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Evaluation of L-band GPS signal attenuation to multiple vegetations using 

ground-based measurements  

Abstract: Global Navigation Satellite System Reflectometry (GNSS-R) is a remote sensing 

technique that can be regarded as a bistatic radar system. GNSS-R uses GNSS signals as 

signal sources and obtains the Earth's surface environmental parameters, such as soil 

moisture (SM), by receiving the L-band microwave signal reflected from the Earth's surface. 

However, surface vegetation could be one of the main factors influencing the accuracy of 

GNSS-R land applications since plants, including branches and leaves, attenuate GNSS 

signals. Additionally, the evaluation of signal attenuation caused by the plant canopy is quite 

difficult. In this paper, we study the attenuations of received L1- and L2-band GPS signals 

to the vegetation leaf area index (LAI) for different types of plants. The relationship between 

the attenuation of the GPS signal-to-noise ratio (SNR) (both above and below the canopy) 

and the LAI is established through field experiments. The results show that the mean SNR 

received in the L2 band is lower than that in the L1 band for each satellite but with a larger 

standard deviation (SD). The sensitivities of L1- and L2-band signals to the LAI are revealed, 

revealing greater sensitivity and a relatively good Pearson correlation coefficient (R) for 

lower elevation angles and vegetation biomass. In addition, the sensitivity and R of L2-band 

signals to the LAI are lower than those of L1-band signals. This study is significantly 

valuable for improving the quantitative representation of error estimates for GNSS-R SM 

retrieval. The established model can be employed in GNSS land applications and aid in 

solving signal surface-scattering problems in which accurate signal estimates are important.  

Keywords: Global Navigation Satellite System-Reflectometry (GNSS-R), Soil Moisture 

Retrieval, Signal-to-Noise Ratio (SNR), Vegetation, Leaf Area Index (LAI). 

1. Introduction 

Global Navigation Satellite System-Reflectometry (GNSS-R) is an Earth observation technology 

that uses GNSS signals reflected from the Earth’s surface to remotely sense the ocean, land, 

cryosphere, and other surface parameters (Jin et al. 2011). Using the GNSS constellation as a 

multisource L-band microwave transmission source, the electromagnetic GNSS waves reflected 



 

 

from target objects can be obtained by using ground, space-based, and even space-borne GNSS 

receivers (Nasser et al. 2013). The GNSS signals are transmitted by many different satellite 

systems, including GPS, the Beidou Navigation Satellite System (BDS), Galileo, and GLONASS 

(Lu et al. 2020; Ban et al. 2017; Li et al. 2019). Among them, GPS was the first system to be 

developed (originating in the 1960s) and has been widely used to acquire GNSS-R measurements 

(Lowe et al. 2002). GPS satellites transmit signals at two frequencies, namely, in the L1 (1575.42 

MHz) and L2 (1227.60 MHz) bands. Each signal is composed of a carrier, ranging code, and 

navigation message (Lowe et al. 2002). 

      Having become an extensively popular research topic in recent years, GNSS-R technology has 

thus far been successfully applied to measure sea wind (Foti et al. 2015; Clarizia et al.2014; Ruf 

et al. 2018), sea ice thickness (Yan et al. 2019; Rodriguez-Alvarez et al. 2019; Yan et al. 2020; Li 

et al. 2017), snow depth (Jin et al. 2017), and soil moisture (SM) (Chew et al. 2018; Clarizia et al. 

2019; Eroglu et al. 2019; Senyurek et al. 2020; Jia et al. 2021; Yan et al. 2020; Chew et al. 2020; 

Calabia et al. 2020). The state of the target is retrieved by analyzing the changes in parameters 

such as the signal intensity, frequency, phase, and polarization direction between the reflected 

signal and the direct signal. The ideal case is there are no obstacles between the satellite transmitter 

and receivers, but the vegetation could be the most common factor affecting the surface parameters 

retrieval accuracy. 

Vegetation constitutes a major terrestrial ecosystem, and the vegetation canopy structure 

(number and distribution of leaves) is fundamental to the global exchanges of both energy and 

carbon and to the water cycle. The leaf area index (LAI), generally defined as one-half of the total 

green leaf area per unit horizontal ground surface area, is one of the most effective indicators for 



 

 

quantitatively describing the vegetation canopy structure (Fang et al. 2014; GCOS 2011; Watson 

1947; Larson et al. 2010). Accordingly, this indicator forms the basis for studying many key 

ecological processes such as leaf photosynthesis, respiration, canopy interception of precipitation, 

and water transpiration (Aria et al. 2007). In particular, in process-based ecosystem models and 

quantitative remote sensing analyses, the ability to directly describe the seasonal dynamics of the 

LAI determines the reliability and accuracy of vegetation–air interface materials and energy 

exchanges (Asner et al. 2003; Waring and Running 2007). Therefore, the LAI is one of the main 

parameters connecting ecological processes on different scales, and rapid and accurate LAI 

acquisitions can provide basic data for research on vegetation restoration, global climate change, 

and forest management (Gholz 1982; Law et al. 2001). 

