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ANISOTROPIC A POSTERIORI ERROR ESTIMATE FOR THE VIRTUAL
ELEMENT METHOD

P. F. ANTONIETTI, S. BERRONE, A. BORIO, A. D’AURIA, M. VERANI, AND S. WEISSER

ABSTRACT. We derive an anisotropic a posteriori error estimate for the adaptive conforming Vir-
tual Element approximation of a paradigmatic two-dimensional elliptic problem. In particular, we
introduce a quasi-interpolant operator and exploit its approximation results to prove the reliability
of the error indicator. We design and implement the corresponding adaptive polygonal anisotropic
algorithm. Several numerical tests assess the superiority of the proposed algorithm in comparison
with standard polygonal isotropic mesh refinement schemes.

Keywords: Virtual Element Method, anisotropy, a posteriori error analysis.

1. INTRODUCTION AND NOTATION

In recent years, the numerical approximation of partial differential equations on computational
meshes composed by arbitrarily-shaped polygonal/polyhedral (polytopal, for short) elements has
been the subject of an intense research activity. Examples of polytopal element methods (POEMs)
include the Mimetic Finite Difference method, the Polygonal Finite Element Method, the Polygo-
nal Discontinuous Galerkin Finite Element Method, the Hybridizable Discontinuous Galerkin and
Hybrid High-Order Methods, the Gradient Discretization method, the Finite Volume Method, the
BEM-based FEM, the Weak Galerkin method and the Virtual Element method (VEM). For more
details see the special issue [6] and the references therein.

The novelty and recent surge of interest in POEMs stems from their ability to describe a
physical domain using not only standard shapes (triangles, tetrahedra, square, hexahedra,...) but
also highly irregular and arbitrary geometries. This flexibility of essentially arbitrary polytopal
meshes is naturally very attractive for designing adaptive algorithms based on mesh refinement
(and derefinement/agglomeration) driven by suitable a posteriori error estimates. However, while
(isotropic and anisotropic) error estimates and a posteriori error estimates and adaptive finite el-
ement methods (AFEMs) have been intensively investigated during the last decades (see, e.g.,
for the isotropic case the monographs [32, 31] and the references therein and for the anisotropic
case [4, 21, 22, 23, 24, 25, 26] and the references therein), the corresponding study of a posteri-
ori error estimates and adaptivity for polytopal methods is still in its infancy. See, for example,
[5, 8, 2] for the study of a posteriori error estimates in the context of Mimetic Finite Differences,
[9, 13, 15, 29, 10, 19, 16] for the Virtual Element Method, [34, 35, 38, 37] for polygonal BEM-
based FEM, [39] for the polygonal Discontinuous Galerkin method, [20] for the Mixed High Order
method, [30] for the Weak Galerkin method and [33] for lowest-order locally conservative meth-
ods on polytopal meshes. Moreover, despite the great flexibility provided by polytopal meshes,
the above works focused on the isotropic case, only. The anisotropic adaptive polytopal mesh re-
finement, to our knowledge, has been addressed only in [3] for the Virtual Element Method in two
dimensions. For completeness, see also the recent work [17] for nonconforming VEM a priori
anisotropic error analysis. Aim of this paper is to push forward the research of [3] providing a
rigorous polygonal anisotropic a posteriori error estimate for conforming VEM and numerically
assessing its efficacy in driving polygonal adaptive anisotropic mesh refinement strategies for the
virtual element approximation of a paradigmatic two-dimensional elliptic problem.

The outline of the paper is as follows. In Section 2 we introduce the continuous elliptic problem
together with its lowest order virtual element approximation. In Section 3 we first make precise
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the notion of polygonal anisotropy, then we state the anisotropic mesh regularity assumptions
under which our theoretical results will be obtained. In the same section we also collect a series of
instrumental results that will be employed in the subsequent analysis. In Section 4 we introduce
a quasi-interpolant operator and prove approximation results that will be employed in Section 5
where a novel polygonal anisotropic a posteriori error estimate is obtained. Finally, in Section 6
we present a set of numerical results assessing the validity of our theoretical error estimates and
the capability of our anisotropic error indicators to drive an adaptive polygonal anisotropic mesh
refinement strategy for the solution of an elliptic problem.

1.1. Notation of functional spaces and technical results. We use the standard definition and
notation of Sobolev spaces, norms and seminorms as given in [1]. Hence, the Sobolev space
Hs(ω) consists of functions defined on the open bounded connected subset ω of R2 that are
square integrable and whose weak derivatives up to order s are square integrable. As usual, if
s = 0, we prefer the notation L2(ω). Norm and seminorm in Hs(ω) are denoted by || · ||s,ω and
| · |s,ω, respectively, and (·, ·)ω denote the L2-inner product. The subscript ω may be omitted when
ω is the whole computational domain Ω.

If ` ≥ 0 is an integer number, P`(ω) is the space of polynomials of degree up to ` defined on
ω, with the convention that P−1(ω) = {0}. The L2-orthogonal projection onto the polynomial
space P`(ω) is denoted by Π0,ω

` : L2(ω)→ P`(ω). The space P`(ω) is the span of the finite set
of scaled monomials of degree up to `, that are given by

M`(ω) =

{ (
x− x̄ω
hω

)α
with |α| ≤ `

}
,(1)

where

• x̄ω denotes the center of gravity of ω and hω its characteristic length, as, for instance, the
edge length or the cell diameter for d = 1, 2;
• α = (α1, α2) is the two-dimensional multi-index of nonnegative integers αi with degree
|α| = α1 + α2 ≤ ` and such that xα = xα1

1 xα2
2 for any x ∈ R2.

Finally, we use the symbols . and & to denote inequalities holding up to a positive constant
that is independent of the characteristic length of mesh elements, but may depend on the problem
constants, like the coercivity and continuity constants, or other discretization constants like the
mesh regularity constant, the stability constants, etc. Accordingly, a ' b means a . b . a. The
hidden constant generally has a different value at each occurrence.

2. MODEL PROBLEM AND VIRTUAL ELEMENT DISCRETIZATION

Let Ω ⊂ R2 be a bounded polygonal domain. In this paper we are interested in deriving
anisotropic error estimates for the virtual element approximation of the following elliptic problem:

(2) −∆u = f in Ω, u = 0 on ∂Ω

with f ∈ L2(Ω). The variational formulation of (2) reads as: Find u ∈ H1
0 (Ω) such that

(3) a(u, v) = F (v)

for every v ∈ H1
0 (Ω) where a(u, v) =

∫
Ω∇u · ∇v dx and F (v) =

∫
Ω fv dx.

We now briefly recall (see [11] for more details) the lowest order virtual element approximation
to (3). Let {Kh}h be a sequence of decompositions of Ω where each mesh Kh is a collection of
nonoverlapping polygonal elements K with boundary ∂K, and let Eh be the set of edges E of
Kh. Each mesh is labeled by h, the diameter of the mesh, defined as usual by h = maxE∈Kh

hK ,
where hK = supx,y∈K |x − y|. We denote the set of vertices v in Kh by Vh. The global lowest
order virtual element space is defined as

(4) Vh,0 = {vh ∈ H1
0 (Ω) : vh|K ∈ V K

h and vh(v) = 0 ∀v ∈ ∂Ω} ⊂ H1
0 (Ω),
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where

(5) Vh(K) = {vh ∈ H1(K) : ∆vh = 0 in K, vh|E ∈ P1(E) ∀E ⊂ ∂K},

is the local virtual element space. We denote by uh ∈ Vh,0 the virtual element approximation to
the solution u of (3), defined as the unique solution to

(6) ah(uh, vh) = (fh, vh)

for every vh ∈ Vh,0, where fh is the piecewise constant approximation of f onKh and ah(uh, vh) =∑
K∈Kh

aKh (uh, vh) being

aKh (uh, vh) =

∫
K

Π0,K
0 ∇(uh) ·Π0,K

0 ∇(vh) dx + SK((I −Π0,K
1 )(uh), (I −Π0,K

1 )(vh)),

the local discrete bilinear form that satisfies the usual stability and consistency properties (see [11]
for precise definitions). For wh ∈ Ker(Π0,K

1 ) the stabilization form SK(·, ·) is defined as

SK(wh, wh) =

nK∑
i=1

w2
h(vi,K),

being vi,K , i = 1, . . . , nK the vertices of K. For more details about different choices for the
stabilization form, see [7].

