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On two-boundary first exit time of Gauss-di↵usion processes:
closed-form results and biological modeling

Giuseppe D’Onofrio1 and Enrica Pirozzi2

Abstract. The Gauss-Di↵usion (GD) processes and their First Exit Time (FET)

through a couple of absorbing boundaries are here considered highlighting some specific

relations. The corresponding linear stochastic di↵erential equations are re-written spec-

ifying the coe�cient functions and giving them several theoretical meanings useful for

biological modeling. The FET problem is considered in order to present and discuss a

protein dynamics model based on Gauss-Di↵usion processes in presence of two bound-

aries. Known closed forms of FET density are specialized for suitable GD processes and

thresholds. In the context of biological modeling, relations between threshold values, mean

behavior of the protein dynamics and input forces are given for the existence of a closed

form result useful to describe the acto-myosin dynamics.

1. Introduction

The theory of Gauss-Markov and Di↵usion processes (see [5], [10] and references
therein) allows to construct and develop models in many di↵erent fields, as molecu-
lar biology, financial markets, population dynamics and in the context of neuronal
modeling ([3]-[9]). The stochastic Leaky Integrate-and-Fire (LIF) neuronal models
are essentially based on specific GD processes such as the Ornstein-Uhlenbeck pro-
cess and some others (see, for instance, [1], [12]-[14], [18]-[20]). Putting together
theoretical, numerical and simulative results about GD processes it is possible to
obtain improvements in the theoretical and applicative apparatus jointly to addi-
tional understandings of experimental evidences.

In order to show how it is possible to use GD processes and the corresponding
FET through suitable boundaries for modeling the acto-myosin dynamics (see, for
instance, [2]), we firstly recall their definitions and properties. Essentially, we collect
here some main results from some papers (as [4], [5], [10], [11], [16]) and we use
them to refine theoretical and applicative aspects of a biological model. We focus
the attention on the linear stochastic di↵erential equations (SDEs) used for the
biological modeling. Then, we specify the closed form results holding for two-
boundary FET densities of some specified GD processes particularly useful in the
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2E. Pirozzi, Università degli Studi di Napoli “Federico II”, Dipartimento di Matematica e
Applicazioni, Monte S. Angelo, 80126 Napoli, Italy; epirozzi@unina.it

Keywords. Gauss-Markov processes, stochastic di↵erential equations, acto-myosin dynamics.
AMS Subject Classification. 60G15, 60J60, 60J70.



112 Giuseppe D’Onofrio and Enrica Pirozzi

application models, as the Wiener process, the Ornstein-Uhlenbeck (OU) process
and the time-inhomogeneous OU process (here, also called generalized OU process).
In particular, we point out the key role played by the time-inhomogeneous OU
process for modeling phenomena subject to additional (external) time-dependent
forces. Finally, a specific biological model is discussed.

1.1. The Gauss-Di↵usion processes. We consider the real-valued Gauss–Mar-
kov process {X(t), t � 0} having mean m(t) := E[X(t)] 8t � 0, and covariance
c(s, t) := E{[X(s) � m(s)] [X(t) � m(t)]} = h1(s)h2(t), for 0  s  t with
r(t) = h1(t)/h2(t) a non-negative monotonically increasing function. The process
{X(t), t � 0} is a GD process if its mean and covariance are di↵erentiable functions
in such a way it is also a Di↵usion satisfying the Fokker-Planck equation and the
associated initial condition

(1)

@f(x, t|y, ⌧)
@t

= � @

@x
[A1(x, t) f(x, t|y, ⌧)] +

1

2

@2

@x2
[A2(t) f(x, t|y, ⌧)] ,

lim
⌧"t

f(x, t|y, ⌧) = �(x� y) ,

with the following infinitesimal moments

(2) A1(x, t) =
h0
2(t)

h2(t)
x+m0(t)�m(t)

h0
2(t)

h2(t)
, A2(t) = h2

2(t) r
0(t) for t � 0 .

Note that, setting

(3) a(t) =
h0
2(t)

h2(t)
, b(t) = m0(t)�m(t)

h0
2(t)

h2(t)
, �2(t) = h2

2(t) r
0(t) ,

the infinitesimal moments (2) for the GD process {X(t), t � 0}, alternatively, can
be rewritten as space-linear functions as follows:

(4) A1(x, t) = a(t)x+ b(t) , A2(t) = �2(t) for t � 0 .