To date, two methods have been widely used to analyze the vegetation canopy: foliage 

harvesting and scanning (Chen et al. 2018). Between these two techniques, foliage harvesting has 

been the method of choice for analyzing the vegetation canopy, and the data obtained by this 

method are considered to be the most accurate. In contrast, scanning is more efficient. Although 

these two methods were widely used in the early years, they still suffer from some drawbacks in 

measuring the vegetation canopy; for example, foliage harvesting damages plants, and it is 

cumbersome to scan each leaf. Consequently, satellite remote sensing technology has also been 

employed to investigate the vegetation canopy and measure the LAI. However, this approach also 

encounters some difficulties when distinguishing small patches of vegetation between satellite 

images, which results in measurement errors.  

Due to the limitations of these methods, an instrument called the Plant Canopy Analyzer 

(PCA) was developed in the United States to measure the projected light intensity at five different 



 

 

zenith angles above and below the tree canopy using a fisheye optical sensor. Then, a radiative 

transfer model of the vegetation canopy is used to calculate the canopy structural parameters, such 

as the effective LAI. Although it is widely believed that the authentic LAI values obtained from 

direct measurements are more accurate than optically determined LAI values, many experiments 

have validated the performance and therefore the feasibility of this instrument in measuring the 

parameters of plant canopies. For instance, the results obtained with the LAI-2000/2200 PCA 

closely approximated those derived from the foliage harvesting method (Asner et al. 2003; Behera 

et al. 2015). Accordingly, PCA sensors have been widely used to analyze plant canopies in 

agriculture and forestry. 

To date, most experiments for GNSS-R land applications, such as SM retrieval, have been 

performed considering an ideal situation of bareness and smoothness. This assumption means no 

vegetation on the ground except considering the roughness effects. Otherwise, the computation of 

SM will be very complex. Moreover, the effects of vegetation are difficult to estimate since the 

plants, including branches and leaves, attenuate the GPS signal. In previous studies, some 

theoretical simulations were conducted to assess the relevant features and the potential for 

eliminating the vegetation effects in the GNSS-R working L band (Wu and Jin 2014; Ferrazzoli et 

al. 2000; Ferrazzoli et al. 2011). A Bi-Mimics bistatic scattering model (Wu and Jin 2014) was 

proposed to simulate the scattering characteristics of crops in the L band. The scattering response 

properties to vegetation canopies were studied, and it was shown that the received power was 

sensitive to forest biomass without the typical saturation of radar backscattering measurements. 

Because of the complexity of vegetation scattering models, no model can simulate various 

vegetation types well. Even the same model can hardly simulate microwave scattering at different 



 

 

growth stages well (Camps et al. 2018; Camps et al. 2016; Carreno-Luengo et al. 2019; Rodríguez-

Fernández et al. 2019). Estimating and correcting the vegetation effects for received signals is 

difficult. Little work has been conducted to estimate the degree of the attenuated signals caused by 

different vegetation canopies in GNSS-R experiments. Hence, this study proposes to explore the 

influence of multiple vegetation covers on received GPS signals, parameterized as a function of 

the LAI, and it builds signal attenuation models over different plant types.  

      The main works of this paper are summarized as follows. 

  (1)An extensive ground-based experiment was specially designed for investigating  

vegetation characteristics and GPS L-band signals. 

             (2)A comprehensive qualitative analysis was performed considering both the L1 and L2  

bands signals and different vegetation types. 

(3)The provided qualitative relationship provides a theoretical reference for investigating  

other GNSS-R or scattering-related scenarios. 

The article is organized as follows. Section 2 describes the theory and methods. Section 3 

presents the experimental setup and data collection. The results and analysis are shown in Section 

4. Finally, Section 5 summarizes the main conclusions.  

2. Theory and Methods  

2.1. GNSS-R SM Retrieval Configuration 

Studies have shown that L-band signals have strong penetration and low attenuation and 

are very sensitive to SM information; hence, the applications of GNSS-R on the land surface are 

focused mostly on SM retrievals (Njoku and Entekhabi 1996). Different SM retrieval schemes 

were proposed with different polarization configurations are shown in Figure 1 (Egido et al. 2012; 



 

 

Masters et al. 2004; Zavorotny et al. 2016; Jia et al. 2016; Larson et al. 2010; Alonso-Arroyo et al. 

2014; Alonso-Arroyo et al. 2014; Camps et al. 2020; Mehrez et al. 2018; Mehrez et al. 2017; 

Alonso-Arroyo et al. 2016; Rodriguez-Alvarez et al. 2012). The reflected signal was collected 

from a different orientation of the surface to retrieve the SM information.  

                             

Figure 1. Receiving strategies (right-hand circular polarized (RHCP), left-hand circular polarized 

(LHCP), and vertically and horizontally polarized (VP and HP, respectively)) for GNSS-R SM 

retrievals.  

