
19 October 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A “Big-Spine” Abstraction: Flow Prioritization With Spatial Diversity in The Data Center Network / Cornacchia,
Alessandro; Bianco, Andrea; Giaccone, Paolo; Sviridov, German. - ELETTRONICO. - (2024). (Intervento presentato al
convegno Data-Plane Programmability and Edge Network Acceleration in the AI era (NetAccel-AI 2024) tenutosi a Pisa
(Italy) nel 22-24 July 2024) [10.1109/HPSR62440.2024.10635939].

Original

A “Big-Spine” Abstraction: Flow Prioritization With Spatial Diversity in The Data Center Network

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/HPSR62440.2024.10635939

Terms of use:

Publisher copyright

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2989653 since: 2024-06-18T13:27:16Z

IEEE

A “Big-Spine” Abstraction: Flow Prioritization
With Spatial Diversity in The Data Center Network

Alessandro Cornacchia
Politecnico di Torino

Andrea Bianco
Politecnico di Torino

Paolo Giaccone
Politecnico di Torino

German Sviridov
Huawei Technologies

Abstract—Data center networks undergo the coexistence of
latency-sensitive mice flows and bandwidth-intensive elephant
flows. Jointly optimizing the performance of both traffic classes
poses complex challenges. Existing flow schedulers either rely
on detailed flow size information or require numerous physical
priority queues (PQs) within network switches, thus facing
practical challenges.

In this work, we propose a novel flow scheduling algo-
rithm, namely Multi-Path Multi-Level Feedback Queueing (MP-
MLFQ), to overcome these limitations. MP-MLFQ leverages the
spatial diversity and regularity of DCNs to realize a scheduler
with numerous logical priority levels while occupying as low as 2
physical PQ at each switch port. We designed MP-MLFQ to run
atop modern programmable networks, and highlighted how to
implement it without modifications at the end-hosts’ stacks. Our
simulation results show that MP-MLFQ outperforms existing
flow size-agnostic solutions in minimizing the flow completion
time, when only two PQs are available.

I. INTRODUCTION

Modern data centers host highly heterogeneous workloads
including cloud-native web applications, machine learning
(ML/AI) workloads, online gaming, etc., among others. Con-
sequently, data center networks (DCNs) handle a spectrum of
traffic flows characterized by conflicting latency requirements.
Small-sized mice flows are predominant [1], [2], and are
mostly sensitive to network delays, as they typically arise from
short-lived interactions (e.g., RPCs across microservices). In
contrast, large-sized elephant flows, although less frequent,
can account for more than 80% of the total network traffic [3],
[4] while being able to tolerate longer completion times
(e.g., data transfers). Additionally, due to the rapid growth
of interactive AI services, medium-sized flows of long-lived
question&answer streams to the AI systems, also demand
latency optimization.

While multiple solutions have been proposed, jointly op-
timizing flow performance across different types of traffic
in DCNs still remains a challenging problem. Existing flow
size-aware strategies [5], [6], [7] can achieve near-optimal
Flow Completion Time (FCT). However, they assume a priori
knowledge about individual flow lengths. In practice, this
information is hard to obtain in realistic scenarios, as it would
require a coordinated interaction between the applications and
the network to explicitly declare the flow size before any
connection is opened. This process is tedious for developers
that typically wish to treat the network as a commodity. Even
when coordination is possible, like for distributed ML training
libraries that already integrate primitives to coordinate with

the network [8], the actual flow size may be unknown a priori
(e.g., it may result from the ML training process itself).

On the contrary, flow size-agnostic approaches [9], [10] can
effectively schedule mice and elephant flows dynamically dur-
ing the flow lifetime, without requiring any prior knowledge
of the flow sizes. These approaches track the number of trans-
mitted data units of each flow, and progressively assign flows
to lower and lower priority queues, based on the measured
size. Nevertheless, their effectiveness largely depends on the
number of supported network priority levels, because mice
and medium flows initially compete with elephant flows in
the same priorities. Since commodity switches are equipped
with few priority queues (PQs), these approaches can fall short
in practice: either they occupy all available switch queues and
interfere with other tasks of traffic isolation [11], [12], thus
being unpractical, or assign too coarse-grained flow priorities,
thus sacrificing performance.

