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Abstract
We consider the classical problem of maximizing the expected utility of terminal net
wealth with a final random liability in a simple jump-diffusion model. In the spirit
of Horst et al. (Stoch Process Appl 124(5):1813–1848, 2014) and Santacroce and
Trivellato (SIAM J Control Optim 52(6):3517–3537, 2014), under suitable conditions
the optimal strategy is expressed in implicit form in terms of a forward backward
system of equations. Some explicit results are presented for the pure jump model and
for exponential utilities.

Keywords Forward backward stochastic differential systems · Jump-diffusions ·
Utility maximization problem

Mathematics Subject Classification 60H10 · 91G80 · 60G07

1 Introduction

Portfolio’s optimization and hedging problems are two classical problems which have
been deeply investigated since the beginning of the seventies. Their mathematical
formulation in continuous time was pioneered by Merton. In [19] he provides the
strategy which maximizes the expected utility of a small investor in closed form by

B Marina Santacroce
marina.santacroce@unicatt.it

Paola Siri
paola.siri@polito.it

Barbara Trivellato
barbara.trivellato@polito.it

1 Dipartimento di Matematica per le Scienze Economiche, Finanziarie ed Attuariali, Università
Cattolica del Sacro Cuore, Via Necchi 9, 20123 Milan, Italy

2 Dipartimento di Scienze Matematiche “G.L. Lagrange”, Politecnico di Torino, Corso Duca degli
Abruzzi 24, 10129 Turin, Italy

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00245-024-10114-9&domain=pdf
http://orcid.org/0000-0001-5596-3355


   65 Page 2 of 22 Applied Mathematics & Optimization            (2024) 89:65 

exploiting theMarkovianity of themodel for standard utilities. An alternative approach
for not necessarily Markovian models was suggested by [2] and uses convex duality.
This methodology has been developed in its full potential in [3, 7, 11, 25] and, in its
modern form, in [12] and many others work thereafter. It is well known that convex
duality and martingale methods lead to establish the existence and uniqueness of
an optimal strategy in general market models and for non classical utility functions,
but they do not provide a constructive characterization. A constructive form for the
optimal portfolio has been determined for classical utilities in quite general market
models by using dynamic programming techniques [9, 14, 15]. Nevertheless, there
exist just very few results for non classical utilities. A first work in this direction
is given by [16] (see also [17]). In the non-Markovian framework, the problem is
solved by dynamic programming and the optimal strategy is given in terms of the
value function related to the problem and its derivatives. In turn, the value function
is characterized as the solution of a backward stochastic partial differential equation
under some assumptions imposed on the value function. Another subsequent work
with a constructive characterization is [8], where the hedging problem is studied for
general utilities in a Brownian model without resorting to dynamic programming. In
this article the optimal strategy is described by means of the utility function with its
derivatives and the solution of a fully coupled forward backward system. In [28] the
same approach has been generalized to a continuous semimartingale setting.

Further developments can be found in more recent works in Brownian settings (see
[24] for a large investor problemwith endogenous permanent market impacts and [29]
for a stochastic maximum principle algorithm for constrained utilities maximization).

In this paper, we consider a jump diffusion model driven by a Brownian motion
and an independent simple Poisson process and study a classical problem of maxi-
mization for a general utility using the techniques introduced in [8, 28]. To our present
knowledge, it is the first paper dealing with this approach in a model with jumps.

We start by restating Proposition 2.1 in [28], which gives the derivative of the
expectation of the terminal net wealth computed in an admissible strategy. The proof
follows the same lines as in [28], but we add here an extra condition which was
missing. The derivative is proved to be null for the optimal strategy and this represents
our necessary condition for optimality.

In our main result we use this key condition to express the optimal strategy in terms
of a fully coupled forward–backward stochastic differential system.

Besides, the vice versa of this result states that froma suitable solution of the system,
the strategy which satisfies a certain optimality equation is admissible and optimal.

As a result, in the jump diffusionmodel the optimal strategy is found to be implicitly
defined by an equationwritten in terms of the solution of the forward backward system.
Such optimality equation can not be explicitly solved even for the exponential utility,
where the system decouples (see e.g., [20–22]). However, the optimal strategy admits
an explicit expression in the pure jump model. In this setting, for the pure investment
problem we also provide sufficient conditions in order to find a solution to the forward
backward system, which is not in general an easy task. Moreover, the related optimal
strategy turns out to have a more pleasant expression. Finally, we prove that these
sufficient conditions are satisfied for exponential utilities, where an easy solution to
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the forward backward system and the corresponding optimal strategy are explicitly
written.

The paper is organized as follows. In Sect. 2, we introduce the model with the
assumptions and state the preliminary proposition, containing the necessary condition
for the optimality. In Sect. 3, we consider the jump diffusionmodel and give the charac-
terization of the optimal strategy in terms of a fully-coupled forward backward system.
In Sect. 4, we deal with the pure jump model. The forward backward characterization
of the optimal strategy is followed by the application to the pure investment problem.
Finally, the results of the previous sections are specified to exponential utilities in
Sect. 5.

2 Model Settings and Preliminary Results

We consider the classical problem of maximizing the expected utility of terminal net
wealth, with a finite time horizon, when the asset price process is modeled by a jump-
diffusion. Specifically, the financial model consists of a bank account which pays no
interests and of one risky asset whose (discounted) price S is given by the stochastic
exponential of a jump diffusion.
On a probability space (�,F ,P) we consider two independent processes W and N ,
both defined on [0, T ], where T < +∞ is the fixed time horizon:W is a standard (one-
dimensional) Brownian motion and N a homogeneous Poisson process with intensity
ν > 0.
The probability space is equipped with the natural filtration generated by W and N
(completed by theP-null sets ofF ). As a consequence, every (local)martingale admits
the classical representation as the sum of two stochastic integrals with respect to W
and the compensated Poisson martingale nt = Nt − νt , respectively (see [10]). This
will be extensively used in the sequel, e.g. in (3.9).
For the sake of simplicity, we denote the filtration by F = (Ft , t ∈ [0, T ]) and we
suppose FT = F .
We assume the price process S is defined on the filtered probability space (�,F ,F ,P)

with a dynamics given by

dSt = St−(μt dt + σt dWt + ηt dnt ), S0 > 0, (2.1)

where the coefficients μ, σ, η are uniformly bounded predictable processes and, to
ensure that S is almost surely positive, η > −1.

