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Abstract

Pseudospectral methods have gained significant popularity as a state and control
parameterization technique, finding extensive use in various optimal problems due
to improved CPU performance and their versatile nature. Depending on the global
polynomials used for the approximation of the controls and state variables, dif-
ferent pseudospectral methods are presented in literature. This work focuses on
Legendre Pseudospectral methods, where Lagrange polynomials, obtained from
orthogonal Legendre polynomials, are employed to globally interpolate state and
control variables; the collocation can then be applied using Legendre-Gauss-Lobatto,
Legendre-Gauss-Radau or Legendre-Gauss points.
This thesis aims at assessing the accuracy, efficiency, and applicability of pseudospec-
tral methods to orbital transfers and formation reconfiguration problems while using
a limited number of discretization points. This feature is essential to reduce the
computational effort and enhance the practical implementation of these methods.
In this thesis, both direct and indirect formulations of the pseudospectral method are
considered. The direct formulation employs Legendre-Gauss-Lobatto or Legendre-
Gauss-Radau points for collocation, while the indirect Legendre-Gauss-Lobatto
pseudospectral method is developed to cope with the difficulty of the direct method
to approximate a non-smooth function with a finite series of smooth functions and it
implements a smoothing technique to improve its convergence rate.
The pseudospectral methods yield discrete-time values for the state and control
variables that fulfill the discretized constraints, producing a discrete-time feasible
solution. The Bellman method is employed here to validate the practical application
of the solutions to continuous-time dynamics and verify optimality and accuracy.
The Bellman method allows for the optimization problem to be solved recursively,
moving the initial conditions toward the final ones. The trajectory is partitioned
into discrete segments, and the states within each segment are integrated using dis-
crete control interpolations. It is analyzed how the quantity of segments affects the
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ultimate states reached after the final integration and whether they meet the final
boundary conditions specified by the problems.
Contributions of this thesis include analysis and numerical comparison of different
direct and indirect formulations of Legendre pseudospectral method. For all the
approaches it has been studied the effect of the number of nodes on the control law
reconstruction, highlighting their positive and negative aspects. Furthermore, the im-
plementation of Bellman algorithm enables the conversion of discrete solutions into
continuous-time solutions, thereby verifying the applicability and practicality of the
discrete control law in real scenarios. These methods prove to be a viable approach
for efficiently and accurately solving orbital transfer and formation reconfiguration
problems with low-thrust.
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Chapter 1

Introduction

The birth of optimal control can be traced back to 1697 in Groningen, a university
town in The Netherlands, when Johann Bernoulli, a professor of mathematics at the
local university, published his solution to the brachystochrone problem. The year
before he had challenged his contemporaries to solve this problem: If in a vertical
plane two points A and B are given, then it is required to specify the orbit AMB of
the movable point M, along which it, starting from A, and under the influence of its
own weight, arrives at B in the shortest possible time[1].
Six of the best mathematicians of the time submitted solutions to the problem: New-
ton, Leibniz, de l’Hôpital, Tschirnhaus, and the Bernoulli brothers; paving the way
to the optimal control theory. One of the earliest advancements of the optimal control
was the creation of calculus of variations, developed by Euler in 1733 [2], further
improved by Lagrange (1792) and, in the 19th century, by Legendre, Jacobi, Hamil-
ton, and Weierstrass. In the 1950s, Richard Bellman’s pioneering work in dynamic
programming [3] established sufficient conditions for optimality through the use of
the Hamilton-Jacobi-Bellman equation. However, the conventional wisdom holds
that optimal control theory was born in 1962 in the former Soviet Union, with the
work on the "Pontryagin minimum principle" by L. S. Pontryagin and his group [4].
They enriched and broaden the calculus of variation, stating that a minimization path
must satisfy the Euler-Lagrange equations where the optimal controls minimize the
Hamiltonian. The widespread adoption of optimal control theory was then made
possible by the commercial availability of digital computers in the 1950s [5]. In the
late 1950s and early 1960s, researchers such as Lawden [6], Leitmann [7], Miele
[8], and Breakwell [9] showcased the use of calculus of variations in optimizing



2 Introduction

aerospace flight paths through shooting algorithms. Meanwhile, Kelley [10] and
Bryson [11] improved the methodology by introducing gradient algorithms that
addressed the inherent instability of shooting methods. Numerical methods for
solving optimal control problems have seen substantial advancements in recent years.
Today, there is an extensive selection of methods available with various levels of
complexity, each utilizing different approaches to tackle the problem. The basic
idea behind these methods is to transform the continuous-time problem into a dis-
crete, finite-dimensional problem that can be solved using computational techniques.
The solution is then obtained by refining the approximate solution until it meets a
specified tolerance level. Optimal control problems can be solved using different
computational methods. Most of these methods can be grouped into two major
categories: indirect and direct methods [12]. Indirect methods rely on the necessary
optimality condition, derived from the minimum principle [4], to obtain the optimal
trajectory, that is the extremal trajectory with the lowest cost. They are rapid and
precise and they lead to the solution of a Boundary Value Problem (BVP) . More-
over, their solution assures first-order optimality condition. However, these methods
present small radius of convergence and they require the derivation of the optimality
conditions and a good tentative solution of the costates, which is often non-intuitive
and difficult to obtain. For problem with path constrains, it is also necessary to have
a priori knowledge of the switching structure.
On the other hand, direct methods discretize the optimal control problem to a pa-
rameter optimization problem and then solve the resulting Non-linear Programming
problem (NLP) [13] by well-established algorithms based on equations known as
the Karush-Kuhn-Tucker (KKT). Direct methods have the advantage of eliminating
the need to derive the first-order necessary conditions. They also have a much larger
convergence radius compared to indirect methods, thus reducing the need for an
accurate initial guess, and do not require an initial guess for the costate. Additionally,
the switching structure does not need to be known beforehand. However, a disad-
vantage of many direct methods is that they may provide inaccurate costate or no
costate information at all, making it uncertain whether the NLP solution is indeed the
optimal solution to the original optimal control problem. A feature that differentiates
the different direct methods is the choice of which quantities to discretize and how to
approximate the continuous-time dynamics. The parametrization can be done on the
control variable only or on both control and state variables [14]. Examples of control
parametrization include shooting [15] and multi-shooting methods [16]. The former
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parameterizes the control variables and uses them in the integration throughout the
entire interval, resulting in the determination of the states from the initial values;
while the latter, divides the path into shorter segments, it integrates starting from their
initial values (which become additional parameters), and then applies conditions
to ensure continuity between the intervals. On the other hand, when both the state
and the control are discretized within the NLP and the continuous-time differential
equations are converted into algebraic equations, the sensitivity issues of direct
shooting methods are avoided at the cost of a larger NLP [13, 17, 18].
Pseudospectral (PS) methods [19, 20] have gained significant popularity as a type
of state and control parameterization method and they are based on Spectral collo-
cation methods, initially developed to solve fluid dynamics problems [21, 22, 20].
Pseudospectral uses a finite basis of global interpolating polynomials to approximate
the state and control at a set of discretization points. The interpolating polynomial’s
derivative is used to estimate the time derivative of the state in the dynamic equa-
tions, which is then constrained to equal the vector field of the equations at a set of
collocation points. Though any unique set of collocation points can be chosen, an
orthogonal collocation—in which the collocation points are linear combinations of
such polynomials and their derivatives—is generally opted. As a result, the terms
Pseudospectral [20] and orthogonal [23] collocation are often used interchangeably.
Nowadays, thanks to the improved performance of CPUs and PS versatility, they
are extensively used. In fact, literature presents a vast number of diverse optimal
control problems that have been solved using Pseudospectral methods, such as space
station attitude control [24, 25], ascent guidance [26, 27], interplanetary solar sail
mission design [28, 29], low-thrust Earth-to-Jupiter rendezvous [30], multiple revo-
lutions low-thrust Earth-orbit transfers [31], lunar guidance [32, 33], launch vehicle
trajectory optimization [34, 35] and libration-point stationkeeping [36, 37]; just to
mention some of the countless applications.
Depending on the global polynomials used for the approximation of the controls and
state variables, different PS methods are presented in literature, such as Chebishev
Pseudospectral (CPM) [38], Legendre Pseudospectral (LPM) [19, 39–41], and Ja-
cobi Pseudospectral (JPM) [42]. To approximate state and control the CMP uses
Chebyshev polynomials and it performs orthogonal collocation at the Chebyshev-
Gauss-Lobatto (CGL) points. To improve its performance Fahroo and Ross intro-
duced a modification to the method, that employs a Clenshaw-Curtis quadrature
[43]. In Legendre Pseudospectral method, Lagrange polynomials obtained from
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orthogonal Legendre polynomials are employed to globally interpolate state and
control variables; Legendre-Gauss-Lobatto (LGL) [19, 44], Legendre-Gauss-Radau
(LGR) [45–47], and Legendre-Gauss (LG) [48, 49] points can be used for orthog-
onal collocation. The Legendre polynomials are a subset of Jacobi polynomials,
which are used to locate the collocation points in the more general Pseudospectral
method known as the Jacobi Pseudospectral method [42]. On the other hand, the
Hermite-LGL method [50] uses piecewise cubic polynomials rather than Lagrange
polynomials, and collocates at a subset of the LGL points.
This thesis primarily investigates the effectiveness and efficiency of Legendre Pseu-
dospectral methods, both in direct and indirect formulations, for numerical solutions
of optimal control problems. Additionally, it aims to introduce improvements to
enhance their performance.

1.1 Motivation for research

The following sections outline the motivations behind this research, which can be
summarized as follows: our goal is to examine the performance of Pseudospectral
methods and assess how the number of nodes affects the results. Specifically, using
a lower number of nodes can significantly reduce computational time, making it
a potentially suitable method for autonomous guidance concepts. Therefore, it is
intriguing to analyze how few nodes can still yield satisfactory results. We also aim
to explore the application of the indirect formulation of the Pseudospectral method
in addressing the challenges encountered by the direct Pseudospectral method when
solving bang-bang control problems. Additionally, we integrate both the Pseu-
dospectral methods with the Bellman method to transition from a discrete-time to
a continuous-time solution. By doing so, we will assess the practical feasibility of
the solutions obtained. Ultimately, we will apply these methods to orbital trans-
fer and formation reconfiguration problems to further our understanding of their
effectiveness.
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1.1.1 Analysis of the influence of the number of nodes on Pseu-
dospectral method results

The motivation behind this analysis is driven by the aspiration to achieve quick
solutions by utilizing a reduced number of nodes to address the optimal control
problem, while not losing too much accuracy of the solution.
The utilization of traditional direct collocation methods for solving finite-thrust
problems can lead to a significantly large NLP problem, which requires extensive
computational resources to meet accuracy standards [51]. As a result, the develop-
ment of large-scale NLP solvers, such as SNOPT [52] for example, was imperative
for the effective implementation of this approach. It is noteworthy that the quest
to solve optimal control problems has played a pivotal role in driving the growth
and evolution of large-scale NLP methods. This has led to remarkable achievements
such as those presented by Gill et al. [52], who were able to successfully solve
more than a thousand example problems, each comprising up to 40,000 variables
and constraints. Similarly, Betts and Erb [51] tackled a highly intricate trajectory
optimization problem, which involved over 200,000 variables and around 150,000
constraints. Additionally, Ferris and Munson [53] demonstrated innovative tech-
niques that enable the efficient resolution of quadratic programming problems with
up to 10×106 variables. These exceptional achievements show the immense poten-
tial of large-scale NLP methods to address complex real-world problems. However,
in light of the study done by Ross et al. [54, 55], an alternative approach was pursued
in this thesis, with a focus on exploring the feasibility and computational efficiency
of solving optimal control problems using a limited number of nodes, trading some
optimality of the solution. Therefore, initially, the impact on the final cost function
and the reconstruction of control variables were evaluated for bang-bang problems,
while varying the number of nodes used in the analysis. This was done in order
to comprehensively assess the effects of using a reduced number of nodes on the
accuracy and quality of the solutions obtained, while still maintaining a reasonable
level of computational efficiency.
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1.1.2 Use of Pseudospectral Method in an indirect optimization
method

