > 0 (26)

(Dw fv + Dvgw)2 − 4DvDw( fvgw − fwgv) > 0 (27)

Note that subscripts on the kinetic functions denote partial derivatives evaluated at the
steady state, i.e. fv = ∂ f

∂v
|(v∗,w∗). The term diffusion–driven highlights that adding

diffusion induces the instability. Investigating the above conditions leads to general
principles for patterning, within the context of a two variable systems. First, the “acti-
vator” must have an autocatalytic property, i.e. fv > 0. Second, activator and inhibitor
require distinct diffusion ranges, specifically Dv < Dw. Third, the sign structure for
the signalling interactions must fall into one of two general classes:

(
fv fw
gv gw

)

≡
(+ −

+ −
)

or

(+ +
− −

)

, (28)

where the first form is referred to as a pure activator–inhibitor system, and the second
form a cross activator–inhibitor system.

An alternative route to patterning is through a chemotaxis-driven autoaggregation
(Keller and Segel 1970). Here a minimal system can be constructed from the chemo-
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tactic cell population and the associated signalling component, i.e.

⎧
⎪⎨

⎪⎩

∂u

∂t
= Du∇2u − χ · ∇(u∇v)

∂v

∂t
= Dv∇2v + f (u, v)

(29)

For the above, the homogeneous positive steady state is (u∗, v∗), where conservation
of mass determines u∗ from the initial conditions, i.e. u∗ is the mean value of u(x, 0),
when averaged over space. v∗ then solves f (u∗, v∗) = 0. Performing the equivalent
stability analysis leads to a set of conditions under which chemotaxis can drive self-
organisation, defined here as the chemotaxis space.

Definition 2 (Chemotaxis space) The chemotaxis space is defined as the parameter
region in which the following inequalities are satisfied:

fv < 0 (30)

χ fuu
∗ + fvDu > 0 (31)

The classical autoaggregation scenario involves a cell population that produces its
own attractant (although it could also include a cell population that downregulates its
own repellent). The above conditions then stipulate a threshold on the chemotactic
sensitivity, along with the density of the chemotactic population and the rate at which
attractant is produced. Note that there is a distinction on the sign of fv in the two
spaces above: for the Turing space, the need for an autocatalysis demands fv > 0,
while in the chemotaxis space we require fv < 0 for stability of the steady state under
homogeneous perturbations.

As a point of remark, we note that the chemotaxis system without cellular growth
terms will yield a zero eigenvalue for the linear stability analysis that follows a homo-
geneous perturbation to the steady state. As such, the steady state is not asymptotically
stable and certain perturbations (i.e. those that lead to a change in the cell mass) will
result in a shift in the position of the steady state. For these reasons we have imposed
initial conditions such that the perturbation to the steady state has zero mean and,
consequently, the steady state remains at a fixed position. A more formal analysis, for
example using centre manifold theory is beyond the aims of the current work. The
same reasoning applies for the coupled chemotaxis-reaction–diffusion system studied
in Sect. 3.1.

Appendix B: Dimensional Analysis

We derive the Turing Schnakenberg system and couple it to the chemotaxis model.
Subsequently, by nondimensionalisation we obtain (Eq.3).

The Schnakenberg system is a hypothetical chemical reaction (Schnakenberg 1979)
for given general chemicals X, A, B, and Y (Eq.32), that can exhibit limit-cycle
behaviour (periodic time oscillations), and is used as a prototype reaction for Turing-
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Table 2 Dimensional analysis of
parameters in terms of M as
mass unit, L as space unit, and T
as time unit

Variable/parameter Dimension

x L

t T

U , V , W M/L3

Du , Dv, Dw L2/T

χ L5/(T M)

β M/L3

r1, r2, k1, k2, k3 1/T

A, B M/L3

k4 L6/(T M2)

based patterning (Murray 2003). Reactions are assumed to evolve as

X
k1−⇀↽−
k2

A , B
k3−→ Y , 2X + Y

k4−→ 3X. (32)

It is assumed that the concentrations [A] = A and [B] = B are approximately con-
stant, i.e., the chemical reactions are performed in an environment with an abundance
of A and B. Applying the Law of Mass Action to these reactions and assuming dif-
fusion, we can model the dynamics through a system of partial differential equations
for varying concentrations [X ] = V (x, t) and [Y ] = W (x, t), in space x and time t ,
for diffusion coefficients Dv and Dw (Eq. 33).