Under these assumptions on the coefficients of the model there is no arbitrage in
the market.
We investigate the model in two main different cases: in the first one we consider
σ 2 > 0, whereas the second concerns the pure jump model, i.e. σ 2 ≡ 0.
We denote by π the dollar amount of risky asset in the portfolio and consider the
wealth process Xπ which evolves according to the self-financing strategy π , i.e.
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Xπ
t = Xπ

0 +
∫ t

0
πs

dSs
Ss−

. (2.2)

Moreover, let H be a boundedFT -measurable randomvariable, representing a liability
due at time T .
Given a utility functionU defined on the real line, we consider the related problem of
maximizing the expected utility of the terminal net wealth

to maximize E
[
U
(
Xπ
T + H

)]
over all π ∈ �x , (2.3)

where x > 0 is a given initial capital and �x is the set of admissible strategies defined
as

�x = {
π ∈ H

2 s.t. Xπ
0 = x

}
,

with

H
2 =

{
ϑ predictable process s.t. E

(∫ T

0
ϑ2
t dt

)
< +∞

}
.

Taking into account the boundedness of μ, σ and η, this choice ensures the square
integrability of the wealth process (2.2).
Throughout the paper, the utility function U is assumed to be strictly increasing,
strictly concave and three times continuously differentiable. Moreover, the following
additional conditions are used as needed:

(H1) ∃ k > 0 s.t. the absolute risk aversion satisfies ARA(x) = −U ′′(x)
U ′(x) ≥ k, ∀ x ∈ R;

(H2) E[U ′(ξ)2] < +∞, for a suitable random variable ξ ;
(H3) E[|U (ξ)|] < +∞, for a suitable random variable ξ .

From now on, according to (2.2) we consider the process X0,h , where X0,h
0 = 0 and

h is a predictable bounded process, i.e.

X0,h
t =

∫ t

0
hs

dSs
Ss−

.

Let us observe that, under our assumptions on the model and due to the boundedness
of h, the process X0,h is square integrable.
The following proposition represents the key starting point for the derivation of the
main result and is a restatement of Proposition 2.1 in [28]. For this reason, we omit
the proof. We just remark that we add here an extra condition which was missing in
[28].

Proposition 2.1 For π∗ ∈ �x , let (H2) hold with ξ = Xπ∗
T + H. Moreover, suppose

that for any predictable bounded process h, there exists ε > 0 such that (H3) is
satisfied by ξ = Xπ∗+εh

T + H.
Then
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lim
ε↓0

E
[
U
(
Xπ∗+εh
T + H

)−U
(
Xπ∗
T + H

)]
ε

= E

[
U ′(Xπ∗

T + H
)
X0,h
T

]
. (2.4)

If, in addition, π∗ is optimal for problem (2.3), then

E

[
U ′(Xπ∗

T + H
)
X0,h
T

]
= 0. (2.5)

Remark 2.1 Note that the extra integrability condition (H3) required in Proposition
2.1 can be weakened by requiring only the integrability of the negative part of U (ξ).

3 Jump-DiffusionModel

In this section, we consider the dynamics of the price process (2.1) with σ 2 > 0 and
we require σ−1 to be bounded.
The next two theorems are the main results of the paper. The first one characterizes the
optimal strategy in terms of the solution of a forward–backward system of SDEs. The
second theorem represents the vice versa and establishes the existence of an optimal
strategy.

Theorem 3.1 Let π∗ ∈ �x be optimal for problem (2.3) and suppose (H1) holds.
Under the assumptions of Proposition 2.1, there exists a smooth function G such that
the following forward–backward system admits a solution (X ,Y , Z , �):

Xt =x +
∫ t

0
G(Xs− , Ys− , Zs , �s , ϒs)(μsds + σsdWs + ηsdns) (3.6)

Yt =H +
∫ T

t

(
U ′(�s + G(Xs− , Ys− , Zs , �s , ϒs)ηs + Xs− + Ys− ) −U ′(Xs− + Ys− )

U ′′(Xs− + Ys− )
− �s

)
νds

+
∫ T

t

1

2

U ′′′(Xs− + Ys− )

U ′′(Xs− + Ys− )
(Zs + G(Xs− , Ys− , Zs , �s , ϒs)σs)

2ds,

+
∫ T

t
G(Xs− , Ys− , Zs , �s , ϒs) (μs − ηsν) ds −

∫ T

t
(ZsdWs + �sdns), (3.7)

where ϒt = (ηt , μt , σt ).
Moreover,

π∗ = G(X−,Y−, Z , �,ϒ) (3.8)

and the related optimal wealth process is equal to X.

Proof The arguments used in this proof are similar to those in [8, 28]. We start by
defining

αt = E
[
U ′(Xπ∗

T + H
)|Ft

]
.
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The process α is a square integrable martingale since, due to Proposition 2.1, (H2) is
satisfied by ξ = Xπ∗

T + H . Therefore, α satisfies the backward stochastic differential
equation (BSDE)

αt = U ′(Xπ∗
T + H

)−
∫ T

t
(βsdWs + γsdns), (3.9)

where β and γ are respectively the predictable integrand appearing in the martingale
representation of α, with respect to W and n. We consider the process Y , where

Yt = (U ′)−1(αt ) − Xπ∗
t ,

with final value YT = H . By Itô’s formula we can write

dYt = 1

U ′′(U ′−1(αt−))
dαt − 1

2

U ′′′(U ′−1(αt−))(
U ′′(U ′−1(αt−))

)3 d[α]ct + (U ′−1(αt ) −U ′−1(αt−))

− 1

U ′′(U ′−1(αt−))
�αt − dXπ∗

t . (3.10)

Observing that

U ′−1(αt ) −U ′−1(αt−) = U ′−1(γt�Nt + αt−) −U ′−1(αt−)

=
(
U ′−1(γt + αt−) −U ′−1(αt−)

)
�Nt

(3.10) can be immediately rewritten as

dYt = 1

U ′′(U ′−1(αt−))
(βt dWt − γtνdt) − 1

2

U ′′′(U ′−1(αt−))(
U ′′(U ′−1(αt−))

)3 β2
t dt

+
(
U ′−1(γt + αt−) −U ′−1(αt−)

)
dNt − π∗

t (μt dt + σt dWt + ηt dnt ).