Furthermore, the transition probability density function (pdf) f(x, t|y, ⌧) is a
normal-type density with the following conditional mean and variance:

(5)

E[X(t)|X(⌧) = y] = m(t) +
h2(t)

h2(⌧)
[y �m(⌧)]

(0  ⌧ < t)

V ar[X(t)|X(⌧)] = h2(t)


h1(t)�

h2(t)

h2(⌧)
h1(⌧)

�
.

The class of GD processes includes two well-known time-homogeneous processes:
the Wiener (W) and the Ornstein–Uhlenbeck (OU) processes. In particular, the
Wiener process with the following infinitesimal moments

(6) A1W (x, t) = bW , A2W (t) = �2
W , for t � 0 ,

has the mean m(t) and covariance factors h1(t), h2(t) as follows

(7)
mW (t) = bW t+ cW ,

h1W (t) = �W t , h2W = �W , (bW , cW 2 R, �W 2 R+) .

Its coe�cient functions a(t), b(t),�2(t), for t � 0, from (3) and (7), are such that

(8) a(t) ⌘ 0 , b(t) ⌘ bW and �2(t) ⌘ �2
W .
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The well-known di↵usion Ornstein-Uhlenbeck (OU) process {U(t), t � 0} has
the infinitesimal moments for t � 0

(9) A1U (x, t) = �aUx+ bU , A2U (t) = �2
U ,

and mean and covariance factors:

(10)

mU (t) =
bU
aU

+

✓
cU � bU

aU

◆
e�aU t ,

h1U (t) =
�U

2aU

�
eaU t � e�aU t

�
, h2U (t) = �Ue�aU t ,

with aU ,�U 2 R+, bU , cU 2 R. In this case the coe�cient functions a(t), b(t),�2(t),
for t � 0, from (3) and (10), are such that

(11) a(t) ⌘ �aU , b(t) ⌘ bU and �2(t) ⌘ �2
U .

The class of GD processes includes also the time-inhomogeneous process Ornstein-
Uhlenbeck {V (t), t � 0} having the infinitesimal moments for t � 0

(12) A1V (x, t) = �aV x+ bV (t) , A2V (t) = �2
V ,

and the following mean and covariance factors

(13)

mV (t) = [cV +BV (t)] e�aV t , with BV (t) =

Z t

0

bV (⌧)e
aV ⌧ d⌧ ,

h1V (t) =
�V

2aV
(eaV t � e�aV t) , h2V (t) = �V e�aV t ,

with aV ,�V 2 R+, cV 2 R, and bV (t) a time continuous function. Note that
h1V (t) = h1U (t) and h2V (t) = h2U (t) for aV = aU and �V = �U . Now, the
coe�cient functions a(t), b(t),�2(t), for t � 0, from (3) and (13), are such that

(14) a(t) ⌘ �aV , b(t) = bV (t) and �2(t) ⌘ �2
V .

We also refer to the V (t) process as the generalized OU process.
Note that when the Wiener, the OU and the time-inhomogeneous OU processes

are characterized as Gauss-Markov processes, by (7), (10) and (13), respectively, an
additional constant (cW for Wiener, cU for OU, cV for V) is required: it specifies
the starting point of the corresponding process.

Furthermore, we stress that identify the process X(t) only as a di↵usion process
means to take into account its di↵erential behavior, whereas consider it as a Gauss-
Di↵usion process means to take into account also its integral (mean) behavior.

2. The linear stochastic differential equations

Let W (t) be the standard Wiener process, i.e., with bW = cW = 0 and �W = 1,
also called the standard Brownian motion. Given the following SDE

(15) dX(t) = A1(X, t) dt+
p

A2(t) dW (t)

with initial condition X(0) = x0, it is well-known that it admits as solution a
di↵usion process with infinitesimal moments A1(x, t) and A2(t) (see for instance
[15]). It means that a GD process, using (4), solves the following linear SDE

(16) dX = [a(t)X(t) + b(t)] dt+ �(t) dW with X(0) = x0 = m(0) .
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In particular, a Wiener process solves the following SDE

(17) dX = bW dt+ �W dW with X(0) = cW ,

a time-homogeneous OU process solves the following SDE

(18) dX = [�aUX(t) + bU ] dt+ �U dW with X(0) = cU ,

and a time-inhomogeneous process V (t) solves the following SDE

(19) dX = [�aV X(t) + bV (t)] dt+ �V dW with X(0) = cV .