It is worth noting that all receiving configurations feature signals reflected from the surface, 

and a radar signal emitted at a single frequency is strongly affected by the surface type (bare or 

vegetated land). Hence, the receiving reflectivity 𝛤𝑙𝑟(𝜃)  can be computed by correcting the 

reflection coefficient 𝑅𝑙𝑟(𝜃) for the effects of vegetation and surface roughness. 
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The received reflectivity 𝛤𝑙𝑟(𝜃) can be modeled by the following equation (Jia et al. 2016): 

𝑆𝑁𝑅𝑝𝑒𝑎𝑘
𝑟𝑒𝑓𝑙𝑒𝑐𝑡

𝑆𝑁𝑅𝑝𝑒𝑎𝑘
𝑑𝑖𝑟𝑒𝑐𝑡

=
𝑟3

2

(𝑟1 + 𝑟2)2
|𝛤𝑙𝑟|2 𝐶 (1) 

where C is a calibration parameter summarizing the uncertainties in receiver gain G and noise 

power PN. 𝑆𝑁𝑅𝑝𝑒𝑎𝑘 is the processed peak signal-to-noise ratio (SNR) between the direct and 

reflected signals and is strongly impacted by the reflecting surface, e.g., the vegetation canopy, 

which is investigated in this study.  

2.2. Leaf Area Index (LAI) Measurement  

The optical determination of indirect LAI measurements is referred to as the effective LAI 

(𝐿𝐴𝐼𝑒𝑓𝑓) (Vincent et al. 2017) because branches and stems intercept light (Behera et al. 2015) and 

limit the signal transmitted to optical devices (Chen and Black 1992; Welles and Cohen 1996). 

Therefore, the LAI obtained with the PCA instrument in this study is, in fact, 𝐿𝐴𝐼𝑒𝑓𝑓, which can 

be calculated from the canopy porosity (Vincent et al. 2017; Chen and Black 1992): 

𝐿𝐴𝐼𝑒𝑓𝑓 = 2 ∫ 𝐼𝑛[1/𝑝(𝜃)]𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑑𝜃

𝜋
2

0

(2) 

where 𝑝(𝜃) represents the porosity when the zenith angle 𝜃 is zero. 

PCA instruments such as the LAI-2200/2200C have become quite popular and thus have 

been widely adopted for acquiring LAI measurements (Vincent et al. 2017). A fisheye optical 

sensor (vertical field of view: 148°; horizontal field of view: 360°) is used to measure the projected 

light intensity at five different zenith angles (7°, 23°, 38°, 53°, and 68°) above and below the plant 

canopy, as shown in Figure 2. Then, a software of radiative transfer model for the vegetation 



 

 

canopy is applied to calculate the LAI or other vegetation indices (Zhang et al. 2005). Hence, a 

normal LAI acquisition should have at least ten sampled values, namely, five values above and 

five values below the canopy. Usually, the five sampled values above the canopy are regarded as 

the "A" values, and the five sampled values below the canopy are regarded as the "B" values. The 

LAI can be calculated according to the sampled values of the upper and lower canopy 

corresponding to the five different zenith angles. 

 

Figure 2. Schematic diagram of measuring five zenith angles. 

2.3. Designation of Measuring Signal Attenuation and Plant Canopy Parameters 

As mentioned above, due to the effects of vegetation on the surface, the applicability of the 

theoretical vegetation model is considerably limited. In addition, the intrinsic relationships 

between the vegetation canopy and signal attenuation are not well understood. Hence, we proposed 

exploring the relationship between the attenuated signals and LAIs through field experiments. 

With the designed experiments, the sensitivity of the GPS signals to the vegetation canopy can be 

revealed. Furthermore, the present fitting model can quantify the effects of different plant types on 

GPS signals. Figure 3 shows the designed scheme for transmission links between the transmitter 

and receiver based on the GNSS system. 
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Figure 3. Schematic diagram of the designed GNSS measurement setup. 

The GNSS-R receiver was designed to receive the signals from both above and below the 

plant canopy. Thus, the signal attenuation can be regarded as the difference between the SNRs of 

these two signals. The following equations represent the transmission paths of the two received 

signals (above and below the canopy) under the influence of the vegetation canopy: 

𝑝𝐺𝑁𝑆𝑆
𝑎𝑏𝑜𝑣𝑒 = 𝑝𝑅ℎ

𝑔𝑝𝑠 (3) 

𝑝𝐺𝑁𝑆𝑆
𝑏𝑒𝑙𝑜𝑤 = 𝑝𝑅ℎ

𝑔𝑝𝑠
− 𝑝𝑣𝑒𝑔

𝑙𝑜𝑠𝑠(𝑙𝑎𝑖) (4) 

𝑝𝐺𝑁𝑆𝑆
𝑎𝑏𝑜𝑣𝑒 − 𝑝𝐺𝑁𝑆𝑆

𝑏𝑒𝑙𝑜𝑤 = 𝑝𝑣𝑒𝑔
𝑙𝑜𝑠𝑠(𝑙𝑎𝑖) (5) 

where 𝑝𝐺𝑁𝑆𝑆
𝑎𝑏𝑜𝑣𝑒  stands for the received signal power without the effect of vegetation and 𝑝𝐺𝑁𝑆𝑆

