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Abstract—Traditional deep learning pipelines involve multiple
intricate steps, from data acquisition to model training, fine-
tuning, and deployment. However, recent advancements in foun-
dation models, particularly in text-to-image generation, offer
a paradigm shift in addressing tasks without the need for
these conventional processes. In this paper, we explore how
foundation models can be leveraged to solve tasks, specifically
focusing on anonymization, without the requirement for training
or fine-tuning. By bypassing traditional pipelines, we demonstrate
the efficiency and effectiveness of this approach in achieving
anonymization objectives directly from the foundation model’s
inherent knowledge. Our findings underscore the transformative
potential of foundation models in simplifying and accelerating
deep learning tasks, paving the way for novel applications in
various domains.

I. INTRODUCTION

Deep learning (DL) has become a powerful paradigm for
handling tasks in many fields, from image recognition to
natural language processing. Solving tasks with DL generally
is not a straightforward path, which includes data acquisition,
preprocessing, model selection or design, training, fine-tuning,
and deployment. Often, following these steps requires signifi-
cant computational resources, time, and expertise to implement
and optimize. Recent breakthroughs in foundation models,
particularly those leveraging transformer architectures, have
reshaped the landscape of deep learning. These models, trained
on massive datasets and equipped with powerful language
understanding capabilities, have demonstrated remarkable per-
formance across a wide range of tasks, including text genera-
tion, image synthesis, and language translation. An interesting
potential emerges in this context: can we solve a task with
low resource commitment? By exploiting the latent knowledge
embedded within these models, it may be feasible to directly
address specific tasks, such as anonymization, without the need
for explicit training or fine-tuning. This work explores this
novel paradigm, focusing specifically on the anonymization
task, and investigates the potential of leveraging foundation
models to achieve this objective without traditional training
pipelines. Image anonymization involves hiding or altering
identifiable features within an image to protect the privacy and
identity of the individuals depicted. This process aims to make
it difficult or impossible to recognize or identify individuals
while retaining other non-sensitive information present in
the image. Various techniques can be employed for image

anonymization, including blurring, pixelation, masking, or
using advanced methods like Generative Adversarial Networks
(GANs). We examine how foundation models can generate
anonymized images directly from textual descriptions, thereby
circumventing the complexities associated with data pre-
processing, model training, and fine-tuning. Through empirical
evaluation and analysis, we demonstrate the effectiveness
and efficiency of this approach in achieving anonymization
goals while highlighting its implications for simplifying DL
workflows.

The rest of this paper is structured as follows: in Section
2, we offer a comprehensive exploration of foundation models
and their capabilities, with a specific focus on text-to-image
generation, as well as an examination of the current state of
the art in anonymization techniques. Section 3 delves into the
proposed methodology for tackling the anonymization task
without the need for training. Here, we elucidate the steps
involved in our approach and provide insight into the underly-
ing rationale. In Section 4, we present our experimental results
and perform a detailed analysis, highlighting the performance
of our approach in anonymization tasks and its comparative
efficacy. Lastly, Section 5 discusses the broader implications
of our findings, potential applications across various domains,
and outlines avenues for future research.

II. RELATED WORKS

A. Foundation models

In recent years, the exploration of foundation models has
fascinated researchers in various domains, ranging from natu-
ral language processing to image generation. This burgeoning
field has seen significant advancements, with scholars delving
into the capabilities, limitations, and ethical implications of
these models. Pioneering research by [1] laid the groundwork
for understanding the scaling of language models, showcasing
that larger models yield superior performance in text genera-
tion tasks. Their work underscored the crucial role of scale in
achieving state-of-the-art results. Bommasani et al.[2] offered
insights into the factors driving the scalability of foundation
models, highlighting advances in computer hardware, model
architectures (such as the Transformer), and the abundance
of training data. Their analysis shed light on the technical
intricacies facilitating the success of large-scale AI models.
Meanwhile, [3] delved into novel AI model architectures,



particularly diffusion models, which have revolutionized image
generation tasks. Diffusion models (e.g., DALL-E [4] and Sta-
ble Diffusion [5]) showcased a remarkable ability to produce
high-quality, diverse images based on textual prompts, thereby
opening avenues for creative AI applications.

