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ABSTRACT 

 

The gradual deployment of Electro Mechanical Actuators (EMAs) as primary flight controls 

actuators, driven by the “more electric” approach, must be paired up with a solid prognostic 

background in order to overcome the limited experience and to support the system during his 

lifecycle.  In fact, assessing EMAs actual states thanks to Prognostic and Health Monitoring (PHM) 

systems and detecting potential failures is crucial to guarantee the compliance to the relative safety 

requirements. The research activity described in this paper focuses on the development of a model-

driven deterministic methodology based on Failure Modes Maps (FMMs). Thanks to data obtained 

through a Numerical Test Bench (NTB) and a Simplified Model (SM), the proposed prognostic 

algorithm is proved capable of detecting and identifying the source and magnitude of two different 

failures: rotor eccentricity and increased friction. After a short description of the implemented 

models and a general overview of typical EMA failure modes as well as FMMs development, the 

proposed algorithm is explained in detail. This is followed by a comprehensive study of the two 

simulated failures as well as the creation of the relative FMMs. Finally, the proposed prognostic 

algorithm is successfully applied on the obtained FMMs.  

Keywords: Prognostics, Failure Map, EMA, Failure, PHM 

 

 

1 INTRODUCTION 

The increasing adoption of EMAs in the aerospace sector, together with the deployment of alternative propulsion 

technologies, has always been one of the pivotal aspects necessary to facilitate the implementation of the “more electric 

aircraft” (MEA) design philosophy. In fact, the installation of EMAs instead of traditional hydraulic actuators offers a 

plethora of benefits, among which the downsizing (or complete removal) of the hydraulic systems is one of the most 

rewarding. The removal of this extensive subsystem can lead to a significant weight reduction as well as a drastic cut to 

maintenance and operations costs. It is therefore evident why, in the last decades, a strong interest in the “more electric” 

trend has been driving the aerospace sector. However, at the same time, the gradual change towards MEA architectures is 

slowed down by their critical failure modes and limited experience with these systems. 

In fact, only in recent times EMAs have been employed as secondary flight controls (FC) actuators and as primary flight 

controls actuator in small vehicles [1,2]. 

EMAs fault modes are often critical and some of them, such as the mechanical jamming of the actuator or some generic 

electrical failures could lead to hazardous or catastrophic failure condition, especially if EMAs are intended as primary FC 

actuators for which safety is the number one priority. Usually, FC are designed following a safe-life philosophy, thus not 

involving the system actual state at all and scheduling maintenance checks relying on “a priori” analyses which do not take 

into account any initial production flaw that could result in sudden failures in the long run [3]. In fact, equipment failures 

(especially in EMAs) are often unpredictable and the effect could not be visible until the consequences are already severe. 

A hidden failure could remain undetectable if no specific and targeted sensor equipment and appropriate algorithms are 

provided. 

It is clear that long-established approaches to design and maintenance are unacceptable since the aforementioned failure 

modes must be prevented from happening at all and a pure and simple replacement of hydraulic actuators by EMAs is not 

sufficient. Likewise, redundancy is implausible due to the added weight and the lower basic reliability: here arises the need 

of an additional “level” of safety.  
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A system capable of detecting and identifying the failure is therefore critical to guarantee the acceptable safety standards. 

This is when Prognostics and Health Management (PHM) systems prove useful: analyzing the systems and component 

behaviours thanks to appropriate sensors, detecting even small-scale changes in the systems parameters, identifying what is 

happening and, in the more advanced methods, adapting and replanning the mission [4,5,6].  

Thanks to complex algorithms and procedures, prognostics is able to carry out the so-called Fault Detection and 

Identification (FDI) step, essential to intercept the failure before the materialization of the relative failure condition and 

their respective harmful consequences. Prognostics is also able to predict the effect of a failure and assess its possible 

propagation at a sub-system and system level, estimating the Remaining Useful Life [7,8].  

On this basis, Condition Based Maintenance (CBM) strategies could also be approached [9]. Additional benefits strictly 

related to the implementation of prognostic strategies could be: an increase of the system availability, a leaner approach to 

Integrated Logistic Support (ILS) as well as a general improvement of mission readiness and a reduction of Life Cycle 

Costs (LCC) [10,11].  

In general, prognostic approaches are data driven [12] or, like the one proposed in this article, based on models [13,14]. In 

fact, the proposed methodology is based on a Simplified Model (SM), capable of medium to high accuracy with low 

computational time.  

Actually, in this paper, two different models are presented along with the relative peculiarities: a Numerical Test Bench 

(NTB) and a Simplified Model (SM). The former is a high-fidelity model which has been used by the authors as a test 

bench emulator; in other words, it has been used as a reference model. The latter is a low fidelity model which is employed 

inside the prognostic loop. 