3. POLYGONAL ANISOTROPY AND MESH REGULARITY

In this section, following [36], we first make precise the notions of isotropic and anisotropic
polygonal element. This will be obtained analysing the spectral decomposition of a suitable matrix
(in the sequel named covariance matrix) associated to the element. More precisely, let K be a
polygonal element of the partition Kh. We denote by |K| the area of K, we define the barycenter
of K as

x̄K =
1

|K|

∫
K
x dx,

and we introduce the covariance matrix of K as

(7) MCov(K) =
1

|K|

∫
K

(x− x̄K)(x− x̄K)> dx ∈ R2×2.

Obviously, MCov is real valued, symmetric and positive definite, once we assume that K is not
degenerating (i.e. |K| > 0). Therefore, MCov admits an eigenvalue decomposition

MCov(K) = UKΛKU
>
K ,

with

(8) U> = U−1 and ΛK = diag (λK,1, λK,2),

where λK,1 ≥ λK,2 > 0.
The eigenvectors of MCov(K) give the characteristic directions of K. Consequently, if

MCov(K) = cI

for c > 0, there are no dominant directions in the element K. Thus, we can characterise the
anisotropy with the help of the quotient λK,1/λK,2 ≥ 1 and say that an element K is

isotropic, if
λK,1
λK,2

≈ 1,

and anisotropic, if
λK,1
λK,2

� 1.
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Hinging upon the above spectral informations on the polygonal elements, we introduce a linear
transformation of an anisotropic element K onto a kind of reference element K̂. For each x ∈ K,
we define the mapping by

(9) x 7→ x̂ = FK(x) = AKx with AK = αKΛ
−1/2
K U>K

where αK > 0 will be chosen later. From now on, K̂ = FK(K) will be called the reference
element associated to K.

It is possible to prove (see [36]) the following result.

Lemma 3.1. There holds

(1) |K̂| = α2
K |K|/

√
det(MCov(K)),

(2) x
K̂

= FK(xK),
(3) MCov(K̂) = α2

KI .

According to the previous lemma, the reference element K̂ is isotropic, since λ
K̂,1

/λ
K̂,2

= 1,
and thus, it has no dominant direction. For what concerns the choice of the parameter αK we set

(10) αK =

(√
det(MCov(K))

|K|

)1/d

=

(√
λK,1λK,2

|K|

)1/2

,

which obviously ensures, in view of Lemma 3.1, |K̂| = 1. As usual, we mark the operators and
functions defined over the reference configuration by a hat, as, for instance,

v̂ = v ◦ F−1
K : K̂ → K.

Obviously, it is

(11) ∇v = αKUKΛ
−1/2
K ∇̂v̂,

and, after some algebra,

(12) Ĥ(v̂) = α−2
K Λ

1/2
K U>KH(v)UKΛ

1/2
K ,

where H(v) denotes the Hessian matrix of v ∈ H2(Ω) and Ĥ(v̂) the corresponding Hessian on
the reference configuration.

Following [36], we are now ready to state the mesh requirements which will be needed in the
sequel for deriving the properties of the quasi-interpolation operator (Section 4) and the anisotropic
a posteriori error analysis (Section 5). We first recall the notion of isotropic regular polygonal
meshes (Definition 3.2) which is instrumental for the definition of anisotropic polygonal meshes
(Definition 3.3).

Definition 3.2 (regular isotropic mesh). A polygonal mesh Kh is called regular or a regular
isotropic mesh, if all elements K ∈ Kh are such that:

(a) K is a star-shaped polygon with respect to a circle of radius ρK and center zK ∈ K.
(b) The aspect ratio is uniformly bounded from above by σK, i.e. hK/ρK < σK, being hK

the diameter of K.
(c) For every edge E ⊂ ∂K it holds hK ≤ cKhE , being hE the length of E.

Here, the constants σK and cK have to be uniform for all considered regular elements.

Definition 3.3 (regular anisotropic mesh). Let Kh be a polygonal mesh with anisotropic ele-
ments. Kh is called regular or a regular anisotropic mesh, if

(a’) The reference configuration K̂ for all K ∈ Kh obtained by (9) is a regular polygonal
element according to Definition 3.2.
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(b’) Neighbouring elements behave similarly in their anisotropy. More precisely, for two
neighbouring elements K+ and K−, i.e. K+ ∩K− 6= ∅, with covariance matrices

MCov(K+) = UK+ΛK+U>K+ and MCov(K−) = UK−ΛK−U
>
K−

as defined above, we can write

ΛK− = (I + ∆K+,K−)ΛK+ with ∆K+,K− = diag
(
δK

+,K−

1 , δK
+,K−

2

)
,

and
UK− = RK

+,K−UK+ with RK
+,K− rotation matrix

where for i = 1, 2

0 ≤ |δK
+,K−

i | < cδ < 1 and ‖I −RK+,K−‖0
(
λK+,1

λK+,2

)1/2

< cφ.

uniformly for all neighbouring elements, being ‖ · ‖0 the spectral norm.

Thus a regular anisotropic element can be mapped according to (9) onto a regular polygonal
element in the usual sense. In the definition of quasi-interpolation operators (see Section 4 ), we
deal, however, with patches of elements instead of single elements. Thus, we study the mapping
of such patches. Let ω = ωv be the neighbourhood of the vertex v which is defined by

ωv =
⋃{

K ′ : v ∈ K ′, K ′ ∈ Kh
}
.

Furthermore, for K ∈ Kh, recall that the map FK defined in (9) is given by

x 7→ FK(x) = AKx = αKΛ
−1/2
K U>Kx.

Consequently, we may write K̂ = FK(K) and we know, that K̂ is regular for all K ∈ Kh with
some regularity parameters σK and cK. However, let now K+,K− ∈ Kh with K+,K− ⊂ ω. We
are interested in the regularity of FK+(ω) and FK+(K−). For the proofs of the following results
we refer to [36].

Lemma 3.4. Let Kh be a regular anisotropic mesh, ω = ωv be a patch as described above,
and K+,K− ∈ Kh with K+,K− ⊂ ω. The mapped element FK+(K−) is regular in the sense of
Definition 3.2 with slightly perturbed regularity parameters σ̃K and c̃K. Consequently, the mapped
patch FK(ω) consists of regular polygonal elements for all K ∈ Kh with K ⊂ ω.

Proposition 3.5. Let Kh be a regular anisotropic mesh. Each vertex v of the mesh Kh belongs
to a uniformly bounded number of elements. Viceversa, each element K ∈ Kh has a uniformly
bounded number of vertices on its boundary.

In the rest of the paper we will work under the following mesh assumption.

Assumption 3.6. Let {Kh}h be a sequence of regular anisotropic meshes with regularity param-
eters uniformly bounded with respect to h.

Finally, we recall some instrumental results (see [36] for the proofs) that will employed in the
next section.

Lemma 3.7. Let K ∈ Kh be a polygonal element of a regular anisotropic mesh Kh. Then, for
v ∈ H1(K) and corresponding v̂ ∈ H1(K̂) there holds

‖v̂‖
L2(K̂)

= |K|−1/2‖v‖L2(K)(13)

‖∇̂v̂‖
L2(K̂)

= |K|−1/2‖A−TK ∇v‖L2(K)(14) √
λK,2
λK,1

|v̂|2
H1(K̂)

≤ |v|2H1(K) ≤

√
λK,1
λK,2

|v̂|2
H1(K̂)

.(15)
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Lemma 3.8 (anisotropic trace inequality). Let K ∈ Kh be a polygonal element of a regular
anisotropic mesh Kh. For an edge E ⊂ ∂K it holds

(16) ‖v‖2L2(E) .
|E|
|K|

(
‖v‖2L2(K) + ‖α−1

K Λ
1/2
K U>K∇v‖2L2(K)

)
.