𝑏𝑒𝑙𝑜𝑤 

represents the signal power after penetrating through the vegetation canopy. The subscript 𝑅ℎ 

symbolizes the right-hand polarization transmitted by GPS satellites. In this way, the relationship 

between signal attenuation and the vegetation LAI can be established, as shown in (5). Figure 4 

shows a flowchart of the process designed for the proposed measurement and modeling of the LAI 

and signal attenuation. Measurements were carried out to obtain the GPS signals and LAI (above 



 

 

and below the canopy) over different plants. Then, the sampled values were used to obtain different 

fitting models revealing the sensitivity of the LAI to signal attenuation in the L1 and L2 bands. 

The details regarding the equipment setup and data collection procedure are presented in the 

following section. 

Measurements Modelling 

Below the 

canopy

Above the 

canopy

Calibration 

for LAI 2200

L1 L2

G05G04G03G02
G05G04G03G02

GNSS 

receiver

LAI 2200

Cherry tree
Osmanthus

treecamphor 

treeApple

tree

Cherry tree
Osmanthus

treecamphor 

tree
Apple

tree

Sampling 

values

Above 

SNR

Below 

SNR

Sampling 

values

Fitting models

 

Figure 4. Flowchart for measuring and modeling GPS signal attenuation and the LAI. 

3. Measurement Setup and Data Collection 

3.1. GNSS Receiver 

A dual antenna positioning GNSS receiver M600 developed by ComNav Technology Ltd. was 

employed in this study (Chen and Black 1992). The receiver is based on ComNav's high-precision 

multimode multiband proprietary receiver, can track 14 satellites for each satellite system with 

multiple frequencies, and has a carrier phase positioning accuracy of 0.5 mm. It features a flexible 

design and built-in wireless radio module for flow operations. The GNSS receiver provided two 

ports for receiving signals simultaneously to avoid synchronization issues. Two high-gain RHCP 

antennas were used to receive satellite-transmitted signals above and below the canopy. The 



 

 

sampling data was transferred to a PC for data storage via two output ports.  

         An important parameter with respect to the GPS antenna is the half-power beam width 

(HPBW), which is the angular separation in which the magnitude of the radiation pattern decreases 

by 50% (or -3 dB) from the peak of the main beam. The measured power in this study is the power 

received by the antenna after being transmitted through the vegetation layer of the trees. A value 

lower than a certain value cannot be collected by the antenna, which is outside the antenna’s 

footprint. Hence, the HPBW requirement was created to define the antenna’s footprint and to 

ensure that the power can be observed contemporaneously. Thus, the received power should be in 

the range of the antenna’s footprint, which is strictly related to the HPBW. 

 
                                                                                                     (a) 

 
                                                                                                     (b) 

Figure 5. The measured radiation pattern for L1(a) and L2 (b) bands with two orthogonal planes. 



 

 

Figure 5 depicts the radiation patterns of the employed antenna measured in an anechoic 

chamber. The HPBW ranges from 70° to 106°. HPBW = 70° means that the requirement of the 

minimum elevation angle of the satellite is 55°. In this study, with different sizes of tree canopies, 

we adjust the antenna height to ensure that the received signal satisfies the geometrical 

requirement. The received signals can penetrate through the tree canopy and fall into the antenna’s 

footprint, which is defined by the HPBW. 

3.2. LAI-2200C PCA 

LAI-2000 and LAI-2200/2200C PCAs (Welles and Cohen 1996) have been widely used for 

indirect LAI measurements. With the LAI-2000 or LAI-2200/2200C PCA, the readings of light 

information from five different zenith angles can be obtained at a given time, with the optical 

sensor positioned either above or below the canopy (Welles and Cohen 1996). The adopted 

advanced LAI-2200C PCA (Figure 6) is based on the mature LAI-2000/2200 technology platform 

with a built-in GPS module integrated with GPS information. Moreover, it provided the scattering 

calibration procedure, which can make the results more accurate. Hence, the LAI-2200C plant 

canopy analyzer is suitable for any canopy measurement under any sky conditions and has been 

used widely in LAI estimation retrieval and validation. 

LAI 2200c

 

Figure 6. LAI-2200C PCA for LAI measurements. 



 

 

3.3. Scattering Correction and Data Collection  

The campaign was carried out at the campus of Nanjing University of Posts and 

Telecommunications from May 13-15, 2021, and the campus is located in the coastal part of China 

(32°7'16 N, 118°56'7 E). This site is a large area covered by many kinds of plants. Eight types of 

trees, including camphor, osmanthus, purple-leaf plum, oak, cherry, begonia, magnolia, and apple 

trees, were selected for LAI measurements. These trees have different profiles, which can be 

arranged in order of leaf size from small to large, which corresponds to the photo from left to right, 

as shown in Figure 7. One reason for choosing these types of trees is that the height of the trees is 

moderate, as is the luxuriant degree of the canopy. Another reason is that the canopy is considered 

normal and is easy to identify. Hence, it is convenient for the experiment and beneficial to the 

accuracy of the experimental results. 