In this paper, we propose Multi-Path Multi-Level Feedback
Queueing (MP-MLFQ), a flow scheduling algorithm enabled
by programmable switches which lies in the sweet spot be-
tween practicality and performance. As a key intuition, MP-
MLFQ leverages the spatial diversity of data center network
topologies to share the physical PQs across switch ports, thus
providing a wider range of logical priority levels for flow
prioritization while requiring as little as 2 physical PQs at
each switch port. MP-MLFQ can achieve performance close
to state-of-the-art flow size-agnostic schedulers, but keeps the
deployment cost much lower. To the best of our knowledge,
no previous work has exploited this feature to improve the
performance of flow scheduling in data center networks.

We present the following key contributions:
• we introduce MP-MLFQ, a novel flow scheduling algo-

rithm that leverages the spatial diversity of data center
networks to realize numerous logical priority queues,
while requiring only few physical queues per switch
port (Sec. III);

• we discuss the challenges and solutions related to the
implementation of MP-MLFQ on top of programmable
data planes (Sec. IV);

• we show via numerical simulations that MP-MLFQ can
achieve performance similar to existing algorithms in
terms of average and tail FCT, while requiring signif-
icantly less physical PQs per switch port (Sec. V). In
addition, for the same number of PQs, MP-MLFQ is
superior to state-of-the-art by a factor of 1.15×.

SP

Pr
io
rit
y

SP

Fig. 1: Comparison between a SP (left) and a MLFQ scheduler
(right) with per-flow datapath (blue) and per-packet datapath
(red).

II. BACKGROUND AND MOTIVATION

Flow scheduling, i.e., choosing the service order among
a set of active flow so as to optimize a given objective —
e.g., minimizing the average FCT or the number of missed
deadlines or maximizing the average throughput — is im-
perative for data center network workloads characterized by
huge diversity in terms of occupation of link capacity and
latency requirements [1], [7]. Flow Completion Time (FCT)
is typically considered the key metric, as it represents a direct
measure of the performance of network communication and
has a direct impact on user experience. In this section we
discuss the necessary background related to priority-based
size-agnostic flow scheduling in data centers, and motivate
our approach to minimize FCT.

A. Flow scheduling in data center networks

If flow sizes are known in advance, Shortest Remaining
Processing Time (SRPT) is known to be the optimal schedul-
ing policy [13], [14] to minimize the average FCT. SRPT
serves first the flows with the least amount of data units (e.g.,
packet or bytes), left to transmit. A discretized implementation
of SRPT for data center networks has been proposed in
pFabric [7], where flows are classified into a finite number
of priorities based on their remaining size. Unfortunately, the
length of individual flows is typically unknown or difficult
to obtaine without undergoing into deep modifications of the
application layer [15], which should interact with the network
control plane for every new connection. Furthermore, for many
applications the flow size is unknown even to the user, until
the flow is terminated.

In the absence of knowledge about the length of individual
flows, scheduling policies can still try to approximate flow
size-aware schedulers. Least Attained Service (LAS) sched-
uler [16] gives priority to flows with the least amount of
transferred data units. Differently from the remaining size,
this information can be locally computed based on per-flow
counters. Similarly to SRPT, LAS favors mice flows which
are prioritized over large flows, and is known to be optimal
when the hazard rate h(x) = F ′(x)

1−F (x) of the flow size
c.d.f. F (x) is decreasing, which holds for heavy-tailed traffic
distributions [17], [18].

B. Multi-Level Feedback Queueing (MLFQ)

Multi-Level Feedback Queueing (MLFQ) is a discretized
version of LAS, based on a finite number of priority levels. It

is composed of N priority queues served with strict priority
(SP) discipline. Let pi the ith priority queue in decreasing
order of priority, with i = 0, . . . , N − 1 (i.e., p0 is the
highest priority queue) However, differently from a normal SP
scheduler, in MLFQ a flow f is demoted to lower priorities
based on the amount of service bf (t) obtained up to time
t. Specifically, bf (t) is compared against set of pre-defined
demotion thresholds Ω = {ωi}Ni=0 to determine the priority of
flow f , with ω0 = 0 and ωN = +∞.