Lemma 3.9 (best-approximation by a constant). Let K ∈ Kh be a polygonal element of a
regular anisotropic mesh Kh. For v ∈ H1(K), there exists a constant p ∈ P0(K) such that

‖v − p‖L2(K) . ‖α−1
K Λ

1/2
K U>K∇v‖L2(K).

4. QUASI-INTERPOLATION OF FUNCTIONS IN H1(Ω)

Let ω be a patch of physical elements belonging to a regular anisotropic polygonal mesh. Let
ω̂ be the patch of reference elements K̂ such that ω̂ = FK∗(ω), where the mapping is dictated by
an element K∗ of the patch ω. On the reference patch ω̂ we introduce the space

(17) Θ̂(ω̂) = {θ̂ ∈ C0(ω̂) : ∀K̂ ∈ ω̂ θ̂|K̂ = θ ◦ F−1
K∗ , θ ∈ Vh(F−1

K∗ (K̂))}

where Vh(F−1
K∗ (K̂)) is the lowest order local virtual element space defined on the polygonF−1

K∗ (K̂).1

We remark that in view of Lemma 3.4 the specific choice of the elementK∗ in the definition of the
space Θ̂(ω̂) is not restrictive. Moreover, we observe that, in view of Assumption 3.6, the dimen-
sion of Θ̂(ω̂) is uniformly bounded with respect to h. Finally, it is worth noticing that functions in
Θ̂(ω̂) are not necessarily virtual element functions. However, constant functions are contained in
Θ̂(ω̂) and this will be sufficient for our scopes.

Now, following [12], we introduce a projection operator r̂ω(v̂) on the reference patch ω̂.

Definition 4.1. For any function v̂ ∈ L1(ω̂) we define r̂ω(v̂) ∈ Θ̂(ω̂) as

(18)
∫
ω̂
(r̂ω̂(v̂)− v̂)θ̂ = 0 ∀θ̂ ∈ Θ̂(ω̂).

It is important to remark that r̂ω̂ is a projection operator on ω̂.
On the physical patch ω we can define rω(v) so that rω(v) ◦ F−1

K∗ = r̂ω̂(v ◦ F−1
K∗ ), i.e. r̂ω(v) =

r̂ω̂(v̂). Let ωi be the patch of elements sharing the vertex vi and set ri = rωi . The operators ri will
be employed to build the quasi-interpolant IC (see (23) below). In the sequel, we collect some
approximation results for ri that will be instrumental for proving the approximation properties of
IC .

Lemma 4.2. Let Kh be a regular anisotropic mesh. For any K ⊂ ωi there hold

(19) ‖u− ri(u)‖2L2(K) .
∑
K̃⊂ωi

|K|
|K̃|
‖A−T

K̃
∇u‖2

L2(K̃)
.

which can also be written in the following way

(20) ‖u− ri(u)‖2L2(K) . |K|
∑
K̃⊂ωi

√
λ
K̃,1

λ
K̃,2

|u|2
H1(K̃)

.

Proof. Let K ∈ ωi then we have

‖u− ri(u)‖L2(K) = |K|1/2‖û− r̂ω̂i
(û)‖

L2(K̂)
.(21)

Now, employing the fact that r̂ω̂i
is a projector on ω̂i we have

û− r̂ω̂i
(û) = û− θ̂ − r̂ω̂i

(û− θ̂),

1Note that the polygon F−1
K∗(K̂) is not necessarily equal to K∗, unless we consider exactly the reference polygon

K̂∗ associated to K∗.
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for θ̂ ∈ Θ̂(ω̂i) which implies

‖û− r̂ω̂i
(û)‖L2(ω̂i) ≤ 2‖û− θ̂‖L2(ω̂i).

Assume θ̂ is constant on ω̂i and û ∈ H1(ω̂i), hence employing standard interpolation error esti-
mate together with (14) we have

‖û− r̂ω̂i
(û)‖L2(ω̂i) . |û|H1(ω̂i)

.

∑
K̂⊂ω̂i

|û|2
H1(K̂)

1/2

.

∑
K̃⊂ωi

|K̃|−1‖A−T
K̃
∇u‖2

L2(K̃)

1/2

.

Combining (21) with the above inequality yields (19). On the other hand, using (14)-(15) we get
(20). �

Lemma 4.3. For any K ⊂ ωi there holds

(22) |u− ri(u)|2H1(K) .
∑
K̃⊂ωi

√
λK,1λK̃,1
λK,2λK̃,2

|u|2
H1(K̃)

.

Proof. By using (15) and taking θ̂ constant on ω̂i, employing the equivalence of all norms on the
finite dimensional space Θ̂(ω̂i), the fact that r̂ω̂i

is a projection on ω̂i and standard interpolation
error estimate we obtain

|u− ri(u)|H1(K) ≤
(
λK,1
λK,2

)1/4

|û− r̂ω̂i
(û)|

H1(K̂)
≤
(
λK,1
λK,2

)1/4

|û− r̂ω̂i
(û)|H1(ω̂i)

≤
(
λK,1
λK,2

)1/4 (
|û− θ̂|H1(ω̂i) + |θ̂ − r̂ω̂i

(û)|H1(ω̂i)

)
.

(
λK,1
λK,2

)1/4 (
|û− θ̂|H1(ω̂i) + ‖θ̂ − r̂ω̂i

(û)‖L2(ω̂i)

)
.

(
λK,1
λK,2

)1/4 (
|û− θ̂|H1(ω̂i) + ‖r̂ω̂i

(θ̂ − û)‖L2(ω̂i)

)
.

(
λK,1
λK,2

)1/4 (
|û− θ̂|H1(ω̂i) + ‖θ̂ − û‖L2(ω̂i)

)
.

(
λK,1
λK,2

)1/4

|û|H1(ω̂i).

By using (15) on each K̂ ⊂ ω̂i we get the thesis. �

We are now ready to introduce the quasi-interpolation operator. For simplicity of exposition,
we first consider the case where no boundary conditions are imposed on the boundary of Ω. To this
aim, we introduce the global lowest order virtual element space Vh ⊂ H1(Ω), which is defined as
Vh,0 except for the conditions imposed on the boundary vertexes (cf. (4)). The quasi-interpolation
of lowest order IC : H1(Ω)→ Vh is defined as

(23) (ICv)(x) =

N∑
i=1

[ri(v)](vi) ϕi(x)
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where ri = rωi and ϕi ∈ Vh is the global virtual element basis function with ϕi(vj) = δi,j ,
i, j = 1, . . . , N.

We first observe that the following inverse inequality holds.

Lemma 4.4. For any v ∈ Vh(K) there holds

(24) |v|H1(K) .

√
λK,1

λK,2
‖v‖L2(K).

Proof. We follow the steps of the proofs of Lemma 3.2, Lemma 3.4 and Theorem 3.6 in [18].
We report here the details only for completeness. We introduce a sub-triangulation TK of K
made of (possibly anisotropic) triangles having at least one edge coinciding with one of the edges
of the polygon K. We denote by S1(TK) the space of piecewise continuous linear finite element
functions on TK and set S0

1(TK) = S1(TK)∩H1
0 (K). We introduce the projectorQK : Vh(K)→

S1(TK) defined as

Qkv|∂K = v|∂K (Qkv, φ)L2(K) = (v, φ)L2(K) ∀φ ∈ S0
1(TK).

The following splitting will be employed in the sequel

Qkv = v∂,h + v0,h

where v∂,h ∈ S1(TK) with v∂,h|∂K = v|∂K (we recall that v|∂K is piecewise linear as v ∈ Vh(K))
and v0,h ∈ S0

1(TK) defined as v0,h = Qkv − v∂,h. We observe that it holds

(QKv,QKv)L2(K) = (QKv, v∂,h) + (QKv, v0,h) = I1 + I2.

Obviously, we have
I1 ≤ ‖QKv‖L2(K)‖v∂,h‖L2(K)

and

I2 = (v, v0,h)L2(K) ≤ ‖v‖L2(K)‖v0,h‖L2(K) ≤ ‖v‖L2(K)

(
‖QKv‖L2(K) + ‖v∂,h‖L2(K)

)
from which it follows

‖QKv‖2L2(K) ≤ ‖QKv‖L2(K)‖v∂,h‖L2(K) + ‖QKv‖L2(K)‖v‖L2(K) + ‖v‖L2(K)‖v∂,h‖L2(K),

which implies

(25) ‖QKv‖L2(K) . ‖v‖L2(K) + ‖v∂,h‖L2(K).