After rearranging the dt , dWt and dnt terms together and replacing U ′−1(αt ) =
Xπ∗
t + Yt , we denote the integrands in the martingale terms respectively by Zt and

�t , i.e. we define the processes

Z = 1

U ′′(Xπ∗
− + Y−)

β − π∗σ,

� = −π∗η +U ′−1
(
γ +U ′(Xπ∗

− + Y−)
)

−
(
Xπ∗

− + Y−
)

. (3.11)

Therefore, Y solves the following BSDE

dYt =ZtdWt + �t dnt
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+
[
U ′−1(γt +U ′(Xπ∗

t− + Yt−)) − (Xπ∗
t− + Yt−) − 1

U ′′(Xπ∗
t− + Yt−)

γt

]
νdt

−
[1
2

U ′′′(Xπ∗
t− + Yt−)(

U ′′(Xπ∗
t− + Yt−)

)3 β2
t + π∗

t μt

]
dt, YT = H .

If in the previous equation we replace β and � using the expressions in (3.11), we
obtain

dYt = −
[
1

2

U ′′′(Xπ∗
t− + Yt−)

U ′′(Xπ∗
t− + Yt−)

(Zt + π∗
t σt )

2

− (
�t + π∗

t ηt
)
ν + 1

U ′′(Xπ∗
t− + Yt−)

γtν + π∗
t μt

]
dt

+ ZtdWt + �t dnt , YT = H . (3.12)

In order to obtain the FBSDE (3.6, 3.7) we will prove that π∗ admits an (implicit)
representation like (3.8). To get a characterization of the optimal strategy π∗, we use
(2.5) of Proposition 2.1. Starting by the application of the integration by parts formula
toU ′(Xπ∗

T + H) X0,h
T , for an arbitrarily fixed bounded predictable process h, we have

U ′(Xπ∗
T + H)X0,h

T =
∫ T

0
U ′(Xπ∗

t− + Yt−)ht
(
μt dt + σt dWt + ηt dnt

)

+
∫ T

0
X0,h
t− (βt dWt + γt dnt )

+
∫ T

0

ht
St−

(βt d[S,W ]t + γt d[S, n]t )

=
∫ T

0
αt−ht

(
σt dWt + ηt dnt

)

+
∫ T

0
X0,h
t− (βt dWt + γt dnt ) +

∫ T

0
htηtγt dnt

+
∫ T

0
ht
(
U ′(Xπ∗

t− + Yt−)μt + βtσt + γtηtν
)
dt . (3.13)

We now check that the first three integrals in (3.13) are martingales.
For the first integral we have

E

(
sup

0≤t≤T

∣∣∣∣
∫ t

0
αs−hs

(
σsdWs + ηsdns

)∣∣∣∣
)

≤ C E

⎛
⎝
(∫ T

0
α2
t−h

2
t

(
σ 2
t dt + η2t dNt

)) 1
2

⎞
⎠

≤ C E

⎛
⎝ sup

0≤t≤T
|αt−|

(∫ T

0
h2t
(
σ 2
t dt + η2t dNt

)) 1
2

⎞
⎠
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≤ C

⎛
⎝E

(
sup

0≤t≤T
|αt−|

)2
⎞
⎠

1
2 (

E

(∫ T

0
h2t
(
σ 2
t dt + η2t dNt

))) 1
2

≤ C
(
E

(
α2
T−
)) 1

2
< ∞,

where the constant C can differ from line to line. The first is Burkholder–Davis–
Gundy inequality for p = 1, the third is Cauchy–Schwarz inequality, while the last
is a consequence of Doob inequality and the boundedness of h, η and σ . Then the
conclusion follows by the integrability assumptions on α.
Exploiting the same chain of inequalities, for the second integral we can write

E

(
sup

0≤t≤T

∣∣∣∣
∫ t

0
X0,h
s− (βsdWs + γsdns)

∣∣∣∣
)

≤ C

(
E

(
X0,h
T−
)2) 1

2
(
E

(∫ T

0

(
β2
s ds + γ 2

s dNs
))) 1

2

< ∞,

where the finiteness of the last expression is due to the square integrability of X0,h

and α.
We are left to prove that

∫ ·
0 hsηsγsdns is a martingale. A sufficient condition is to

show E

(∫ T
0 |htηtγt |ν dt

)
< ∞ for the predictable process hηγ . This is true since h

is bounded and by Cauchy–Schwarz

E

(∫ T

0
|ηtγt | dt

)
≤ C

(
E

(∫ T

0
η2t dt

)) 1
2
(
E

(∫ T

0
γ 2
t dt

)) 1
2

< ∞.

Taking the expectation in (3.13) and recalling (2.5) we find

E

(
U ′(Xπ∗

T + H) X0,h
T

)
= E

(∫ T

0
ht
(
U ′(Xπ∗

t− + Yt−)μt + βtσt + γtηtν
)
dt

)

= E

(∫ T

0
ht
(
U ′(Xπ∗

t− + Yt−)μt +U ′′(Xπ∗
t− + Yt−)(Zt + π∗

t σt )σt + γtηtν
)
dt

)
= 0,

(3.14)

where in the last equality we replaced β = U ′′(Xπ∗
− + Y−)(Z + π∗σ).