The authors tested a peculiar prognostic methodology, based on failure mode maps (FMMs), capable of detecting and 

identifying two different failures: rotor eccentricity and increased friction in the transmission.  

These are among the most frequent and harmful failure modes in EMAs systems. Failure modes maps, often used in 

materials and structural analyses [15,16,28], are presented in this work as a quick and easy to read method to identify 

possible faults among a restricted number of hypotheses.    

2 EMA FAILURE MODES 

EMAs are very complex systems where electrical, mechanical and electronic components work together to provide 

seamless motion at the output shaft.  

The presence of such a variety of parts inevitably reduces the system inherit reliability, causing a very high number of 

possible failure modes [4] which can be assessed thanks to safety analyses.  

 

 

Balaban et al. [17,18] carried out extensive FMECA studies to determine the most common EMA failure modes (e.g. 

mechanical/structural, motor faults and electric failures), assess the relative criticality and provide a statistical base for 

future analyses.  

In this paper only two mechanical failure modes were selected and injected in our experiments: eccentricity and increased 

friction.  

In fact, mechanical and structural faults are the main source of concern for EMAs and they are the most demanding ones to 

build a prognostic algorithm upon.  

Furthermore, referring to the tables presented in [17], these faults present quite a high risk (medium-high criticality 

number) concerning safety and they represent some of the main technical challenges.  

Moreover, there are several studies focused on the detection of rotor eccentricities and on friction estimations, given the 

extreme importance of these failures [20,21,22]. 

2.1 ECCENTRICITY 

Rotor eccentricities represent one of the most harmful and investigated issue in electric motors. Among other effect, they 

play a major role in generating vibrations, creating electromagnetic noise injected in the system as well as mechanical and 

acoustic noise. [19] 

The eccentricity in electrical machines is often referred as air-gap eccentricity: as the air gap is the radial distance between 

the stator core and the moving rotor, a potential eccentricity in the rotor inevitably reflects on the air gap magnitude around 

the mechanical angle. 

In fact, eccentricity in electrical machines is commonly defined as a condition of unequal air gap between rotor and stator. 

The air gap is a key parameter for a correct motor operation and that is why a non-constant air gap around the mechanical 

angle is so deleterious for the overall performance of the electrical machine [23].  

Air gap eccentricity is usually divided in static and dynamic eccentricity. In this work, the authors implemented the 

simulation of static eccentricity. 
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Static eccentricity is caused by a misalignment between the rotor axis and the stator axis. However, since the rotor is 

symmetric with respect to its own rotation axis, no mechanical vibration is produced and the positions of minimum and 

maximum air gap magnitude are fixed in time and space.  

This defect can be caused by manufacturing defects or, more commonly, by the uneven wear of bearings and causes a 

general increase in the magnetic induction where the air gap is thinner, thus leading to a higher current consumption and 

irregularities during operations. On the other hand, dynamic eccentricity takes place when the center of the rotor does not 

coincide with the rotor center of rotation. Referring to Figure 1, Eq. 1 and 2 can be obtained: 

𝑔0 = 𝑅𝑆 − 𝑅𝑅 (1) 

𝑔′(𝜃) = 𝑔0(1 +  𝜁 ⋅ 𝑐𝑜𝑠(𝜃)) (2) 

 

 

Where 𝑔0 is the initial (nominal) air gap, 𝑅𝑆 and 𝑅𝑅 are the stator and rotor radii, 𝜗 is the rotation angle according to Figure 

1 reference frame, g’ is the actual air gap (involving eccentricity) and  is the eccentricity.  

𝜁 =
(𝑥0)

(𝑅𝑆 − 𝑅𝑅)
  (3) 

 

Figure 1  Static eccentricity reference system 

Eq. 1,2,3 have been implemented in the models as shown in section 3.1.2. 

2.2 FRICTION 

In EMAs, loads are transferred between mechanical parts in contact with each other. In this case, friction acts only in 

limited gears regions and it is generated by micro-junctions formed due to surface roughness and due to the presence of 

very high local pressures and stresses [24]. 

This phenomenon causes serious threats to the system performance, safety and overall reliability. Usually, friction is taken 

into account and its effect are assessed during the design phase of mechanical systems, for instance considering newer 

technologies (e.g. harmonic drives, planetary gearboxes, ball screws).  

Friction plays a relevant role in the stability and accuracy of controlled systems; hence its magnitude must be assessed in 

the controller tuning phase to achieve a resilient and robust control. On the other hand, various macroscopic detrimental 

effects due to friction may be: temperature increases, efficiency decreases and, above all, a wear of the parts in contact, 

leading to metallic particle in lubrication fluid too. 