In order to enhance the solutions provided by the direct Pseudospectral method for
solving bang-bang control problems, an indirect Pseudospectral method has been
developed. The direct method, while effective in certain cases, often produces control
solutions that exhibit intermediate thrust values during the transition from a firing arc
to a coast arc. The development of the indirect method aims to address this limitation
and improve the accuracy of the obtained solutions.
The Pseudospectral method has been extensively used in the past years to solve
numerous optimal control problems [56–58, 20, 59]. However, when the problem
at hand is a switching optimal control problem, the method suffers the difficulty
to approximate a non-smooth function by a finite series of smooth functions, the
so-called Gibbs phenomenon [20]. To cope with the difficulty of reconstructing
the discontinuities in the control functions, in the last decades, several modified
Pseudospectral schemes were presented in literature. The PS Knotting Method [60]
is one of the first of these methods found in literature. Ross and Fahroo introduce
the concept of PS knot used to exchange information across time intervals in the
form of event conditions. The method has a direct multi-phase approach and in each
phase, it applies Legendre PS method. Based on this work, Gong et al. proposed an
autonomous mesh refinement that automatically determines the size and the layout
of the grid to achieve a desired estimation accuracy [61]. Darby et al. develop
a hp-adaptive PS method in which, to obtain a desired accuracy, the number and
width of intervals and the polynomial degree must be specified iteratively [62]. In
his work Shamsi [63] presents a modified Pseudospectral procedure for obtaining
bang-bang optimal solution using piecewise continuous approximation polynomials
for states and piecewise constant functions for controls and a discretized integral
form of the optimal control problem. The homotopic and PS method are merged
together in Guo et al. [64]. Here, the smooth optimal control problem is first solved
through the PS method. Then, using the costates estimated based on the results of the
direct optimization, the homotopic procedure leads to the solution of the nonsmooth
optimal control problem. Mehrpouya [65, 66] implements an indirect Legendre-
Gauss-Radau PS method to approximate the solution of a class of switching optimal
control problems. He converts the problem to the solution of a system of algebraic
equations using as initial guess the solution of a simplified optimization problem.
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This study aims to develop an indirect Legendre-Gauss-Lobatto (LGL) Pseudospec-
tral method for approximating the solution of a specific class of switching optimal
control problems. While Pseudospectral methods using a limited number of nodes
are known to have difficulty in accurately reconstructing bang-bang thrust profiles
due to the presence of intermediate thrust values, it was decided to address this
issue with an indirect method. The problem is readily transformed into a system of
algebraic equations, where the unknown parameters were the values of the functions
at the LGL points. However, finding a suitable initial guess to solve the system
of equations was challenging. To overcome this issue, a smoothing technique was
implemented.

1.1.3 Analysis of the utilization of Pseudospectral methods within
the framework of the Bellman method

After obtaining solutions using a limited number of discretization points with both
the direct and indirect Pseudospectral methods, it becomes intriguing to assess
their practical applicability from an engineering perspective. Specifically, we aim
to evaluate the suitability of these results for integration purposes, as numerical
propagator outcomes are often regarded as the benchmark or "truth" in engineering
analysis.
The Bellman Pseudospectral method [55] is a numerical algorithm that is used for
solving optimal control problems. The method combines the Bellman principle of
optimality with the Pseudospectral approach to produce an efficient and accurate
solution. The Bellman principle of optimality states that an optimal control problem
can be broken down into a sequence of subproblems that are also optimal. This
allows for the optimization problem to be solved recursively, moving the initial
conditions toward the final ones. The PS methods generate discrete-time values for
the state and control variables that fulfill the discretized constraints, producing a
discrete-time feasible solution. While increasing the number of nodes can be used
to address the discrepancy between discrete-time and continuous-time feasibility,
it may not be the most efficient approach. Hence, to obtain a valid solution for
the continuous-time optimal control problem, the Bellman method is employed
here. This requires the discrete solution to be mapped back to the continuous-time
domain. The trajectory is partitioned into discrete segments, and the states within
each segment are integrated using discrete control interpolation. It is intriguing to
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explore how the quantity of segments affects the ultimate states reached after the
final integration and whether they meet the final boundary conditions specified by
the problem.

1.1.4 Optimization of Spacecraft Trajectories

Orbital Transfer

Optimizing orbital transfers between two circular orbits is a problem that has received
significant attention in the field of astrodynamics. The problem involves determining
the most efficient and economical way to transfer a spacecraft from one circular
orbit to another while minimizing fuel consumption and time. The oldest example
of this problem is the two-impulse Hohmann transfer (1925) [67]. However, its
proof of optimality came much later [68, 69]. To find the optimal solution to this
class of problems, various numerical optimization techniques have been used. These
techniques include gradient-based and gradient-free optimization methods, such as
nonlinear programming, genetic algorithms [70], and particle swarm optimization
[71]. These methods have been used to minimize the total transfer time or fuel
consumption while satisfying the physical constraints of the problem. In this research
Legendre PS method, using both LGL and LGR collocation points, and Indirect
LGL PS methods have been used to solve orbital transfer problems with finite thrust
and fixed final time. The problem wants to minimize the propellant consumption
or alternatively, maximize the final mass. Discrete results are then converted to
continuous-time solutions using the Bellman method and they are compared with
optimal solutions obtained through an indirect method.

Formation Reconfiguration

In recent years, research showed an increasing interest in space flight mechanics
and dynamics and control for spacecraft formation flying. These kinds of problems
include formation reconfiguration, distributed space systems missions, and on-orbit
serving and they require good establishment and reconfiguration of the relative mo-
tion of co-orbiting vehicles in a safe, accurate, and fuel-efficient manner. TanDEM-X
[72], PRISMA [73, 74] and AVANTI [75] are just few of the several missions that
have already proven the efficiency of formation flying missions. These examples
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considered impulsive maneuvers for autonomous optimum formation reconfiguration
over a given time interval. However, the development of all-electric spacecraft, rises
also great interest in the optimization of formation flying with low-thrust electric
propulsion systems, since they ensure a lower fuel consumption thanks to their high
specific impulse. [76–78]. This study focuses on space trajectory optimization for
finite-thrust formation reconfiguration of the relative motion between two spacecraft.
One spacecraft, which defines the reference orbit, is designated the “chief” and it is
uncontrolled. The other spacecraft is designated the “deputy” and it is controlled by
a three-component thrust input. In this work, the goal is to evaluate the performance
of two mathematical methods to quickly obtain optimal or near-optimal solutions.
This is achieved using a low number of collocation points and applying the Bellman
method to the problems.

1.2 Thesis Summary & Contribution

This section aims to provide an overview of the thesis chapters and highlights their
significant contributions. The thesis deals with various mathematical concepts that
are required to understand theoretical advancements with respect to the literature.
Chapter 2 presents these concepts in a clear and simple manner and explains the
reasoning behind using these mathematical constructs and their benefits.
The methodology section (chapter 3) first introduces the Legendre Pseudospec-
tral method and its relative covector mapping theorem, which provides an order-
preserving transformation of the Lagrange multipliers associated with the discretized
problem to the discrete covectors associated with the optimal control problem. The
indirect formulation of the Legendre Pseudospectral method is presented along with
a continuation smoothing technique that improves its convergence rate. The Radau
Pseudospectral method and Gauss Pseudospectral method are also briefly introduced
to enable comparison among the three methods for a single-state problem and a more
realistic problem such as an orbit-raising problem. The Bellman Pseudospectral
method is also presented as a way to obtain a valid solution for the continuous-time
optimal control problem.
In chapter 4, two case studies are presented, namely, orbital transfer and formation re-
configuration. For the orbital transfer problems, the influence of the number of nodes
is analyzed and the limitation of using a low number of nodes becomes apparent
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for some study cases. The Bellman Pseudospectral method is used to overcome this
limitation. Furthermore, a 3D case with an inclination variation is also considered
for completeness. As for the formation reconfiguration problem, the PS method,
Indirect PS method, and Bellman method are compared for two study cases, one
considering the variation of the relative semi-major axis and mean longitude and the
other requiring a variation of the eccentricity vector.
Finally, chapter 5 summarizes the significant contributions of this thesis and suggests
potential future research directions. The thesis investigates the effectiveness of Pseu-
dospectral methods in solving optimal control problems using different collocation
points and direct and indirect formulations. Moreover, it provides insights into the
advantages and limitations of different approaches.



Chapter 2

Mathematical Background

In this chapter, the theoretical and mathematical concepts, extensively used in this
thesis, are introduced. In particular, the fundamentals of optimal control theory
and numerical approximation are presented in detail since they are the basis of the
undertaken research.

2.1 Optimal Control Theory

Optimal Control Theory is a mathematical framework that deals with the problem
of finding the best control strategy to govern the behavior of dynamic systems. The
goal is to find the optimal control inputs that drive a system from an initial state to a
desired final state while minimizing some measure of performance. Optimal control
theory has found applications in diverse fields, including engineering, economics,
and management sciences. In particular, in 1919, the American rocket pioneer,
Robert H. Goddard posed one of the first aerospace optimal control problems [5].
In this section, the optimal control problem is presented in a mathematical context
and various methods for solving such problems are discussed.

2.1.1 Continuous Bolza Problem

The Continuous Bolza problem is a classical formulation of the optimal control
problem. It seeks to find the optimal control inputs, u(t) ∈ Rm, that minimize the



12 Mathematical Background

cost functional

J = E(x(t0), t0,x(t f ), t f )+
∫ t f

t0
F(x(t),u(t), t)dt (2.1)

where x(t) ∈ RNx and u(t) ∈ RNu are the state and the control of the problem, t0 is
the initial time and t f the final time; subject to the dynamic constraint

ẋ = f(x(t),u(t), t), t ∈ [t0, t f ] (2.2)

the boundary condition
e(x(t0), t0,x(t f ), t f ) = 0 (2.3)

and inequality path constraint

h(x(t),u(t), t)≤ 0, t ∈ [t0, t f ] (2.4)

The functions E, F , f, e, and h, presented in Equation 2.1-2.4, are defines as:

E : RNx × R × RNx × R → R

F : RNx × RNu × R → R

f : RNx × RNu × R → RNx (2.5)

e : RNx × R × RNx × R → RNe

h : RNx × RNu × R → RNh

The problem independent variable is time t, which runs from t0 to t f . Since certain
numerical techniques, like Pseudospectral methods, have fixed time interval that lies
in [−1,1], a variable transformation to τ so that [τ0,τ f ] = [−1,1] is needed:

t =
1
2
[(t f − t0)τ +(t f + t0)] (2.6)

With free initial and/or final times the mapping expressed by Equation 2.6 is still valid
and the continuous Bolza problem can be restated as: Minimize the cost function

J = E(x(τ0), t0,x(τ f ), t f )+
t f − t0

2

∫
τ f

τ0

F(x(τ),u(τ),τ; t0, t f )dτ (2.7)
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with the following constraints

ẋ =
t f − t0

2
f(x(τ),u(τ),τ; t0, t f ) (2.8)

e(x(τ0), t0,x(τ f ), t f ) = 0 (2.9)

h(x(τ),u(τ),τ; t0, t f )≤ 0 (2.10)

Equation 2.7-2.10 represents the transformed continuous Bolza problem.

2.1.2 Indirect Transcription

Calculus of variations can be used to derive a set of first-order conditions for
optimality [3, 79, 80] and it solves the transformed Bolza problem, obtained in the
previous section. This approach is known as "indirect" because it is focused on
the optimality conditions and not on the performance index. One must search for
an extremal solution to find the result that satisfies the optimality conditions. This
solution must be a minimum and this is verified by using the second-order conditions.
The fundamental theorem of calculus of variations states that if x∗ is an extremal,
the cost function J must have zero variation at x∗. This can be expressed as:

δJ(x∗,δx) = 0, ∀ admissible δx (2.11)

Ja = E(x(τ0), t0,x(τ f ), t f )−ν
T e(x(τ0), t0,x(τ f ), t f )

+
t f − t0

2

∫ 1

−1

[
F(x(τ),u(τ),τ; t0, t f )−λ

T (t)
(

dx
dτ

− f(x(τ),u(τ),τ; t0, t f )

)
−µ

T (τ)h(x(τ),u(τ),τ; t0, t f )

]
dτ (2.12)

As in Equation 2.11, the variation of the augmented cost function is then set to zero
for any variation on the problem variables and this leads to the definition of a set of
first-order necessary conditions for optimality. To simplify these first-order necessary
conditions, it is possible to define an augmented Hamiltonian functional, H:
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H = (x,λ ,µ,u,τ; t0, t f ) = F(x,u,τ; t0, t f )+λ
T (t)f(x,u,τ; t0, t f )

−µ
T h(x,u,τ; t0, t f ) (2.13)

Hence it is possible to define the first-order necessary conditions as the Hamiltonian

Boundary Value Problem (HBVP):

dxT

dτ
=

t f−t0
2 f(x,u,τ; t0, t f ) =

t f−t0
2

∂H
∂λ

dλ T

dτ
=

t f−t0
2

(
−∂F

∂x −λ T ∂ f
∂x +µT ∂h

∂x

)
=− t f−t0

2
∂H
∂x

0T = ∂F
∂u +λ T ∂ f

∂u −µT ∂h
∂u = ∂H

∂u

e(x(τ0), t0,x(τf), t f ) = 0

λ (τ0)
T =− ∂E

∂x(τ0)
+νT ∂e

∂x(τ0)

λ (τ f )
T = ∂E

∂x(τ f )
−νT ∂e

∂x(τ f )

H(t0) = ∂E
∂ t0

−νT ∂e
∂ t0

H(t f ) =− ∂E
∂ t f

+νT ∂e
∂ t f

r

µ j(τ) = 0 ,when h j(x,u,τ; t0, t f )< 0, j = 1, . . . ,c

µ j(τ)≤ 0 ,when h j(x,u,τ; t0, t f ) = 0, j = 1, . . . ,c

(2.14)

When the control appears in the Hamiltonian in a linear form, it cannot be
uniquely determined from these optimality conditions. Hence, the weak form of
Pontryagin’s minimum principle is taken into account, finding the permissible control
that globally minimizes H in Equation 2.13. Pontryagin’s minimum principle states
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that the optimal control, u∗, satisfies:

H(x∗,u∗,λ ∗,µ∗,τ; t0, t f )≤ H(x∗,u,λ ∗,µ∗,τ; t0, t f ), ∀u ∈U, τ ∈ [−1,1]
(2.15)

where U denotes the domain of the control variables.
To determine the nature of the stationary point found with the equations presented in
this section, a second-order sufficiency check must be performed, to confirm if the
extremal solution is a minimum or a maximum.
The use of indirect method in optimal control has several advantages that make
it a popular choice for solving optimization problems. It is known for providing
high accuracy in the results. It has low computational cost and time, making it
use-efficient. Moreover, it provides theoretical insight into the problem, which can
be useful in understanding the underlying principles. However, the indirect method
also has some disadvantages that should be considered. In fact, treating complex
equations or constraints with this method can be difficult, and it may require making
preliminary assumptions about the constraint structure. Furthermore, the method
may be less robust compared to other methods and may not provide robust results in
all cases. Lastly, it can find stationary solutions which may be suboptimal and that
are dependent on tentative solutions.