B. Image anonymization

In the realm of image anonymization, traditional techniques
such as pixelation, blurring, and masking have long been
utilized [6], [7], [8]. However, these methods often introduce
distortions that may compromise the utility of anonymized
images for downstream applications, particularly those reliant
on facial recognition or attribute detection. Moreover, they are
susceptible to attacks aimed at reversing the anonymization
process [9], [10].

The advent of Generative Adversarial Networks (GANs)
has catalyzed a paradigm shift in image anonymization, par-
ticularly through the lens of conditional generative models
[11], [12], [13], [14], [6], [8], [7], [15], [16], [17], [18].
These approaches strive to anonymize images while preserving
salient features, rendering the anonymized data suitable for a
broader spectrum of applications.

For instance, DeepPrivacy [11] utilizes a GAN conditioned
on pose and background but faces challenges with irregular
poses and complex backgrounds, potentially leading to distor-
tions. DeepPrivacy2 [12] extends this to full-body anonymiza-
tion, but still encounters limitations in identity generation and
complete anonymization assurance.

CIAGAN [13] tackles anonymization using an inpainting
GAN conditioned on various inputs, including facial land-
marks and desired identities. However, its efficacy depends
on the accuracy of landmark detection, and the use of real
identities poses privacy concerns.

A further advance is represented by FALCO [14], which
aims to preserve facial features during anonymization by
optimizing image representations in the latent space of a pre-
trained StyleGAN2 [19] model.

With the use of diffusion models, CAMOUFLaGE [20]
overcomes the limitations seen in earlier techniques. It presents
two different versions: one uses a caption generator, pre-
trained ControlNets [21], and a new negative controller net-
work, and the other trains two adapters [22], [23] to avoid
captions. Our approach offers a simplified version of CAM-
OUFLaGE, bypassing the need for training. It generates facial
reconstructions that retain facial attributes while sacrificing
background details, akin to FALCO.

III. METHODOLOGY

In our pursuit to tackle the anonymization task while lever-
aging the inherent capabilities and knowledge of foundational
models (Figure 1), we avoid complex pipelines, opting instead
to explore a more streamlined approach. To compare our
methodology with FALCO, our focus remains on anonymiz-
ing facial features without necessarily preserving background
details while striving to retain as many facial attributes as
possible. For each input image, we extract age, ethnicity, and
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Fig. 1. Our architecture. The caption is a combination of the extracted labels.

the 40 labels defined in CelebA-HQ [24], covering various
facial attributes. These labels serve as pivotal anchors in
our anonymization process. Using this rich information, we
craft captions to guide the model (Algorithm 1), guiding
it toward synthesizing portraits that adhere closely to the
attributes provided. By exploiting facial feature information,
our approach strives to generate images with fidelity to the
original while obfuscating individual identities effectively.

Algorithm 1: Prompt generation

Input: I; # Input image
Output: P,¬P ; # Positive and Negative

# prompt
Function generatePrompt(image):

face← getBiggerFace(image);
attrs← getAttrs(image, face);
ethnic← attrs.pop(“Ethnic”);
age← attrs.pop(“Age”);
isMale← attrs.pop(“Male”) > 0.5;
P ← “closeup portrait photo of a ”;
P ← P + ethnic+ “ ”;
P ← P + age+ “ ”;
if isMale then

P ← P+ “man, ”;
else

P ← P+ “woman, ”;
end
¬P ← “”;
forall k in attrs do

x← attrs[k];
if x > 0.5 then

P ← P + k + “, ”;
else
¬P ← ¬P + k + “, ”;

end
end
return P,¬P

The architecture is illustrated in Figure 1. Two models were
employed for information extraction: FACER [25], used to
identify the 40 CelebA-HQ attributes, and DeepFace [26],
used to determine ethnicity and age. The composed prompts
are then used to guide the generation process. Classifier-
free guidance [27] was emplyoed to push the image content



in the direction of the positive prompt P and far from the
negative prompt ¬P . The generative model used is Realistic
Vision v5.1, which is derived from Stable Diffusion v1.5
[28]. The Variational Autoencoder (VAE) [29] is the VAE ft-
MSE [30], which helps against artifacts on smaller faces. The
scheduler adopted is the DPM++ SDE Karras [31]. Images
were generated at resolution of 5122 pixels using 15 steps.