If friction conditions were to change during EMA operations, there could be a reduction in system accuracy or the 

introduction of unexpected and unwanted behaviour [26]. In fact, in the presence of proportional integrative control logic, 

unexpected friction magnitude could lead to limit cycles, due to the interplay for friction, inertia and the controller 

integrative branch or dynamic instabilities (e.g. stick-slip motion).  

In the worst-case scenario, a jamming of the actuator may happen, causing hazardous or catastrophic failure conditions 

[22]. To sum up all that has been stated so far, detecting any failure related to a friction increase in EMA mechanical 

transmissions is key to create a satisfactory PHM system. 

3 EMA MODELLING 

The considered EMA is based on a linear, ball-screw actuator powered by a selected BLDC motor: the Faulhaber 

4490H048BS. As stated before, a total of two modular EMA models has been developed and used in this work:  
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 The NTB, which is a highly detailed model, representing a simulated test bench. It is able to offer high fidelity 

reference data concerning nominal (NC) and non-nominal conditions in terms of positions, speed, currents, voltages etc. 

The throwback is a very long running time, hence a real-time implementation is unreasonable. This model proved useful 

for gathering an extensive database involving the desired nominal and non-nominal conditions. 

 The SM, which is at the heart of the prognostic algorithm. The Simplified Model is a monitor model able to provide the 

authors with NC simulated data with an optimum trade-off between data details and computational costs. In fact, given 

its major role inside the prognostic methodology, running time is as important as data quality. 

The two models have been calibrated using the motor datasheet, plausible inertial and mechanical data, thus obtaining an 

actuation dynamics that is intermediate between primary and secondary flight controls. 

Both models are based on the pure Simulink implementation of physical formulas, strictly linking the model to the real-life 

situation.  

3.1 NUMERICAL TEST BENCH (NTB) 

The NTB main scheme is reported in Figure 2 and it can be divided into 3 main blocks: 

 Controller block; 

 Electro-mechanical model block; 

 Motor dynamics block. 

Moreover a “Com” block generates the different position commands (e.g. Step signal, Sinusoidal signal, Chirp signal) with 

custom parameters and the EMA Output block logs data into the Matlab Workspace. 

 

Figure 2  NTB Simulink model 

3.1.1 Controller Block 

The Controller Block takes as input the user angular position (ThU), motor angular velocity (DThM), and the signal 

command (Com).  

Position error (Err Pos), defined as the difference between “Com” and “ThM”, is passed to a pure proportional control loop 

composed of an amplifier and a saturation block, yielding a reference value for motor speed called “W_ref”.  

The angular velocity error (Err_W). is obtained by subtracting actual motor velocity (DThM) from this value.  

The angular velocity error enters a PID inner speed control loop with integrative and proportional logic: by taking these 

two contributions into account, a motor torque reference value (TM_ref) is obtained.  

The reference current, “I_ref”, is obtained by “TM_ref” divided by the torque constant (kt) and is regulated by a saturation 

block to prevent thermal damage due to excessive circulation current.  

It is worth noting that “I_ref” does not reflect the true value of circulating current in the three motor phases, but rather only 

serves as a reference value for appropriate phase commutation. 

3.1.2 Electro-Mechanical (EM) Model Block 

The BLDC motor is basically modelled as a three-phase star-connected system with three ohmic-inductive branches 

(Figure 4). This block shows two inputs: 

 Reference current “I ref”;  

 Motor speed “DthM”. 

On the other hand, the output is the torque motor “TM”, which is calculated in another sub-block starting from phase 

currents and CEMF coefficients. 

This block is divided into six sub-blocks, whose details are explained below:  

 Reference current calculator block. The actual motor position (ThM) is used to split the reference current “I_ref” into 

three different phase currents. 
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Figure 3  Controller Block 

This is achieved thanks to three parallels “Lookup blocks”, one for each phase. “Lookup blocks” are elementary blocks 

which provide one dimensional linear interpolation depending on input data.  

 

For each phase, a simplified rectangular time history is set: in this way, according to the motor position (ThM), each one 

of the three phases receives the right phased current value.  

Each “lookup block” is set with a rectangular wave (with value of -1, +1 or 0) out of phase by 120° with each other. 

The outputs of each “Lookup block” is then multiplied by “I_ref”, hence providing a 1x3 output vector with three 

rectangular currents correctly phased and with the same amplitude. 

In other words, according to the motor angle, a time history of the phase currents is generated. 