Fig. 1 compares a SP scheduler (left) and a MLFQ scheduler
(right) with three priority queues, p0, p1 and p2. The blue
datapath depicts the logical behavior of a MLFQ scheduler
(per-flow behavior), while the red datapath shows the actual
implementation of a MLFQ scheduler operating on a per-
packet level. From a flow perspective, each new flow is initially
placed in the highest priority queue p0 and once it has obtained
enough service, it is demoted to the lower priority queue. Then
the demotion process continues on the lowest priority queues
until the flow completes. In its practical implementation, a
MLFQ scheduler operates on a per-packet basis according to
the following policy: a packet of flow f received at time t is
enqueued in pi, with i such that ωi ≤ bf (t) < ωi+1. Notably,
at any given time, packets of the same flow may be stored in
different queues. But for enough large size flows, after a while
all the packets will be stored in the lowest priority queue pN .

C. Limitations of MLFQ for commodity switches

The most crucial aspect of an MLFQ scheduler is the
availability of a sufficient granularity of priority queues. This
is because MLFQ is a discrete approximation of LAS, which
implicitly assumes N → ∞. Unfortunately, even when data
center switches are equipped with enough physical priority
queues, these might not be fully usable as they are typically
reserved for other critical traffic isolation tasks. Such tasks
include separation of different types of traffic [19] such as
RDMA [12], DCTCP [3] and traditional TCP-based traffic,
or isolation of other signaling flows. As an example, recent
proposals such as FlexPass [11] leverage different PQs to
isolate credit-based transports, such as Homa [10], from legacy
host-based transports, for a smooth coexistence within the
same infrastructure. Others [20] leverage physical queues to
approximate advanced disciplines such as Push-In-First-Out
(PIFO) queues, which also can occupy a large number of PQs.

MLFQ is ineffective with few PQs. Depending on the choice
of the thresholds, the prioritization scheme may not be gran-
ular enough to separate mice from medium flows, or medium
flows from elephant flows, thus leading to worse performance.
Overall, due to limitations in the number of available PQs,
MLFQ sacrifices performance or increases complexity, making
it unpractical for realistic scenarios.

III. THE “BIG SPINE” ABSTRACTION

In the following, we introduce the design of Multi-Path
Multi-Level Feedback Queueing (MP-MLFQ), a scheduling
policy capable of emulating LAS scheduling while employing
switches with only two PQs.

Fig. 2: Traditional MLFQ data center solution with just 2
priority queues (p0 and p1) for each spine switches. For
simplicity only the traffic flows directed to ToR switch 3 are
shown and only the priority queues on the spine switches
directed to ToR 3 switch.

Fig. 3: MP-MLFQ-enabled data center solution with 4 priority
queues (p0, p1, p2, p3) distributed across all the spine switches

A. System overview

We assume the availability of only N = 2 physical PQs
per switch port, even if the proposed methodology can be
extended to a larger number of PQs. To overcome the limi-
tations of other state-of-the-art work that approximates LAS
scheduling with discrete solutions such as MLFQ, our solution
intelligently combines physical queues from multiple switches
to achieve extra logical priority queues, i.e., more than two
priority levels. The rationale behind MP-MLFQ is based on
the following pivotal observations:
1) DCN spatial diversity: Data center topologies exhibit a

high degree of spatial diversity, which we refer to the
availability of multiple alternative forwarding paths at every
hop in the DCN. This allows to provide high bandwidth
and fault tolerance between any pair of servers. In the
following, due to its broad adoption, we will consider
a 2-layer leaf-spine DCN, in which Top-of-Rack (ToR)
switches are connected to the servers and to the spine
switches with full interconnection.

2) DCN regularity: DCN topologies are extremely regular,
with alternative paths between any pair of nodes having the
same number of hops and equal bandwidth. For this reason,
simple decentralized load balancing techniques, such as
Equal Cost Multiple Path (ECMP) or packet spraying [21],
are typically adopted to achieve full-bandwidth utilization.
Thus, in a leaf-spine DCN, the traffic between any pair of
ToR switches is sent across all the spine switches.

MP-MLFQ leverages the above mentioned observations to

provide a wider range of priority levels for flow demotion by
exploiting the spatial dimension of the DCN.