                  

 

Figure 7. Observed tree examples for LAIs and receiver experiments. 
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As mentioned above, the ground 𝐿𝐴𝐼𝑒𝑓𝑓 was measured with an LAI-2200C PCA (Li-Cor, 

Lincoln, Nebraska, USA), which is an indirect non-contact instrument used to measure the gap 

fraction of the diffuse radiation transmission observed through the canopy (Chen and Cihlar 1996; 

ComNav Technology Ltd. 2022), as shown in Figure 8. The measurements were performed near 

sunrise or sunset to obtain nearly uniform sky illumination. When the weather condition is clean 

and transparent with a blue sky or there are thin clouds and sun, sunlight will increase the scattering 

error, so scattering correction is required. Here, all the plant canopy measurements were obtained 

with scatter correction to remove the effect of weather on different types of trees.  

Three types of data are required for scattering correction: blue light band characteristics 

(generally used the Default value), K value, and GPS data. Assume that the measurement sequence 

is “ABBB” when measuring without scattering correction, and “4A” is required to replace “A” 

when measuring with scattering correction, so the measuring sequence is “AAAABBBB”. The 

first “A” value: white scattering cap, direct sunlight; The second “A” value: white scattering cap, 

shading (self-projection or hand); The third “A” value: open the field of vision as far as possible, 

with no covering cap (or 270 ° covering cap), and shade. The fourth “A” value: normal cover cap, 

and normal measurement direction (that is, the measurement method is the same as that of the “B” 

value). After the measurement is completed, import the data to the corresponding software to 

compute the scattering correction parameter K.  

For each LAI measurement unit, four above-canopy “A” and several below-canopy “B” 

LAI-2200C operations were performed for scattering calibrations and to obtain one local LAI 

value. The number of measured B values needs to be determined by canopy height as shown in the 

following equation (Vincent et al. 2017; Chen and Black 1992): 



 

 

𝐴 =  𝑓𝜋𝐻2 (6) 

where 𝐴 represents the sampling area, 𝑓 is the viewing angle range (0.75, 0.5, 0.25, and 0.125 

represent 270 °, 180 °, 90 ° and 45 ° covering caps respectively), and 𝐻 is the canopy height. It is 

determined by the change in blade density at the measuring point. The following is the specific 

method to determine the number of B values in this experiment.  

(1) Six B values are used to determine an 𝐿𝐴𝐼𝑒𝑓𝑓 to ensure that it contains the thinnest and 

densest part of the crown; 

(2) Calculate  𝑆𝐸𝐿/𝐿𝐴𝐼
𝑒𝑓𝑓

 (𝑆𝐸𝐿  is the standard error of 𝐿𝐴𝐼𝑒𝑓𝑓 ); 

(3) Use Table 1 to determine the number of B values. 

Table 1 The determination of the number of B values 

𝑆𝐸𝐿/𝐿𝐴𝐼𝑒𝑓𝑓 #B Readings 𝑆𝐸𝐿/𝐿𝐴𝐼𝑒𝑓𝑓 #B Readings 

0.01 2 0.06 11 

0.02 3 0.07 13 

0.03 5 0.08 16 

0.04 6 0.09 19 

0.05 8 0.1 23 

 

The GNSS receiver is set up simultaneously to receive the GPS signals at the same survey 

point. The receiver was designed to connect two antennas to receive signals from above the canopy 

and below the canopy. The above-canopy signal is received by one RHCP antenna placed in the 

open area one meter away from the tree trunk at a low position to avoid different heights being 

received and to keep the equipment stable and the measurements accurate. Another RHCP antenna 

was located just below the tree, as shown in Figure 8.  



 

 

                                       

Figure 8. LAI measurements were obtained with an LAI-2200C PCA (left) and GNSS signal 

receiver (right). 

Additionally, three different canopy sizes are considered for each tree type. For each 

canopy size, sampling operations were repeated three times (three LAI values) and averaged for 

obtaining one more accurate LAI value representing one tree canopy size.  Hence, from eight field 

campaigns, 72 sampling units of measurement data were collected. The distribution of the 

measurements is shown on a China street colour maps to illustrate the experimental area and 

locations (Figure 9). 

 

Figure 9. LAI and GNSS signal receiver measurement locations on China street color maps. 



 

 

4. Results and Analyses 

4.1. GPS L1 and L2-Band Signal Tracking 

The GNSS receiver was employed to track GPS signals above and below the canopy. The positions 

of the tracking satellites are shown in Figure 10, and the received SNRs from these two positions 

are plotted in Figure 11. Because of the large number of measurements during the campaign, the 

results of only one sampling unit are illustrated as an example for each tree.  