Choosing in (3.14) the integrand h = 11{U ′(Xπ∗
− +Y−)μ+U ′′(Xπ∗

− +Y−)(Z+π∗σ)σ+γ ην>0}
and then h = 11{U ′(Xπ∗

− +Y−)μ+U ′′(Xπ∗
− +Y−)(Z+π∗σ)σ+γ ην<0}, we deduce

U ′(Xπ∗
− + Y−)μ +U ′′(Xπ∗

− + Y−)(Z + π∗σ)σ + γ ην = 0

dP ⊗ dt − a.e. on [0, T ]. (3.15)
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From (3.11),

γ = U ′(� + π∗η + Xπ∗
− + Y−) −U ′(Xπ∗

− + Y−)

which plugged into (3.15) gives the equation

U ′(Xπ∗
− + Y−)μ +U ′′(Xπ∗

− + Y−)(Z + π∗σ)σ

+
(
U ′(� + π∗η + Xπ∗

− + Y−) −U ′(Xπ∗
− + Y−)

)
ην = 0. (3.16)

Note that (3.16) includes the case η = 0 forwhich the optimal strategy can be explicitly
written,

π∗ = 1

σ

(
−U ′(Xπ∗

− + Y−)

U ′′(Xπ∗
− + Y−)

μ

σ
− Z

)
,

as in [8].
For any ω ∈ � and t ∈ [0, T ], (3.16) can be seen as F = 0, where the function
F : D × R −→ R, defined by

F(w, π) = U ′(x + y)μ +U ′′(x + y)(zσ + πσ 2)

+ (
U ′(ψ + πη + x + y) −U ′(x + y)

)
ην, (3.17)

for every w in the open set D = {w = (x, y, z, ψ, η, μ, σ ) ∈ R
7 : σ 2 > 0},

and π ∈ R, is continuously differentiable on its domain, because of the smoothness
hypotheses on U . Moreover, U being strictly concave, we get ∀(w, π) ∈ D × R

∂

∂π
F(w, π) = U ′′(x + y)σ 2 +U ′′(ψ + πη + x + y)η2ν ≤ U ′′(x + y)σ 2

<
1

2
U ′′(x + y)σ 2 < 0,

so that a global implicit function theorem can be applied (see Theorem 6.1 (2) in the
Appendix). Consequently, for any w ∈ D the equation F(w, π) = 0 admits a unique
solution π ∈ R and there exists a function G continuously differentiable on D and
such that {(w, π) ∈ D × R : F(w, π) = 0} = {(w, π) ∈ D × R : π = G(w)}.

Thus, the optimal strategy is

π∗ = G(X−,Y−, Z , �, η, σ, μ),

which is expressed in terms of the solution (Y , X , Z , �) of the forward backward
system (3.6, 3.7), where the backward equation (3.7) is obtained replacing (3.8) in
(3.12). Besides, we note that (3.6) represents the optimal wealth process. ��
Theorem 3.2 Suppose a solution of system (3.6, 3.7) exists with Z ∈ H

2 and G a
smooth function such that F(w,G(w)) = 0, where F is defined by (3.17). Assume

123



   65 Page 10 of 22 Applied Mathematics & Optimization            (2024) 89:65 

(H1) and (H2), (H3) with ξ = XT +H, andU ′(X+Y ) to be a positivemartingale such
that the stochastic integral 1

U ′(X−+Y−)
·U ′(X + Y ) is a square integrable martingale.

Then the optimal strategy π∗ exists in the class �x and is given by (3.8).

Proof We first check that the strategy defined in (3.8) and satisfying (3.15) is in �x .
We consider (Xπ∗

,Y , Z , �) satisfying the system (3.6, 3.7) andwewrite Itô’s formula
for U ′(Xπ∗ + Y ), i.e.

dU ′(Xπ∗
t + Yt ) = U ′(Xπ∗

t− + Yt−)

×
(
U ′′(Xπ∗

t− + Yt−)

U ′(Xπ∗
t− + Yt−)

(π∗
t σt + Zt )dWt + γt

U ′(Xπ∗
t− + Yt−)

dnt

)

which, using (3.15), can be rewritten as

dU ′(Xπ∗
t + Yt ) = U ′(Xπ∗

t− + Yt−)

×
(

−
(μt

σt
+ ηtν

σt

γt

U ′(Xπ∗
t− + Yt−)

)
dWt + γt

U ′(Xπ∗
t− + Yt−)

dnt

)
. (3.18)

Sincewehave assumed that 1
U ′(Xπ∗

− +Y−)
·U ′(Xπ∗+Y ) is a square integrablemartingale,

by the martingale representation theorem and the hypotheses on boundedness of η,μ

andσ−1 wededuce that γ

U ′(Xπ∗
− +Y−)

∈ H
2.Using this fact, togetherwith thehypotheses

(H1) on ARA and Z ∈ H
2, since (3.15) can be rewritten as

π∗ = − 1

σ

U ′(Xπ∗
− + Y−)

U ′′(Xπ∗
− + Y−)

(
μ

σ
+ ην

σ

γ

U ′(Xπ∗
− + Y−)

)
− Z

σ
,

we get that π∗ ∈ �x .
Now we are are left to show that π∗ is optimal. From (3.18), we observe that the
positive martingale U ′(Xπ∗ + Y ) can be written as the Doleans exponential of the
martingale

M = −
(μ

σ
+ ην

σ

γ

U ′(Xπ∗
− + Y−)

)
· W + γ

U ′(Xπ∗
− + Y−)

· n,

where γ

U ′(Xπ∗
− +Y−)

> −1 by the definition of γ and since U ′(Xπ∗ + Y ) is positive.

Since U is a concave function, for any π ∈ �x we have that

U (Xπ
T + H) −U (Xπ∗

T + H) ≤ U ′(Xπ∗
T + H)

(
Xπ
T − Xπ∗

T

)
. (3.19)

Thus we define the measure Q equivalent to P by

dQ

dP
= U ′(Xπ∗

T + H)

E
(
U ′(Xπ∗

T + H)
) ,
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and taking the expectation in (3.19) we write

E

(
U (Xπ

T + H) −U (Xπ∗
T + H)

E
(
U ′(Xπ∗

T + H)
)

)
≤ E

Q
(
Xπ
T − Xπ∗

T

)

= E
Q

(∫ T

0

(
πt − π∗

t

)dSt
St−

)
= 0, (3.20)

where the last equality is due to the fact that, by the Girsanov theorem and the
admissibility of the strategies π and π∗, the stochastic integral

∫ ·
0

(
πt − π∗

t

) dSt
St−

is

aQ-martingale. In fact, 1
S− · S is aQ-martingale since its predictable quadratic covari-

ation with M is

〈
1

S−
· S, M

〉
=
〈
σ · W + η · n, −

(
μ

σ
+ ην

σ

γ

U ′(Xπ∗
− + Y−)

)
· W + γ

U ′(Xπ∗
− + Y−)

· n
〉

= −
∫ ·

0
μsds.