Fig. 2 shows a traditional implementation of the MLFQ
policy, according to which the spine switches deploy MLFQ
on the network interfaces directed to the ToR switches. The
traffic flows are spread from the ToR switches to the spine
switches and the traffic is moved from p0 to p1 whenever
enough traffic has been received. Notably, to avoid out-of-
sequence problems, all the packets belonging to the same
traffic flows are routed from the ToR switches to the same
spine switch.

On the contrary, MP-MLFQ runs in both DCN layers. At
the spine level, MP-MLFQ logically combines the queues of
different spine switches to achieve a number of logical priority
levels higher than the number of actual physical PQs at a
single switch. As shown in Fig. 3, all the PQ pairs in the
spine switches are seen as a pool of shared PQs, equivalent
to considering the spine layer as a single “Big-Spine” switch
sharing the PQs directed to a particular ToR switch to support
MLFQ. In the specific example in the figure, the actual number
of PQs is 8 instead of the original 2 present in the original
solution. At leaf level, MP-MLFQ treats the ports within a
ToR switch directed to spine switches as a single one-big-
port abstraction. This allows to send the packets of the same
traffic flow on a sequence of different spine switches, while
preventing out-of-sequence events at the destination server.

Fig. 4 shows a toy example of a top-of-rack switch (ToR)
with two ports if-0 and if-1, connected to two spine
switches. The packets of a long-size flow traverse all MP-
MLFQ priority levels and are transmitted to different spine
switches. In this example, the packet color denotes the priority
level of a packet and, just as in MLFQ, is dynamically assigned
based on the amount of transmitted data units (i.e., attained
service) of the flow it belongs to. Every new flow starts by
transmitting “yellow-tagged” packets. Flows are demoted to
lower priorities once their total attained service exceeds ω1

and ω2, eventually transmitting “brown-” and “green-tagged”
packets, respectively. Thus, initially “yellow-tagged” packets,
are enqueued in the highest physical PQ of port if-0, corre-
sponding to the logical PQ p0. After being demoted to “brown-
tagged” packets, instead of being moved to the next PQ in
if-0 as it happens in MLFQ, in MP-MLFQ flows are moved
to a PQ in a different port. In the example in Fig. 4 it happens
to be the first PQ of if-1 which logically represents p1. This
step, which we refer to as cross-path demotion (denoted as 1)
involves flow re-routing on a different link and can be repeated
for K times, where K is the number of spine switches (K = 2
is in our example). Since the re-routed flows receive service
at high (local) priority in the subsequent SP schedulers, 1
emulates K new logical priorities. Notice that a traditional
MLFQ scheduler would instead be limited to 2 priority levels
only. Therefore, the granularity used by the brown range
would be lost: flows in this range would either remain in the
high priority queue for too long, interfering with short flows,
or would be demoted to the low priority queue too early,
contending with the heavy traffic load brought by elephant

Uplinks to spine switches

Multi-path MLFQ

cross-path
demotion

load
balance

2

1

ToR switch
SP scheduler

packet seq.num.

if-0 if-1

SP scheduler

Fig. 4: MP-MLFQ operations on a Top-of-Rack (ToR) switch,
in the simplest scenario of 2 connected spine switches and 2
physical PQs per interface. Ports if-0 and if-1 share their
PQs to construct a global scheduler with logical PQs p0, p1, p2.
The blue arrows indicate per-flow datapath.

flows. MP-MLFQ instead achieves higher priority granularity
with cross-path demotions, mitigating this problem.

After the cross-path demotion, both brown packets (with
bf (t) ∈ [ω1, ω2]) and green packets (with bf ∈ [ω2,∞]) are
enqueued in the logical priority queue p1 in port if-1. At
this point, MP-MLFQ exploits the second PQ of each port.
Since the elephant flows are the major contributors to network
utilization, to best exploit the available capacity, the packets
of elephant flows are spread across the K paths after the last
priority demotion, referred to as load balance demotion (step
2). Namely, the longest flows that undergo the last demotion

have their packets (green packets) enqueued in one of the K
physical low PQs in the ToR switch, corresponding to the
(K + 1)-th logical priority, e.g., p2 in our example.