The SDEs (18) and (19) are used in the stochastic LIF and in the time-inho-
mogeneous LIF neuronal models, respectively, (see, for instance, [1], [4] ,[6]-[9],
[18]).

We remark that the GD process X(t) solution of (15) is alternatively identified
by its infinitesimal moments that have the following expression:

(20) A1(X, t) = m0(t) + h0
2(t)W (r(t)) , A2(t) = h0

1(t)h2(t)� h1(t)h
0
2(t) ,

with r(t) = h1(t)/h2(t). In particular, A1(X, t) ⌘ E[dX(t)].
In order to clarify how expressions (20) have been obtained, we recall that being

X(t) a Gauss-Markov process, with mean m(t) and covariance factors h1(t), h2(t),
the following Doob-representation formula, by a standard Wiener process W , is
valid (see, for instance, [10]):

(21) X(t) = m(t) + h2(t)W (r(t)) .

Note that applying the Itô di↵erentiation rule on both sides of (21), the SDE
(16) is obtained with the coe�cient functions a(t), b(t),�2(t), for t � 0, as specified
in (3). Indeed, from (21), by di↵erentiating according to Itô lemma

dX(t) = m0(t) dt+ h0
2(t)W (r(t)) dt+ h2(t)

p
r0(t) dW (t) =

(22) = [m0(t) + h0
2(t)W (r(t))] dt+ h2(t)

p
r0(t) dW (t) .

From (21), W (r(t)) = [X(t)�m(t)]/h2(t); recalling (2) and (15), one has

m0(t) + h0
2(t)W (r(t)) = m0(t) + h0

2(t)
[X(t)�m(t)]

h2(t)
= A1(X, t) ,

h2(t)
p
r0(t) =

p
A2(t) .

Finally, the (20) hold.
Conversely, given the SDE (16), the solution is the GD process having the mean

and covariance functions obtained as follows (see [5])

(23)

m(t) =

264x0 +

Z t

0

b(⌧) e
�
Z ⌧

0

a(s) ds
d⌧

375 e

Z t

0

a(s) ds
(t � 0)

c(⌧, t) =

2664Z t

0

�2(⇠) e
�2

Z ⇠

0

a(s) ds
d⇠

3775 e

Z t

0

a(s) ds
e

Z ⌧

0

a(s) ds
(0  ⌧  t) .
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2.1. About the OU and generalized OU processes. From (21), we firstly note
that the OU process U(t) can be written as (see, also, [17])

(24) U(t) = mU (t) + �Ue
�aU tW

✓
e2aU t � 1

2aU

◆
recalling that in this case r(t) = (e2aU t � 1)/2aU .

Whereas the generalized OU process V (t), having the mean mV (t) and the same
covariance factors of OU process, can be written as follows

(25) V (t) = mV (t) + �V e
�aV tW

✓
e2aV t � 1

2aV

◆
= mV (t) + [U(t)�mU (t)]

where the time homogeneous OU process U(t) has aU = aV and �U = �V . From
(24) and (25) one has

(26) dV = m0
V (t) dt+ d [U(t)�mU (t)] .

Note that, from (15), the GD process [U(t)�mU (t)], having zero mean (b(t) = 0),
is solution of the following SDE

(27) d [U(t)�mU (t)] = �aU [U(t)�mU (t)] dt+ �UdW with U(0) = mU (0) ,

hence, for the process V (t) as in (25), and from (26) and (27), one has

(28) dV = m0
V (t) dt+d [U(t)�mU (t)] = m0

V (t) dt�aU [U(t)�mU (t)] dt+�U dW

and, finally, being [U(t)�mU (t)] = [V (t)�mV (t)] from (25), we can write that
V (t) is solution of the following SDE

(29) dV = {�aV [V (t)�mV (t)] +m0
V (t)} dt+ �V dW , V (0) = mV (0) ,

with aV = aU and �V = �U .
Finally, we stress that the generalized OU process V (t) is solution of SDE (19)

and from (29) it is such that

A1(V, t) = a(t)V + b(t) = �aV [V (t)�mV (t)] +m0
V (t) ,

with

(30) a(t) ⌘ �aV , b(t) = m0
V (t) + aV mV (t) .