 PWM block. The reference current “I_ref” is compared with the three actual currents circulating in the three phases to 

obtain a simple feedback control. The three errors between the reference current and the actual currents are handled by 

three hysteresis blocks. These blocks are the easiest and less computationally intensive way to simulate fast PI 

controllers. The hysteresis control is actuated by switching the blocks output signal on / off and inserting a dead band. In 

other words, if the subtraction result is greater than +HB (band-width) the output value is 1, while if the result is less 

than −HB the output value is −1. Basically, if, in a given coil, current is requested, then the relative transistors are 

activated. If the difference falls into the bandwidth, transistors are switched-off and the block output value is 0. 

This is a fast and easy way to generate a high frequency PWM signal: to all intents and purposes, each hysteresis block 

outputs a high frequency square wave, hence modulating PWM duty cycle based on the error signal obtained by the 

difference between the actual current and the required current. These signals are then used to switch on or off the 

inverter. 

 Inverter block. This subsystem has been implemented thanks to SimScape add-ons. De facto, the inverter block 

consists of a three phase H-bridge, modelled thanks to the multi-domain blocks offered by SimScape. The three Boolean 

signals, obtained through the hysteresis blocks, are assembled in a 1x6 signal vector along with their negated values. 

Then the signal is passed to the “universal bridge” which, as a result of internal algorithms, outputs three voltages: A, B, 

C. 

 Phase currents calculation block. This block receives in input the voltages A, B, C and the counter electromotive 

forces coefficients “ea”, “eb”, “ec”. Phase currents and voltages are obtained thanks to three RL branches. 

 

 

Figure 4  EM Model Block



  

Moreover, a single equivalent current based on Eq. 4 for BLDC is obtained: 

      𝐼3𝑒𝑞 =
1

2
(|𝑖𝐴| +  |𝑖𝐵| + |𝑖𝐶|) (4) 

The equivalent current is then employed in the comparison between the NTB and the SM, where a single-phase 

approach is followed. 

Voltage and current signals are filtered before they can be displayed. 

 CEMF computation block. This block calculates instantaneous CEMF coefficients for each phase thanks to the motor 

position. The CEMF constant “ke” for each of the three phases is calculated, taking into account possible electrical 

failures too. 

Eq. 5 shows the law used to obtain the three normalized CEMF for the i-th (1,2,3) phase:  

            𝐾𝑓𝑐𝑒𝑚(𝑖) = 𝐾𝑒(𝑖) · 𝑢(2) · 

                  [1 + (𝑃 > 1) ⋅ 𝜁 ⋅ cos(𝜃𝑟 +
2

3
(𝑖 − 1)𝜋)] 

(5) 

𝐾𝑒 (𝑖) is the nominal counter electromotive force coefficient without any fault injection; the coefficient is potentially 

different for each phase but practically equal if no short circuit failure is considered. P is the number of polepairs per 

each phase. The second part of the equation is used for taking into account the static eccentricity: 𝜁 can vary from 0 to 

0.5 (Eq. 3). θr is the rotor angle. It is clear that in nominal condition this value should be equal to zero, hence the CEMF 

coefficient is the nominal one. It is worth noting that, as stated before, this block outputs the normalized CEMF 

coefficient, the CEMF coefficients can be easily obtained by multiplying the normalized one with the rotor speed (Eq. 

6). 

      𝑒𝑖 = 𝑒𝑖
𝑛 ⋅ 𝜃�̇� (6) 

 Motor torque computation block. Motor Torque is obtained following Eq. 7: 

             𝑇𝑀 =  ∑ 𝑘𝑛 ⋅ 𝐼𝑛
3
𝑛 = 1  (7) 

Which accounts for the three phases multiplied by the normalized CEMF coefficients. The torque is then estimated by 

summing together the three contributions. In fact, the three phase currents are multiplied by their respective “ke” and 

added up, since each phase gives a third of the total torque obtained, in nominal conditions. 

A saturation block is then added to limit the possible torque to reflect real core saturation behaviour.  

3.1.3 Motor dynamics Block 

This block receives in input the external torque and the motor torque previously obtained. On the other hand, motor 

position and speed are determined. 

As a matter of fact, this sub model is able to simulate the motor-gears dynamics, whose mathematical formulation is shown 

in Eq. 8.  

𝑇𝑀 − 𝑇𝑅 = 𝐽𝑚

𝑑2𝜃𝑚 

𝑑𝑡2
+  𝐶𝑚

𝑑𝜃𝑚 

𝑑𝑡
 (8) 

Where TM and TR are the motor and external torque values, Jm is the rotor inertia, θm is the motor position and Cm is the 

viscous coefficient. A sub-block is required to correctly model the second order mechanical system thanks to two distinct 

integrators. 