Moreover, since π and π∗ are in �x , we get that

∫ ·

0

(
πt − π∗

t

)dSt
St−

=
∫ ·

0
(πt − π∗

t )(μt dt + σt dWt + ηt dnt )

is a Q-local martingale. Finally, by the following chain of inequalities we prove that
it is a true Q-martingale:

E
Q

(
sup

0≤t≤T

∣∣∣
∫ t

0

(
πs − π∗

s

)dSs
Ss−

∣∣∣
)

≤ C E
Q

⎛
⎝
(∫ T

0

(
πt − π∗

t

)2
(σ 2

t + η2t ν)dt

) 1
2

⎞
⎠

= C E

(
U ′(Xπ∗

T + H)

E
(
U ′(Xπ∗

T + H)
)(
∫ T

0

(
πt − π∗

t

)2
dt
) 1

2

)

≤ C

(
E
(
(U ′(Xπ∗

T + H))2
)) 1

2

E
(
U ′(Xπ∗

T + H)
)

(
E

(∫ T

0

(
πt − π∗

t

)2
dt

)) 1
2

< +∞.

From (3.20), we have

E

(
U (Xπ

T + H) −U (Xπ∗
T + H)

)
≤ 0, for anyπ ∈ �x

which means that π∗ is optimal. The proof is complete. ��
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Remark 3.1 It is worth noting that assumption (H2) in Theorem 3.2 which requires
E[(U ′(Xπ∗

T + H))2] < +∞ is only used to show that, for any π ∈ �x , π
S− · S is a

Q-martingale. Therefore, it can be replaced by any other condition which ensures this
requirement.

4 Pure JumpModel

In this section we study the case where the asset price is a pure jump process and
show that for this model π∗ can be written in an explicit form in terms of the forward
backward SDE system solution.

We consider (2.1) with σ 2 ≡ 0, that is the price S is modeled by a pure jump
process whose dynamics is

dSt = St−(μt dt + ηt dnt ), S0 > 0.

We recall that the filtration F = (Ft , t ∈ [0, T ]) is generated by a standard Brownian
motionW and a simple Poisson process N with intensity ν > 0, which implies that the
market is incomplete. Moreover, the coefficients μ and η are predictable and bounded
with η > −1 and with the additional assumption c1 ≤ μ

η
≤ c2 < ν which guarantees

that μ
ην

is bounded with the upper bound smaller than 1. Note that this assumption on
the coefficientswill be exploited to defineπ∗ in (4.23) and to guarantee themartingality

of M in (4.27). Moreover, since E
(
eC〈− μ

ην
·n〉T

)
< ∞ for some C ≥ 1, one can check

that the Doleans exponential of − μ
ην

· n is a uniformly integrable martingale (see
Protter [25]) providing the existence of a martingale measure for S.

Theorem 4.1 Let π∗ ∈ �x be optimal for problem (2.3) and suppose (H1) holds.
Under the assumptions of Proposition 2.1, there exists a solution (X ,Y , Z , �) of the
following forward–backward system

Xt =x +
∫ t

0

(
U ′−1

(
U ′(Xs− + Ys−)

(
1 − μs

ηsν

))
− (Xs− + Ys− + �s)

)

×
(

μs

ηs
ds + dns

)
(4.21)

Yt =H −
∫ T

t

[(
U ′−1

(
U ′(Xs− + Ys−)

(
1 − μs

ηsν

))
− (Xs− + Ys−)

)]

×
(
1 − μs

ηsν

)
νds

−
∫ T

t

[(
�s + U ′(Xs− + Ys−)

U ′′(Xs− + Ys−)

)
μs

ηs
− 1

2

U ′′′(Xs− + Ys−)

U ′′(Xs− + Ys−)
Z2
s

]
ds

−
∫ T

t
(ZsdWs + �sdns). (4.22)
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Moreover, π∗ takes on the form

π∗ = 1

η

(
U ′−1

(
U ′(Xπ∗

− + Y−)

(
1 − μ

ην

))
− (� + Xπ∗

− + Y−)

)
, (4.23)

and the optimal wealth process is equal to X.
Vice versa, suppose a solution of the system (4.21, 4.22) exists. Assume (H1) and

(H2), (H3) with ξ = XT + H, and U ′(X + Y ) to be a positive martingale. If the
strategy (4.23) is in the class �x then it is optimal.

Proof Using the same arguments as those for the jump-diffusion case, we can write

dYt = −
[
1

2

U ′′′(Xπ∗
t− + Yt−)

U ′′(Xπ∗
t− + Yt−)

Z2
t − (

�t + π∗
t ηt

)
ν + 1

U ′′(Xπ∗
t− + Yt−)

γtν + π∗
t μt

]
dt

+ ZtdWt + �t dnt , YT = H , (4.24)

which corresponds to (3.12) when σ = 0. Condition (3.15) now becomes

U ′(Xπ∗
− + Y−)μ + γ ην = 0 dP ⊗ dt − a.e. on [0, T ], (4.25)

where

γ = U ′(� + π∗η + Xπ∗
− + Y−) −U ′(Xπ∗

− + Y−). (4.26)

From (4.25) and (4.26), we deduce (4.23). Finally, plugging γ obtained from (4.25)
and (4.23) into (4.24), we deduce (4.22).

For the converse, let us observe that the positive martingale U ′(Xπ∗ + Y ) can be
written as the Doleans exponential of the martingale

M = U
′′
(Xπ∗

− + Y−)

U ′(Xπ∗
− + Y−)

Z · W − μ

ην
· n, (4.27)

whose predictable quadratic covariation with 1
S− · S is 〈 1

S− · S, M〉 = − ∫ ·
0 μsds. Thus,

by Girsanov Theorem, 1
S− · S is a martingale with respect to the P-equivalent measure

Q defined by

dQ

dP
= U ′(Xπ∗

T + H)

E
(
U ′(Xπ∗

T + H)
) .