In Figure 10, the satellite positions during data collection are plotted with sky plots. Sky 

plots show the positions of satellites in terms of elevation and azimuth. The elevation is presented 

by the concentric rings nested within one another. The outside ring is 0°, and the middle of the plot 

is at a 90° elevation. The azimuth is the direction angle measured clockwise in relation to north 

(0°). Each series of points represents a certain PRN. The signal power and the attenuation of the 

GNSS are dependent on the vegetation penetration path as well as the antenna pattern (HPBW) 

and elevation angles. Thus, the results are presented considering satellites with elevation angles of 

55°-90° to ensure that the received power penetrates through the plant canopy and falls within the 

antenna’s footprint. 
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(e)                                 (f) 

 

(g)                                     (h) 

Figure 10. Eight Sky-plot examples for GPS satellite L1 and L2 bands during the experiments: 

(a) osmanthus tree, (b) camphor tree, (c) purple-leaf plum tree, (d) oak tree, (e) begonia tree, (f) 

magnolia tree, (g) apple tree, and (h) cherry tree. 

The signals both below and above the canopy were acquired at the same time by a dual 

polarization receiver. Thus, the data discrepancy and deviations can be mostly removed due to the 



 

 

difference in time, samples, or locations, and the absolute attenuation caused by the plant canopy 

can be extracted. For illustration purposes, examples of received above- and below-canopy SNR 

signal levels are presented in Figure 11, corresponding to the eight observed tree types. In Figure 

11, the L1 band SNR below the canopy (blue), the L1 band SNR above the canopy (red), the L2 

band SNR below the canopy (green), and the L2 band SNR above the canopy (yellow) from the 

GNSS receiver are presented. The SNR received below the canopy is lower than the signals 

received above the canopy in both the L1 and L2 bands, which preliminarily shows that the plant 

canopy strongly affects the signal strength and hence could be one of the main factors influencing 

GNSS-R applications. 
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Figure 11. Eight SNR examples for the GPS L1 and L2 bands: (a) osmanthus tree, (b) camphor 

tree, (c) purple-leaf plum tree, (d) oak tree, (e) begonia tree, (f) magnolia tree, (g) apple tree, and 

(h) cherry tree. 

4.2. Above- and Below-Canopy GPS L1- and L2-Band Signals 

After preprocessing and collecting the experimental data described above, the scatter plots of all 

received SNR levels are plotted in Figure 12 for each tree type to ensure robust fitting (Li-Cor 

1992; Chen et al. 1997; Welles and Norman 1991; Li et al. 2017; Holland and Welsch 1997). The 

results of the sampling units, including the below- and above-canopy signal comparison diagram 

in the L1 and L2 bands, are considered. As shown in Figure 11, the SNR below the canopy is lower 

than the SNR received above the canopy, which is observed from both the L1 and L2 bands. 

Further statistical results are presented with a boxplot (Figure 13). 
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Figure 12. Received GPS signal levels from above- and below-canopy at the L1 and L2 bands 

for (a) osmanthus tree, (b) camphor tree, (c) purple-leaf plum tree, (d) oak tree, (e) begonia tree, 

(f) magnolia tree, (g) apple tree, and (h) cherry tree during the experiments. 

In Figure 13, the statistical information of received signals is summarized and visualized 

with a boxplot, which creates a box plot for the received GPS SNR levels. In each box, the central 

mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th 



 

 

percentiles, respectively. The whiskers extend to the most extreme data points that are not 

considered outliers, and the outliers are plotted individually using the '+' symbol. 

  

Figure 13. The statistical boxplot results of received GPS signals from above- and below-canopy 

at the L1 and L2 bands for the osmanthus tree, camphor tree, purple-leaf plum tree, oak tree, 

begonia tree, magnolia tree, apple tree, and cherry tree during the experiments. 

The below-canopy signal levels are all lower than the signals received above the canopy, 

as indicated previously. The median value obtained below the canopy is also lower than that above 

the canopy. Moreover, the boxes of the L1 bands (below- and above-canopy) in Figure 13 are all 

shorter than the boxes of L2 bands observed from the eight tree types. This phenomenon indicated 

larger deviation was found with the L2 band compared to the L1 band, which may be due to the 

leaf size, or the incident angle may have an impact on the frequency, resulting in bigger variations. 

This phenomenon can be also seen in the following statistical table. Table 2 summarized and 

computed all data in the form of statistical metrics shown (Figure 13). 

Table 2 The comparison of statistical SNR levels between the L1 and L2 bands. 