Let us now estimate the term ‖v∂,h‖L2(K). We observe that it holds

‖v∂,h‖2L2(K) '
∑
E⊂∂K

‖v∂,h‖2L2(TE)

.
∑
E⊂∂K

hE‖v∂,h‖2L2(E) .
∑
E⊂∂K

hE‖v‖2L2(E).

where TE ∈ T (K) is the triangle having E as an edge and hE is the diameter of E. Employing
the weighted trace estimate

hE‖v‖2L2(E) . ε
−2‖v‖2L2(TE) + ε2h2

E‖∇v‖2L2(TE),

we obtain, with hE,max = maxE⊂∂K hE , the following

(26) ‖v∂,h‖L2(K) . ε
−1‖v‖L2(K) + εhE,max‖∇v‖L2(K),

which yields

(27) ‖QKv‖L2(K) . (1 + ε−1)‖v‖L2(K) + εhE,max‖∇v‖L2(K).

Let v ∈ Vh(K) then it clearly holds

‖∇v‖L2(K) = inf
w∈H1(K): w|∂K=v|∂K

‖∇w‖L2(K),
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which implies, by employing standard inverse inequality on (anisotropic) triangles the following

‖∇v‖2L2(K) ≤ ‖∇QKv‖
2
L2(K) =

∑
TE∈TK

‖∇QKv‖2L2(TE) .
∑

TE∈TK

1

λ2,TE

‖QKv‖2L2(TE)

.
1

λ2,TK
‖QKv‖2L2(K),

where λ2,TK = minTE∈TK λ2,TE and λ2,TE is defined analogously to λ2,K (here K = TE), cf (8).
The above inequality combined with (27) yields

(28) ‖∇v‖L2(K) .
1√
λ2,TK

((
1 +

1

ε

)
‖v‖L2(K) + εhE,max‖∇v‖L2(K)

)
.

By choosing ε =
√
λ2,TK/(2hE,max) we obtain

(29) ‖∇v‖L2(K) .

√
λ2,TK + hE,max

λ2,TK
‖v‖L2(K).

As
√
λK,1 ' hE,max and λ2,TK ' λ2,K we get the thesis. �

Theorem 4.5. For any K ⊂ Kh there hold

(30) ‖u− ICu‖2L2(K) .
nK∑
i=1

∑
K̃⊂ωi

|K|
|K̃|
‖A−T

K̃
∇u‖2

L2(K̃)
,

or, written in an alternative way,

(31) ‖u− ICu‖2L2(K) . |K|
nK∑
i=1

∑
K̃⊂ωi

√
λ
K̃,1

λ
K̃,2

|u|2
H1(K̃)

,

where nK denotes the number of vertices of K.

Proof. Denoting by nK the number of vertices of K and by ωi the patch of elements sharing the
i-th vertex of K we have

(u− ICu)|K = u|K −
nK∑
i=1

[r1(u)](vi)ϕi|K −
nK∑
i=2

[ri(u)− r1(u)](vi)ϕi|K

= (u− r1(u))|K −
nK∑
i=2

[ri(u)− r1(u)](vi)ϕi|K ,

where in the last step we employed the fact that r1(u) is a virtual element function defined on the
patch F−1

K (ω̂) and K ⊂ F−1
K (ω̂). It follows

‖u− ICu‖L2(K) ≤ ‖u− r1(u)‖L2(K) +

nK∑
i=2

|[ri(u)− r1(u)](vi)|‖ϕi‖L2(K)

≤ ‖u− r1(u)‖L2(K) + |K|1/2
nK∑
i=2

‖ri(u)− r1(u)‖L∞(K).

To conclude, it is enough to employ Lemma 4.2 in combination with the following bound

‖ri(u)− r1(u)‖L∞(K) = ‖r̂i(û)− r̂1(û)‖
L∞(K̂)

. ‖r̂i(û)− r̂1(û)‖
L2(K̂)

. ‖û− r̂i(û)‖
L2(K̂)

+ ‖û− r̂1(û)‖
L2(K̂)

. |K|−1/2
(
‖u− ri(u)‖L2(K) + ‖u− r1(u)‖L2(K)

)
,(32)

where in the first inequality we employed the fact that all norms are equivalent on the finite di-
mensional space Θ̂(ω̂). �
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Corollary 4.6. There holds

(33) ‖u− ICu‖2L2(K) .
nK∑
i=1

∑
K̃⊂ωi

‖A−T
K̃
∇u‖2

L2(K̃)
,

where nK denotes the number of vertices of K.

Proof. Thanks to the mesh regularity assumption it is possible to prove that |K|
|K̃|

is bounded. �

The following result will be obtained under an assumption on the behaviour of the constant αK
appearing in the map (9).

Assumption 4.7. We assume that it holds αK ' 1 for every K ∈ Kh, uniformly in h.

For a numerical exploration on the validity of Assumption 4.7 see [36, Section 6.2]. For future
use, we note that the above assumption implies |K| '

√
λK,1λK,2.

Theorem 4.8. Under Assumption 4.7, for any K ⊂ ωi there holds

(34) |u− ICu|H1(K) .
λK,1
λK,2

|u|H1(ωK),

being ωK the patch of polygons K ′ such that K ′ ∩K 6= ∅.

Proof. Following the proof of Theorem 4.5 and employing Lemma 4.3 we have

|u− ICu|H1(K) ≤ |u− r1(u)|H1(K) +

nK∑
i=2

|[ri(u)− r1(u)](vi)||ϕi|H1(K)

≤

 ∑
K̃⊂ω1

√
λK,1λK̃,1
λK,2λK̃,2

|u|2
H1(K̃)

1/2

+

nK∑
i=2

|[ri(u)− r1(u)](vi)||ϕi|H1(K).

Now, we observe that, similarly to the proof of Theorem 4.5, employing (14) together with Lemma
4.2 the following holds

‖ri(u)− r1(u)‖L∞(K) = ‖r̂i(û)− r̂1(û)‖
L∞(K̂)

. |r̂i(û)− r̂1(û)|
L2(K̂)

. |û− r̂i(û)|
L2(K̂)

+ |û− r̂1(û)|
L2(K̂)

. |K|1/2
(
|u− ri(u)|L2(K) + |u− r1(u)|L2(K)

)
.

 ∑
K̃⊂ω1∪ωi

√
λ
K̃,1

λ
K̃,2

|u|2
H1(K̃)

1/2

.

Employing Lemma 4.4 and the fact that ‖ϕ‖L2(K) ≤ |K|1/2 we have, after invoking Assump-

tion 4.7, |ϕi|H1(K) .
(
λK,1

λK,2

)3/4
. Thus, we get

nK∑
i=2

|[ri(u)− r1(u)](vi)||ϕi|H1(K) .

(
λK,1
λK,2

)3/4 nK∑
i=1

∑
K̃⊂ωi

√
λ
K̃,1

λ
K̃,2

|u|2
H1(K̃)

1/2

.

As a consequence of the anisotropic mesh regularity assumption we have

λK,i ' λK̃,i, i = 1, 2

which yields

nK∑
i=2

|[ri(u)− r1(u)](vi)||ϕi|H1(K) ≤
λK,1
λK,2

|u|H1(ωK).
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Combining the above inequalities we obtain the thesis.
�

Theorem 4.9. Let E ⊂ ∂K be an edge of K ∈ Kh. Then it holds

(35) ‖u− ICu‖L2(E) .
|E|1/2

|K|1/2
‖A−T

K̃
∇u‖L2(ωE)

being ωE the patch of elements K̃ having non-empty intersect with E.

Proof. Let E ⊂ ∂K be an edge of K ∈ Kh with endpoints v1 and v2. Observing that r1(u) is a
virtual element function, we have

‖u− ICu‖L2(E) = ‖u−
2∑
i=1

[ri(u)](vi)ϕi‖L2(E)

= ‖u− r1(u)− [r2(u)− r1(u)](v2)ϕ2‖L2(E)

≤ ‖u− r1(u)‖L2(E) + ‖r2(u)− r1(u)‖L∞(E)‖ϕ2‖L2(E).