B. Implications on load balancing

In MP-MLFQ all flows are initially routed through the
same ToR port towards the same spine switch. Consequently,
differently from standard load-balancing schemes like ECMP,
the proportion of traffic spread across any given path directly
depends on the value of the demotion thresholds. As a limiting
case, consider the scenario where the first demotion threshold
ω1 is set equal to a single packet. In this case, all flows are
early re-routed to port if-1, resulting in a load imbalance
across the two links.

We avoid such situations and ensure the load is balanced
across the available paths by splitting unevenly the traffic
of the last priority level to compensate for load imbalance,
during step 2 . This can be implemented with readily-available
weighted ECMP. Given a threshold assignment Ω and a
workload distribution F (x), the average traffic load on every
spine can be computed analytically, from which we derive the
ECMP weights.

IV. IMPLEMENTATION IN PROGRAMMABLE NETWORKS

MP-MLFQ can be implemented with the readily available
components found in production data centers, and transpar-
ently to end-hosts applications.

A centralized control-plane can collect statistics about the
generated flows, derive the corresponding workload distribu-
tion, and compute the demotion thresholds, which are sent
to the switches to configure the MP-MLFQ schedulers. In
parallel, we envision three alternative data-plane solutions to
measure flow sizes and implement priority-based demotion.
• End host’s kernel: eBPF programs at end-hosts provide

a universal way of implementing MP-MLFQ without any
specialized hardware, and transparently to the running VMs.
eBPF maps can be effectively used to communicate flow
statistics as well as receive threshold parameters from
the threshold controller. eBPF-based vTAP interfaces or
XDP+VirtIO-net can be used to hook the eBPF programs
to inter VM traffic [22], [23]. Overlay routing or traditional
priority-based mechanisms (e.g., IEEE 802.1p [24]) can then
be used to force flows to select particular paths in the
network based on their priorities.

• SmartNIC: eBPF program execution can also be moved
to programmable data-path SmartNICs, such as Netronome
Agilio CX 2x40GbE [25], which provide eBPF hardware
offload support through the Netronome Flow Processor
(NFP) driver. Thanks to NFP, users can effortlessly pro-
gram these NICs without necessitating an in-depth under-
standing of the NIC hardware. Due to resource constraints
aboard the NIC [26], one would need to resort to approxi-
mate data structures for packet counting, such as counting
sketches [27], to obtain flow sizes.

• Programmable switch: in the absence of SmartNICs, pro-
grammable switches can be used to offload the same task
(e.g., P4-based). Indeed, sketch-like data structures have
been already implemented in commercial programmable
switches [28] and permit to monitoring flow sizes at line
rate. Adaptive routing can then be easily implemented within
the switch’s data path to provide priority based routing.

Quantifying the impact of early (or late) flow demotion on the
FCT due to the approximation introduced by counting sketches
is left outside the scope of this paper.

V. PERFORMANCE EVALUATION

A. Experimental setup

We implemented a numerical simulator in Python (code
available on GitHub [29]) that models a single ToR switch
with multiple uplink ports. This simplified scenario models a
traffic matrix in which all the traffic sources are located in
the servers connected to the same ToR switch and are sending
traffic to the servers connected to other ToR switches. Thanks
to the full bijection bandwidth of the considered DCN, given
the considered traffic matrix, the downlink ports from the spine
switches to the ToR are not congested and thus the effect
of modeling the queueing effects on the spines switches is
negligible. The ToR switch is modeled with K independent
SP flow schedulers, one for each uplink port (i.e., the number
of spine switches is also K). Each scheduler manages N PQs.
For better scalability of the simulation, we consider a flow-
based fluid approximation of the system. Flows are modeled as

jobs of a given size, thus the simulator does not support packet-
by-packet operations. All flows inside each PQ are served in
parallel with a Processor-Sharing service discipline, i.e., the
available service rate is equally subdivided among the flows
in the same priority queue. This approximates a packet-by-
packet sharing of each queue. The service is preempted when
(i) a new flow arrives, at which point the priority queue to
serve and the equal bandwidth share is re-computed, or when
(ii) one of the flows reaches a demotion threshold.