In the modeling context, the V (t) is the GD process obeying the dynamics based
on SDE (29) in which aV mV (t) preserves the meaning of the equilibrium state for
V (t), aV is related to the characteristic time, i.e. the time constant of V (t) for
relaxation over the equilibrium level, and m0

V (t) can be interpreted as the time-
dependent external input signal (force). The relations (30) specify the meaning of
di↵usion coe�cients: in particular, a(t) is related to the relaxation time, whereas
the b(t) identifies the overall e↵ect of the driving term m0

V (t) and of the attractive
equilibrium level aV mV (t).

2.1.1. An example of application. We can find a direct application of the last sen-
tence and of (30) considering the following SDE, used by us in [11] to model the
acto-myosin dynamics ([2]),

(31) dX = � 1

�
[X(t)� F (t)] dt+ � dW with X(0) = x0 ,

where � is the drag coe�cient, F (t) is a driving force and � is dependent on
the environmental temperature, the Boltzmann constant and the drag coe�cient
(better specified in the last section).
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Remark 2.1. The GD process solving (31) is the generalized OU process V (t) with
the mean mV (t) that solves the following ordinary di↵erential equation (ODE):

(32) m0(t) +
1

�
m(t) =

F (t)

�
with m(0) = x0 .

Note that the (31) is the same of the SDE (19) with aV = 1/�, bV (t) = F (t)/�.
Referring to the generalized OU process V (t), the (30) becomes m0

V (t)+aV mV (t) =
F (t)/�. Hence, the Remark 2.1 follows.

Similarly, referring to (23), we can specify that only the first of them has to be
evaluated, providing the solution of (32),

(33) m(t) = x0e
�t/� + e�t/�

Z t

0

F (⌧)

�
e⌧/� d⌧ .

Note that here it is evident that the generalized process solution of (31) is a time-
inhomogeneous OU process because its mean function (33) integrates the input force
F (t) over time until t.

In this context some theoretical results on GD processes can be useful: for
instance, we can specify for which kind of driving force F (t) it is possible to provide
a closed-form function useful to model the dwell-time of the myosin head in a
potential well.

In order to obtain answers to this kind of question, we have to give some further
definitions and recall some main theoretical results.

3. The first exit time

Here, we recall definitions and main results of [16]. We now focus our attention on
the random variable FET Tx0 from a strip with absorbing boundaries S1(t), S2(t)
of a GD process X(t) starting from x0. Specifically, let S1(t) and S2(t) be a
C1([0,+1))-class functions such that S1(t) < S2(t), 8t, S1(0) < X(0) ⌘ x0 <
S2(0). For all t � 0, we shall now focus our attention on the random variables:

(34)

T (1)
x0

= inf
t�0

{t : X(t) < S1(t); X(#) < S2(#), 8# 2 (0, t)} , X(0) = x0

(first-passage time through the lower boundary)

T (2)
x0

= inf
t�0

{t : X(t) > S2(t); X(#) > S1(#), 8# 2 (0, t)} , X(0) = x0

(first-passage time through the upper boundary)

Tx0 = inf
t�0

{t : X(t) 62 (S1(t), S2(t))} , X(0) = x0

(first-exit time)

and denote by g1(t | x0, 0), g2(t | x0, 0) and g(t | x0, 0), respectively, their pdf’s:

(35)

g1(t | x0, 0) =
@

@t
P
⇣
T (1)
x0

< t
⌘
,

g2(t | x0, 0) =
@

@t
P
⇣
T (2)
x0

< t
⌘
,

g(t | x0, 0) =
@

@t
P (Tx0 < t) ⌘ g1(t | x0, 0) + g2(t | x0, 0) .

Hence, P (T (1)
x0 < t) [P (T (2)

x0 < t)] is the probability that X(t) crosses for the first
time S1(t) [S2(t)] at some time preceding t before crossing S2(t) [S1(t)], whereas
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P (Tx0 < t) is the probability that X(t) crosses for the first time either S1(t) or
S2(t) before time t.