This highly detailed dynamical simulation considers a wide range of non-linear phenomena affecting the actuator: 

 Friction effects due to viscous forces are addressed thanks to a viscous coefficient Cm (dependent on speed); 

 Inertial effects are addressed thanks to moments of inertia; 



 

 7 

Figure 5  Simplified Model layout 

 Dry friction effects are injected thanks to the Borello friction model [24], through the coefficient FSJ; 

 Physical end-stops are addressed thanks to a saturation sub-block; 

 Backlash effects are focused on thanks to a hysteresis band acting on the user shaft position. 

3.2 SIMPLIFIED MODEL (SM) 

The NTB is able to provide detailed behavioural simulation of an EMA, assessing his response accounting for physical 

interaction between elements and components. Despite the highly detailed response obtainable from the NTB, a lighter and 

quicker model is needed. In fact, prognostic algorithms require a real-time implementation, hence a model which is able to 

simulate nominal conditions in small amount of time is required.  

On the other hand, to be coherent to the NTB, the SM must have the same overall structure and main functions. De facto, 

the SM is a stripped-out version of the NTB which can output its result in a time lap which is almost two orders of 

magnitude less than the NTB.  

The main difference is the employment of an equivalent single-phase approach with an overall behaviour equivalent to the 

three-phase model but resulting in a significant reduction of the computation time [25]. 

The overall layout of the SM is shown in Figure 5 and a brief description of the ratio behind the model is reported. The 

interested reader can see [25] for a detailed analysis of the SM. The SM is employed only for nominal condition simulation, 

in order to compare failure affected parameters with nominal ones. Three main blocks are visible: the controller, the 

electrical branch and the mechanical branch. 

3.2.1 Controller 

As in the NTB, the SM controller receives in input the reference signal, the user position and the motor speed, whereas it 

outputs the reference current. However, the overall structure is lighter and simplified. The motor position is subtracted from 

the “com” signal, obtaining a reference speed via the proportional gain (limited by a saturation block in order to take into 

account mechanical restrictions). The reference speed is compared to the actual motor speed before being multiplied by 

another proportional gain that mimics the proportional gain of the PID controller in the reference model. The torque 

constant is then used to estimate the reference current. It should be noticed that a saturation block is also necessary in this 

branch to limit excessive currents. 

3.2.2 Electrical branch. 

The current is multiplied by a constant to convert the signal from a reference current into a reference voltage. A simplified 

on-off control applies ground or supply voltage to the motor depending on the comparison between the converted voltage 

setpoint “I_ref” and the actual voltage in the motor, obtained from the motor speed multiplied by the CEMF coefficient. 

This simplified on-off control is obtained thanks to the sign function and it follows the ratio shown in Eq. 9: 

𝑉𝑚 = {

+𝑉𝑠 , 𝐼𝑚 < 𝐼𝑟𝑒𝑓 ,

0, 𝐼𝑚 = 𝐼𝑟𝑒𝑓 ,

−𝑉𝑠 , 𝐼𝑚 > 𝐼𝑟𝑒𝑓  
 (8) 

 

(9) 
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Where Vm is the voltage given to the motor, Vs is the supply voltage, Im is the motor current and Iref is the reference current.  

 

The current is determined using a specific transfer function, representing the RL circuit. This transfer function is based on: 

𝑉𝑚 − 𝑘 ⋅ 𝜔 = 𝑅 ⋅ 𝐼𝑚 + 𝐿 ⋅
𝑑𝐼𝑚  

𝑑𝑡
 (10) 

Where k is the CEMF constant, ω is the motor speed, R represents the winding resistance and L represents the winding 

inductance. The current is finally multiplied by the torque constant to obtain the motor torque, which is then saturated. 

3.2.3 Mechanical branch 

The SM mechanical branch is the same as the NTB mechanical branch: torque calculated in the electrical branch is applied 

to the dynamic model, which accounts for motor inertia, viscous and friction effects, backlash, and non-linear end-stops. To 

solve the second-order dynamical system, the dynamical model utilizes two integrators. 

3.3 MODELS COMPARISON 

The NTB and the SM simulation trends in nominal conditions have been compared to check the goodness of SM results 

with respect to the NTB ones. The SM matches the NTB response for all observed parameters (torque, position and 

current), and for different inputs (step, ramp and sinusoidal waveform), demonstrating satisfactory behaviour. This is very 

important since the prognosis based on parameters estimation needs a good accuracy of the two models. As an example, 

Figure 6 shows the comparison between the models with a sinusoidal input (Semi-amplitude: 0.001 rad and 5 Hz). 