2.1.3 Direct Transcription

By discretizing the problem and constraining the discrete parameters to satisfy
algebraic equations, the infinite-dimension Bolza problem can be converted, or
transcribed, into a NLP problem. That is, the continuous dynamic system can
be optimized without the use of the necessary conditions or costate variables in a
"direct" optimization. The steps required for a direct transcription method are [13]:

1. Discretization of the continuous-time dynamics into a finite number of time
steps.

2. Formulation of an optimal control problem as a nonlinear programming (NLP)
problem, including the objective function and constraints.

3. Solution of the NLP problem using numerical optimization algorithms to
obtain the control inputs.
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4. Validation of the resulting solution to ensure it meets desired specifications,
assessing the accuracy of the finite-dimensional approximation.

5. Iteration of steps 2-4 until an acceptable solution is obtained.

Discretization can be done on the control only, or on both state and control. In
the first case, the control inputs are discretized while the dynamics are propagated
using the approximate control inputs. It is necessary to ensure that any additional
constraints are satisfied and, along with the cost, they help guide the search direction
in the NLP optimization problem. On the other hand, a further classification into
local and global methods can be applied to state and control parametrization. When
a local method is considered, the dynamics are split into subintervals at the point
t0 ≤ t1, . . . , ti, . . . , tN ≤ t f , and state and control are found as:

xi+1 = x+
∫ ti+1

ti
f(x,u, t) dt (2.16)

where quadrature approximation are used to replace the integral part of Equation 2.16:

∫ ti+1

ti
f(x,u, t) dt ≈ hi

K

∑
j=1

β jf(x j,u j, t j), ti ≤ τ j ≤ ti+1 (2.17)

Some example of local methods are: Euler, Runge-Kutta and Hermite-Simpson.
Galerkin, Tau and Collocational methods are instead global methods, also known
as Pseudospectral methods [21]. In his work Fornberg [20] extensively presents
Pseudospectral methods and their peculiarity to approximate the solution x(t) by a
finite sum:

X(t) =
M

∑
k=1

akφk(t) (2.18)

where φk(t), k = 1, . . . ,M are called trials, expansion, or approximating functions,
indistinctly. They are the basis for the truncated series expansion of the solution and
they usually are trigonometric functions or orthogonal polynomials. To determine
the different element ak, presented in Equation 2.18, different test functions, which
try to ensure satisfaction of the differential equations, are used in Tau, Galerkin, and
Collocational methods. For example, Tau method picks expansion coefficients that
satisfy the boundary conditions and that warrant that the residual, defined as:

RM(t)φi(t) = Ẋ(t)− f(X(t),U(t), t) (2.19)
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is orthogonal to the basis functions. That means that the inner product between the
residual and the basis function is zero:

< RM(t)φi(t)>≡
∫ t f

t0
RM(t)φi(t) dt = 0, ∀i = 1, . . . ,M (2.20)

When considering a Galerkin method, φ̂i(t), i = 1, . . . ,M is a new set created by
combining the original basis functions and in which all the functions satisfy the
boundary conditions. Here the expansion coefficients are those in which the residual
is orthogonal to the new basis functions. As regard a collocational method, in this
case, the test functions are the Dirac delta functions and the residual must be null at
suitably chosen sets of collocation points, as:

RM(tk) = 0, ∀k = 1, . . . ,M (2.21)

Satisfying Equation 2.21 and the boundary conditions, the expansion coefficients for
the collocational methods are selected.
To summarize, direct methods have several advantages and disadvantages, such as:

• Pros

– They have the capability of treating complex problems

– They are well-suited to problems with constraints, as they can be easily
incorporated into the system of equations

– They have high robustness

• Cons

– They may not always produce highly accurate solutions. In some cases,
refinement of the solution may be required to achieve the desired level of
accuracy

– They can be computationally expensive

– The solution may depend on tentative values and it may be suboptimal
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2.2 Numerical Approximation Methods

In this section, we delve into the mathematical aspects of discretization and approxi-
mation methods required for direct Pseudospectral transcription. These methods are
not only applicable to direct Pseudospectral transcription but can also be employed
to discretize the Hamiltonian boundary value problem in the context of indirect
Pseudospectral transcription.

2.2.1 Global Polynomial Approximations

This section explores the concept of global approximation in the context of Pseu-
dospectral methods. Unlike the local collocation methods, such as the Hermite-
Simpson scheme, which utilize piecewise-continuous functions on arbitrary subinter-
vals, Pseudospectral methods employ globally interpolating Lagrange polynomials
as basis functions to approximate the state and control across the entire interval,
τ ∈ [−1,1] resulting in a global collocational scheme. These polynomials are defined
using a set of (N +1) point, τ0, . . . ,τN , on the time interval. The approximation of
the state, control, and costate of the optimal control problem is performed using [81]:

y(τ)≈ yN(τ) =
N

∑
l=0

φlyN(τl) (2.22)

where yN(τ)is a polynomial approximation of degree N on the interval [−1,1] and
φl(τ) (l = 0, . . . ,N) are the Lagrange polynomials, defined as:

φl(τ) =
N

∏
j=0, j ̸=l

τ − τ j

τl − τ j
=

g(τ)
(τ − τl)ġ(τ)

(2.23)

g(τ) is used to define the positions of the support points since it generates the trial
function (often related to Legendre and Chebyshev polynomials), while ġ(τ) is its
time derivative. For Lagrange polynomial, it can be shown that:

φl(τ j) =

1, l = j

0, l ̸= j
(2.24)
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From this property, it follows that the function approximation is equal to the true
function at the (N +1) points:

y(τ j) = yN(τ j) (2.25)

When it comes to discretizing a continuous-time interval, a straightforward approach
is to partition the interval into equally spaced support points. However, this dis-
cretization scheme has limitations when it comes to polynomial approximation. The
error between the polynomial approximation and the true function is not necessarily
reduced as the number of support points increases, particularly when the support
points are uniformly spaced. This phenomenon, known as the Runge phenomenon
[82], results in an increase in approximation error near the boundaries as the degree
of the polynomial approximation increases. This phenomenon is clearly shown in
Figure 2.1. Here, a Lagrange approximation of the function f (x) = 1/(1+ 25x2)

using 25 equally spaced points is presented and the poor accuracy of the approxima-
tion near the boundaries is evident.
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Fig. 2.1 Lagrange polynomial approximation of the function f (x) = 1/(1+25x2) using 25
equidistant points.
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This issue has been widely studied in literature [83, 84] and various methods
have been proposed to address it. One common approach is to use non-uniform
support points, such as the ones found using the roots of Chebyshev or Legendre
polynomials, which are specially chosen to reduce the Runge phenomenon. These
points have the characteristic to be denser towards the boundaries of the problem.
The comparison between equidistant points and non-uniformly spaced points, specif-
ically Legendre-Gauss-Lobatto points, is shown in Figure 2.2. The error is calculated
as the maximum absolute difference between the polynomial approximation and
the true function, et , and it is displayed in a logarithmic scale to better visualize the
convergence. The results show that the Lagrange approximation using LGL points
has a faster convergence rate and a smaller error than the uniform points, especially
for high degrees.
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Fig. 2.2 Comparison of approximation accuracy for function f (x) = et using uniform and
non-uniform spacing points in function of the number of support points considered.

These aspects are emphasized in subsection 4.1.3 where a comparative analysis
between Pseudospectral methods and the Trapezoidal Collocation method (TC)
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[13] is presented. In this context, Pseudospectral methods employing non-uniform
support points exhibit superior performance compared to TC, which relies on equally
spaced support points.

2.2.2 Gaussian Quadrature approximation

In the optimal control problem presented in section 2.1 the integral part of the
cost functional in Equation 2.7 and the dynamics constraints in Equation 2.8 must
be discretized and approximated with a high degree of accuracy. Hence, when
considering a Pseudospectral method, the concept is to approximate:

∫ b

a
f (τ)dτ ≈

K

∑
i=1

wi f (τi) (2.26)

by choosing the quadrature points (τ1, . . . ,τk) on the interval τ ∈ [−1,1] and the
quadrature weights (wi, i = 1, . . . ,K) in some optimal fashion, aiming to minimize
the error (or eliminate it entirely) for polynomials f of the highest possible degree.
Because there are 2K free parameters (the points and the weights), this integral
approximation should be able to achieve a 2K − 1 degree of precision. Different
approaches can be used in Gaussian quadrature. For example, it is possible to
consider as the quadrature points, or nodes K Legendre-Gauss points, and they can
be defined as the roots of the Legendre polynomial of degree Kth:

LK(τ) =
1

2KK!
dK

dτK

[(
τ

2 −1
)K
]

(2.27)

While the weights are calculated by:

wi =
∫ 1

−1
φ̃i(τ)dτ =

2(
1− τ2

i
)[

L̇K(τi)
]2 , i = 1, . . . ,K (2.28)

where L̇K is the derivative of the Kth-degree Legendre polynomial. LG nodes lie in
τ ∈ (−1,1).
Another possible approach uses the Legendre-Gauss-Radau (LGR) as nodes. They
are defined as the roots of LK(τ)+LK−1(τ). These support points lie on τ = [−1,1).
This leads to the reduction of the degree of freedom, making this choice of points
accurate to 2K −2 degree of precision. As regard the weights for the LGR points,
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they can be calculated as:

w1 =
2

K2

wi =
1

(1− τi)
[
L̇K−1(τi)

]2 , i = 2, . . . ,K (2.29)

Legendre-Gauss-Lobatto points are often used in Pseudospectral methods and lie
within the interval [−1,1]. This approach is unique in that it requires the quadrature
points to be located at both endpoints, reducing the degree of freedom by two and
making the scheme accurate up to 2K −3. By finding the roots of (1− τ2)L̇K−1(τ),
it is possible to determine the K LGL points, where L̇K−1(τ) is the derivative of the
(K −1)th order Legendre polynomial. For these points, the corresponding weights
can be expressed as:

wi =
2

K (K −1)
1

[Lk−1(τi)]
2 , i = 1, . . . ,K (2.30)

Figure 2.3 presents the position of 10 points per each type of quadrature method.
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Fig. 2.3 Comparison of position of 10 points using equidistant, Legendre-Gauss, Legendre-
Gauss-Radau and Legendre-Gauss-Lobatto collocation points
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2.2.3 Orthogonal Collocation

To transform the dynamic equations into algebraic conditions, the Pseudospectral
methods use orthogonal collocation. Assuming that K is the number of the considered
collocation points and N+1 are the points used to approximate the state. It is possible
to calculate the derivative of the approximated state at τk, the k-th collocation points,
as:

ẋ(τk)≈ ẋN(τk) =
N

∑
l=0

φ̇l(τk)xN(τl) =
N

∑
l=0

DklxN(τk), k = 1, . . . ,K (2.31)

D ∈ RK×N+1 is the differentiation matrix and it is expressed as:

Dkl =


ġ(τk)

(τk−τl)ġ(τl)
, if k ̸= l

g̈(τl)
2ġ(τl)

, if k = l
(2.32)

In this way, the differential equation is replaced by a set of algebraic conditions eval-
uated at the collocation points. In the nonlinear program the continuous differential
equations are transformed in a set of residuals:

Rk =
N

∑
l=0

DklxN(τl)−
t f − t0

2
f
(
xN(τk),uN(τk),τk; t0, t f

)
= 0, k = 1, . . . ,K (2.33)



Chapter 3

Methodology

This chapter introduces the Legendre Pseudospectral method, which forms the
foundation of the methodology utilized in this study. An indirect formulation of
the method is also presented, which utilizes a smoothing technique to enhance its
convergence. Additionally, to gain a better understanding of the various approaches
and how their results differ, we apply three different Pseudospectral methods to
solve a single-state problem and an orbit-raising problem. Lastly, the Bellman
Pseudospectral method is presented. It incorporates Bellman’s principle of optimality
and maps the discrete solution to the continuous time domain.