The conclusion for the optimality of π∗ follows as in Theorem 3.2. ��
As previously said, it is not easy to find a solution of the coupled system. In the next
proposition, we consider the pure investment problem, i.e. H = 0, and find a sufficient
condition for obtaining an explicit solution to the system (4.21, 4.22) with Z = 0. At
the end of the next section, we show an example where this condition is satisfied.
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Proposition 4.1 Let H = 0 and suppose (H1) holds. Consider the system

Xt =x +
∫ t

0

1

ARA(Xs−)

as − μs/ηs

μs − ηsν
(μsds + ηsdns) , (4.28)

Yt =U ′−1
(
U ′(Xt )e

At
)

− Xt , (4.29)

where a ∈ H
2 and At = − ∫ T

t as ds, with A0 deterministic. If U ′(X)eA is a positive
martingale, then (X ,Y ) gives a solution to the forward backward system (4.21, 4.22)
with Z = 0. Moreover, under (H3) with ξ = XT the strategy

π∗ = 1

ARA(X−)

a − μ/η

μ − ην
(4.30)

is in �x and it is optimal.

Proof Applying Itô’s formula to U ′(Xt )eAt , and taking into account the definition of
At and nt = Nt − νt , we get

d
(
U ′(Xt )e

At
)

= U ′(Xt−)eAt atdt +U
′′
(Xt−)eAt

1

ARA(Xt−)

(
at − μt

ηt

)
dt

+U ′(Xt )e
At −U ′(Xt−)eAt

= U ′(Xt−)eAt

((
μt

ηt
+ νγt

eAtU ′(Xt−)

)
dt + γt

eAtU ′(Xt−)
dnt

)

(4.31)

where γt�Nt = eAt
(
U ′(Xt ) −U ′(Xt−)

)
.

Since we assumed that U ′(X + Y ) = U ′(X)eA is a martingale, we find γ =
− μ

ην
eAU ′(X−) and therefore

d
(
U ′(Xt )e

At
)

= −U ′(Xt−)eAt
μt

ηtν
dnt . (4.32)

From (4.29) we get YT = 0 and, by Itô’s formula, using (4.31) it follows

dYt = U ′(Xt−)eAt

U ′′ (U ′−1
(
U ′(Xt−)eAt

)) μt

ηt
dt +

[
U ′−1

(
U ′(Xt )e

At
)

−U ′−1
(
U ′(Xt−)eAt

)]

− 1

ARA(Xt−)

at − μt/ηt

μt − ηtν
(μt dt + ηt dnt )

= U ′(Xt−)eAt

U ′′ (U ′−1
(
U ′(Xt−)eAt

)) μt

ηt
dt

+
[
U ′−1

(
U ′(Xt−)eAt

(
1 − μt

ηtν
�Nt

))
−U ′−1

(
U ′(Xt−)eAt

)]
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+ 1

ARA(Xt−)

μt − ηt at
μt − ηtν

(
μt

ηt
dt + dnt

)

= U ′(Xt−)eAt

U ′′ (U ′−1
(
U ′(Xt−)eAt

)) μt

ηt
dt

+
[
U ′−1

(
U ′(Xt−)eAt

(
1 − μt

ηtν

))
−U ′−1

(
U ′(Xt−)eAt

)]
�Nt

+ 1

ARA(Xt−)

μt − ηt at
μt − ηtν

(
μt

ηt
dt + dnt

)

=
(

U ′(Xt−)eAt

U ′′ (U ′−1
(
U ′(Xt−)eAt

)) + 1

ARA(Xt−)

μt − ηt at
μt − ηtν

)
μt

ηt
dt

+
[
U ′−1

(
U ′(Xt−)eAt

(
1 − μt

ηtν

))
−U ′−1

(
U ′(Xt−)eAt

)](
1 − μt

ηtν

)
νdt

+
[
U ′−1

(
U ′(Xt−)eAt

(
1 − μt

ηtν

))
−U ′−1

(
U ′(Xt−)eAt

)] μt

ηt
dt

+
[

1

ARA(Xt−)

μt − ηt at
μt − ηtν

+U ′−1
(
U ′(Xt−)eAt

(
1 − μt

ηtν

))

−U ′−1
(
U ′(Xt−)eAt

)]
dnt ,

which corresponds to

dYt =
[(

U ′−1
(
U ′(Xt− + Yt−)

(
1 − μt

ηtν

))
− (Xt− + Yt−)

)](
1 − μt

ηtν

)
νdt

+
(

�t + U ′(Xt− + Yt−)

U ′′(Xt− + Yt−)

)
μt

ηt
dt + �t dnt

with

� = 1

ARA(X−)

μ − ηa

μ − ην
+U ′−1

(
U ′(X−)eA

(
1 − μ

ην

))
−U ′−1

(
U ′(X−)eA

)
.

Therefore, Y satisfies (4.22) with Z = 0.
The admissibility of π∗ follows from (H1), the assumptions on at and on the model
coefficients. In order to check the optimality of the strategy, by the converse part
of Theorem 4.1, we are left to prove that U ′(X)eA is a positive martingale and

E

[(
U ′(XT )

)2]
< +∞. But this is true since, by (4.32), U ′(X)eA is the Doleans

exponential of the martingale M = − μ
ην

· n whose predictable quadratic variation

〈M〉 = ∫ ·
0

μs
2

η2s ν
ds is bounded. In fact, using Novikov condition, E(2M) is a uniformly

integrable martingale and, thus, [ET (M)]2 = ET (2M)e〈M〉T has finite expectation. ��
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5 Exponential Utility

In this last sectionwe tailor the results obtained previously to the case of the exponential
utility, which has been extensively studied in the literature (e.g., [4, 5, 13, 23, 27]). It
can be easily checked that with this particular choice of utility function, the forward-
backward system decouples and the problem reduces to the study of a backward
stochastic differential equation.