4 FAILURE MODELLING AND FMMs 

As stated before, a total of two failures have been considered: eccentricity and increased friction. 

They have been implemented in the NTB: 

 Eccentricity is simulated thanks to Eq. 5, where 𝜁 can vary from 0 to 0.5; 

 Increased friction is simply modelled by the increase of the friction coefficient FSJ, which is employed in the Borello 

friction model [24]. The friction varies from its nominal value to five time its nominal value. 

 

Figure 6  SM and NTB position trends. 

 

4.1 FAILURE MODE MAPS 

A failure map is a graphical representation of how a system-representative parameter varies as a function of two different 

types of faults. In other words, a failure map is a visual technique that employs a graph showing the trend of an observable 

system parameter plotted on the y-axis (e.g.  

position error, overcurrent, speed error) as function of two 

distinct failures (e.g. eccentricity, friction, short circuit, backlash).  

Various failure maps concerning different parameters and failures can be obtained from extensive data-sets. 

Let us take into account one parameter P and two failures G1 and G2. Taking into consideration the parameter P and one of 

the two failures G1, a single line can be obtained through multiple simulations showing the trend of the parameter P at 

different failure magnitudes G1. During this operation, the second failure G2 has a constant magnitude. Now it is possible 

to repeat the same process with a different value of G2. 

The result is similar to the one showed in Figure 5: a bundle of lines representing the same parameter P in different 

conditions determined by G1 and G2 magnitudes. The obtained graph is a failure map. A failure map, in more detail, shows 



 

 9 

the first fault G1 on the x-axis and the representative parameter P on the y-axis. Each map represents a set of curves P = f 
(G1) that have the second fault G2 specified.  

A good choice of P is critical to generate an effective failure map. This parameter should be a function of both G1 and G2 

and should be extremely sensitive to changes in failure magnitude. Considering parameters showing a monotone trend as 

well as presenting lines that do not intersect each other as the given failures unfold is advisable to facilitate the prognostic 

process. In our case, various simulations have been performed to determine at least three sets of a parameter and two 

failures (P1,G1,G2), (P2,G1,G2), (P3,G1,G2) which could guarantee the aforementioned conditions along a wide range of 

failure magnitude variations. In fact, all these precautions allow for a more precise identification during the fault detection.  

The selection of the appropriate input type (e.g. step, ramp, chirp) and parameter to monitor (e.g. speed or position error, 

currents) is another critical point. 

 

Figure 7  Failure map example 

This means that, if the objective is to detect a failure by evaluating the dynamic response of a specific system, the positive 

outcome of the prognostic strategy (i.e. a correct failure identification) is dependable not only on the observable parameters 

but also on the input type.  In other words, in order to have the best parameter estimation, a test campaign must be run and 

the optimum input for each parameter must be selected. 

Considering the same parameter but approached with different input type leads to different failure map trends. 

4.2 FAILURE MAPS CREATION 

To obtain reliable failure maps, different and easily measurable parameters (P) shall be considered.  

In particular, to create three failure maps independent of one another, the following quantities have been identified: 

 Speed RMS Error; 

 Current RMS Error; 

 Starting Error. 

For each of them, a specific failure map has been developed, considering as the first failure (G1) the friction and as the 

second failure (G2) the eccentricity. 

4.2.1  First failure map 

The first failure map is created by considering the Root Mean Square Error of the user speeds compared to the speed mean 

value. The parameter has been calculated from the analysis of a response to a step input. 

In particular, a step input of 1 [rad] has been injected, with a simulation time of 0.8 s (a time which is enough to reach the 

regime speed). Hence, the model, involving progressive combined failures concerning eccentricity and friction, has been 

simulated. Based on these results, the effect of non- nominal eccentricity has been correlated to the amplitude variation of 

the oscillations around the mean value, while the friction directly changed the average speed.  

The entity of friction and eccentricity could lead to different outcomes: indeed, for low friction values, the motor resulted 

still able to overcome resistance; whereas, when the eccentricity was too high, also friction effects became more important, 

as the motor is brought far from its nominal conditions. This behavior led strong support to consider the Root Mean Square 

Error of the user speed (compared to the steady state one) to obtain the first failure map. The parameter is therefore 

calculated as: 

𝑅𝑀𝑆𝐸𝑠𝑝𝑒𝑒𝑑 = ∑
√(�̇� − 𝜃�̇�)

2

𝑛

𝑛

𝑡=1
 

(11) 

Where  
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 𝜃�̇� is the user speed, evaluated at a certain time t, 

 �̇� is the mean value of user speed at regime condition, 

 n is the number of considered samples. 