Here, from [16], we recall that, the FPT pdfs g1[t|x0, 0] and g2[t|x0, 0] solve the
following system of nonsingular second-kind Volterra integral equations:

(36)

g1(t | x0, 0) = 2 1(t | x0, 0)�

�2

Z t

0

{g1(⌧ | x0, 0) 1[t | S1(⌧), ⌧ ] + g2(⌧ | x0, 0) 1[t | S2(⌧), ⌧ ]} d⌧ ,

g2(t | x0, 0) = �2 2(t | x0, 0)+

+2

Z t

0

{g1(⌧ | x0, 0) 2[t | S1(⌧), ⌧ ] + g2(⌧ | x0, 0) 2[t | S2(⌧), ⌧ ]} d⌧ ,

where

(37)

 j(t | y, ⌧) =

=

⇢
S0
j(t)�m0(t)

2
� Sj(t)�m(t)

2

h0
1(t)h2(⌧)� h0

2(t)h1(⌧)

h1(t)h2(⌧)� h2(t)h1(⌧)
�

� y �m(⌧)

2

h0
2(t)h1(t)� h2(t)h0

1(t)

h1(t)h2(⌧)� h2(t)h1(⌧)

�
f [Sj(t), t | y, ⌧ ] (j = 1, 2) .

3.0.2. Reduction to a single integral equation. First of all, under suitable assump-
tions on the boundaries of the GD process, it is possible to prove that the first-exit
time g(t | x0, 0) is the solution of a single non singular Volterra integral equa-
tion in place of the system (36). We recall that, again from [16], under all above
assumptions, if

lim
t!+1 r(t) = +1 , P {S1(t)  X(t) < S2(t) | X(0) = x0} 6= 1 ,

one has:

(38)

Z +1

0

g(t | x0, 0) dt = 1 .

Furthermore, if S1(t) and S2(t) are such that

(39) S1(t) + S2(t) = 2m(t) + 2 c h2(t) , (c 2 R) ,
for all t � 0, then

(40)

g(t | x0, 0) = 2 [ 1(t | x0, 0)� 2(t | x0, 0)]�

�2

Z t

0

g(⌧ | x0, 0) { 1[t | S1(⌧), ⌧ ]� 2[t | S1(⌧), ⌧ ]} d⌧ .

Finally, if S1(t) and S2(t) are such that (39) holds for all t � 0 and if x0 is such
that

(41) x0 = m(0) + c h2(0) , (c 2 R) ,
then

(42) g1(t | x0, 0) = g2(t | x0, 0) ,
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and as consequence

(43) g(t | x0, 0) ⌘ 2 g1(t | x0, 0) ⌘ 2 g2(t | x0, 0)

satisfies the single integral equation (40).

3.1. Closed form for FET density. Here, we briefly recall Theorems 4.1 and
4.2 of [16]. Let S1(t) and S2(t) be such that

(44) S1(t) = m(t) + b h1(t) + c1 h2(t) , S2(t) = m(t) + b h1(t) + c2 h2(t) ,

with S1(t) < S2(t) for all t � 0, and let x0 be such that

(45) x0 = m(0) + b h1(0) + c h2(0) ,

with b, c, c1, c2 2 R and S1(0) < x0 < S2(0). Then, the closed form for the following
FET density holds:

g(t | x0, 0) =
h2(t)

r(t)� r(0)

dr(t)

dt

+1X
n=�1

exp

⇢
�2n2 (c2 � c1)2

r(t)� r(0)

�
⇥

⇥
⇢
[c� c1 + 2n (c2 � c1)] exp

⇢
�2n (c2 � c1) (c� c1)

r(t)� r(0)

�
f [S1(t), t | x0, 0]+

(46) + [c2 � c� 2n (c2 � c1)] exp

⇢
2n (c2 � c1) (c2 � c)

r(t)� r(0)

�
f [S2(t), t | x0, 0]

�
.

We point out that in Theorem 4.3 of [16] is reported also the particular case of
two Daniels-type boundaries for which the FET density admits a closed form. We
do not consider this case here.

We remark that when the conditions for the existence of a closed form for FET
density are not satisfied, it is possible to obtain evaluations of FET density by
means of numerical quadrature of the integral equations (36).

3.1.1. The FET closed form for specified processes. Let us make explicit the (46)
in specific cases of particular interest for stochastic modeling.