IV. RESULTS

Following the evaluation methodology outlined by [20], we
evaluated the results through anonymization, downstream task
performance, and objective visual quality of the results. All
analyzes were conducted on a CelebA-HQ subset consisting
of 1,000 randomly sampled examples.

The risk of re-identification is evaluated using face-level and
image-level protocols. Face-level mimics Facial Recognition
system, extracting face crops with MTCNN [32] and generat-
ing embeddings using FaceNet on VGGFace2 [33] or CASIA
WebFace [34]. Image-level protocol, resembling web-based
image retrieval, uses CLIP visual encoder for embeddings. We
evaluate re-identification rate at different ranks (Re-ID@K)for
K=1, 5, and 10 mean Average Precision (mAP). The results
show the effectiveness of the method, reaching a performance
comparable to state-of-the-art methods when FaceNet models
are used, and surpassing them when using CLIP Table I.

We then measured the impact of anonymization on down-
stream tasks by comparing the performance of specific tasks
on real and anonymized images. Specifically, we focus on six
different downstream tasks: classification of 21 inner features
of the face, 17 outer features of the face, classification of
emotions, ethnicity, gender, and Valence-Arousal. The inner
and outer features were defined as in FALCO [14]. The results
are interesting (Table II): while performance is similar in most
tasks, our method outperforms all other methods in ethnicity
classification with an improvement of ∼ 25%.

An essential aspect when evaluating synthetic image gener-
ation is the quality of the resulting images. Figure 2 showcases
examples of images generated by various methods. Inpainting-
based methods, such as DP2, are more prone to artifacts,
especially in the presence of unusual poses, hairstyles or
accessories. On the othe rhand, FALCO changes the overall
appearance with washed-out colors.

Visual DNA, a novel technique introduced by Ramtoula
et al. [35], offers a sophisticated approach to comparing
individual images and datasets. It analyzes the distributions
of neuron activations across layers of a pre-trained feature
extractor, specifically the Mugs-ViT-B/16 model in our case.
By leveraging the Earth Mover’s Distance (EMD), Visual DNA
computes the semantic distance between original and synthetic
images. At the image level, we calculate the distance for each
anonymized-real image pair and then derive the mean and stan-
dard deviation for the entire anonymized dataset. Additionally,
we employ the Fréchet Inception Distance (FID) [36] to gauge
the overall quality of synthetic datasets. Notably, Visual DNA
has demonstrated superior performance in providing reliable
per-dataset measures, even with fewer samples compared to

conventional metrics like FID. The proposed method, as shown
in Table III, achieves slightly higher values with respect to
competitors despite neither relevant artifacts nor other kinds
of disturbance are introduced in the synthetic image. We
argue that the increase of FID is partly due to the higher
visual quality of the synthetic images which appear sharpened
with corrections introduced by the model especially in the
background (e.g., blurring reduction). In fact our model, which
is based on Stable Diffusion, is not specifically trained on
CelebA-HQ. Hence, it may generate images that are somewhat
visually different from the target dataset justifying the distance
among the synthetic and the real dataset. At the same time,
excessively beautifying the original images may pose issues
in terms of representativeness of the general population.

The higher values for Visual DNA metrics, which quantify
the semantic distance between real and synthetic images, result
from the most extensive mutations introduced by the method:
conditioning the generation process using only text allows for
a higher diversity while preserving the aspects specified in the
prompt, as confirmed by the results on downstream tasks.