SNR level Below-canopy Above-canopy 



 

 

Mean (dB) SD (dB) Mean (dB) SD (dB) 

Tree name L1 L2 L1 L2 L1 L2 L1 L2 

Osmanthus tree 46.56 43.75 1.77 6.05 51.74 50.63 0.69 3.95 

cherry plum tree 45.67 46.98 1.36 7.19 52.16 51.30 1.69 4.42 

Camphor tree 46.00 46.89 2.98 6.31 52.67 51.48 1.63 3.60 

Oak tree 47.16 47.05 1.79 4.83 52.17 51.39 0.41 2.19 

Begonia tree 45.43 45.93 2.85 7.16 52.38 51.61 1.87 5.74 

Magnolia tree 47.28 46.78 1.94 6.54 52.58 51.46 0.88 5.85 

Apple tree 46.45 48.08 2.61 5.11 51.78 51.33 1.82 3.83 

Cherry tree 46.16 46.63 2.68 5.24 52.60 51.62 0.81 4.27 

Comparisons between the mean values and standard deviations (SDs) of the SNR in the L1 

and L2 bands are summarized in Table 2. The mean value of the SNR below the canopy is lower 

than the values obtained above the canopy. Moreover, the attenuated SNR signal level varies with 

different types of trees. For both L1 and L2 band signals, the SD of the signal below the canopy is 

generally higher than the values above the canopy, which indicates that the GPS signals are quite 

sensitive to the canopy, which may largely be due to the results of the scattering phenomenon on 

the leaves. 

Comparing the SNRs in the L1 and L2 bands, the SD obtained in the L2 band is higher 

than that in the L1 band, which agrees with the previous conclusion that a larger variation was 

observed in the L2 band. This phenomenon may be largely due to the scenario mentioned before. 

The leaf size, shape or the incident angle may have an impact on the frequency, resulting in bigger 

variations, and could be another subject of future work. 

4.3. Model Fit as a Function of LAI to Signal Attenuations 

The behavior and statistical results of the received above- and below-canopy signals are shown 



 

 

above. A mathematical relationship between the collected LAIs and their corresponding attenuated 

SNR is shown with fitting models to reveal the effects of different LAIs on signal attenuations for 

both the L1 and L2 bands. Among all tracking satellites (Figure 10) during the experiment, the 

results of the most common satellites with high elevation angles (above 55°) during all 

measurements are selected and shown in the L1 and L2 bands. Figure 14 shows the relationship of 

different LAIs versus signal attenuations with four satellites G17, G19, G02, and G06 (in 

descending order of elevation angle) in both the L1 and L2 bands. The text box in each plot 

indicates the robust linear fit of the data (LAIs versus signal attenuations) and the Pearson 

correlation coefficient (R). 
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Figure 14. Scatter plot and robust fit of LAIs versus signal attenuation in the L1 and L2 bands 

for (a) GPS G17, (b) GPS G19, (c) GPS G02, and (d) GPS G06. 

Figure 14 shows some sensitivity (Sv) of signal attenuations versus LAIs. LAI increases 

with increasing signal attenuation due to the influence of signal scattering and attenuation 

(increasing optical thickness). The lowest sensitivity occurs in the L2 band with GPS satellite G17, 

while the highest sensitivity of ∼1.83 dB is observed in the case of the L1 band with GPS satellite 

G06. Moreover, the correlation coefficient R is considered acceptable. Notably, the sensitivity and 

R increase as the elevation angle decreases, which agrees with findings previously reported 

(Mehrez et al. 2018).  This phenomenon can be seen clearly in Table 3 by comparing the results 



 

 

for low-elevation satellites G02 and G06 to those for G17 or G19. However, the L1 band SV for 

G19 is slightly lower than that for G17, potentially due to some interference associated with the 

position of this satellite with respect to the receiving antenna. 

Moreover, we noticed that the sensitivity to LAIs in the L1 band is higher than that in the 

L2 band, and the R values in the L2 band are lower than those in the L1 band for each GPS satellite. 

This phenomenon indicates that the GPS L1 signal is more sensitive and more correlated with LAI 

than L2, which could be explained by the fact that the L2 frequency is different from that of the 

L1 band, as well as the ranging code. The L2 band uses the frequency 1227.60 MHz, which has a 

longer wavelength than the L1, allowing the L2 signal to better travel through obstacles, such as 

cloud cover, trees, and buildings; hence, it is less sensitive and as related to LAI as the L1 band. 

Table 3 The comparison of statistical parameters of the relationships in the L1 and L2 bands, Sv 

= the sensitivity of the GPS SNR attenuation to LAI. 

 

 

 

 

 

4.4. Fitting the Model as a Function of the LAI to Signal Attenuations over Different 

Tree Types 

To further analyze this effect, the whole dataset was grouped based on the eight tree types. These 

trees have different profiles, which are shown in order of leaf size from small to large, 

corresponding to the photo from left to right in Figure 7. In this case, Figure 15 shows the robust 

fitting results over different types of trees. The corresponding statistical parameters for each tree 

are also presented (Table 4). Signal attenuations increase with increasing LAI. The sensitivity of 

 L1 L2 

 Sv ((dB/(m2/m2))) abs(R) Sv ((dB/(m2/m2))) abs(R) 

G17 0.61 0.57 0.35 0.37 

G19 0.58 0.53 0.47 0.48 

G02 0.70 0.68 0.59 0.57 

G06 1.83 0.73 0.65 0.61 



 

 

L1-band signal attenuations is 0.52 dB/(m2/m2), and the R of 0.61 is higher than that of the L2-

band signal for all types of trees, which was caused by the high penetration ability of L2 observed 

in the previous subsection. 