• The Wiener process. We consider the Wiener process W (t) with mW (t),
h1W (t) and h2W (t) as in (7) and satisfying the (17). Then, from (44) and
(45), for this kind of process the closed form (46) holds for boundaries and
initial condition as follows

(47) S1W (t) = Bt+ C1 , S2W (t) = Bt+ C2 , x0 = cW + C

with B = bW + b�W , C1 = cW + c1�W , C2 = cW + c2�W and C = c�W

are such that S1W (t) < S2W (t) for all t and S1W (0) < x0 < S2W (0). Hence,
the closed form FET (46) for the Wiener process is

(48)

gW (t | x0, 0) =
1

t

+1X
n=�1

exp

⇢
�2n2L2

�2
W t

�
⇥

⇥
⇢
(l1 + 2nL) exp

⇢
�2n l1L

�2
W t

�
fW [S1W (t), t | x0, 0]+

+(l2 � 2nL) exp

⇢
2nl2L

�2
W t

�
fW [S2W (t), t | x0, 0]

�
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where L = S2W (0) � S1W (0) = �W (c2 � c1) and l1 = x0 � S1W (0) =
�W (c� c1) and l2 = S2W (0)� x0 = �W (c2 � c), respectively.
Note that for c1 ! �1 in (48), i.e. moving away the lower boundary
S1W (t), only the term with n = 0 gives a non-zero contribution, so that the
FET density (48) tends to the well-known Inverse Gaussian-type density
for the first passage time through the linear upper boundary S2W (t):

S2W (0)� x0p
2⇡t3

exp

⇢
� (S2W (t)� x0)2

2t

�
.

Furthermore, as particular case, we can put together (44) and (45) as-
suming

(49) S1W (t) = Bt+ x0 � c̃ , S2W (t) = Bt+ x0 + c̃

with the values B, c̃ 2 R+. It can be easily verified that, in this case,
one has that L = 2c̃ and l1 = l2 = c̃. For B = bW , x0 = cW , c = 0 the
conditions (39) and (41) hold and so we can use (43) to obtain g1(t | x0, 0)
and g2(t | x0, 0) with the following expression for FET density provided by
(48):

g(t | x0, 0) =
c̃

t
{fW [Bt� c̃, t | 0, 0] + fW [Bt+ c̃, t | 0, 0]}+

+
2c̃

t

+1X
n=1

exp

⇢
�8n2c̃2

�2
W t

�⇢
fW [Bt� c̃, t | 0, 0]


cosh

✓
4nc̃2

�2
W t

◆
� 4n sinh

✓
4nc̃2

�2
W t

◆�
+

(50) +fW [Bt+ c̃, t | 0, 0]

cosh

✓
4nc̃2

�2
W t

◆
� 4n sinh

✓
4nc̃2

�2
W t

◆��
.

• The OU process. For the U(t) process with mU (t), h1U (t) and h2U (t) as in
(10), from (44) and (45), the closed form (46) holds for the hyperbolic-type
boundaries and initial condition as follows

(51)
S1U (t) = A1eaU t +B1e�aU t + C1 , S2U (t) = A1eaU t +B2e�aU t + C1 ,

x0 = cU + C

where

(52)

A1 =
b�U

2aU
,

B1 = cU � bU
aU

� b�U

2aU
+ c1�U , B2 = cU � bU

aU
� b�U

2aU
+ c2�U ,

C1 =
bU
aU

, C = c�U ,

such that S1U (t) < S2U (t) for all t � 0 and S1U (0) < x0 < S2U (0). Specifi-
cally, the closed form FET (46) for the OU process is

gU (t | x0, 0) =
2aUeaU t

e2aU t � 1

+1X
n=�1

exp

⇢
� 2n2L2

�2
U (e

2aU t � 1)

�
⇥

⇥
⇢
(l1 + 2nL) exp

⇢
� 2nl1L

�2
U (e

2aU t � 1)

�
fU [S1U (t), t | x0, 0]+
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(53) +(l2 � 2nL) exp

⇢
2nl2L

�2
U (e

2aU t � 1)

�
fU [S2U (t), t | x0, 0]

�
where L = S2U (0) � S1U (0) = �U (c2 � c1), l1 = x0 � S1U (0) = �U (c � c1)
and l2 = S2U (0)� x0 = �U (c2 � c).
Note that it is possible to obtain (53) from (48) by means of the Doob-
transformation rule between Wiener and OU process, i.e. by exploiting the
following transformation (cf. [16])

(54) gU (t | x0, t0) =
dr(t)

dt
gW [r(t) | x⇤

0, r(t0)] ,

where r(t) = (e2aU t � 1)/2aU , gW
⇥
r(t) | x⇤

0, r(t0)
⇤
is the FET pdf of W (#)

from (S⇤
1 (#), S

⇤
2 (#)), with

(55) x⇤
0 =

x0 �mU [r�1(#0)]

h2U [r
�1(#0)]

, S⇤
j (#) =

Sj [r�1(#)]�mU [r�1(#)]

h2U [r
�1(#)]

(j = 1, 2) .