Noting that ‖ϕ2‖L2(E) ≤ |E|1/2 and observing that it holds ‖r2(u) − r1(u)‖L∞(E) = ‖r̂2(û) −
r̂1(û)‖

L∞(Ê)
. ‖r̂2(û)− r̂1(û)‖

L2(Ê)
. |E|−1/2‖r2(u)− r1(u)‖L2(E) we have

‖u− ICu‖L2(E) . ‖u− r1(u)‖L2(E) + ‖r2(u)− r1(u)‖L2(E)

.

(
|E|
|K|

)1/2 (
‖u− r1(u)‖L2(K) + ‖r2(u)− r1(u)‖L2(K)

+‖A−TK ∇(u− r1(u))‖L2(K) + ‖A−TK ∇(r2(u)− r1(u))‖L2(K)

)
,

where we employed trace inequality (16). Now, using (19) and (14) we obtain

‖u− ICu‖L2(E) .

(
|E|
|K|

)1/2


 ∑
K̃⊂ω1∪ω2

|K|
|K̃|
‖A−T

K̃
∇u‖2

L2(K̃)

1/2

+|K|1/2(‖∇̂(û− r̂1(û))‖
L2(K̂)

+ ‖∇̂(û− r̂2(û))‖
L2(K̂)

)
)
.

Proceeding as in the proof of Lemma 4.3 and employing (14) we get for i = 1, 2

‖∇̂(û− r̂i(û))‖
L2(K̂)

. |û|H1(ω̂) .

∑
K̃⊂ωi

|K̃|−1‖A−T
K̃
∇u‖2

L2(K̃)

1/2

.

Combining the above estimates and employing the anisotropic mesh assumptions guaranteeing
|K| ' |K̃| for K, K̃ belonging to the same patch, we obtain the thesis. �

In the following, we rewrite (33) and (35) in an equivalent way, suitable for future use when
deriving in the next section polygonal anisotropic error estimates. More precisely, let rK,i be the
normalized eigenvectors to the eigenvalues λK,i for i = 1, 2, which have been used already several
times in the matrix UK . Namely, it is UK = (rK,1, rK,2). Thus, we observe

Λ
1/2
K U>K∇v =

(
λ

1/2
K,1 rK,1 · ∇v
λ

1/2
K,2 rK,2 · ∇v

)
,

and consequently

‖α−1
K Λ

1/2
K U>K∇v‖2L2(ωK) = α−2

K

(
λK,1 ‖rK,1 · ∇v‖2L2(ωK) + λK,2 ‖rK,2 · ∇v‖2L2(ωK)

)
.
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Furthermore, since rK,i · ∇v ∈ R, we get

‖rK,i · ∇v‖2L2(ωK) =
∑

K′⊂ωK

∫
K′

(r>K,i∇v)2 dx

=
∑

K′⊂ωK

∫
K′

r>K,i∇v(∇v)>rK,i dx

= r>K,iGK(v) rK,i,

with

GK(v) =
∑

K′⊂ωK

 ‖vx1‖2L2(K′)

∫
K′
vx1vx2 dx∫

K′
vx1vx2 dx ‖vx2‖2L2(K′)

 .

Thus (33) and (35) can be rewritten as

(36) ‖v − ICv‖L2(K) ≤ c α−1
K

(
λK,1 r

>
K,1GK(v) rK,1 + λK,2 r

>
K,2GK(v) rK,2

)1/2

and

(37) ‖v − ICv‖L2(E) ≤ c α−1
K

|E|1/2

|K|1/2
(
λK,1 r

>
K,1GK(v) rK,1 + λK,2 r

>
K,2GK(v) rK,2

)1/2
,

respectively (cf. [22, (2.12) and (2.15)]).
We now introduce a variant of IC preserving the homogeneous boundary conditions. To this

aim we number the N vertices of the partition so that the first N∂ vertices are the boundary ones,
while the remaining ones (i.e. from N∂ + 1 to N ) are the internal vertices. The quasi-interpolant
IC,0 : H1

0 (Ω)→ Vh,0 is thus defined as

(38) IC,0u =

N∑
i=N∂+1

[ri(u)](vi) ϕi(x).

The results contained in Theorem 4.5, 4.8 and 4.9 are still true, and the analogous estimates to
(36) and (37) hold as well. For instance, in order to extend Theorem 4.5 it is sufficient to observe
that for u ∈ H1

0 (Ω) the following holds true

(39) ‖u− IC,0u‖L2(K) ≤ ‖u− ICu‖L2(K) +
N∂∑
i=1

|[ri(u)](vi)| ‖ϕi(x)‖L2(K).

Finally, denoting by E ⊂ ∂Ω one of the two boundary edges containing the vertex vi and employ-
ing the norm equivalence on finite dimensional spaces together with u|∂Ω = 0 we have

|[ri(u)](vi)| ≤ ‖ri(u)‖L∞(E) = ‖r̂i(û)‖
L∞(Ê)

. ‖r̂i(û)‖
L2(Ê)

= ‖r̂i(û)− û‖
L2(Ê)

≤ ‖r̂i(û)− û‖
L2(K̂)

+ |r̂i(û)− û|
H1(K̂)

,

where in the last step we used standard trace inequality. Finally, recalling that it holds

‖r̂i(û)− û‖
L2(K̂)

+ |r̂i(û)− û|
H1(K̂)

. |û|
H1(K̂)

,

the analogous to Theorem 4.5 follows after employing (14) and summing over the boundary ver-
tices.
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5. ANISOTROPIC A POSTERIORI ERROR ESTIMATE

In this section we derive an anisotropic polygonal a posteriori error estimate for the virtual
element approximation of (2). We preliminary observe that in view of Lemma 3.7 the stabilization
form satisfies

(40)

√
λK,2
λK,1

SK(wh, wh) . |wh|2H1(K) .

√
λK,1
λK,2

SK(wh, wh),

for wh = (I − Π0,K
1 )vh, vh ∈ Vh(K). Indeed, it is sufficient to employ (15) in combination with

the following
SK(wh, wh) ' ‖wh‖2L∞(K) = ‖ŵh‖2L∞(K̂)

' ‖ŵh‖2H1(K̂)
,

where we used the definition of SK , the mesh assumption (in particular the uniform boundedness
of the number nK of element vertices) and the fact that on finite dimensional spaces all norms are
equivalent.

Remark 5.1. Let us discuss the sharpness of the bounds in (40). On the rectangle K∗ = (0, a)×
(0, b), with a > b, it can be easily seen that the virtual element basis functions in Vh are

ϕ0(x, y) =
x y

a b
− y

b
− x

a
+ 1 , ϕ1(x, y) =

x

a
− x y

a b
,

ϕ2(x, y) =
x y

a b
, ϕ3(x, y) =

y

b
− x y

a b
,

and, for wh = (I −Π0,K
1 )ϕi, i = 0, . . . , 3, the following holds:

λ1,E =
a2

12
, λ2,E =

b2

12
,

|wh|2H1(K∗)

SK∗(wh, wh)
=

1

3

(√
λK,1
λK,2

+

√
λK,2
λK,1

)
,

and hence

2

3

√
λK,2
λK,1

SK
∗
(wh, wh) ≤ |wh|2H1(K∗) ≤

2

3

√
λK,1
λK,2

SK
∗
(wh, wh) .

We now state the main result of the paper.