The simulator supports different numbers of priority levels
N and parallel uplink ports K. When K is set equal to 1, the
simulator behaves as a traditional individual MLFQ scheduler.
When K > 1 the simulator runs K parallel SP schedulers,
whose capacity is set µ/K. Thus, the overall capacity of the
data center is constant and equal to µ. Flows are generated
according to a Poisson process with constant rate λ, and
the simulator supports MLFQ and MP-MLFQ disciplines. For
MLFQ, the flow arrival rate λ is equally split among the K
schedulers and each serves flows arriving at rate λ/K. This
emulates standard flow-level load-balancing techniques such
as ECMP. For MP-MLFQ the flow arrival rate is λ, and all
flows are initially sent to the output port corresponding to the
first spine switch, hosting p0, coherently with the discussion
in Sec. III. Flows are served at rate µ/K until they are
demoted to lower priorities, in which case they are sent to
the subsequent K − 1 schedulers.
Performance metrics. Given a network topology in the sim-
ulator with total capacity µ, we define FCTopt(x) as the FCT
achieved by a flow of length x in a completely empty network,
i.e., at zero load. We then measure FCT(x) as the FCT of any
flow of length x in the presence of other flows. Given a total
of N flows we compare performance based on a normalized
FCT metric defined as nFCT = FCT(x)/FCTopt(x). The nFCT
represents the relative degradation of the flow completion time
with respect to the ideal one, and allows a quick performance
comparison under varying topology sizes (i.e., different link
speeds µ/K) on the same graph.
Workloads. We employed a widely adopted flow length distri-
bution [3], [4], [7], [9], derived from a WebSearch workload
in a production data center. The workload has heavy-tailed
flow sizes: while more than 80% flows are less than 1MB
in size, around 90% of the total average traffic is contained
in flows larger than 1MB. Since the available empirical CDF
only contains 12 data points, we fitted a Pareto distribution
and generated flows according to the fitted distribution in our
simulations.
Threshold assignment. Deriving the optimal set of threshold
Ω for MLFQ schemes is in general an open problem, although
analytical solutions exist for some classes of distributions
in the case of two priority levels [17]. In this paper, we
used a threshold computation strategy, derived from PIAS [9],
which solves an optimization problem based on a tandem of
M/M/1 queues. Our problem formulation is an extension of the
work in [9], for the sake of space we omit additional details.
We numerically solved the problem through particle swarm
optimization. The value of the thresholds we derived can be

MLFQ @ 2PQ, 2 paths
MLFQ @ 5PQ, 2 paths

MP-MLFQ @ 2PQ, 2 paths
MP-MLFQ @ 2PQ, 4 paths

0.4 0.5 0.6 0.7 0.8
Normalized Load

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

 F
C

T

(a) Average normalized FCT

0.4 0.5 0.6 0.7 0.8
Normalized Load

1

2

3

4

5

95
th

 P
er

ce
nt

ile
 F

C
T

(b) Tail normalized FCT

0.4 0.6 0.8
Normalized Load

1.0

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

 F
C

T
(c) (0, 100kB]

0.4 0.6 0.8
Normalized Load

1.0

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

 F
C

T

(d) (100kB, 10MB]

0.4 0.6 0.8
Normalized Load

2

4

6

N
or

m
al

iz
ed

 F
C

T

(e) (10MB,+∞)

Fig. 5: Performance of the MP-MLFQ scheduling scheme
under a Web Search [4] workload for K parallel paths (i.e.,
uplink ports) and N physical PQs per uplink port.

found in our code repository [29].

B. Comparison to other scheduling schemes

We compare the performance of the MP-MLFQ scheduler
against the MLFQ scheme for different number K of spine
switches, representing the degree of spatial diversity in the
DCN. For both schemes we used their optimized thresholds.