For results for continuous price models, see, e.g., [9, 26] in Brownian setting,
and [14, 15, 20] for more general continuous semimartingale models. For models
allowing jumps, we quote among others [1, 21, 22] and [18] for the pure jump model.
We consider the exponential utility U (x) = −e−δx with risk aversion parameter
δ ∈ (0,+∞) and a bounded random liability H . In this case the evolution for

Y = −1

δ
log

α

δ
− Xπ∗

does not depend on the wealth process Xπ∗
and is given by the following backward

equation

dYt =
(

(e−δ(�t+π∗
t ηt ) − 1)

ν

δ
+ 1

2
δ(Zt + π∗

t σt )
2 + (�t + π∗

t ηt )ν − π∗
t μt

)
dt

+ZtdWt + �t dnt ,

with final condition YT = H .
Moreover, Eq. (3.16) in the proof of Theorem 3.1 for the optimal strategy π∗ can be
rewritten as

μt − δ(Zt + π∗
t σt )σt +

(
e−δ(�t+π∗

t ηt ) − 1
)

ηtν = 0 dP ⊗ dt − a.e. on [0, T ],
(5.33)

from which we can also deduce that the optimal strategy is independent on the wealth.
Let us point out that, employing a notation similar to [21], the driver of the BSDE can
be rewritten in the form

ft (z, ψ) = sup
π∈R

{
− δ

2

(
πσt − (−z + μt

δσt
)

)2

− [−ψ − πηt ]δ
}

− μt

σt
z + μ2

t

2δσ 2
t

,

where, for ψ ∈ R, [ψ]δ = ν
δ

(
eδψ − 1 − δψ

)
. Then, using the results in [20], we

deduce that there exists a solution to the BSDE with Y bounded and Z , � ∈ H
2.

In the pure jump case, the backward evolution of Y reduces to

dYt =
(
1

2
δZ2

t − ν

δ

(
1 − μt

ηtν

)
ln

(
1 − μt

ηtν

)
+ μt

ηt

(
�t − 1

δ

))
dt + ZtdWt + �t dnt .

Moreover, the optimal strategy π∗ can be written in an explicit form, using (5.33) with
σ = 0, as stated in the next proposition.
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Proposition 5.1 A solution of the backward equation

Yt = H −
∫ T

t

(
1

2
δZ2

s − ν

δ

(
1 − μs

ηsν

)
ln

(
1 − μs

ηsν

)
+ μs

ηs

(
�s − 1

δ

))
ds

−
∫ T

t
(ZsdWs + �sdns) (5.34)

exists with Y bounded and Z , � ∈ H
2 and the strategy π∗

π∗ = −1

η

(
1

δ
ln

(
1 − μt

ηtν

)
+ �

)
(5.35)

is in �x . In addition, if e−δ(Xπ∗+Y ) is a positive martingale and either Z or � is
bounded, then (5.35) is optimal.

Proof The existence of a solution to (5.34)withY bounded and Z , � ∈ H
2 is proved in

Theorem 1 of Antonelli andMancini [1]. This theorem requires twomain assumptions
on the driver f of (5.34), which we can rewrite as

A1) f is measurable and predictable and satisfies dP ⊗ dt—a.e.

− λt − δ

2
z2 − [−ψ]δ ≤ ft (z, ψ) ≤ λt + δ

2
z2 + [ψ]δ (5.36)

for a strictly positive predictable process λ such that essupω

∫ T
0 λt dt < +∞;

A2) f verifies

ft (z, ψ) − ft (z, ψ
′) ≤ ζ

z,ψ,ψ ′
t (ψ − ψ ′)ν (5.37)

where the process ζ z,ψ,ψ ′
is such that D1 ≤ ζ

z,ψ,ψ ′
t ≤ D2, with −1 < D1 ≤ 0

and D2 ≥ 0.

In order to check these assumptions we rewrite the driver f in the form

ft (z, ψ) = sup
π∈R

{πμt − [−ψ − πηt ]δ} − 1

2
δz2. (5.38)

Since π = 0 ∈ R, from (5.38) we deduce the validity of the left inequality in (5.36).
To prove the right inequality, we consider the function F(ψ) = ft (z, ψ)− δ

2 z
2−[ψ]δ .

Using the explicit form of the driver in (5.34), we can rewrite F(ψ) as

F(ψ) = ν

δ

((
ln

(
1 − μ

ην

)
+ 1 + δψ

)
− eδψ

)
,
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whose maximum is attained at ψ∗ = 1
δ
ln
(
1 − μ

ην

)
and holds

F(ψ∗) = 2
ν

δ

(
1 − μ

ην

)
ln

(
1 − μ

ην

)
.

We deduce that in (5.36) we can take λ = 2 ν
δ

(
1 − μ

ην

) ∣∣∣ln
(
1 − μ

ην

)∣∣∣, which is a

bounded predictable and strictly positive process, thus the assumption (A1) is verified.
Using again the explicit form of the driver, (5.37) can be rewritten in the form

(ψ − ψ ′)
(

ζ
z,ψ,ψ ′
t + μ

ην

)
≥ 0,

and (A2) is easily verified choosing ζ z,ψ,ψ ′ = − μ
ην
, D1 = −1 and a suitable

constant D2, which can be found since μ
η
is bounded.

From the existence of the solution with Y bounded and Z , � ∈ H
2 and from (5.35),

thanks to the standing assumptions on the model, we deduce that π∗ ∈ �x .
Finally, from the vice versa of Theorem 4.1, the optimality of π∗ is guaranteed if

we assume that either � or Z is bounded. In fact, (H1) and (H3) trivially hold true,

whereas (H2) reduces to check that E
[
e−2δ(Xπ∗

T +H)
]
is finite.

First we suppose � bounded, so is π∗. Taking into account also the boundedness
of H , we get

E

[
e−2δ(Xπ∗

T +H)
]

≤ C2E

[
eC1NT

]
< +∞,

where C1,C2 are suitable constants whose specific values are irrelevant.

Assume now Z bounded. Since the positive martingale e−δ(Xπ∗+Y ) is the Doleans
exponential of themartingaleM defined in (4.27), we get [ET (M)]2 = ET (2M)e〈M〉T .
Moreover, if Z is bounded then

〈M〉T =
∫ T

0
δ2Z2

s ds +
∫ T

0

μs
2

η2s ν
ds

is bounded. Using Novikov condition, E(2M) is a uniformly integrable martingale
and, therefore,

E

[
e−2δ(Xπ∗

T +H)
]

= E

[
[ET (M)]2

]
< +∞.