Proposition 5.2. Let uh ∈ Vh,0 be the VEM approximation to the solution u of (2). Under
Assumptions 3.6 and 4.7, for e = u− uh it holds

‖∇e‖2L2(Ω) .
∑
K∈Th

‖RK‖L2(K)α
−1
K

(
λK,1 r

>
K,1GK(e) rK,1 + λK,2 r

>
K,2GK(e) rK,2

)1/2

+
∑
E∈Sh

‖JE‖L2(E)α
−1
K

(
|E|
|K|

)1/2 (
λK,1 r

>
K,1GK(e) rK,1 + λK,2 r

>
K,2GK(e) rK,2

)1/2

+
∑
K∈Th

M2
KS

K((I −Π0,K
1 )uh, (I −Π0,K

1 )uh)

+
∑
K∈Th

‖f − fh‖L2(K)α
−1
K

(
λK,1 r

>
K,1GK(e) rK,1 + λK,2 r

>
K,2GK(e) rK,2

)1/2
,

where

RK = (fh +∇ ·Π0,K
0 ∇uh)K ,

JE = |[Π0,E
0 ∇uh]|E ,

MK =

(
λK,1
λK,2

) 5
4

.
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Proof. The proof closely follows [15]. Let us set e = u − uh ∈ H1
0 (Ω) and we preliminary

observe that for every v ∈ H1
0 (Ω) the following holds

a(e, v) = (f, v)− a(uh, χ)− a(uh, v − χ)

= (f − fh, χ) + (f, v − χ) + ah(uh, χ)− a(uh, χ)− a(uh, v − χ)(41)

for all χ ∈ Vh. Moreover, we observe that integration by parts yields

(42) a(uh, w) = −(∇ ·Π0,h
0 ∇uh, w) +

∑
E∈Sh

∫
E
|[Π0,E

0 ∇uh]|wds+ ((I −Π0,h
0 )∇uh,∇w)

for all w ∈ H1
0 (Ω), where Π0,h

0 (·)|K = Π0,K
0 (·) for every K ∈ Kh. Employing (41)-(42) we get

a(e, v) =
∑
K∈Th

((Rk, v − χ)K + (θK , v − χ)K +BK(uh, v − χ))−
∑
E∈Sh

(JE , v − χ)E

+(f − fh, χ) + ah(uh, χ)− a(uh, χ)(43)

where

RK = (fh +∇ ·ΠL2

0 ∇uh)K ,

θK = (f − fh)K ,

BK(wh, v) = ((I −Π0,K
0 )∇wh,∇v)K ,

JE = |[Π0,E
0 ∇uh]|E .

Let eI = IC,0e ∈ Vh,0 be the quasi-interpolant of e satisfying the analogous version to the
estimates (36)-(37). Then we have

‖∇e‖2L2(Ω) =
∑
K∈Th

{
(RK , e− eI)L2(K) + (θK , e− eI)L2(K) + (f − fh, eI)L2(K)

+BK(uh, e− eI) + (aKh (uh, eI)− aK(uh, eI))
}
−
∑
E∈Sh

(JE , e− eI)L2(E)

=:
∑
K∈Th

(I + II + III + IV + V)−
∑
E∈Sh

VI.(44)

Let us now estimate the above terms. Employing Cauchy-Schwarz inequality together with the
analogous estimate to (36) we have

(45) I . ‖RK‖L2(K)α
−1
K

(
λK,1 r

>
K,1GK(e) rK,1 + λK,2 r

>
K,2GK(e) rK,2

)1/2
.

Similarly, employing the analogous estimate to (37), we have

(46) VI . ‖JE‖L2(E)α
−1
K

(
|E|
|K|

)1/2 (
λK,1 r

>
K,1GK(e) rK,1 + λK,2 r

>
K,2GK(e) rK,2

)1/2
.

Combining II and III yields

II + III = (f − fh, e)K = (f − fh, e−Π0,K
0 e)K

≤ ‖f − fh‖L2(K)‖e−Π0,K
0 e‖L2(K)

. ‖f − fh‖L2(K)‖α−1
K Λ

1/2
K U>K∇e‖L2(K)

= ‖f − fh‖L2(K)α
−1
K

(
λK,1 r

>
K,1GK(e) rK,1 + λK,2 r

>
K,2GK(e) rK,2

)1/2

according to Lemma 3.9. We now focus on the term IV. Noting that it holds

(47) ‖(I −Π0,K
0 )∇uh‖L2(K) = ‖(I −Π0,K

0 )∇(I −Π0,K
1 )uh‖L2(K) ≤ ‖∇(I −Π0,K

1 )uh‖L2(K)
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and remembering (40) we have

IV ≤ ‖∇(I −Π0,K
1 )uh‖L2(K)‖∇(e− eI)‖L2(K)

≤
(
λK,1
λK,2

) 1
4 (
SK((I −Π0,K

1 )uh, (I −Π0,K
1 )uh)

) 1
2 ‖∇(e− eI)‖L2(K)

≤
(
λK,1
λK,2

) 5
4 (
SK((I −Π0,K

1 )uh, (I −Π0,K
1 )uh)

) 1
2 ‖∇e‖L2(ωK)(48)

where in the last step we employed the analogous version to (34) for IC,0. Finally, we consider
the term V. It is immediate to verify that it holds

(49) V = ((I −Π0,K
0 )∇uh,∇eI)K︸ ︷︷ ︸

V1

−SK((I −Π0,K
1 )uh, (I −Π0,K

1 )eI︸ ︷︷ ︸
V2

.

Employing the Cauchy-Schwarz inequality together with (41) and the analogous estimate to (34)
we have

|V1| ≤ ‖(I −Π0,K
0 )∇uh‖L2(K)‖∇eI‖L2(K)

= ‖(I −Π0,K
0 )∇(I −Π0,K

1 )uh‖L2(K)‖∇eI‖L2(K)

≤ ‖∇(I −Π0,K
1 )uh‖L2(K)‖∇eI‖L2(K)

≤
(
λK,1
λK,2

) 1
4 (
SK((I −Π0,K

1 )uh, (I −Π0,K
1 )uh)

) 1
2 ‖∇eI‖L2(K)

≤ 2

(
λK,1
λK,2

) 5
4 (
SK((I −Π0,K

1 )uh, (I −Π0,K
1 )uh)

) 1
2 ‖∇e‖L2(ωK).

Employing (40) and (34) we have

|V2| ≤
(
λK,1
λK,2

) 1
4

SK((I −Π0,K
1 )uh, (I −Π0,K

1 )uh)
1
2 ‖∇(I −Π0,K

1 )eI‖L2(K)

≤
(
λK,1
λK,2

) 1
4

SK((I −Π0,K
1 )uh, (I −Π0,K

1 )uh)
1
2 ‖∇eI‖L2(K)

≤ 2

(
λK,1
λK,2

) 5
4

SK((I −Π0,K
1 )uh, (I −Π0,K

1 )uh)
1
2 ‖∇e‖L2(ωK).

Hence,

V ≤ 4

(
λK,1
λK,2

) 5
4

SK((I −Π0,K
1 )uh, (I −Π0,K

1 )uh)
1
2 ‖∇e‖L2(ωK).

Using that the cardinality of ωK is uniformly bounded (i.e. the number of edges of each polygon
is uniformly bounded) yield the thesis. �

Remark 5.3. A close inspection of the proof of Proposition 5.2 reveals that the presence of the
factor 5/4 in the term MK is related to the combined use of (40) and (34). While the bounds in
(40) are optimal (see Remark 5.1), we conjecture that the estimate (34) is suboptimal in view of
the presence of the factor λK,1/λK,2. The presence of the factor 5/4 has a relevant effect on the
performance of the adaptive refinement procedure (see Section 6 for further comments).

In the following, we focus on the computation of GK(e). In order to deal with this term we
employ Zienkiewicz-Zhu (ZZ) error estimator which yields

(50) GK(e) '
∑

K′⊂ωK


∫
K′

(ηZZ1 (uh))2 dx

∫
K′
ηZZ1 (uh)ηZZ2 (uh) dx∫

K′
ηZZ1 (uh)ηZZ2 (uh) dx

∫
K′

(ηZZ2 (uh))2 dx

 ,
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with ηZZi (uh) to be properly defined. Here, we take

ηZZi (uh) = (I −ΠZZ
h )(∂xi(Π

0,h
1 uh)),

i = 1, 2 where for every vertex v of K ′ we set

ΠZZ
h (∂xi(Π

0,h
1 uh))(v) =

1∑
K′′ :v∈K′′ |K

′′ |
∑

K′′ :v∈K′′
|K ′′ |∂xi(Π

0,K
′′

1 uh)|K′′ .