 

(a) 

 

(b) 

Figure 15. Scatter plot and robust fit of LAI versus signal attenuation in the L1 (a) and L2 (b) 

bands for different trees. 

Table 4 shows the statistical parameters of the relationships between signal attenuations 

and LAIs corresponding to each tree type. The highest correlation parameter R = 0.85 and a very 

high sensitivity to LAIs ∼ 1.30 dB/(m2/m2) in the L1 band demonstrate the large sensitivity of 



 

 

signal attenuations to the LAIs of oak trees, which have the largest leaf size. Moreover, there is 

some sensitivity to the LAIs from the lowest 0.07 dB/(m2/m2) of camphor trees to the highest 1.30 

dB/(m2/m2) of oak trees in the L1 band. This large difference can be attributed to the structure of 

the canopy and the leaf size, which could be observed from the tree photographs, as mentioned 

previously. The leaf sizes gradually decreased, and the branches became slenderer from the oak 

tree to the camphor tree. The signals more easily travel through the leaf surface or result in more 

diffuse scattering when the leaf size is smaller. The order of the photo (corresponding to the leaf 

size), which from small to large agree with the rules of sensitivity indicated by Table 4, suggests 

the structure of the canopy and leaf size also influences the signal acceptance, making these field 

experiments more significant. It is noted that the camphor tree has a unique feature that sets it apart 

from other well-known trees, which is its abundance of volatile essential oils. Camphor tree leaves 

are relatively smooth, shiny, and waxy, which may be the reason why their SV is not as significant 

compared to other trees. 

Table 4 Comparison of statistical fitting behaviors in the L1 and L2 bands. 

Tree type/SNR L1 L2 

Sv ((dB/ (m2/m2))) abs(R) Sv ((dB/ (m2/m2))) abs(R) 

Camphor tree 0.07 0.09 0.33 0.25 

Purple-leaf plum tree 0.45 0.38 0.33 0.29 

Begonia tree 0.59 0.51 0.34 0.29 

Osmanthus tree 0.70 0.67 0.48 0.29 

Magnolia 0.96 0.78 0.35 0.43 

Cherry tree 1.07 0.78 0.74 0.63 

Apple tree 1.16 0.74 0.78 0.64 

Oak tree 1.30 0.85 1.06 0.52 



 

 

5. Conclusions 

In this study, a qualitative analysis of LAI and received GPS L-band signals is performed to 

investigate and obtain the impact of vegetation on GNSS signals based on the GNSS-R system. A 

GNSS receiver was employed to receive the above- and below-canopy signals. A powerful 

instrument, LAI-2200C, was adopted to evaluate the LAI for different types of trees. The scatter 

plots in the statistical results are also obtained. Then, the sensitivity of the received scattered 

power, including the received above-canopy SNR level, below-canopy SNR level, and the signal 

attenuations to LAIs, are analyzed in both the L1 and L2 bands for different types of trees and for 

a wide range of LAI values. 

The below-canopy SNR is lower than the above-canopy SNR for each sampling unit. The 

received mean and median values of the below-canopy SNR are lower than those of the above-

canopy SNR, and the SD value of the below-canopy SNR is higher than that of the above-canopy 

SNR. These expected results suggest that LAI plays a dominant role in the GNSS-R received, 

which may largely be due to the results of the scattering phenomenon on the leaves. Moreover, 

LAI and signal attenuation fitting models were built, indicating that the signal attenuation increases 

with increasing LAI. The mean SNR received in the L2 band is lower than that in the L1 band but 

with a larger standard deviation, which, in view of the rules observed for each satellite, indicates 

that the sensitivity values of the L1-band signal versus the LAI are higher than those of the L2-

band signal. Moreover, the correlation coefficient between the L2-band signal and LAI is lower 

when compared to the L1-band signal for the same satellite. This result can be attributed to 

different factors but notably to the lower frequencies of L2 than L1, allowing the signal to better 

travel through obstacles. 



 

 

The sensitivity and R are stronger when the elevation angle is smaller (Mehrez et al.  2018). 

The highest sensitivity to the LAI occurs at ∼ 1.30 dB/ (m2/m2), and there is a high Pearson 

correlation (R = 0.85), indicating that the vegetation layer could largely attenuate the GPS signal. 

The sensitivity and correlation with the LAI increase with increasing leaf size (Camps et al. 2016). 

Despite the plant canopy attenuating the GNSS signals and reflectivity values, vegetation effects 

can be accounted for in GNSS-R SM retrievals using vegetation indices, such as the LAI, to 

compensate after the relationships between the LAI and attenuation are established. 

This study provides certain insight for the further refinement of GNSS-R SM retrieval 

signal adoptions.  It is important for GNSS-R SM retrieval to eliminate bias and improve accuracy, 

and the proposed approach could benefit other GNSS-R land applications or related surface-

reflected signal studies. In future studies, field data that have been screened based on quantitative 

analysis could be used to compensate for the limitations of GNSS-R SM retrieval measurements 

and improve accuracy without using other auxiliary vegetation data. 
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