For increasing failure magnitudes, RMSEspeed has been calculated and graphed. A monotonic trend is observed for different 

ζ values, with increasing FSJ: in this way the first failure map has been obtained. 

 

Figure 8 First failure map. 

4.2.2 The second failure Map 

A second simulation campaign has been performed by applying a sinusoidal command. A simulation time of 1 s was set, 

because it is deemed enough to observe an adequate number of complete sinusoidal waves in system responses. 

The results showed a significative gap between current values in nominal and faulty condition with increasing friction, 

which resulted more influent if compared to the irregularity generated by the eccentricity. 

So, the Root Mean Square error between phase currents has been calculated as: 

𝑅𝑀𝑆𝐸𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = ∑ √(𝐼3𝑒𝑞𝑢𝑖𝑣 − 𝐼𝑚)
2

𝑛

𝑛

𝑡=1
 (22) 

Where: 

 I3equiv is the equivalent single-phase current calculated for the three phases motor 

 Im is the phase current in monitor model 

 n is the number of considered samples 

For increasing failure condition RMSEcurrent has been calculated and graphed observing a monotonic trend for different ζ 

values, with increasing FSJ: a second failure map has thus been obtained. 

 

Figure 9 Second failure map. 

4.2.3 The third failure map 

Finally, a third set of simulations has been carried out with a ramp input with a simulation time of 1 s.  

Considering different ζ values, the variation of position response has been analyzed, thus considering it as the parameter 

employed for the third failure map.  

Looking at position response to ramp for several parameterized in FSJ, error at start has been evaluated, considering the 

command value when the system leaves the zero speed condition. 
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𝐸𝑅𝑅𝑛𝑜𝑟𝑚 =
𝐶𝑜𝑚𝑠𝑝𝑒𝑒𝑑≠0

𝐸𝑅𝑅𝑁𝐶

=
𝐸𝑅𝑅

𝐸𝑅𝑅𝑁𝐶

 (13) 

Where Comspeed≠0 is the command value when system leaves zero speed condition. Err shows a monotone crescent trend 

with FSJ. Error normalized (13) respect to his nominal condition value has been graphed with FSJ in x-axis and 

parametrization in ζ, obtaining the third failure map. The map shows a quasi-linear monotone trends of error in function of 

FSJ, with slopes that increase with ζ 

 

Figure 10 Third failure map. 

5 PROPOSED METHODOLOGY 

5.1 THE PROGNOSTIC ALGHORITM  

The proposed prognostic technique described in this work is based on the use of the failure maps previously described. At 

first, it is crucial to underline that, to obtain results useful for prognostics, several failure maps are requested. This is the 

reason why, in this chapter, three failure maps, each one correlated to a different parameter, have been described. The 

proposed technique requires at least two different maps. The algorithm is structured as follows: 

 The first failure map shall be considered. It has got, on the y-axis, the reference parameter P1. As already described, its 

current value P1* is known: on the failure map, P1* is entered in the graph as y-axis. 

 Using P1* value, a correspondent abscissa G1* can be found, as shown by the figure 9. This represents the value of the 

first fault parameter. Moreover, each curve represented in the failure maps described different values of the second 

fault parameter G2: considering that usually more than one curve is intersected by the P1* value, more G1 intervals on 

the x-axis could be found (as shown in fig. 9, G1* and G1**). 

 The second failure map is then considered. This takes into account the second parameter P2, and also in this case its 

value is known (P2*). The procedure described at point 2 is now repeated, and another set of possible G1 values is 

detected (figure 11) 

 Once the possible intervals of values for G1* have been defined for the first and the second failure maps, their 

intersection shall be considered, to define the final G1 interval. From this, it is now possible to define the interval of 

G2 possible values. 

 A combination of two failures affecting the system is so identified. 

If this algorithm is performed by using more than two maps, it is possible to superimpose more intervals of failures, 

guaranteeing more accurate results. 

When several maps are employed, each FMM has to be independent of one another: unrelated maps can be obtained 

considering three distinct parameters or different command inputs. By using three independent maps, i.e. reflecting three 

different characteristics, an accurate area containing the possible faults can be identified. When a third maps is considered, 

the procedure is the same employed for the second one, and also for the eventual successive.  