We employ the above vertex values ΠZZ
h (∂xi(Π

0,h
1 uh))(v) to construct, via e.g. least square fitting,

a linear polynomial on K ′ that we denote by ΠZZ
h (∂xi(Π

0,h
1 uh))|K′ . This latter enters in the

construction of ηZZi (uh) and thus it is employed to approximate GK(e).

6. NUMERICAL RESULTS

In this section we assess the behavior of the error estimate on three test cases. We recall that,
according to the previous section (cf. Proposition 5.2), the estimator is defined as:

(51) ηh =

∑
K∈Th

η2
K +

∑
E∈Sh

ξ2
E +

∑
K∈Th

σ2
K

1/2

,

where

η2
K = ‖RK‖L2(K)α

−1
K

(
λK,1 r

>
K,1GK(e) rK,1 + λK,2 r

>
K,2GK(e) rK,2

)1/2
,

ξ2
E = ‖JE‖L2(E) max

K : E⊂∂K
α−1
K

(
|E|
|K|

)1/2 (
λK,1 r

>
K,1GK(e) rK,1 + λK,2 r

>
K,2GK(e) rK,2

)1/2
,

and σK is given by

σ̃2
K = SK((I −Π0,K

1 )uh, (I −Π0,K
1 )uh) ,(52)

σ2
K = M2

K σ̃
2
K .(53)

To highlight the advantage of using an anisotropic adaptive process, we compare our results
with the ones obtained by refining the mesh with the following isotropic error estimate:

(54) ηiso
h =

∑
K∈Th

h2
K‖RK‖2L2(K) +

∑
E∈Sh

hE‖JE‖2L2(E) +
∑
K∈Th

σ̃2
K

 1
2

,

see [13, 15].
We also introduce the following heuristically scaled estimator

(55) ηheur
h =

∑
K∈Th

η2
K +

∑
E∈Sh

ξ2
E +

∑
K∈Th

σ̃2
K

 1
2

,

that differs from ηh for the presence of the unscaled stabilization terms σ̃2
K (cf. Remark 5.3).

In all the test cases, we consider (2) with Ω = (0, 1) × (0, 1). All the three proposed tests
have a boundary layer and are solved using VEM of order 1 and 2. We remark that the extension
of the anisotropic a posteriori framework developed in the previous section to the case of VEM
of order 2 (see [11] for details on the definition of the approximation spaces) is straightforward.
In the first two test cases the solution is purely anisotropic while in the last test there is both an
isotropic structure and an anisotropic layer. Before presenting the results of the computations, we
describe in detail the cell refinement strategy. To simplify the implementation of the anisotropic
mesh refinement process, that in presence of very general elements may become computationally
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demanding, we restrict ourselves to convex elements. The efficient implementation of the mesh
refinement process in the general case is under investigation.

6.1. Cell refinement strategy. The anisotropic adaptive VEM hinges upon the classical paradigm

. . .→ SOLVE→ ESTIMATE→ MARK→ REFINE→ . . .

The module MARK is based on the Dörfler strategy, see, e.g., [31] for more details. All numerical
tests have been run with marking parameter equal to 1/2.

In the sequel we focus on the description of the module REFINE, see Algorithm 1 below. We
aim at designing a refinement strategy that reduces the size of the element along the direction of
the gradient of the error (thus cutting in the orthogonal direction), while preventing an unneces-
sary increase of the aspect ratio of the polygon. The approach here applied extends the strategy
presented in [14] (cf., e.g., [28] and [27] for refinement strategies in the case of triangular and
quadrilateral elements, respectively).

More precisely, for each marked polygon K, we compute: (a) the eigenvalues λK,1 and λK,2
(λK,1 ≥ λK,2) of the covariance matrixMCov = MCov(K) together with the corresponding eigen-
vectors rK,i, i = 1, 2; (b) the eigenvalues λG,1 and λG,2 (λG,1 ≥ λG,2) of the matrixGK = GK(e)
together with the corresponding eigenvectors rG,i, i = 1, 2. The matrix GK is computed by re-
sorting to the ZZ approximation, cf. (50) for VEM of order 1 (the case of VEM of order 2 simply
requires the use of a quadratic least square fitting). We notice that large values of λG,1/λG,2 indi-
cate a local anisotropic behaviour of the gradient of the error, whereas large values of λK,1/λK,2
are associated to anisotropic elements.

If (λG,1/λG,2) ≥ (λK,1/λK,2), then the refinement strategy cuts the polygon K along rG,2,
otherwise it cuts along rK,2.

Whenever λG,1/λG,2 ≥ λK,1/λK,2 the refinement strategy takes advantage of the pronounced
anisotropic behaviour of the gradient of the error, whereas if λK,1/λK,2 dominates then the aspect
ratio of the element is reduced. Heuristically speaking, when λK,1/λK,2 dominates on λG,1/λG,2
the module REFINE aims at identifying a situation where the anisotropy of the element is too
pronounced (and possibly unnecessary) with respect to the (anisotropic) behaviour of the gradient
of the error. A typical situation could be the presence of an anisotropic element in a region where
an isotropic refinement is needed (i.e. the gradient of the error does not exhibit any preferential
direction).

Finally, we remark that whenever the estimator ηiso
h is used to drive the adaptive procedure, the

marked polygon is always cut along the direction rK,2.

Algorithm 1 The Module REFINE
Given a marked cell K

1: Compute the barycenter x̄K
2: Compute the tensor GK
3: Compute the covariance matrix MCov

4: Compute the eigenvalues of the two tensors
5: if (λG,1/λG,2) ≥ (λK,1/λK,2) then
6: Build a straight line passing through x̄K and parallel to rG,2
7: else
8: Build a straight line passing through x̄K and parallel to rK,2
9: end if

10: Refine the cell

In the following test cases we employ

ẽ = ‖∇(u−Π0
kuh)‖Ω k = 1, 2

as a measure of the exact error and we iterate the adaptive process until ẽ ≤ 10−3.
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FIGURE 1. Test case 1. Plot of the exact solution
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(B) VEM of order 2.

FIGURE 2. Test case 1. Components of the error estimator ηh as a function of
the number of degrees of freedom, when the adaptive process is driven by the
estimator ηh.

6.2. Test case 1. In the first test we set the forcing term in such a way that the exact solution is
given by

u(x, y) = 10−6x(1− x)(1− y)(e10x − 1)(e10y − 1) .

In Figure 1 we plot the exact solution, that displays a peak in the top-right corner of the domain,
with boundary layers in the x and y directions. In Figure 2 we report the behavior of the com-
ponents of the error estimator ηh defined as in (51) when the adaptive process is run using ηh as
estimator, based on employing both VEM of order 1 (cf. Figure 2a) and of order 2 (cf. Figure 2b).
From the numerical results reported in Figure 2, we can infer that the three components of the
estimator ηh differ one from each other of an order of magnitude. This behavior is more evident
for VEM of order 1, since the larger number of refinements produces large anisotropic elements.
A closer inspection, reveals that the factor MK could be much larger than the other factors, and
thus the aspect ratio of polygons could largely increase during the anisotropic adaptive process
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FIGURE 3. Test case 1. Computed values of ηK , ξE and σK as a function of
the number of degrees of freedom based on employing the heuristically scaled
estimator ηheur

h defined in (55) to drive the adaptive algorithm.

and can drive the adaptive process itself. The large aspect ratio of the elements produced is am-
plified by the exponent 5

4 that is present in MK that makes the VEM stabilization dominant with
respect to the other components of the estimator (cf. Remark 5.3). The resulting behavior of the
estimators might then be not optimal because the large values of σK cause the refinement process
to concentrate on cells whose error is already small. Indeed, as we show in Figure 3, the behavior
of σK when the refinement process is driven by ηheur

h tends to be parallel to the one of ηK and
ξE , showing that the behavior of the estimate ηh is caused by the fact that the estimator σK is
selecting for refinement elements that should not be selected. Notice that the above definition of
the σ̃K estimator used in ηheur

h correspond to the one given in Proposition 5.2, setting MK = 1.

We next analyze the behavior of the error based on employing the heuristically scaled estimator
defined in (55) to drive the adaptive algorithm. In Figure 4 we report the color-plot of the solutions
and the meshes obtained at the first refinement iteration and at an intermediate adaptive step, based
on employing VEM of order 1 and 2, respectively. A zoom of a detail of the computed anisotropic
mesh as well as the computed solution at the final adaptive step, are reported in Figure 5, again
employing VEM of order 1 and 2.