⎧
⎪⎪⎨

⎪⎪⎩

∂V

∂t
= Dv∇2V + k2A − k1V + k4V 2W

∂W

∂t
= Dw∇2W + k3B − k4V 2W

(33)

We assume that the cellsU = U (x, t) follow the V gradient, with chemosensitivity
χ , spread with diffusion coefficient Du , and that they secrete both chemicals V and
W with rates r1 and r2, respectively. Furthermore, the cell density is bounded using a
volume-filling formulation (Painter and Hillen 2002) with constant β. The resulting
coupled chemotaxis and Turing systems is represented in Eq.34.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂U

∂t
= Du∇2U − χ∇ · ((1 −U/β)U ∇V )

∂V

∂t
= Dv∇2V + r1U + k2A − k1V + k4V 2W

∂W

∂t
= Dw∇2W + r2U + k3B − k4V 2W

(34)

Consider the dimensional system presented in Eq.34 and the parameters units in
terms of M as mass unit, L as space unit, and T as time unit (Table 2).
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We introduce the following dimensionless variables:

x∗ = x

L
, t∗ = Dvt

L2 , v = V

√
k4
k1

, w = W

√
k4
k1

, u = U

u∗

In the above, u∗ is the constant initial distribution of the cells. Substituting into the
original system Eq.34 we obtain the dimensionless system in Eq.35.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t∗
= Du

Dv

∇2u −
( χ

Dv

√
k1
k4

)
∇ ·

[
u
(
1 − u

β/u∗
)

∇v
]

∂v

∂t∗
= ∇2v +

(
L2k1
Dv

)[
Ak2
k1

√
k4
k1

(
1 + r1u∗

Ak2
u
)

− v + v2w

]

∂w

∂t∗
= Dw

Dv

∇2w +
(
L2k1
Dv

)[
Bk3
k1

√
k4
k1

(
1 + r2u∗

Bk3
u
)

− v2w

]

(35)

We consider the new parameters:

D∗
u = Du

Dv

, D∗
w = Dw

Dv

, γ = L2k1
Dv

, χ∗ = χ

Dv

√
k1
k4

, β∗ = β

u∗

a = Ak2
k1

√
k4
k1

, ε1 = r1u∗

Ak2
, c = Bk3

k1

√
k4
k1

, ε2 = r2u∗

Bk3 ,

And insert into Eq.35 to obtain the dimensionless system in Eq.36. We drop the
∗’s for notational simplicity. We also add a nondimensional parameter ε3 that controls
the autocatalytic reaction between v and w.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= Du∇2u − χ∇ · (u(1 − u/β)∇v)

∂v

∂t
= ∇2v + γ (a(1 + ε1u) − v + ε3v

2w)

∂w

∂t
= Dw∇2w + γ (c(1 + ε2u) − ε3v

2w)

(36)
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Appendix C: Detailed Linear Stability Analysis of the Full Model

C.1 The Condition C<0

The coefficients A, B, and C of the characteristic polynomial of the stability matrix
Eq.6 can be computed as

A = k2(Dv + Du + Dv) − ( fv + gw) ,

B = k4(DvDw + Du(Dv + Dw)) − k2[χu∗ fu + Dw fv
+ Du( fv + gw) + Dvgw] + (− fwgv + fvgw)

C = DuDvDwk
6 − k4[χu∗Dw fu + Du(Dw fv + Dvgw)]

+ k2[χu∗(− fwgu + fugw) + Du(− fwgv + fvgw)] .

Observe that A > 0 for all k, due to positivity of the diffusion coefficients along with
the condition Eq.24. We employ the Routh-Hurwitz condition (Eq.37) to study the
roots of the polynomial given in Eq.7.

max{R(λ)} < 0 ⇔ A > 0; C > 0; AB − C > 0 . (37)

Given that we require at least one eigenvalue with real positive part, one of the Routh-
Hurwitz conditions should be broken, that is, C < 0 or AB − C < 0.

First we consider the easier caseC < 0. For this, we note first thatC is a polynomial
in k2 and can be written as C(k2) = k2(ak4 +bk2 + c) < 0. We study the polynomial
Eq.38 in q = k2 with the coefficients given by Eqs. 39–41, e.g.,

C̄(q) = a1q
2 + b1q + c1 ,with (38)

a1 = DuDvDw (39)

b1 = −[χu∗Dw fu + Du(Dw fv + Dvgw)] (40)

c1 = [χu∗(− fwgu + fugw) + Du( fvgw − fwgv)] . (41)

The roots of the second degree polynomial Eq. 38 can be explicitly calculated:

q1 = −b1 + √
�1

2a1
, q2 = −b1 − √

�1

2a1
, where �1 = b21 − 4a1c1 . (42)