5.2 CONCEPT OF OPERATIONS  

A possible FDI method applicable to real life scenarios has been conceived. The pre-flight check phase is deemed to be the 

most appropriate one to perform a prognostic check (i.e. acquire, process and post-process data). Our concept of operations 

is fairly simple and it does not impact the aircraft availability nor its down-time at all. Before the flight, data useful to 

calculate enter parameters for the failure maps are gathered thanks to a specific sequence of inputs signals. This sequence 

has been carefully chosen to obtain clear results in accordance to Section 6.  Failure maps specific for the employed EMA 

type are already created and loaded into a PHM computer on board or on specific ground hardware, hence the processing 

and post processing phase are not demanding at all. Once the data is gathered, the input parameters are loaded and matched 

with the appropriate failure maps. Through the matching of the three parameters P1, P2 and P3 on the respective failure 
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map, a possible fault area is detected as shown in Section 6. By performing a pre-flight test like the proposed one, an airline 

CAMO can optimize its maintenance strategy and assess the system real state before the flight just with some simple 

actuator movement sequence. 

6 RESULTS AND DISCUSSION 

The proposed methodology has been employed on the results given by the numerical test bench. The overall simulation 

performed by the model covered a time of 3 seconds, with the following commands sequence: 

 a 0.50 s ramp input (slope 0.001 rad/s), with control surface slowly moving toward maximum deflection; 

 a 0.35 s time lapse while the actuator returns to zero position; 

 a 1.00 s sinusoidal input (semi-amplitude: 0.001 rad; frequency: 5 Hz), with control surface deflecting up and down 

around zero position; 

 a 0.35 s time lapse while the actuator just brings back again to zero position by previous command stay static before 

next command; 

 a 0.80 s step (of high amplitude: 1 rad), with the control surface which quickly goes to maximum deflection.  

During the simulation, in the numerical test bench, a defined level of friction and static eccentricity were fixed and applied 

for the three different command inputs.  

As already described, the data acquired are: 

 speed θM  

 current in phases I3equiv  

 position θU,  

Once they are calculated, it is possible to obtain respectively the values of P1*, P2* and P3*.  

It is now feasible to apply the method developed for failure maps. Initially, various failure scenarios were simulated by 

defining eccentricity and friction values.  

For each couple of fault friction and eccentricity, the parameters P1*, P2* and P3* have been entered in the failure maps 

and the overall prognostic procedure was applied.  

An example of the results is shown in the following figures. The figures 11 and 12 describe how the faulty values detected 

resulted to be an accurate estimation of the real fault levels acting on the actuator.  

 

In failure maps the real and the estimated values are reported as follow: 

 Red triangle represents the actual failure magnitude, 

 Blue dot represents the detected failure magnitude. 

More precisely, an error analysis for proposed examples (Table 1) has been conducted by calculating: 

𝐸𝑅𝑅% = 100 
𝐸𝑥𝑎𝑐𝑡 𝑣𝑎𝑙𝑢𝑒 − 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

𝐸𝑥𝑎𝑐𝑡 𝑣𝑎𝑙𝑢𝑒
 (34) 

The detected values of the two failures are calculated as the centroid of the area referred to x-axis (FSJ estimation) and y-

axis (ζ estimation). As already happened for different evaluated failures, the algorithm gave good results, demonstrating the 

strength of the proposed deterministic prognostic method based on failure maps. It properly worked in several faulty 

condition simulated, proving the ability of algorithm to identify fault operational area (with a certain tolerance). The results 

obtained showed how this developed prognostic algorithm resulted to be sensible to 

 failure maps definition, 

 amplitude of bands parameter. 

Table I - Comparison between real and detected data 

 



  

Figure 11  Example of prognostic algorithm implementation: FMMs 

 

Figure 12  Example of prognostic algorithm implementation: failure identification. 

 

 

Moreover, failure maps depend on number of simulations used to build it: a high number of simulations offers more 

detailed maps, improving the algorithm performances. 

7 CONCLUSIONS 

The results of this work are extremely positive and encouraging: a novel approach for prognostics for detection of gradually 

increasing faults on aircraft actuators was successfully established. Initially, a numerical test bench capable of simulating 
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progressive failures was created. Furthermore, this numerical model was greatly simplified by constructing a related 

monitoring model able to precisely describe the system reaction, giving the possibility of performing the needed tests.  

The proposed prognostic algorithm estimates the extent of failures (i.e. the friction of the transmission and the static 

eccentricity of the rotor) by analyzing the dynamic response of the actuator to identify three parameters capable of 

detecting and identifying these failures. The dependence of these parameters on the health conditions of the EMA is 

depicted in failure maps.  

It should be noted that, by monitoring the values of three common EMA parameters (e.g. phase current, angular position 

and rotor speed of the EMA motor), the authors’ algorithm identifies with a suitable accuracy the health status of the 

system. Finally, these encouraging results may suggest that the proposed technique could be extended to investigate other 

occurrences, such as electrical failures, where the evolutions are typically very fast or instantaneous, making failure 

precursors difficult to identify and evaluate, especially when combined failures occur. 
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