• The generalized OU process. Let V (t) be the generalized OU process with
mean and covariance as in (13). From (44) and (45), the closed form (46)
holds for boundaries and initial condition as follows

(56) S1V (t) = A1e
aV t+B1(t)e

�aV t , S2V (t) = A1e
aV t+B2(t)e

�aV t , x0 = cV +C

where A1 = b�V /2aV , C = c�V , and

(57) B1(t) = cV + c1�V � b�V

2aV
+BV (t) , B2(t) = cV + c2�V � b�V

2aV
+BV (t) ,

such that S1V (t) < S2V (t) for all t � 0 and S1V (0) < x0 < S2V (0). We note
that now B1(t), B2(t) are functions of time, since they depend on BV (t),
specified in (13).
From these positions we obtain a closed form FET pdf that is the same
of (53) with aU = aV , �U = �V , L = S2V (0) � S1V (0) = �V (c2 � c1),
l1 = x0 � S1V (0) = �V (c� c1) and l2 = S2V (0)� x0 = �V (c2 � c), whereas
the transition normal densities fU [S1U (t), t | x0, 0] and fU [S2U (t), t | x0, 0]
are substituted by fV [S1V (t), t | x0, 0] and fV [S2V (t), t | x0, 0], respectively.

3.1.2. An inverse question. Now we are able to answer the applicative question
proposed at the end of subsection 2.1.1. With this aim, we consider a GD process
with infinitesimal moments

(58) A1(x, t) = a(t)x+ b(t) , A2(t) = �2(t) .

Given the boundaries S1(t), S2(t), by adding side-by-side the conditions in (44), we
can write the following condition on the mean of the process

(59) m(t) =
S1(t) + S2(t)

2
� bh1(t)�

c1 + c2
2

h2(t) .

From (3) we know that, with a(t) = h0
2(t)/h2(t),

(60) b(t) = m0(t)� a(t)m(t) .

Using (59) in (60), we obtain

(61) b(t) =
S0
1(t) + S0

2(t)

2
� bh0

1(t)�

S1(t) + S2(t)

2
� bh1(t)

�
h0
2(t)

h2(t)
.
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For constant boundaries S1 and S2, we have

(62) b(t) = �bh0
1(t)�


S1 + S2

2
� bh1(t)

�
h0
2(t)

h2(t)
.

This expression for b(t) ensures that, for the GD process solution of the SDE dX =
[a(t)X + b(t)]dt + �dW with X(0) = x0, S1 < x0 < S2 in presence of constant
boundaries S1 and S2, the FET density admits the closed form (46) for suitable
values of the involved parameters. Specifically, for the generalized OU process V (t)
solution of

(63) dV = [�aV V + bV (t)] dt+ �V dW , S1 < V (0) = v0 < S2

the FET density has a closed form of type (53) if

(64) bV (t) = �b�V e
aV t +

✓
S1 + S2

2

◆
aV

with aU = aV , S1U (t) = S1, S2U (t) = S2, �U = �V , c = 0 and for �V (c1 +
c2) = S1 + S2 � 2x0. Furthermore, if S2 = S = �S1 the condition (64) becomes
bV (t) = �b�V eaV t. Finally, the FET density admits a closed form if V (t) is solution
of

(65) dV = [�aV V � b�V e
aV t] dt+ �V dW , �S < V (0) = v0 < S .

3.1.3. About the example of application. Concerning the application presented in
subsection 2.1.1, we can say that for an input force of type: F (t)/� = �b�et/� in
(31), the corresponding FET pdf from (�S, S) admits a closed form. Specifically,
the time inhomogeneous OU process X(t) with the following mean and covariance
factors:

(66)
mX(t) = x0e

�t/� � b
��

2

⇣
et/� � e�t/�

⌘
,

h1X (t) =
��

2

⇣
et/� � e�t/�

⌘
, h2X (t) = �e�t/�

with �S < x0 < S, is solution of (31) with F (t)/� = �b�et/� and it admits the
following FET closed form in presence of constant boundaries (�S, S):

gX(t | x0, 0) =
2 et/�

�(e2t/� � 1)

+1X
n=�1

exp

⇢
� 8n2S2

�2(e2t/� � 1)

�
⇥

⇥
⇢
(S + x0 + 4nS) exp

⇢
� 4nS(S + x0)

�2(e2t/� � 1)

�
fX [�S, t | x0, 0]+

(67) +(S � x0 � 4nS) exp

⇢
4nS(S � x0)

�2(e2t/� � 1)

�
fX [S, t | x0, 0]

�
.