Observe that a1 > 0. Accordingly, the polynomial Eq.38 is a parabola with a global
minimum. For there to be at least one positive root, a necessary condition is to have at
least one change in the coefficients’ sign, that is, either b1 < 0 or c1 < 0. Further, the
minimum must be negative, Cmin < 0, which will occur for �1 > 0 in Eq.42. Hence
C̄(q) < 0 for at least one q, if its coefficients satisfy Eq.43:

(b1 < 0 or c1 < 0) and �1 = b21 − 4a1c1 > 0 . (43)
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Thus, the case C < 0 can generate two possible routes to pattern formation. First,
consider the case c1 < 0. Here (using a1 > 0) the condition �1 > 0 is automatically
satisfied and we therefore reduce to the sufficient (but not necessary) condition for
pattern formation given by Eq.8. Second, we consider a route to instability through
b1 < 0. Here, �1 > 0 is not automatically satisfied and an instability will require the
conditions given by Eqs. 9 and 10.

C.2 The Condition AB-C<0

Next we consider the possibility for AB − C < 0. Our approach here is very similar
to the one in Othmer and Scriven (1969). Denoting q = k2, we write AB − C as a
third degree polynomial R(q),

R(q) = a2q
3 + b2q

2 + c2q + d2 (44)

a2 = −DuDvDw + (Du + Dv + Dw)(DvDw + Du(Dv + Dw)) (45)

b2 = [χDw fu − (DvDw + Du(Dv + Dw))( fv + gw) + Du(Dw fv + Dvgw)

+ (Du + Dv − Dw)(χ fu + Dw fv − Du( fv + gw) − Dvgw)] (46)

c2 = [( fv + gw)(χ fu + Du fv + Dw fv + Dugw + Dvgw) (47)

+ χ( fwgu − fugw) + (Dv + Dw)(− fwgv + fvgw)]
d2 = −( fv + gw)( fvgw − fwgv) (48)

Equation11 has turning points at q̄1 and q̄2, and an inflection point at q̄3:

q̄1,2 = −b2 ± √
�2

3a2
, q̄3 = − b2

3a2
, where �2 = b22 − 3a2c2 . (49)

We note that the coefficients a2 and d2 are always positive. The coefficient d2 dictates
where the curve intersects with the vertical axis, i.e. a positive point. Next, we apply
Descartes’ Rule of Signs for the other coefficients b2 and c2, see Table 3. If b2 and c2
are always positive, then AB − C < 0 is not possible. Noting Table 3, for b2 < 0 or
c2 < 0, when �2 in Eq.49 is negative, R(q) increases monotonically with q and the
single real root is negative. Hence, for positive q the curve R(q) does not attain any
negative value. When �2 > 0 and b2 < 0, both turning points are positive, but we
also need the requirement R(q̄1) < 0 to lie in the pattern region. The case in which
�2 > 0 and b2 > 0 is more restricted due to there being only one positive turning
point, so besides c2 < 0 we also need R(q̄3) < 0 in this case.

Appendix D: Numerical Methods

The PDE system at hand in this study is of taxis-diffusion–reaction type. Numeri-
cal methods for systems of this class are developed, analysed as well as tested and
compared with other schemes in applications to various biomedical models in Gerisch
(2001), Gerisch and Chaplain (2006). Based on these works, the numerical method has
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Table 3 Descartes Rule of Signs applied to the second degree polynomial R(q)

Case a2 b2 c2 d2 Real positive Real negative Complex

1 + + + + 0 3/1 0/2

2 + + – + 2/0 1 0/2

3 + – + + 2/0 1 0/2

4 + – – + 2/0 1 0/2

been used in numerous biomedical projects and applications by ourselves and other
authors, and the corresponding software provides efficient, accurate, and reliable sim-
ulation results, see, for instance, Peiffer et al. (2011), Painter et al. (2015), Domschke
et al. (2017), Villa et al. (2022). This software, written as a combination of Matlab and
Fortran code, is employed for the simulations in this work here. It is available from
the authors upon request.

Characteristics of the PDE system at hand highlight the requirements on any numer-
ical method for the numerical approximation of solutions of taxis-diffusion–reaction
systems. Firstly, the PDE system is mass-conservative and that should be respected
by the numerical method. Secondly, the system is highly nonlinear in its chemotactic
transport and reaction terms. Furthermore, while being of parabolic type due to the
positive diffusion coefficients, the system can become chemotaxis-dominated (typi-
cally referred to as advection-dominated) and steep moving fronts may evolve. The
resolution of these fronts is a computational challenge and our scheme in particu-
lar avoids non-physical oscillations in the numerical solution and also preserves the
non-negativity of the initial conditions in the numerical solution over time. The lat-
ter property holds for the solution of our PDE problem and is a natural demand on
any mathematical model describing the spatio-temporal evolution of densities and/or
concentrations.