V. CONCLUSION

In conclusion, this paper introduces a novel approach to
anonymization leveraging foundation models, specifically fo-
cusing on the task of anonymizing facial features in images.
By harnessing the latent knowledge embedded within these
models and crafting descriptive prompts, we demonstrate the
feasibility of directly generating anonymized images from tex-
tual descriptions, circumventing the need for explicit training
pipelines. We employ a streamlined approach that relies on
information extraction from input images using state-of-the-art
models such as FACER and DeepFace. By crafting captions
that guide the model towards synthesizing portraits adhering
closely to provided attributes, we aim to generate anonymized
images that retain fidelity to the original while effectively
obfuscating individual identities. Evaluation of our approach
demonstrates promising results across multiple metrics. We
achieve comparable or superior performance to state-of-the-
art methods in anonymization effectiveness, downstream task
performance, and visual quality of the generated images.
In particular, our method outperforms others in ethnicity
classification, showcasing its efficacy in preserving crucial
demographic information while anonymizing images. While
our approach exhibits slight increases in metrics such as FID
and Visual DNA, we attribute these to the higher visual quality
and semantic distance introduced intentionally during the
generation process. The diversity of generated images, coupled
with the preservation of specified attributes, underscores the
versatility and adaptability of our method across various appli-
cations. Our study highlights the potential of leveraging foun-
dation models for low-resource anonymization tasks, offering a
simplified yet effective alternative to traditional DL workflows.
By embracing this novel paradigm, we pave the way for more
streamlined and efficient approaches to addressing privacy
concerns in image data while preserving essential attributes for
downstream tasks. Our work concentrates on anonymization as



TABLE I
RE-IDENTIFICATION RATE AND M-AP FOR CELEBA-HQ [24]

Encoding CLIP ViT-B/32 FaceNet-vggface2 FaceNet-casia-webface
Method Re-ID@1 Re-ID@5 Re-ID@10 mAP@50 Re-ID@1 Re-ID@5 Re-ID@10 mAP@50 Re-ID@1 Re-ID@5 Re-ID@10 mAP@50

DeepPrivacy2[12] 0.268 0.404 0.469 0.113 0.004 0.018 0.028 0.006 0.003 0.020 0.036 0.005
FALCO[14] 0.101 0.222 0.292 0.054 0.002 0.014 0.020 0.003 0.005 0.013 0.022 0.003

Ours 0.007 0.021 0.037 0.006 0.010 0.028 0.037 0.006 0.007 0.014 0.029 0.005
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Fig. 2. Comparison of the proposed method to DeepPrivacy2[12] and FALCO[14] in terms of quality on CelebA-HQ. (Randomly sampled images)

Downstream task Real → Anonymized
Method Inner face attrs Outer face attrs Emotions Valence-Arousal Ethnicity Gender

(AUC ↑) (AUC ↑) (AUC ↑) (MSE ↓) (Accuracy ↑) (Accuracy ↑)
DeepPrivacy2[12] 0.823 0.976 0.664 0.18 0.674 0.925

FALCO[14] 0.898 0.944 0.777 0.08 0.654 0.950
Ours 0.878 0.954 0.730 0.09 0.928 0.965

TABLE II
PERFORMANCE ON DOWNSTREAM TASKS EVALUATED ON CELEBA-HQ.

Method FID ↓ Visual DNA ↓ Visual DNA ↓
(dataset level) (image level)

DeepPrivacy2[12] 49.4 5.0 10.4±1.3
FALCO[14] 41.2 6.3 15.2±2.1

Ours 53.3 7.1 18.3±2.1
TABLE III

IMAGE QUALITY RESULTS ON CELEBA-HQ.

a case study, however, the our methodology holds potential for
application in diverse domains beyond anonymization.
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[12] H. Hukkelås and F. Lindseth, “Deepprivacy2: Towards realistic full-body
anonymization,” in Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, 2023, pp. 1329–1338.

[13] M. Maximov, I. Elezi, and L. Leal-Taixé, “Ciagan: Conditional identity
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