The form (67) is obtained from (53) with aU = 1/�, �U = �, c = 0, �c1 = �S�x0,
�c2 = S � x0, L = 2S = �(c2 � c1), l1 = x0 + S = ��c1 and l2 = S � x0 = �c2,
whereas the transition normal densities fU [S1U (t), t | x0, 0] and fU [S2U (t), t | x0, 0]
are substituted by fX [�S, t | x0, 0] and fX [S, t | x0, 0], respectively.
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4. A stochastic model for protein dynamics

In [11] we propose a model that essentially exploits the theory of GD processes
and of the corresponding FET from a strip. Indeed, we consider the interaction
between myosin and actin proteins responsible of the muscle contraction in skeletal
muscles. By successive steps of myosin head along the actin filament, the chemical
energy released by ATP hydrolysis is converted in mechanical work. In our model
these steps are modeled as exit events from a strip; the exit from the upper (lower)
boundary of the strip stands for a forward (backward) step. For detailed and
extensive readings on molecular motors see [2] and references therein.

In the proposed model, we assume that the di↵usive dynamics takes place in a
symmetric one-well parabolic potential (the binding site) tilted by a time-dependent
force (driving the particle motion). The acto-myosin dynamics is described as
an over-dumped motion (disregarding the inertial force) and confined to only one
space-period (with length L) of the periodical morphology of the actin filament.
A parabolic profile is considered for the potential of the myosin head; this allows
to use a suitable time inhomogeneous OU process, substantially the process X(t)
solution of an SDE of type (31). In this context the myosin steps are escapes from
the potential well: the escape occurs when the particle attains a local maximum
of the potential. Hence, by means of the FET of the process X(t) from the strip,
we are able to provide evaluations of the dwell time, i.e., the time elapsed in the
potential well before escaping from it.

We consider the case of a time-increasing force acting in the dynamics and also
the case of a time-decreasing force. Discretizing the considered SDE, we simu-
late particle paths and we obtain statistical approximations of FET density. We
compare these results with evaluations of FET density obtained by numerical quad-
rature of the two corresponding integral equations (of type (36)) and also with some
experimental data.

The simulation strategy and the numerical approach is mandatory because no
closed form results hold for the specified case.

The model in [11] is based on a SDE of the following type

(68) dX = �

↵

�

✓
X � L

2

◆
� F (t)

�

�
dt+

s
2kBT

�
dW , X(0) =

L
2

in presence of two absorbing boundaries S1 = 0 and S2 = L, with ↵ proportional
to the space-period L of the potential and to the depth of the potential well, � the
drag coe�cient, kB the Boltzmann constant, T the environmental temperature.

Again in [11] for SDE (68) an increasing exponential force

(69) F (t) = k�(1� e�t/#)

is considered with k positive real number to model an attractive force to the next
actin monomer (i.e., the upper boundary) rising during the interaction between the
proteins. Note that here the time constant # characterizes the time that the force
takes to assume its maximum value k�.

We also consider in (68) the following decreasing exponential force

(70) F (t) = k�e�t/#

with k positive real number to model a quasi-impulsive force that rapidly decays.
This could be the case of an initial strong impact between the myosin head and the
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actin filament that may cause the so-called conformational change in the myosin
neck. Here, # is the decaying time of the force.

For both above considered forces, the GD process solution of (68) is a time
inhomogeneous OU process with mean (33) and covariance factors as in (13), with
the suitably specified involved functions and parameters; the corresponding FET is
solution of integral equations (36). If the force

(71) F (t) = �b�

s
2kBT

�
e(↵/�)t

obtained from bV (t) of (64) for aV = ↵/�, �V =
p
2kBT/�, S1 = 0 and S2 = L,

is used in SDE (68), the solution is a generalized OU process X(t) and it admits
a closed form for the FET density. Note that the case (71) is di↵erent from the
cases considered previously, because it has a positive exponential behavior. It
can be used in this model to describe some phenomena in which a force with an
unbounded increasing intensity is involved, although most of the times these cases
are of a limited interest from a biological point of view.
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