Figs. 5a-5b show the average and 99th percentile nFCT
when varying the offered load. Every point is obtained by
averaging over 106 simulated flows. The results highlight
two kind of scenarios. First, for a fixed number N = 2 of
physical PQs per-port, we observe that MP-MLFQ always
outperforms MLFQ, e.g., by around a factor 1.15× at high
loads, both in the average and tail completion time. This
suggests that, given a DC network fabric with few queues
available, our approach is always advantageous over MLFQ
for the considered realistic workload. Second, we can compare
MP-MLFQ and MLFQ for the same total number of logical
priority levels. For MP-MLFQ we consider the orange curve
corresponding to 4 parallel uplink paths and 2 physical PQs
per port, which logically realize 5 priority levels, as explained
in Sec. III. For MLFQ we consider the blue curve with 5
physical PQs (remember that in the schemes without spatial
diversity every logical priority corresponds to a physical PQ on
a ToR port). Notice that the nFCT of MLFQ is independent by
the number of paths, as traffic is load balanced uniformly. Our
results demonstrate that MP-MLFQ closely matches the nFCT

given by MLFQ, while requiring only two physical PQs per
port. Thus, we can approximate a many-PQs scheduler with
significantly less resources, by exploiting the spatial diversity.

In Figs. 5c-5e we break down our analysis by dividing the
flows into three classes: mice, medium and elephant flows
with sizes in (0, 100kB], (100kB, 10MB] and (10MB,+∞),
respectively. These classes align with those defined in previous
related work [7], [9]. We observe that MP-MLFQ leads to a
more pronounced improvement in the average nFCT for mice
end elephant flows. For mice flows, this is because MP-MLFQ
is able to provide a finer granularity in the priority levels,
and demote earlier the medium flows to lower priorities, thus
avoiding the interference with mice flows that instead occur in
MLFQ. For elephant flows, the improvement is due to the fact
that majority of the elephant flows are load balanced (after step
2 in Sec. III) into the same path used by mice flows. Since

mice flows carry a small amount of traffic, elephant flows do
not starve in the low priority queues at the SP scheduler. In
contrast, for MLFQ all the elephant flows are served after both
the mice and medium flows, thus leading to higher completion
times.

VI. CONCLUSIONS

We have considered a leaf-spine architecture for a data
center network. Previous scheduling approaches to minimize
the FCT without a priori knowledge of the traffic flow sizes are
based on Multi-Level Feedback Queueing (MLFQ) approach,
whose performance improves by increasing the number of
priority queues available in the switch ports.

Motivated by the limited number of available queues in
practical implementations, we have proposed the Big-Spine
switch abstraction, in which all the spine switches cooperate to
offer a pool of logical priority queues that can be exploited to
maximize the overall number of priority levels. On top of this
abstraction, we have architected a novel scheduler, denoted
as MP-MLFQ, and highlighted three alternative designs for
programmable data-planes to realize MP-MLFQ transparently
to user applications, avoiding any reconfiguration effort to end-
host VMs and OS.

Our proposal is shown by simulations to reduce both the
average and the 95th percentile FCT compared to MLFQ-
based schemes. We expect in the near future to integrate it in a
testbed including programmable NICs and P4-based switches,
and quantify in a real-world setting the MP-MLFQ perfor-
mance under the aforementioned alternative design choices.

ACKNOWLEDGMENTS

This work was supported by the European Union’s
NextGenerationEU instrument, under the Italian National Re-
covery and Resilience Plan (NRRP), M4C2 Investment 1.3,
“Telecommunications of the Future” (PE00000001), program
“RESTART”.

REFERENCES

[1] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in ACM SIGCOMM CCR, 2015.

[2] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in ACM SIGCOM, 2010.

[3] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center TCP (DCTCP),”
ACM SIGCOMM CCR, 2011.

[4] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: a scalable and flexible
data center network,” in ACM SIGCOMM CCR, 2009.

[5] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly with
preemptive scheduling,” ACM SIGCOMM CCR, 2012.

[6] A. Munir, G. Baig, S. M. Irteza, I. A. Qazi, A. X. Liu, and F. R. Dogar,
“Friends, not foes: synthesizing existing transport strategies for data
center networks,” in ACM SIGCOMM, 2014.

[7] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “pFabric: Minimal near-optimal datacenter transport,”
in ACM SIGCOMM CCR, 2013.

[8] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim, A. Krish-
namurthy, M. Moshref, D. Ports, and P. Richtarik, “Scaling distributed
machine learning with in-network aggregation,” in NSDI. USENIX
Association, 2021.

[9] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang, “Information-
agnostic flow scheduling for commodity data centers,” in NSDI.
USENIX Association, 2015.

[10] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout, “Homa: A receiver-
driven low-latency transport protocol using network priorities,” in ACM
SIGCOMM, 2018.