3.1 The Legendre Pseudospectral Method

In the subsequent section, we will outline the approach to resolving the Bolza
Problem by utilizing its approximation. To ensure clarity, it is essential to provide
clear definitions for the following problems:

• Problem B: original continuous Bolza problem

• Problem BN : discretization of Problem B through LGL points

• Problem Bλ : Bolza problem in the primal-dual space

• Problem BλN : discretization of Problem Bλ through LGL points

• Problem BNλ : dualization to Problem BN
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These problems will be further elaborated on in their application within the Legendre
Pseudospectral method.
The Direct Pseudospectral Method is a cutting-edge technique for solving optimal
control problems, which was first introduced by Elnagar et al. [19]. In their work,
they applied this method to address a linear quadratic control problem. Since
then, Fahroo and Ross have made significant contributions to the development and
refinement of the Pseudospectral Method [44, 85–87].
The Direct Pseudospectral Method consists of two key steps [44, 88]:

1. A global polynomial approximation for the state and control functions in terms
of their values at the Legendre-Gauss-Lobatto (LGL) points is adopted

2. Equations are imposed that approximate the solution to the original problem by
requiring that the state equations are exactly satisfied by their approximations
at the LGL points.

The polynomials used in this method are globally interpolating Lagrange polyno-
mials obtained from orthogonal Legendre polynomials. Hence, by definition, the
coefficients of the polynomial expansion are exactly the values of the functions at
the LGL points. By utilizing the same LGL points to discretize both the integral and
differential portions of the problem, already presented in subsection 2.1.1, the opti-
mal control problem is transformed into a nonlinear programming (NLP) problem
for the values of the states and controls at the LGL nodes.
The problem independent variable is time t, which runs from t0 to t f . Since
the LGL points lie in the interval [−1,1], a variable transformation to τ so that
[τ0,τ f ] = [−1,1] is needed:

t = 0.5[(t f − t0)τ +(t f + t0)] (3.1)

Hence Problem B can now be stated as:
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Problem B =



Minimize : J(u(·),x(·), t f ) = E[x(−1),x(1), t0, t f ]+
t f−t0

2
∫ 1
−1 F [x(τ),u(τ)]dτ

ẋ(τ) = t f−t0
2 f[x(τ),u(τ)]

e[x(−1),x(1), t0, t f ] = 0

h[x(τ),u(τ)]≤ 0

(3.2)

Here LN(τ)is the Legendre polynomial of degree N on the interval [−1,1]. The
LGL points, τl, l = 0, ...,N, are the initial and final points (τ0 = −1 and τN = +1)
and the zeros of the derivative of the Legendre polynomial L̇N when 1 ≤ l ≤ N −1.
We approximate the continuous variables by Nth degree polynomials of the form

x ≈ xN(τ) =
N

∑
l=0

x(τl)φl(τ) (3.3)

u ≈ uN(τ) =
N

∑
l=0

u(τl)φl(τ) (3.4)

where φ(τ) are the Lagrange polynomials of order N. They can be expressed as:

φl(τ) =
N

∏
k=0
k ̸=l

τ − τk

(τl − τk)
=

z(τ)
(τ − τl)ż(τl)

(3.5)

where z(τ) is an intermediate function, defined as:

z(τ) =
N

∏
k=0

(τ − τk) (3.6)

z(τ) contains the roots of L̇N(τ) plus the two endpoints (1 and -1).

z(τ) = (τ − τ0)L̇N(τ)(τ − τN) = ((τ +1)L̇N(τ)(τ −1) = (τ2 −1)L̇N(τ) (3.7)

When considering the Legendre equation:

d
dt

[(
τ

2 −1
)

L̇N(τ)
]
= N(N −1)LN(τ) (3.8)
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Hence:
ż(τ) = N(N −1)LN(τ) (3.9)

Considering Equation 3.7 and Equation 3.9, it is possible to write:

φl(τ) =

(
τ2 −1

)
L̇N(τ)

(τ − τl)N(N −1)LN(τ)
(3.10)

The Lagrange polynomials of order N satisfy the Kronecker relationship:

φl(τk) = δlk =

1 if l = k

0 if l ̸= k
(3.11)

This implies that:
xN(τl) = x(τl), uN(τl) = u(τl) (3.12)

Differentiating and evaluating Equation 3.10 at node k yields:

φ̇l(τk) =
1

N(N −1)LN(τl)

[
2τkL̇N(τk)

τk − τl
+

(
τ2

k −1
)

L̈N(τk)

τk − τl
−
(
τ2

k −1
)

L̇N(τk)

(τk − τl)
2

]
(3.13)

Considering Equation 3.8, it is possible to write:

N(N −1)LN(τ) = 2τL̇N(τ)+
(
τ

2 −1
)

L̈N(τ) (3.14)

This enables to simplify Equation 3.13:

φ̇l(τk) =
1

N(N −1)LN(τl)

[
N(N −1)LN(τk)

τk − τl
−
(
τ2

k −1
)

L̇N(τk)

(τk − τl)
2

]
(3.15)

As required by the second step of the method, the condition that the approximate
solutions satisfy the differential equations exactly at the specific LGL points must be
imposed. The derivative ẋN(τ) in terms of xN(τ) at the collocation points τk can be
found differentiating Equation 3.12 and evaluating the result at τk to obtain a matrix
multiplication:

ẋN(τk) =
N

∑
l=0

Dklx(τl) (3.16)
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where Dkl are entries of the (N +1)× (N +1) differentiation matrix D
Since the product

(
τ2

k −1
)

L̇N(τk) = 0 in Equation 3.15:

Dkl = φ̇l(τk) =
LN(τk)

(τk − τl)LN(τl)
(3.17)

By further manipulation, it is possible to obtain the differentiation matrix values at
the boundaries and when k = l. To eliminate the terms (τk − τl) in the denomina-
tor, we apply L’Hôpital’s Rule to Equation 3.15. The resulting terms give us the
differentiation matrix:

D := [Dkl] :=



LN(τk)
LN(τl)

· 1
τk−τl

, if k ̸= l

−N(N+1)
4 , if k = l = 0

N(N+1)
4 , if k = l = N

0, otherwise

(3.18)

The NLP problem can now be formulated as Problem BN . The integral part in
Equation 3.90 can be discretized. Hence, using the Gauss-Lobatto integration rule
yields:

JN(x,u, t f ) = E
[
x0,xN , t0, t f

]
+

t f − t0
2

∫ 1

−1
F [x(τ),u(τ)] dτ

= E
[
x0,xN , t0, t f

]
+

t f − t0
2

N

∑
k=0

F(xk,uk)wk (3.19)

where wk are the weights given by:

wk =
2

N(N −1)
1

[LN(τk)]
2 , k = 0,1, . . . ,N (3.20)

Subject to: [
t f − t0

2

]
f(xk,uk)−

N

∑
l=0

Dklxl = 0, k = 0, . . . ,N (3.21)

e [x0,xN , t0, tN ] = 0 (3.22)

h(xk,uk)≤ 0, k = 0, . . . ,N (3.23)
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The previous equations demonstrate the method’s simplicity, which preserves most of
the structure of the continuous problem. This simplicity is achieved by collocating the
equations at the LGL points, and the functions, except for the differentiation matrix D
that relates the different xk, are evaluated only at the LGL points, without depending
on neighboring points. It’s worth noting that the state differential constraint in
Equation 3.21, which approximates the derivative in the state equations using the
differentiation matrix, differs significantly from the approximation of the state
equations achieved by implicit integration rules.

3.1.1 Covector Mapping Theorem

The Covector Mapping Theorem (CMT) uses a set of simple "closure conditions",
imposed on the discrete primal-dual variables, so that a linear diagonal transfor-
mation of the Lagrange multipliers of the discrete problem provides a consistent
approximation to the discrete covectors of the Bolza problem [88–90]. The theorem
demonstrates how to achieve the high performance of the indirect method through the
significantly simpler implementation of the direct method. The solution of the direct
formulation can in fact be used to reconstruct the costates of the indirect formulation
without the need to introduce them as additional variables.
In section 3.1, Problem B and Problem BN have been presented. Possible optimal
solution to Problem B can be found, through the Minimum Principle, searching for
vector-covector pairs in the primal-dual space. This can be denoted as Problem Bλ

that satisfies Equation 3.90 and:

λ̇ (t) =−∂L(t)
∂x

(3.24)

∂L(t)
∂u

= 0 (3.25)

λ (t0) =− ∂Ee

∂x(t0)
(3.26)

λ (t f ) =
∂Ee

∂x(t f )
(3.27)

H(t0) =
∂Ee

∂ t0
(3.28)
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H(t f ) =−∂Ee

∂ t f
(3.29)

Here L defines the D-form of the Lagrangian of the Hamiltonian [91]:

L(x,u,λ ,µ) = H (x,u,λ )+µ
T h(x,u) (3.30)

µ satisfies the complementary condition:

µ
T (t)h(t) = 0 ∀t ∈ [t0, t f ] (3.31)

and Ee is expressed as:

Ee
(
x(t0),x(t f ), t0, t f ,ν

)
= E

(
x(t0),x(t f ), t0, t f

)
+ν

T e
(
x(t0),x(t f ), t0, t f

)
(3.32)

It is also possible to discretize Problem Bλ , approximating the costate by the Nth

degree polynomial:

λ (t(τ))≈ λ
N(t(τ)) =

N

∑
l=0

λlφl(τ) (3.33)

This leads to Problem BλN that wants to find XNP =
(
XN ;UN) and ΛNP =(λ0; . . . ;λN ;

µ0; . . . ; µN ;ν0;ν f ) satisfying Equation 3.21-Equation 3.23 and for k = 0, . . . ,N:

N

∑
l=0

Dklλl =−∂Lk

∂xk
(3.34)

∂Lk

∂uk
= 0 (3.35)

λ0 =−∂Ee

∂x0
(3.36)

λN =
∂Ee

∂x f
(3.37)

H0 =
∂Ee

∂ t0
(3.38)

H f =−∂Ee

∂ t f
(3.39)

µ
T
k hk = 0, µk ≥ 0 (3.40)
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It is also possible to apply a dualization to Problem BN . On that account, the
Karush-Kuhn-Tucker (KKT) conditions for Problem BN are derived. Defining the
Lagrangian:

J̄N
(

XNP, ν̃ , λ̃ , µ̃
)
= JN(XNP)+ ν̃

T e(x0,xN , t0, t f )+ (3.41)

N

∑
i=0

(
λ̃

T
i

[(
t f − t0

2

)
fi(XNP)−di(XN)

]
+ µ̃

T
i hi(XNP)

)

where ν̃ , λ̃ , µ̃ are the KKT multipliers associated with the NLP. The KKT first-order
necessary conditions can be written as [44]:

∂ J̄N

∂xk
= 0,

∂ J̄N

∂uk
= 0,

∂ J̄N

∂ tN
= 0

∂ J̄N

∂ t0
= 0 (3.42)

This results in:

∂L
∂xk

(
xk,uk,

λ̃k

wk
,

µ̃k

wk

)
+

N

∑
i=0

Dki

(
λ̃i

wi

)
= 0 k = 1, . . . ,N −1 (3.43)

Hence at the interior points the LGL-weight-normalized multipliers λ̃k
wk
, µ̃k

wk
satisfy

the same equations as the discrete costates (Equation 3.34). Moreover, at the initial
and final nodes, the KKT multipliers satisfy the following condition:

−w0

(
∂L
∂x0

(
x0,u0,

λ̃0

w0
,

µ̃0

w0

)
+

N

∑
i=0

D0i
λ̃i

wi

)
=

λ̃0

w0
+

∂ Ẽe

∂x0
≡ c0 (3.44)

wN

(
∂L

∂xN

(
xN ,uN ,

λ̃N

wN
,

µ̃N

wN

)
+

N

∑
i=0

DNi
λ̃i

wi

)
=

λ̃N

wN
+

∂ Ẽe

∂xN
≡ cN (3.45)

where Ẽe = Ee(x0,xN , t0, tN , ν̃).
Applying the KKT condition for the variables tN , t0 results in Lagrange multipliers
that satisfy also:

1
2

N

∑
i=0

wiH

(
xi,ui,

λ̃i

wi

)
=−∂ Ẽe

∂ tN
(3.46)

1
2

N

∑
i=0

wiH

(
xi,ui,

λ̃i

wi

)
=

∂ Ẽe

∂ t0
(3.47)
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Hence it is possible to formulate Problem BNλ as: Find XNP and Λ̃NP = (λ̃0; . . . ; λ̃N ;
µ̃0; . . . ; µ̃N ; ν̃0; ˜ν f ) that satisfy Equation 3.21-Equation 3.23 in addition to the follow-
ing nonlinear algebraic relations:

∂Lk

∂uk

(
xk,uk,

λ̃k

wk
,

µ̃k

wk

)
= 0 k = 0, . . . ,N (3.48)

µ̃
T
k hk = 0, µ̃k ≥ 0, k = 0, . . . ,N (3.49)

∂L
∂xk

(
xk,uk,

λ̃k

wk
,

µ̃k

wk

)
+

N

∑
i=0

Dki

(
λ̃i

wi

)
= 0 k = 1, . . . ,N −1 (3.50)

∂L
∂x0

(
x0,u0,

λ̃0

w0
,

µ̃0

w0

)
+

N

∑
i=0

D0i
λ̃i

wi
=− c0

w0
(3.51)

λ̃0

w0
+

∂ Ẽe

∂x0
= c0 (3.52)

∂L
∂xN

(
xN ,uN ,

λ̃N

wN
,

µ̃N

wN

)
+

N

∑
i=0

DNi
λ̃i

wi
=

cN

wN
(3.53)

λ̃N

wN
− ∂ Ẽe

∂xN
= cN (3.54)

1
2

N

∑
i=0

wiH

(
xi,ui,

λ̃i

wi

)
=−∂ Ẽe

∂ tN
(3.55)

1
2

N

∑
i=0

wiH

(
xi,ui,

λ̃i

wi

)
=

∂ Ẽe

∂ t0
(3.56)

The KKT conditions for Problem BN are intentionally expressed in a way that makes
it easier to define Closure Conditions. Closure Conditions can be described as a
collection of restrictions that need to be imposed on Problem BNλ to ensure that any
solution found for this limited problem is equivalent to the solution of Problem BλN .
By comparing the equations of Problems BNλ and BλN , the Closure Conditions can
be derived straightforwardly:

c0 = 0 (3.57)

cN = 0 (3.58)
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1
2

N

∑
i=0

wiH

(
xi,ui,

λ̃i

wi

)
= H0 = HN (3.59)

Hence it is possible to state the Covector Mapping Theorem as [88]: There exist La-
grange multipliers λ̃i, µ̃i that are equal to the Pseudospectral approximations of the
covectors λ N(ti), µN(ti), at the shifted LGL node ti multiplied by the corresponding
LGL weight wi. Furthermore, there exists a ν̃ that is equal to the constant covector
ν . We can represent this relationship as:

λ
N(ti) =

λ̃i

wi
, µ

N(ti) =
µ̃i

wi
, ν̃ = ν (3.60)

Fig. 3.1 Visual representation of the covector mapping principle, showcasing the unification
of direct and indirect methods in optimal control, as initially proposed by Ross and Fahroo
[88, 92]

The core of the theorem can be seen in Figure 3.1. It shows how the solution
to Problem BNλ can always be obtained from the solution to Problem BλN , but the
reverse is not necessarily true unless Closure Conditions are in place.

3.2 The Indirect Legendre Pseudospectral Method

PS methods can also be used in the context of indirect optimization methods to
discretize the resulting boundary value problem [93, 65, 66].
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Here a modified Pseudospectral method for an efficient numerical solution of a class
of switching optimal control problems is considered. This class of optimal control
problems, which are usually named bang-bang optimal control problems, arises in
trajectory design of a spacecraft. Moreover, due to the lack of basic information
about the optimal control structure, the numerical solution to this kind of problem
can be extremely difficult.
In this work, an Indirect Legendre-Gauss-Lobatto Pseudospectral Method to approx-
imate the solution of a class of switching optimal control problems is developed. In
subsection 3.1.1 we refereed at this method as Problem BλN , however, from now on
it is identified as Ind.PS for clarity. PS method using a low number of nodes suffers
the difficulty to reconstruct the bang-bang thrust profile properly due to the presence
of intermediate thrust values; hence it has been decided to solve this problem with
an indirect method. First, based on Pontryangin’s minimum principle, the first-order
necessary condition of optimality is derived. This leads to the definition of a Hamil-
tonian Boundary Value Problem (HBVP), as described in subsection 2.1.2. Then,
the state and costate functions are approximated with interpolating polynomials.
Consequently, the problem is converted to the solution of a system of algebraic
equations, in which the values of unknown functions at the LGL points are unknown
parameters. A very good initial guess to solve the obtained system of algebraic
equations for the unknown parameters is needed. Unfortunately, it is also demanding
to find. Therefore, a smoothing technique is used to overcome this difficulty. In
literature there are different techniques to smooth the time history of the acceleration
along the trajectory, regularizing the control discontinuities. Some of them introduce
smoothing functions at the level of the cost functional [94], and others apply directly
at the control level, using a hyperbolic tangent approximation of the bang-bang
control inputs [95].

3.2.1 Continuation Smoothing Approach

Considering the problem presented in subsection 2.1.1, here a perturbed performance
index is used, that is: Maximize

J(u(·),x(·), t f ) =
∫ t f

t0
[−∥u(t)∥+ εFu[u(t)]]dt (3.61)
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subject to:
ẋ(t) = f (x(t))+g(x(t))u(t), t ∈ [t0, t f ] (3.62)

The Hamiltonian function can be written as:

H =−∥u(t)∥+ εFu[u(t)]+λ
T [ f (x(t))+g(x(t))u(t)] (3.63)

Applying the Pontriagyn’s minimum principle [4, 79, 96], the extremal control can
be expressed as:

u∗(t) = argmin
u

−∥u(t)∥+ εFu[u(t)]+λ
T [ f (x(t))+g(x(t))u(t)] (3.64)

Resulting in:

u∗(t) = uε(t)
g(x(t))T λ (t)

∥g(x(t))T λ (t)∥
(3.65)

In this formulation F is a continuous function satisfying:

Fu ≥ 0 ∀u ∈ [0,1] (3.66)

ε is the continuation parameter and it is assumed to be in the interval ]0,1]. If
Fu(u(t))→+∞ when u approaches zero or one, then Fu is called a barrier function,
otherwise it is a penalty function.

Quadratic Penalty

A quadratic penalty function can be written as:

εFu[u(t)] = ε ∥u(t)∥(1−∥u(t)∥) (3.67)

This leads to a control uε(t):

uε(t) =


1 if s f ≥ ε

1
2 +

s f
2ε

if |s f | ≤ ε

0 if s f ≤−ε

(3.68)
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where the switching function s f is defined as:

s f =
∥∥g(x(t))T

λ (t)
∥∥−1 (3.69)

Logarithmic Barrier

The logarithmic barrier function is expresses as:

εFu[u(t)] = ε logu(1−u) (3.70)

The corresponding control is:

uε(t) =
2ε

2ε − s f +
√

s f 2 +4ε2
(3.71)

In Figure 3.2 it is possible to see the trends of the control uε as a function of a
s f ∈ [−1,1], and of the added costs (εF) as a function of the control uε ∈ [0,1] for a
logarithmic barrier function and a quadratic penalty function. The curves are drawn
for different values of the continuation parameter ε = [0.5,0.2,0.1,0.01,0.001].

Hyperbolic Tangent Function

Taheri and Abdelkhalik in [97] used the hyperbolic tangent function for shaping
low-thrust trajectories. However, in this work the function is introduced at the level
of the control, not affecting the formulation of the necessary conditions for the
indirect method. Here the control is expressed as:

uε(t) =
1
2

[
(ul +uu)+(uu −ul) tanh

(
s f − s fC

ε

)]
(3.72)

where ul and uu define the lower and upper bounds of the control input, and s fC is
the switching point. However, in the problems considered in this work, the switch-
ing points correspond to where the switching function crosses zero, hence s fC = 0.
The hyperbolic tangent acts as a smoothing filter and its behavior can be seen in
Figure 3.3, as a function of the s f and for various values of ε .
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Fig. 3.2 Optimal controls (uε ) and added costs (εF) for ε = [0.5,0.2,0.1,0.01,0.001].
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Fig. 3.3 Hyperbolic tangent control for ε = [0.5,0.2,0.1,0.01,0.001].

Here it has been decided to use a logarithmic barrier function to perform the
continuation smoothing approach. For a given n > 0, a sequence of values denoted
as εi (i = 1, ...,n) is defined with (ε1 > ε1 > ... > εn). Then, the problem is solved
sequentially using the solution obtained at step (i−1) as an initial guess for step i.
Finally, assuming that εn is sufficiently small, the solution of the last iteration
provides a very accurate approximation for the solution of the original problem.
Note that if εn is too small, the problem may become too stiff or infeasible, as the
original one.
Since our problem is discretized at the LGL nodes, it is possible to calculate the
value of uε at each node and use this value in the discretized differential equation.
Moreover, it is possible to approximate the costate by the Nth degree polynomial:

λ ≈ λ
N(τ) =

N

∑
l=0

λ (τl)φl(τ) (3.73)
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Furthermore, the costate differential equation, already presented in Equation 2.14,
can be discretized in the LGL nodes using Equation 3.73 and Equation 3.18:

N

∑
l=0

Dklλ (τl)+
t f − t0

2
∂H

∂x(τl)
[x(τl),λ (τl),u(τl)]≈ 0 (3.74)

Hence, the problem is converted in the solution of a system of algebraic equations
(Equation 3.75) to find the unknowns: x(τl), λ (τl) and uε(τl).

F



x(τ0)
...

x(τN+1)

λ (τ0)
...

λ (τN+1)

uε(τ0)
...

uε(τN+1)



=



∑
N
l=0 D0lx(τl)−

t f−t0
2 f[x(τ0),u(τ0)]

...

∑
N
l=0 DN−1lx(τl)−

t f−t0
2 f[x(τN−1),u(τN−1)]

∑
N
l=0 D0lλ (τl)−

t f−t0
2

dH
dx(τ0)

...

∑
N
l=0 DN−1lλ (τl)−

t f−t0
2

dH
dx(τN−1)

x(τ0)−x(t0)
Ψ
(
x(τ f ),λ (τ f ),u(τ f ),τ f

)


= 0 (3.75)

where:

Ψ
(
x(τ f ),λ (τ f ),u(τ f ),τ f

)
=


x(τ f )−xf

H
(
x(τ f ),λ (τ f ),u(τ f )

)
+ ∂Ee

∂ t f

(
x(τ f ),τ f

)
∂Ee

∂x(τ f )

(
x(τ f ),τ f

)
−λ (τ f )


(3.76)

3.3 Pseudospectral Methods Comparison

The performances of three Pseudospectral methods, namely the Legendre [44], Gauss
[48], and Radau [46], are presented in this section. These global methods employ
orthogonal collocation based on Legendre polynomials to approximate the state, with
N nodes along the trajectory. However, they differ in the choice of discretization
points and collocation points where the dynamic equations are transcribed into alge-
braic conditions. Here, we present these discrepancies, discussing the mathematical
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consequences of each point set, and performing a numerical comparison of the three
methods concerning the accuracy and convergence rates of the state, control, and
costate solutions.
While the Legendre method is already detailed in section 3.1, this section briefly
provides a more in-depth explanation of the Gauss and Radau direct transcription
methods, emphasizing the key differences between them. To ensure that the re-
sulting NLPs have the same size and to ensure consistency in the indices among
the approaches, it should be noted that the indexing utilized in this section may
change from that in the previous sections. In fact, in all the approaches used for the
numerical comparisons, N generally denotes the total number of discretization points
(nodes), and l and k denote the l − th node and k− th collocation point, respectively.