We next compared the behavior of the computed estimator and of the error as a function of the
number of the degrees of freedom, again based on employing the heuristically scaled estimator
defined in (55) to drive the adaptive algorithm. In Figure 6 we report the computed estimator ηheur

h
and the computed error ẽ, plotted against the number of degrees of freedom as well as the con-
vergence rates (computed based on employing a least square fitting). For the sake of comparison,
we also report the analogous quantities obtained with the isotropic error estimator ηiso

h defined
in (54), and denoted by ηiso

h and ẽiso, respectively. We observe, as expected, that the isotropic
adaptive process requires a larger number of degrees of freedom to reduce the error below a given
tolerance compared with the anisotropic error estimator.
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(A) VEM of order 1. Adaptive step n. 1. (B) VEM of order 1. Adaptive step n. 12.

(C) VEM order 2. Adaptive step n. 1. (D) VEM order 2. Adaptive step n. 7.

FIGURE 4. Test case 1. Computed solutions and corresponding anisotropic grids
at different steps of the adaptive algorithm based on employing the heuristically
scaled estimator ηheur

h defined in (55) to drive the adaptive algorithm.
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(A) VEM order 1. Adaptive step
n. 25.

(B) VEM order 2. Adaptive step
n. 13

FIGURE 5. Test case 1. Zoom of the computed solutions and corresponding
anisotropic grids at the final step of the adaptive algorithm based on employ-
ing the heuristically scaled estimator ηheur

h defined in (55) to drive the adaptive
algorithm.
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FIGURE 6. Test case 1. Computed values of the estimator ηheur
h , computed errors

ẽ based on employing the exact solution, and corresponding computed conver-
gence rates m as a function of the number of degrees of freedom. The results
are compared with the analogous quantities obtained based on employing the
isotropic error estimator ηiso

h defined in (54).
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6.3. Test case 2. We have repeated the same set of experiments of the previous section, now
choosing the forcing term in such a way that the exact solution is given by

u(x, y) = 10−2xy(1− x)(1− y)(e10x − 1).

We notice that the exact solution of the proposed test case exhibits a steep boundary layer in the x-
direction close to the right boundary of the domain (see Figure 7). Next, we report the color-plot of
the computed solutions and the corresponding meshes at the initial step of the adaptive algorithm,
and after 16 (resp. 9), iterations based on employing VEM of order 1 (resp. 2), and using the
heuristically scaled estimator ηheur

h defined in (55) to drive the adaptive process; cf. Figure 8. A
zoom of a detail of the computed anisotropic mesh as well as the corresponding computed solution
at the final step of the adaptive algorithm are reported in Figure 9, again employing VEM of order
1 (Figure 9, top) and VEM of order 2 (Figure 9, bottom). Finally, we compare the behavior of
the computed estimator and of the error as a function of the number of the degrees of freedom. In
Figure 10 we report the estimator ηheur

h and the error ẽ, plotted against the number of degrees of
freedom as well as the computed convergence rates. As before, we compare these results with the
analogous quantities obtained with the isotropic error estimator ηiso

h defined in (54). These results
have been obtained with VEM of order 1, cf. Figure 10a and with VEM of order 2, cf. Figure 10b.
We observe, as expected, that the isotropic adaptive process requires a larger number of degrees of
freedom to reduce the error below a given tolerance compared with the anisotropic error estimator.

FIGURE 7. Test case 2. Plot of the exact solution
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(A) VEM of order 1. Adaptive step n. 1. (B) VEM of order 1. Adaptive step n. 16.

(C) VEM order 2. Adaptive step n. 1. (D) VEM order 2. Adaptive step n. 9.

FIGURE 8. Test case 2. Computed solutions and corresponding anisotropic grids
at different steps of the adaptive algorithm based on employing the heuristically
scaled estimator ηheur

h defined in (55) to drive the adaptive algorithm.
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(A) VEM order 1. Adaptive step
n. 21.

(B) VEM order 2. Adaptive step
n. 13

FIGURE 9. Test case 2. Zoom of the computed solutions and corresponding
anisotropic grids at the final step of the adaptive algorithm based on employ-
ing the heuristically scaled estimator ηheur

h defined in (55) to drive the adaptive
algorithm.

10
0

10
2

10
4

10
6

degrees of freedom

10
-2

10
-1

10
0

10
1

10
2

(A) VEM of order 1.

10
1

10
2

10
3

10
4

degrees of freedom

10
-2

10
-1

10
0

10
1

10
2

(B) VEM of order 2

FIGURE 10. Test case 2. Computed values of the estimator ηheur
h , computed er-

rors ẽ based on employing the exact solution, and corresponding computed con-
vergence rates m as a function of the number of degrees of freedom. The re-
sults are compared with the analogous quantities obtained based on employing
the isotropic error estimator ηiso

h defined in (54).
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6.4. Test case 3. We have repeated the same set of experiments of the previous section, now
choosing the forcing term in such a way that the exact solution is given by

u(x, y) = 10−2xy(x− 1)(y − 1)(e10x − 5000x+ 4499) ,

that is obtained summing an isotropic bubble of the form

b(x, y) = 50x(1− y)y(0.9− x)(1− x)

to the solution of the second test case, cf. Figure 11. The manufactured exact solution exhibits
a steep boundary layer in the x-direction close to the right side of the domain, which requires
anisotropic mesh refinement to be efficiently treated and a bubble function in the left part of the
domain, which asks for isotropic mesh refinement. Next, we report the color-plot of the computed
solutions and the meshes obtained at the initial step of the refinement process, and after 17 (resp.
9), iterations based on employing VEM of order 1 (resp. 2), and using the heuristically scaled
estimator ηheur

h defined in (55) to drive the adaptive algorithm; Figure 12 (top) shows the results
obtained with VEM of order 1, whereas in Figure 12 (bottom) we show the analogous compu-
tations obtained with VEM of order 2. A zoom of a detail of the computed solutions together
with the corresponding computed anisotropic meshes at the final step of the adaptive algorithm
are reported in Figure 13, again employing VEM of order 1 (left) and VEM of order 2 (right).
The reported results show that the combination of isotropic and anisotropic mesh refinement is
correctly captured by the adaptive algorithm. Finally, we compare the behavior of the computed
estimator and of the error as a function of the number of the degrees of freedom. In Figure 14 we
report the estimator ηheur

h and the error ẽ versus the number of degrees of freedom, together with
the computed convergence rates (obtained through a least square fitting). These results have been
obtained with VEM of order 1, cf. Figure 14a and with VEM of order 2, cf. Figure 14b. As before,
we compare these results with the analogous ones obtained with the isotropic error estimator ηiso

h
defined in (54). Again, as expected, the adaptive algorithm based on employing the anisotropic
estimator guarantees a lower error compared with the isotropic one.

FIGURE 11. Test case 3. Plot of the exact solution
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(A) VEM of order 1. Adaptive step n. 1. (B) VEM of order 1. Adaptive step n. 17.

(C) VEM order 2. Adaptive step n. 1. (D) VEM order 2. Adaptive step n. 9.

FIGURE 12. Test case 3. Computed solutions and corresponding anisotropic
grids at different steps of the adaptive algorithm based on employing the heuris-
tically scaled estimator ηheur

h defined in (55) to drive the adaptive algorithm.
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(A) VEM order 1. Adaptive step
n. 21.

(B) VEM order 2. Adaptive step
n. 18

FIGURE 13. Test case 3. Zoom of the computed solutions and corresponding
anisotropic grids at the final step of the adaptive algorithm based on employing
the heuristically scaled estimator ηheur

h defined in (55) to drive the adaptive algo-
rithm.
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FIGURE 14. Test case 3. Computed values of the estimator ηheur
h , computed er-

rors ẽ based on employing the exact solution, and corresponding computed con-
vergence rates m as a function of the number of degrees of freedom. The re-
sults are compared with the analogous quantities obtained based on employing
the isotropic error estimator ηiso

h defined in (54).
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