��

Remark 5.1 We notice that, in the case that Z is bounded, the martingale assumption

on e−δ(Xπ∗+Y ) can be omitted since it is automatically satisfied.
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Remark 5.2 In [18], the exponential utility maximization problem is studied within a
BSDE framework and in a Lévy-driven pure jump asset model. Existence of optimal
strategies are proved using BMO arguments and assumptions on the solutions of the
BSDEs involved which imply the boundedness of the strategies. Although our market
model is simpler, Proposition 5.1 represents an attempt to establish conditions for the
existence of optimal strategies possibly not bounded.

We conclude the section with an example for the pure investment problem, where the
hypotheses of Proposition 4.1 are automatically satisfied.

Proposition 5.2 If H = 0 and μ
η
is deterministic then the strategy

π∗ = − 1

δη
ln

(
1 − μ

ην

)

is in �x and it is optimal.

Proof We choose in Proposition 4.1,

a =
(

μ

ην
+
(
1 − μ

ην

)
ln

(
1 − μ

ην

))
ν, (5.39)

which is a positive bounded process by the assumptions on the model. Then, the
processes X and Y become

Xt =x +
∫ t

0

1

ARA(Xs−)

as − μs/ηs

μs − ηsν
(μsds + ηsdns)

=x +
∫ t

0

(
− 1

δηs

)
ln

(
1 − μs

ηsν

)
(μsds + ηsdns) ,

Yt =U ′−1
(
U ′(Xt )e

At
)

− Xt = −1

δ
At = 1

δ

∫ T

t
asds.

On the other hand, we can observe that (5.39) represents the unique choice for a in
Proposition 4.1 which makesU ′(X)eA a martingale. In fact,U ′(X)eA is a martingale
if and only if

eA
(
U ′(X) −U ′(X−

) = − μ

ην
eAU ′(X−)�N ,

i.e.

δe−δX−+A
(
e
−δ
(
1
δ
a−μ/η
μ−ην

η
)

− 1

)
= − μ

ην
δe−δX−+A,

from which we deduce μ−ηa
μ−ην

= ln
(
1 − μ

ην

)
and thus (5.39). The positivity of

U ′(X)eA immediately follows from the conditions on the model.
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Since all the assumptions of Proposition 4.1 are satisfied, the processes X and Y give
a solution to the forward backward system (4.21, 4.22) with Z = 0 and

� = 1

ARA(X−)

μ − ηa

μ − ην
+U ′−1

(
U ′(X−)eA

(
1 − μ

ην

))
−U ′−1

(
U ′(X−)eA

)

= 1

δ
ln

(
1 − μ

ην

)
− 1

δ
ln

(
e−δX−+A

(
1 − μ

ην

))
+ 1

δ
ln
(
e−δX−+A

)
= 0.

Finally, the strategy is

π∗ = 1

ARA(X−)

a − μ/η

μ − ην
= − 1

δη
ln

(
1 − μ

ην

)
.

��
Remark 5.3 We notice that in the proposition above the hypothesis on μ

η
can be weak-

ened by assuming deterministic
∫ T
0 asds, with the choice of a in (5.39).

Remark 5.4 In this paper, the theory of [8, 28] has been developed for a market model
with Poissonian jumps focusing on some simple but analytically tractable examples,
which exhibit a possible interpretation of the solution in terms of the model parame-
ters. Future research directions may include theoretical generalizations of the market
price model by considering a general jump measure in the dynamics. Moreover, util-
ities defined on the positive half line, such as the power and the logarithmic, can be
investigated.

6 Appendix

This result is a generalization of Lemma 1 in [6].

Theorem 6.1 Let A be an open subset of Rn.
Let us consider a function F ∈ C1(A × R;R) and suppose there exists a function
g : A → R such that one of the following conditions holds:

1.
∂

∂ y
F(x, y) > g(x) > 0, ∀(x, y) ∈ A × R,

2.
∂

∂ y
F(x, y) < g(x) < 0 ∀(x, y) ∈ A × R.

Then there exists a function G ∈ C1(A;R) such that F(x,G(x)) = 0, ∀x ∈ A.

Proof We start by proving that for any x ∈ A there exists y(x) ∈ R such that
F(x, y(x)) = 0.

In order to do this, let us suppose that condition 1 holds. We can proceed in the
same way if condition 2 is assumed.

Let us fix x ∈ A. If F(x, 0) = 0, there is nothing to check. Otherwise, by Lagrange
mean value theorem, we have
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F

(
x,

|F(x, 0)|
g(x)

)
= F(x, 0) + ∂

∂ y
F(x, y)

∣∣∣
y=y1(x)

|F(x, 0)|
g(x)

> F(x, 0) + |F(x, 0)| ≥ 0

and

F

(
x, −|F(x, 0)|

g(x)

)
= F(x, 0) − ∂

∂ y
F(x, y)

∣∣∣
y=y2(x)

|F(x, 0)|
g(x)

< F(x, 0) + |F(x, 0)| ≤ 0,

where 0 < y1(x) <
|F(x,0)|
g(x) and −|F(x,0)|

g(x) < y2(x) < 0.

Then, by the intermediate value theorem, there exists −|F(x,0)|
g(x) < y(x) <

|F(x,0)|
g(x)

such that F(x, y(x)) = 0.
Let us observe that, since F(x, ·) is strictlymonotone, y(x) is univocally determined.
We are left with the task of proving that the function G defined by G(x) = y(x)

is continuously differentiable on A. Let us fix x0 ∈ A. Since F(x0,G(x0)) = 0, by
the implicit function theorem we can find a neighborhood Ux0 of x0 and a function
ϕx0 ∈ C1(Ux0;R) such that F(x, ϕx0(x)) = 0, for any x ∈ Ux0 . Considering that
also F(x,G(x)) = 0 and F is strictly monotone, we deduce that G = ϕx0 , therefore
continuously differentiable, onUx0 . Due to the arbitrariness of x0 we can then conclude
that G ∈ C1(A;R) and get the thesis. ��
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