3.3.1 Radau Pseudospectral Method

In this work the Radau method uses the flipped Legendre-Gauss-Radau (LGR) points.
They are located in the interval t ∈ (−1,1] and they include the final point but not
the initial point. However, it is preferable for the discretization of optimal control
problems to cover the full interval, including both ends. Consequently, utilizing N−1
flipped Radau points along with the starting point, τ0 = −1, the N discretization
points are located in order to fully discretize the time window. Using a basis of
Lagrange polynomials, the state approximation is generated the same way as the
Legendre Pseudospectral method, where the nodes τl, l = 0, . . . ,N −1 are the initial
point plus the N −1 LGR points:

x ≈ xN(τ) =
N−1

∑
l=0

x(τl)φl(τ) (3.77)

In comparison to the Legendre Pseudospectral approach, the Radau method uses a
different number of collocation points, denoted as K, as distinct from the number of
discretization points, denoted as N. Here K is equal to the N −1 LGR points, hence
it is possible to define the K collocation equations as:[

t f − t0
2

]
f(xk,uk)−

N−1

∑
l=0

Dklxl = 0, k = 1, . . . ,K (3.78)
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The differentiation matrix D is here written as:

φ̇l(τk) = Dkl =


ġ(τk)

τk−τl ġ(τl)
, if k ̸= l

g̈(τl)
2ġ(τl)

, if k = l
(3.79)

where g(τl) = (1+ τl) [LK(τl)−LK−1(τl)]. The control is computed by using N −1
Lagrange polynomials, φ̄k(τ), as the collocation equations in the Radau technique
only concern the control at the Radau points.

u ≈ uN(τ) =
N−1

∑
l=1

u(τl)φ̄l(τ) (3.80)

As can be seen in Equation 3.80, the control is not defined at the initial node. There-
fore, it is possible to valuate the control at τl =−1 using a simple extrapolation.
Also in the Radau Pseudospectral method exists a mapping between the KKT multi-
pliers of the NLP and the costastes of the continuous-time optimal control problem
[86]. In particular, it is possible to state that:

λ
N(tk) =

λ̃k

wk
, (k = 1, . . . ,K) and ν̃ = ν (3.81)

A continuous-time approximation to the costate can be obtained using the discrete
values of the costate as illustrated in Equation 3.82

λ ≈ λ
N(τ) =

K

∑
l=1

λ (τl)φ̄l(τ) (3.82)

However, the NLP does not directly generate an initial costate estimation because
there is no collocation at the starting site. Nonetheless, by extrapolating Equa-
tion 3.82, it is possible to approximate the initial costate.

3.3.2 Gauss Pseudospectral Method

The Gauss Pseudospectral method utilizes Legendre-Gauss (LG) points, located
within the interval τ ∈ (−1,1), to determine the position of the nodes. These
LG points do not include the first and last points of the time interval, thus, to
fully discretize the interval, the N discretization points consist of (N −2) interior
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LG points, along with the initial point, τ0 = −1, and the final point, τ f = 1. To
approximate the state, a basis of N −1 Lagrange interpolating polynomials is used:

x ≈ xN(τ) =
N−2

∑
l=0

x(τl)φ̄l(τ) (3.83)

Where τl is the initial point plus the N − 2 LG points. It is important to note that
while the final point is included in the NLP discretization, it is not considered part of
the state approximation. This approach results in a state approximation that is one
order lower than the previous methods. However, this is necessary to maintain the
equivalence property between the KKT conditions and HBVP conditions. Similar to
the Radau Pseudospectral method, the Gauss Pseudospectral method uses a different
number of collocation points, K, and discretization points, N, with K ⊂ N. In
this method, the collocation points correspond to the LG points, hence K = N −2,
whereas the discretization points include both the LG points and the initial and final
points. Equation 3.84 presents the K collocation equation at the LG points:[

t f − t0
2

]
f(xk,uk)−

N−2

∑
l=0

Dklxl = 0, k = 1, . . . ,K (3.84)

To approximate the control at the N − 2 collocation points, a basis of Lagrange
polynomials, φ̃l(τ), of order N −2 is used:

u ≈ uN(τ) =
N−2

∑
l=1

u(τl)φ̃l(τ) (3.85)

To make sure that the final state abides by the state dynamics, a further constraint
must be introduced to the discretization. A Gauss quadrature is used to ensure this
and approximate the dynamics’ integral throughout the full interval:

x(τ f )−x(τ0)−
t f − t0

2

K

∑
k=1

wkf(xk,uk) = 0 (3.86)

Moreover, the mapping from the KKT multipliers to the HBVP variables can be
expressed as [98]:

λ
N(tk) =

λ̃k

wk
+ λ̃ f , (k = 1, . . . ,K) ν̃ = ν λ f = λ̃ f (3.87)
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where λ̃k are the KKT multipliers associated with the collocational equations in
Equation 3.84 while λ̃ f corresponds to the quadrature constraint of Equation 3.86.
The continuous-time costate approximation is created from the discrete costate using
a slightly modified basis of N - 1 Lagrange interpolating polynomials, denoted as:

λ ≈ λ
N(τ) =

K+1

∑
l=1

λ (τl)φ̄l(τ) (3.88)

where τl, (i = 1, . . . ,K +1) are the LG points plus the final point, τ f . It is important
to note that the state and costate approximations in the Radau Pseudospectral method
are based on different sets of Lagrange polynomials. The state is approximated using
(N −1) Lagrange polynomials based on the LG points and the initial time, while
the costate is approximated using (N −1) Lagrange polynomials consisting of the
LG points and the final time. This difference is necessary in order to maintain the
mapping between the KKT conditions and the HBVP conditions. Since no initial
multiplier in the NLP problem exists, to approximate the initial costate λ0 it is
possible to use:

λ0 = λ̃ f −
K

∑
k=1

Dk0λ̃k (3.89)

3.3.3 Single State Problem

The three Pseudospectral methods formerly described are now compared in a one-
dimensional optimal control problem where y(t) is the state, u(t) is the control, and
t f = 5. It can be stated as:

Problem B =


Minimize : J =−y(t f )

ẏ(t) = y(t)u(t)− y(t)−u2(t)

y(t0) = 1

(3.90)
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The exact solution for this problem is known:

y∗(t) =
4

1+3et (3.91)

λ
∗(t) =

−1
e−5 +6+9e5 e(2log(1+3et)−t) (3.92)

u∗(t) =0.5y∗(t) (3.93)

and it is also shown in Figure 3.4.
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Fig. 3.4 Optimal solution for single-state problem.

Results for the Legendre, Radau, and Gauss Pseudospectral methods have been
found using 10 nodes and the Matlab function fmincon, with the interior-point
algorithm and a step and constraint tolerance equal to 10−10. Figure 3.5 presents the
errors between the NLP and the exact solutions for the state, control, and costate in
each node. In particular, the errors on the state (|y− y∗|) are shown in Figure 3.5a.
When considering the whole interval, no method outperforms the others. On the
other end, focusing on the final node, it is possible to state that both LG and LGR
produce a very accurate final state and it has been claimed that the added quadrature
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Fig. 3.5 Errors on state, control and costate for the single-state problem using different
Pseudospectral methods.
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constraint in the NLP is what causes the exceptionally precise terminal state for the
LG [98]. Figure 3.5b displays the errors on the control. It is worth noting that, as
already explained previously, the Radau discretization lacks the initial control, while
the Gauss discretization lacks the control at both the initial and final time. Several
techniques can be used to compute these missing control values. One commonly used
approach is to extrapolate the control approximation equations, as outlined in the
literature [98]. Since the extrapolated controls are not explicit variables in the NLP,
it is assumed that they may be less accurate than methods that include the boundary
controls in the NLP formulation, such as the LGL. As shown in Figure 3.5b, Gauss
method’s boundary control estimate is the least accurate. Similarly, Radau method’s
initial control estimate’s accuracy is comparable to that of the LGR. However, it
is interesting to note that while the largest errors for Gauss and Radau occur at
the boundaries, LGL has a larger error at one of the interior points. The costate
comparison provided in Figure 3.5c reveals the most notable distinction between the
approaches. Overall the trajectory, the LGL costate approximation is significantly
less accurate than the other two methods. The approximation tends to bounce around
the actual solution, which is a problem with the LGL costate approximation that
is highlighted in this case and in the following section, too. It is also interesting
that the highest error in the LGL costate is at the boundary. It has been seen that
this behavior is due to the impossibility to satisfy contemporary the two conditions
required for the KKT multipliers presented in Equation 3.51-Equation 3.54. Whereas
the LGR generates an accurate starting costate (because there is no conflict), but a
less accurate end costate, the LG creates very accurate boundary costates because it
has no constraint conflict.

3.3.4 Orbit Transfer Problem

In this section, we compare results using the three different methods for a more
complex problem. It is the orbit-raising problem of Moyer and Pinkham [99] and
it has no analytical solution. However, it is a widely-studied [100, 44] classical
problem to transfer a spacecraft from an initially circular orbit to the largest feasible
circular orbit in a fixed time using a low-thrust engine. The problem’s state comprises
the spacecraft’s radial distance, r(t), the angular distance, θ(t), the radial velocity
component, u(t), and the transverse velocity component, v(t). The control variable
is the thrust steering angle β , measured from the local horizontal. The problem can
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be stated as:
Minimize:

J =−r(t f ) (3.94)

Subject to: 

ṙ(t) = u(t)

θ̇(t) = v(t)
r(t)

u̇(t) = v(t)2

r(t) −
1

r(t)2 +A(t)sin(β (t))

v̇(t) = −v(t)u(t)
r(t) +A(t)cos(β (t))

(3.95)

With initial and final constraints:
(r(0),θ(0)) = (1,0)

(u(0),v(0)) = (0,1)

(u(t f ),v(t f )) = (0,
√

1/r(t f ))

t f = 3.32

(3.96)

Here A(t) is the continuous acceleration, defined as:

A(t) =
T

m0 − ṁt
(3.97)

Where T = 0.1405, is the continuous thrust, m0 = 1 is the initial mass and ṁ= 0.0749
is the constant fuel consumption. All these values are given in normalized units.
Results using Gauss, Radau, and Legendre Pseudospectral methods are presented
in Figure 3.6, Figure 3.7 and Figure 3.8, respectively, using N = 64. As regard
the states and control, the three methods yield similar qualitative results. However,
upon examining Figure 3.8c, a noticeable dissimilarity is revealed in the costate
obtained by the LGL when compared to the LG (Figure 3.6c) and LGR (Figure 3.7c).
It is noteworthy that the LG and LGR display smooth behavior and generate an
appropriate estimate of λθ given the problem’s constraint of λ ∗

θ
being equal to zero,

but the LGL produces oscillatory values for both λθ and λr. This difference in costate
accuracy highlights a key distinction between costate estimations made with the LG
and LGR and those made with the LGL. It is evident from the results of this problem
that the LGL method exhibits significant inaccuracies in the boundary values of the
λθ and λr. The behavior under study has been previously observed in Garg et al.’s
work [59], whereas Fahroo and Ross’s findings [86] indicate that the LGL technique
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can accurately determine the costate without an oscillating pattern. Our results align
with those of Garg et al., and we attribute this behavior to fmincon inability to impose
the double conditions for the Lagrange multipliers in accordance with the KKT
conditions, resulting in considerable errors in the λ values. However, this problem is
circumvented when employing LGL discretization in an indirect method, which does
not encounter this difficulty, as evidenced by the notably accurate costate results
shown in Figure 3.9.
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Fig. 3.6 State, control and λ for the Moyer and Pinkham problem using LG Pseudospectral
method
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Fig. 3.9 States and costates for the Moyer and Pinkham problem using Ind.PS method

3.4 Bellman Pseudospectral Method

The PS and Ind.PS methods yield discrete-time values of the state and control vari-
ables that satisfy the discretized constraints, resulting in a discrete-time feasible
solution. However, to obtain a valid solution for the continuous-time optimal con-
trol problem, the discrete solution must be mapped back to the continuous time
domain. Although increasing the number of nodes is a simple approach to address
the discrepancy between discrete-time and continuous-time feasibility, it may not
be the most efficient method available. An alternative is presented by Ross [54],
who has proposed an antialiasing algorithm for low-thrust trajectory optimization
that incorporates Bellman’s principle of optimality. On the other hand the Bellman
Pseudospectral method [55] is based on the method presented in Ref. [54] but, it can
be applied to a broad range of optimal control problems, with or without the need for
antialiasing and it is able to locate discontinuities in controls even when the number
of PS nodes are low.
The reason for the difference in feasibility between discrete-time and continuous-
time lies in the approximation and interpolation errors. To minimize the error without
increasing the number of nodes, Bellman’s Principle can be utilized. This principle
can be expressed as follows: If an optimal trajectory from point A to point B is given,
then the trajectory from point C, which lies on the optimal trajectory, to point B is
also optimal.
Assuming we have a discrete-time feasible control {ui}n

i=0, that is a discrete control
resulting from the solution of a Problem BN . It generates a continuous-time trajec-
tory, x(t), we can measure the continuous-time feasibility using ∥xi −x(ti)∥, where
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i = 1, . . . ,n. If ∥xi −x(ti)∥ is small for i = 1, . . . ,ns ≪ n, we can resolve the problem
with x(tns) as the initial condition to reduce the measure of infeasibility. This process
can be repeated to obtain a feasible solution using a small number of nodes. However,
this method assumes that the system is controllable from each starting point because
without this assumption, no matter how large n is, a continuous-time feasible solution
cannot be generated.
This algorithm, summarized in the flowchart in Figure 3.10, can be outlined as:

1. Using a low number of nodes, solve the problem through PS or Ind.PS method.
{xi,ui}n

i=0 is the solution corresponding to discrete times {ti}n
i=0

2. The time interval [t0, tn] is partitioned into NB Bellman segments, t0 < t1 <

... < tNB = tn. These segments do not need to be uniformly spaced.