The numerical approach follows the method of lines (MOL) methodology, where
we, firstly, discretise the PDE system in space on a spatial grid and, secondly,
integrate the resulting ordinary differential equation (ODE) system—the so-called
MOL-ODE—in time. Thus we finally arrive at a fully discrete (in space and time)
numerical solution. A spatially uniform grid is used by the scheme and kept fixed in
time. For spatially one-dimensional simulations the unit interval is subdivided into N
intervals (grid cells) of equal length, while for spatially two-dimensional simulations
the unit square is subdivided into N × N squares of equal size. Since the PDE sys-
tem here has three equations, the MOL-ODE thus has dimension 3N and 3N 2 in the
spatially one- and two-dimensional setting, respectively. In particular in two spatial
dimensions this quickly gives rise to a very high-dimensional ODE system and the
time-integration scheme must be capable to cope with that, see below.

The PDE system, written in divergence form, is discretised in space on the given
spatial grid using a Finite Volume scheme. The discretised system (MOL-ODE) in this
case describes the evolution of the grid cell averages of the three PDE components.
Changes to the average mass in each grid cell arise either through reaction terms,
and we use the grid cell average to evaluate these terms, or through fluxes (diffusion
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and chemotaxis) across the grid cell interfaces. This construction ensures that the
discretization respects the mass-conservation of the underlying PDE. The diffusive
flux accross a grid cell interface is approximated using a central difference of the
grid cell averages in the adjacent grid cells. This amounts to a standard second-order
central difference approximation of the diffusion terms. For the computation of the
chemotaxis fluxes we use a nonlinear discretisation, an upwind-biased discretisation
with van Leer limiter function, to ensure that the resulting MOL-ODE is positive
and exhibits no non-physical oscillations in its solution. This is approach is based on
Hundsdorfer et al. (1995), Sweby (1984) and described and discussed, including the
incorporation of boundary conditions, in detail in Gerisch and Chaplain (2006).

The initial conditions for the MOL-ODE are taken as grid cell centre values of the
initial condition of the PDE system. This completes the definition of the initial value
problem (IVP) for the MOL-ODE which represents, away from local extrema of the
solution, a second-order approximation of the PDE system and thus achieves a high
accuracy while maintaining positivity of the solution. The IVP for the MOL-ODE
resulting from the above spatial discretisation is a stiff system, in particular due to
the diffusion term but potentially also from stiff reaction terms. It is also strongly
nonlinear due to the reaction terms and due to the taxis term and its discretisation.
As a stiff system, the IVP should be numerically integrated in time using an implicit
scheme because explicit schemes would require excessively small time steps to be
taken for a successful (i.e. stable) and sufficiently accurate numerical solution and
lead to unreasonably long computing times.

Here, as in many earlier studies involing taxis-diffusion–reaction systems, we use
the time integration scheme ROWMAP, see Weiner et al. (1997). ROWMAP is a
linearly-implicit Runge–Kutta method of order four with automatic time-step size
control in order to efficiently satisfy a user defined tolerance threshold. Furthermore,
ROWMAP is a matrix-free method as the iterative solution of the (linear) equation
systems only requires approximated Jacobian matrix (of the ODE’s right-hand side)
times vector products. These products are computed efficiently by ROWMAP itself.
Thus the user only needs to provide an implementation of the right-hand side of the
ODE system and in particluar neither the Jacobian itself nor a Jacobian sparsity pattern
are required. All these feature taken together make ROWMAP a very user-friendly,
robust, and efficient IVP solver.

As a final point, we report on the values of some parameters of the numerical
scheme used in this study. The number of grid cells per unit length was N = 250.
The ROWMAP tolerance threshold was set to 10−6 and its initial time step size to
10−4 for one-dimensional and 10−2 for two-dimensional simulations. Finally, the
simulations were run to a final time of T = 0.4 for one-dimensional and T = 0.5 for
two-dimensional simulations.

Appendix E: Code Access

The plotted data, the code used for visualization, as well as Mathematica scripts used
to explore the regions for pattern formation can be accessed from the GitHub reposi-
tory under the link: https://github.com/mileknz/RD_chemotaxis. These Mathematica
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scripts also contain the patterning conditions for the Schnakenberg system.TheGitHub
repository also includes a file listing the full parameters set for each figure. The code
for the numerical treatment and simulation of the PDE systems is available for research
purposes upon request.
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