[11] H. Lim, J. Kim, I. Cho, K. Jang, W. Bai, and D. Han, “Flexpass: A
case for flexible credit-based transport for datacenter networks,” in ACM
EuroSys, 2023.

[12] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn,
“RDMA over commodity Ethernet at scale,” in ACM SIGCOMM, 2016.

[13] L. Schrage, “A proof of the optimality of the shortest remaining
processing time discipline,” Operations Research, 1968.

[14] N. Gautam, Analysis of queues: methods and applications. CRC press,
2012.

[15] V. Dukic, S. A. Jyothi, B. Karlas, M. Owaida, C. Zhang, and A. Singla,
“Is advance knowledge of flow sizes a plausible assumption?” in NSDI,
2019.

[16] M. Nuyens and A. Wierman, “The foreground–background queue: a
survey,” Elsevier Performance evaluation, 2008.

[17] K. Avrachenkov, P. Brown, and N. Osipova, “Optimal choice of thresh-
old in two level processor sharing,” Annals of Operations Research,
2009.

[18] I. A. Rai, G. Urvoy-Keller, and E. W. Biersack, “Analysis of LAS
scheduling for job size distributions with high variance,” in ACM
SIGMETRICS, 2003.

[19] Y. Lu, G. Chen, L. Luo, K. Tan, Y. Xiong, X. Wang, and E. Chen, “One
more queue is enough: minimizing flow completion time with explicit
priority notification,” in IEEE INFOCOM, 2017.

[20] A. G. Alcoz, A. Dietmüller, and L. Vanbever, “SP-PIFO: Approximating
Push-In First-Out behaviors using Strict-Priority queues,” in NSDI, 2020.

[21] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella, “On the impact of
packet spraying in data center networks,” in IEEE INFOCOM, 2013.

[22] J. Hong, S. Jeong, J.-H. Yoo, and J. W.-K. Hong, “Design and imple-
mentation of eBPF-based virtual TAP for inter-VM traffic monitoring,”
in 14th International Conference on Network and Service Management
(CNSM). IEEE, 2018.

[23] J. Wang. (2017) Accelerating VM networking through XDP. [Online].
Available: https://events19.linuxfoundation.cn/wp-content/uploads/2017/
11/Accelerating-VM-Networking-through-XDP_Jason-Wang.pdf

[24] IEEE 802.1p standard. [Online]. Available: https://www.ieee802.org/
[25] Netronome. (2024) Agilio CX 2x40GbE. [Online]. Available: https:

//netronome.com/agilio-smartnics/
[26] S. Miano, G. Lettieri, G. Antichi, and G. Procissi, “Accelerating network

analytics with an on-nic streaming engine,” Computer Networks, 2024.
[27] S. Miano, X. Chen, R. B. Basat, and G. Antichi, “Fast in-kernel traffic

sketching in eBPF,” SIGCOMM Comput. Commun. Rev., vol. 53, no. 1,
2023.

[28] H. Namkung, Z. Liu, D. Kim, V. Sekar, and P. Steenkiste, “Sketchovsky:
Enabling ensembles of sketches on programmable switches,” in NSDI
23. USENIX Association, 2023.

[29] A. Cornacchia and G. Sviridov. MP-MLFQ code repository. [Online].
Available: https://github.com/alessandrocornacchia/MP-MLFQ

https://events19.linuxfoundation.cn/wp-content/uploads/2017/11/Accelerating-VM-Networking-through-XDP_Jason-Wang.pdf
https://events19.linuxfoundation.cn/wp-content/uploads/2017/11/Accelerating-VM-Networking-through-XDP_Jason-Wang.pdf
https://www.ieee802.org/
https://netronome.com/agilio-smartnics/
https://netronome.com/agilio-smartnics/
https://github.com/alessandrocornacchia/MP-MLFQ

	Introduction
	Background and motivation
	Flow scheduling in data center networks
	Multi-Level Feedback Queueing (MLFQ)
	Limitations of MLFQ for commodity switches

	The ``Big Spine'' abstraction
	System overview
	Implications on load balancing

	Implementation in programmable networks
	Performance evaluation
	Experimental setup
	Comparison to other scheduling schemes

	Conclusions
	References