3. The differential equation is propagated from t0 to t1 using x0 as the initial
condition and linear interpolation for continuous-time reconstruction of the
controls, u1(t), t ∈ [t0, tn] based on {ui}n

i=0. That is merely the solution to the
initial value problem,

ẋ = f
(
x,u1(t)

)
, x(t0) = x0 (3.98)

This step generates a continuous-time trajectory, x1(t), t ∈ [t0, tn]. This propa-
gation is here done numerically via the Runge-Kutta 4/5 method.

4. After setting x0 = x1(t1) and t0 = t1 go to step 1; that is, set a new initial
condition as the value of the integrated state at the end of the period [t0, t1]
and solve the problem again for n. This generates a new sequence {xi,ui}n

i=0

corresponding to new discrete times {ti}n
i=0, etc.

5. The algorithm stops at the Nth
B sequence. The candidate optimal trajectory is

given by the Bellman chain:

{
x1(t), t ∈

[
t0, t1] ;x2(t), t ∈

[
t1, t2] ; ...xNB(t), t ∈

[
tNB−1, tNB

]}
:= xB(t), t ∈

[
t0, t f

]
Similarly, the corresponding controls are given by:

{
u1(t), t ∈

[
t0, t1] ;u2(t), t ∈

[
t1, t2] ; ...uNB(t), t ∈

[
tNB−1, tNB

]}
:= uB(t), t ∈

[
t0, t f

]
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If the proposed method is used with a sufficiently large n, the difference between
the discrete solution’s interpolation and the continuous optimal solution becomes
negligible. In such circumstances, the above algorithm serves as an illustration of
Bellman’s Principle of Optimality. Moreover, in this method, solutions are adopted
only for a short interval, and the full solution is determined by progressively moving
the initial condition towards the final conditions, reducing the traveled distance in
each iteration. Hence, a continuous-time feasible solution can still be provided by a
low number of nodes.
A simpler algorithm can be developed by setting the Bellman time segments’ end-
points exactly at the node points, tk ∈{ti}n

i=0, which eliminates step 3 of the algorithm.
Hence, instead of propagating the differential equation, we take {xi,ui}m

i=0, where
m ≪ n, as the solution over the Bellman segment and proceed. In this manner the
integration is avoided, however, because the results from numerical propagators
are typically regarded as accurate, their integration into the algorithm enhances its
practical value as it automatically shows that the "Bellman-sequenced trajectory" is
at least feasible from an engineering perspective.
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Fig. 3.10 Bellman Pseudospectral Method flowchart



Chapter 4

Results

PS methods have been widely used in the field of space trajectory optimization, but
there is a lack of precise characterization regarding the performance and capabilities
of these methods. Therefore, we aim to test PS on various orbital problems to
understand what factors influence their performance. Specifically, it is intriguing
to analyze how using few nodes can still yield satisfactory results, speeding up
the convergence/solution process. We will evaluate different sets of PS collocation
points, whether it is formulated directly or indirectly, and the effect of the number of
nodes, with a particular focus on bang-bang control and the accurate reconstruction
of the optimal thrust law. First, we explore the effect of the choice of the number of
nodes for the PS and indirect PS method, both using Legendre-Gauss-Lobatto (LGL)
and Legendre-Gauss-Radau (LGR). Next, we showcase the results obtained using
PS and Ind.PS inserted in the Bellman method.
To evaluate the precision of the methods, we compare the results obtained with
PS and Ind.PS with those obtained using an indirect method, which serves as a
benchmark. Finally, we apply the same numerical methods to solve a formation
reconfiguration problem.
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4.1 Orbital Transfer

4.1.1 Problem Formulation

In this section, the fuel-optimal transfer between two circular orbits, representative
of an Earth-Mars transfer, is considered. The formulation also deals with rendezvous
transfers. All the values are dimensionless, using the Sun-Earth distance, the Earth
circular velocity, and the spacecraft mass as reference values. The problem can be
stated as: Determine the control function, u(τ) = {β ,σ ,ψ}, and the corresponding
trajectory, x(τ) = {r,θ ,φ ,u,v,w}, that maximize:

J(u(·),x(·), t f ) = m f (4.1)

subject to

ṙ = u

θ̇ = v
r cosφ

φ̇ = w
r

u̇ = v2+w2

r − 1
r2 +

T β

m sinσ

v̇ =−uv
r + vw

r tanφ + T β

m cosσ cosψ

ẇ =−uw
r − v2

r tanφ + T β

m cosσ sinψ

ṁ =−T β

c

(4.2)

Spherical coordinates, set within an inertial reference system based on the equatorial
plane, have been selected for their ability to ensure slowly changing state variables,
thereby enhancing the efficiency and robustness of the NLP problem. The use of
Cartesian coordinates, while the most straightforward, becomes the least advanta-
geous option. This is primarily due to the need for a large number of discrete points
to capture the rapidly changing position and velocity variables [101].
The position of the vehicle is described by the radius r, the longitude θ , and the
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latitude φ while the speed is described by the components radial (i.e. towards Zenith)
u, East v, and North w in a local reference frame. In terms of the controls, β ∈ [0,1]
expresses the thrust magnitude, while σ and ψ determine the thrust direction, with
σ representing the in-plane thrust angle and ψ representing the out-of-plane thrust
angle, measured, respectively, from the horizontal plane with positive angles upward
and counterclockwise from the parallel, with positive angles to the North.
The initial and final condition for this problem are:

r(0) = 1

θ(0) = 0

φ(0) = 0

u(0) = 0

v(0) = 1

w(0) = 0

m(0) = 1

t0 = 0

r(t f ) = rT (t f + t∗)

θ(t f ) = θT (t f + t∗)

φ(t f ) = φT (t f + t∗)

u(t f ) = uT (t f + t∗)

v(t f ) = vT (t f + t∗)

w(t f ) = wT (t f + t∗)

(4.3)

where the subscript T denotes the target. The parameter t∗ is a problem optimization
variable for orbit transfer, while it must instead be set to 0 for rendezvous.
In this section, our focus is on a transfer to a circular target orbit with fixed radius.
As a result, the final boundary conditions are reduced to:

r(t f ) = rT = 1.524, u(t f ) = uT = 0, v(t f ) = vT = 1/
√

1.524, w(t f ) =wT = 0 (4.4)

The Hamiltonian of the problem is:

H =λru+λθ

v
r cosφ

+λφ

w
r
+λu

[
v2 +w2

r
− 1

r2 +
T β

m
sinσ

]
+

λv

[
−uv

r
+

vw
r

tanφ +
T β

m
cosσ cosψ

]
+

λw

[
−uw

r
− v2

r
tanφ +

T β

m
cosσ sinψ

]
−λm

T β

c

(4.5)
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The optimal value for the thrust angles, σ and ψ can be found nullifying the partial
derivatives of the Hamiltonian with respect to the thrust angles. It leads to:

sinσ =
λu

λV
(4.6)

cosσ cosψ =
λv

λV
(4.7)

cosσ sinψ =
λw

λV
(4.8)

where:
p =

√
λ 2

u +λ 2
v +λ 2

w (4.9)

is the primer vector and it is parallel to the optimal thrust direction.
H is linear with respect to β , then dH/dβ = 0 does not depend on β , hence it
is indeterminate. In such situations, PMP provides assistance by indicating that
the control value that maximizes H should be adopted. However, the problem is
meaningful only if β is bounded. In this case 0 ≤ β ≤ 1. Additionally, the switching
function s f = dH/dβ is introduced:

s f =
λV

m
− λm

c
(4.10)

and a bang-bang solution is found where the control magnitude β that maximizes
the Hamiltonian is the maximum (allowed) value if the switch function is positive,
the minimum if negative:

β =

0 if s f < 0

1 if s f > 0
(4.11)

The case of a switch function identically null over a finite time interval is not consid-
ered in Equation 4.11. In that occurrence, a singular arc arises: along the portion of
the optimal trajectory where s f = 0, the Hamiltonian is not an explicit function of the
control variables and higher-order necessary conditions are needed to determinate
the optimal control. In particular, all the time derivatives of the switch function up to
the least order at which the control appears explicitly have to be posed equal to zero
[79]. However, singular arcs do not exist in the numerical problems considered in
this thesis; thus Equation 4.11 encompasses all the possible instances.
The differential equations for the costates are provided by the Euler-Lagrange equa-
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tions (Equation 2.14):

λ̇r =
1
r2

[
λθ

v
cosφ

+λφ w+λu

(
−2

r
+ v2 +w2

)
+λv (−uv+ vw tanφ)+

+λw
(
−uw− v2 tanφ

)] (4.12)

λ̇θ = 0 (4.13)

λ̇φ =
1

r cosφ 2

(
−λθ vsinφ −λvvw+λwv2) (4.14)

λ̇u =
1
r
(−λrr+λvv+λww) (4.15)

λ̇v =
1
r

(
−λθ

1
cosφ

−2λuv+λv(u−w tanφ)+2λwv tanφ

)
(4.16)

λ̇w =
1
r

(
−λφ −2λuw−λvv tanφ +λwu

)
(4.17)

λ̇m =
T β

m2 λV (4.18)

Since the final mass is maximized, the boundary condition for optimality results in:

λm(t f ) = 1 (4.19)

Moreover, boundary conditions for optimality require also:

ν
T ∂e

∂ t∗
= 0 (4.20)

where e are the boundary conditions expressed in Equation 4.3 and Equation 4.4.
This results in the condition:

H f −T β f s f f = 0 (4.21)

In this work, three optimal phasing control problems are studied. They differ for
the fixed final time and the adimensional thrust used:

• Case 1: t f = 5.3257 and T = 0.1

• Case 2: t f = 20 and T = 0.01
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• Case 3: t f = 15.5 and T = 0.1

Case 1 has the final time equal to the minimum-fuel, optimal transfer time of the
Hohmann-like transfer, which was obtained with an indirect procedure [102]. The
other cases assume larger transfer time and/or different thrust magnitude.

4.1.2 Influence of the number of nodes

In this section, we discuss how the number of nodes used for the solution of PS
and Ind.PS influences the results, what are the limitations, and how to improve the
accuracy of the results. It has been decided to focus the research on LGL and LGR
nodes, due to their relevance in past and present literature.
The tentative solution is easily constructed using linearly spaced vectors, from the
initial values to the final ones, for r,θ , and m. Since the final mass value is unknown,
it is considered to be the 80% of the initial mass. Null values of φ ,u,w are used
in the tentative solution and a constant tentative v, equal to one, is adopted. When
the Ind.PS method is used, tentative values for the costates are also needed. It has
arbitrarily been decided to use unit values for λr,λu,λv and λm, while a null value is
assigned to λθ ,λφ and λw.
The value of m f obtained relies on both the optimality of the trajectory and the
approximations introduced by PS, which lack exact integration. Subsequently, it is
crucial to validate these findings using Bellman, considering not only the final mass
but also the error associated with the final conditions.

Case 1

The results for Case 1, obtained using an indirect method, are displayed in Figure 4.1.
The solution exhibits two thrusting arcs, occurring at the start and end of the transfer,
which correspond to positive values of the switching function. Additionally, since it
is a planar scenario, only the in-plane thrust angle is represented in Figure 4.1c and
it indicates that the control is mostly applied in the tangential direction. The final
mass achieved through the indirect method is m f = 0.828606, with the consumed
propellant mass (mp ) amounting to 17.14% of the total initial mass.
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Fig. 4.1 Trajectory, thrust, switching function, and in-plane thrust angle for Case 1 solved
with the indirect method

We begin by analyzing Case 1 using Pseudospectral methods, where we keep the
tentative solution fixed and vary the number of nodes. Moreover, it has been decided
to conduct this study considering both the LGL and the LGR methods to be able to
compare their behavior. Figure 4.2 displays how the number of nodes considered
affects the absolute error between the final mass obtained using Pseudospectral
methods and the optimal one (X∗), obtained using an indirect method.
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Fig. 4.2 Error on the final mass with different number of nodes for Case 1 considering LGL
and LGR methods
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Fig. 4.3 Thrust and switching function reconstruction for Case 1 using 10 nodes, considering
LGL and LGR method
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Fig. 4.4 Thrust and switching function reconstruction for Case 1 using 30 nodes, considering
LGL and LGR method
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Fig. 4.5 Thrust and switching function reconstruction for Case 1 using 50 nodes, considering
LGL and LGR method

The accuracy of the final mass improves as the number of nodes grows. Moreover,
LGR presents better results for each number of nodes used. Since the objective is to
not only estimate the mass but also practically implement the obtained control law in
a real application, it becomes crucial to examine the reconstruction of thrust along the
trajectory, together with the calculation of the switching function using the Covector
Mapping Theorem. Results obtained from simulations using 10 nodes (Figure 4.3)
are not enough accurate both in terms of final mass and thrust reconstruction. When
a limited number of nodes is utilized, PS is unable to accurately capture the precise
switching points. As a result, non-optimal intermediate thrust values (0 < β < 1)
are found, in contrast to the bang-bang control of the optimal reference solution
(shown in Figure 4.3a, where T = TMAX when s f is positive and 0 when negative).
Additionally, in Figure 4.3b, the reconstruction of s f for the LGL points seems not
correct, as it remains positive even in the coasting arc, where the engine is switched
off.
On the other hand, with 30 nodes both final mass and thrust profile are in agreement
with the optimal solution of the indirect method (see Figure 4.4). However, it is
noteworthy that LGL presents s f that oscillates at the boundaries. This behavior is
similar to the one presented in Figure 3.8c. Also in this case the costates λr, λθ , and
λu have oscillatory trend with larger range of values at the boundaries, resulting in
and oscillating s f in the same region. Moreover, at the switching points s f presents
values close to zero in correspondence of intermediate thrust values found by the
LGL PS. However, this issue does not occur when using the LGR method. In fact, it
presents fewer points where the thrust has intermediate values and a smoother s f .
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When using 50 nodes, the best results are obtained (Figure 4.5), but s f for LGL
still shows a peculiar behavior: two small region where s f is close to zero appear
when t ∈ [0.88,1.01] and t ∈ [4.56,4.67], in correspondence of the switching region.
Moreover, LGL s f retains the oscillatory trend, presented also in Figure 4.4b, at the
initial and final region of the transfer, due to the oscillating KKT multipliers found
with f mincon. Overall, it can be concluded that using a higher number of nodes
yields better results, however, 30 nodes already provide a satisfying accuracy and a
fast computational time, in the order of ten seconds. Furthermore, LGR seems to be
more suitable than LGL for thrust reconstruction and it is also able to find smoother
s f .
This analysis, which was carried out using the LGL and LGR Pseudospectral method
was also conducted with an Indirect Pseudospectral method (Ind.PS) with LGL as
discretization and collocation points.
The results obtained are presented in Figure 4.6. Visibly, adding more nodes has a
positive effect on the results. However, the cases with 40 and 50 nodes are worth a
deeper analysis.
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Fig. 4.6 Error on the final mass with different number of nodes for Case 1 considering Ind.PS
method
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Figure 4.7 displayed the thrust and switching function reconstruction for the two
cases. When considering 40 nodes, there is a point in the final thrusting arc where
the thrust value is intermediate. This occurs because, at that point, the switching
function has a value still positive but close to zero. Consequently, when we use
the smoothing technique to find the thrust at that particular point, the almost null
switching function causes the thrust to have an intermediate value that worsens the
final mass. In order for the thrust to be completely nullified, ε should be reduced to
a magnitude of 1e−14, which significantly increases the calculation time.
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Fig. 4.7 Thrust and switching function reconstruction for Case 1 using 40 and 50 nodes,
considering Ind.PS method

When using 50 nodes this issue does not occur and the results are in great agree-
ment with the indirect solution. Moreover, comparing Figure 4.7b with Figure 4.5a,
it is possible to state that using the Ind.PS avoids having many intermediate thrust
values thanks to the smoothing technique that expresses the thrust value in function
of s f and ε parameter, as explained in subsection 3.2.1. Furthermore, s f found
through the Ind.PS does not have that oscillatory trend shown in Figure 4.5b.
These results show that both the LGR/LGL Pseudospectral method and Indirect
Pseudospectral method are capable of producing good results for this case even with
a relatively low number of nodes. However, it should be noted that using the Ind.PS
method results in a smoother switching function and fewer instances of intermediate
thrust values and therefore a solution that more closely replicates the optimal one.
Nevertheless, this method requires slightly more computational time (approximately
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40 seconds when using 50 nodes) due to the additional iterations required by the
smoothing technique.

Case 2

Case 2 involves a longer transfer with two revolutions, as depicted in Figure 4.8,
showcasing the results obtained using the indirect method. In this scenario, three
thrusting arcs are observed, which contributes to a propellant consumption equivalent
to 17.29% of the initial mass. Consequently, the final mass is calculated to be
0.827087. Figure 4.8c displays the in-plane thrust angle obtained through the indirect
method, showcasing its optimal values within the range of −0.14deg to 1.6deg.
This indicates that the thrust exerted is predominantly directed tangentially along the
trajectory.
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Fig. 4.8 Trajectory, thrust, switching function, and in-plane thrust angle for Case 2 solved
with the indirect method

When Pseudospectral methods are used to solve Case 2, the presence of the first
brief coasting arc is difficult to capture. This is a predictable problem that arises
when the time step length of the PS method becomes comparable to or greater than
the length of the relevant thrust/coast arcs. Figure 4.9 shows the error on the final
mass for LGL and LGR.
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Fig. 4.9 Error on the final mass with different number of nodes for Case 2 considering LGL
and LGR method

Unlike the previous case, the trend of decreasing error is not observed as the
number of nodes increases beyond 40 for LGL. This is due to the method’s inability
to properly reconstruct the thrust in certain cases, leading to suboptimal results when
the nodes are not properly spaced. However, regardless of whether the LGL or LGR
method is used, the errors in the final mass never exceed 10−4. The largest error
occurs with LGL using 45 nodes, where the final mass is just 0.2% smaller than
the one obtained through the indirect method. The results obtained for 20 nodes,
Figure 4.10, indicate that this number of nodes is insufficient to correctly place the
first coasting arc along the trajectory, as both LGL and LGR do not place any node
in the position when the switch occurs for the indirect solution. Furthermore, the
second coasting arc identified through the Pseudospectral methods is considerably
smaller in comparison to the one obtained from the indirect solution. Also in this
case, the transition from maximum thrust to zero thrust occurs gradually, including
nodes with intermediate thrust values. Consequently, just a single point within the
second coasting arc has a thrust value of T = 0 both for LGL and LGR. As regard the
switching function, Figure 4.10b shows its trend. As already noted, LGR presents
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s f in greater accordance with the one found by the indirect method, while the one
related to LGL fluctuates more. Neither the LGL nor the LGR methods are capable
of identifying a negative switching function within the first coasting arc. Instead,
they both exhibit a point where s f approaches zero. Specifically, the LGL method
yields s f value of 6.9e−8 at t = 7.6, while the LGR method assigns a s f value of
1e−6 at t = 5.6. Both of them remain positive. However, LGL found a negative s f in
the second coasting arc preceded and followed by two regions of positive but close
to zero s f . LGR, on the other hand, found a negative s f for t = 16.47 and t = 17.64,
while the last node inside the indirect coasting arc has a positive, albeit small, s f .
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Fig. 4.10 Thrust and switching function reconstruction for Case 2 using 20 nodes, considering
LGL and LGR method

Upon examining Figure 4.9, it becomes evident that LGL exhibits higher errors
for N values of 45, 55, and 60. To clarify the reason behind this, we present the results
for N = 60, although this behavior is consistent also across the other aforementioned
cases. Figure 4.11a illustrates that LGL places the first coasting arc early in the
trajectory, compared to the first region where s find becomes negative. This leads to a
smaller final mass. Moreover, the second coasting arc, found by LGL, has a shorter
duration compared to the indirect solution. Figure 4.11b shows that the switching
function still presents oscillatory trend at the boundaries, has already found in Case
1. Additionally, it is is not aligned with the expected coasting arc, in fact, s f stay
positive where the LGL thrust is null for t = 1.2 and t = 1.4.



4.1 Orbital Transfer 67

-0.003

0

0.003

0.006

0.009

0.012

0 5 10 15 20

LGL

LGR

sf
ind

time

T
60 nodes

(a) Thrust reconstruction using 60 nodes

-0.1

0

0.1

0.2

0.3

0.4

0 5 10 15 20

LGR

Ind

LGL

time

sf

60 nodes

(b) s f reconstruction using 60 nodes

Fig. 4.11 Thrust and switching function reconstruction for Case 2 using 60 nodes, considering
LGL and LGR method

In contrast, LGR produces results that closely match those obtained through
the indirect method and it is also able to place a negative s f for t = 6.5. However,
Figure 4.11 demonstrates that even for negative s f , the thrust found by LGR PS is not
null but rather has an intermediate value. This is due to the LGR collocation, which
does not place enough nodes inside the coasting arc. In fact, as we have already
observed, the Pseudospectral method requires some nodes to transition between the
maximum and minimum value of the thrust.
Results using 70 nodes, shown in Figure 4.12, indicate that both LGL and LGR
yield satisfactory outcomes. Within the first coasting arc, the LGL method discovers
a higher thrust value compared to LGR. However, even with 70 nodes, the thrust
does not reach a null value. It is important to consider that the duration of the first
coasting arc is ∆t = 0.134, whereas the collocation points of the LGL/LGR method
in that region are spaced with a larger interval of ∆t = 0.34. This necessitates an
extensive number of nodes to accommodate multiple nodes within this arc and it
is outside the scope of this work. In contrast, the LGR method effectively recon-
structs the switching function, aligning closely with the indirect solution (see Figure
4.12b). Although the oscillations in the switching function observed in the LGL
method are diminished, some remnants are still present at the boundaries for this case.
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Fig. 4.12 Thrust and switching function reconstruction for Case 2 using 70 nodes, considering
LGL and LGR method

Results analyzing Case 2 using the Ind.PS technique are illustrated in Figure 4.13.
The number of nodes has little impact on the error in the final mass estimation. The
method successfully determines a final mass that, even in the worst-case scenario
with 20 nodes, is only 0.007% higher than the mass obtained through the indirect
method. Please be aware that Ind.PS does not provide exact integration, which
means that there is a possibility of obtaining higher final mass values compared to
the optimal solution obtained through the indirect method. Figure 4.14 presents
two examples, one with 25 nodes and the other with 60 nodes. Even with 25
nodes the switching function is highly consistent with the results obtained from
the indirect method. Additionally, using 60 nodes allows for accurate placement
of the first coasting arc, which was not possible with LGL as demonstrated in
Figure 4.11a. To reconstruct the thrust, a smoothing technique is employed, as
detailed in subsection 3.2.1. However, s f within the coasting arc exhibits a small
negative value that is inadequate for completely nullifying the thrust. Consequently,
within this coasting phase, intermediate thrust values persist regardless of whether
25 or 60 nodes are utilized.
An additional observation to make is that the Ind.PS approach yielded slightly higher
errors on the final masses in comparison to the solutions obtained with LGL/LGR
PS method. Nevertheless, utilizing Ind.PS ensures improved thrust reconstruction,
where the coasting arc is consistently positioned accurately along the trajectory, and
a smoother switching function is also achieved.
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Fig. 4.13 Error on the final mass with different number of nodes for Case 2 and considering
Ind.PS method
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Fig. 4.14 Thrust and switching function reconstruction for Case 1 using 25 and 60 nodes,
considering Ind.PS method
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Case 3

Figure 4.15 illustrates results obtained for Case 3 using the indirect method. The
solution demonstrates the presence of three brief thrusting arcs, aligning with positive
values of the switching function. Additionally, the in-plane thrust angle is depicted
in Figure 4.15c, indicating that, similar to previous cases, the control predominantly
applies in the tangential direction (highlighted regions), where σ presents smaller
values. The final mass attained through the indirect method is m f = 0.828618, which
is only slightly greater than Case 1 by 0.0014%. Furthermore, the consumed propel-
lant mass (mp) accounts for approximately 17.14% of the total initial mass.
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Fig. 4.15 Trajectory, thrust, switching function, and in-plane thrust angle for Case 3 solved
with the indirect method

The issue observed in the initial coasting arc of Case 2 could also manifest in a
scenario featuring three small thrusting arcs akin to those in Case 3. The challenge
of reconstructing the thrust trend arises from the brief duration of the thrusting arcs
(∆t1 = 0.956, ∆t2 = 0.362, ∆t3 = 0.335), necessitating closer node placement than
these intervals for precision. However, LGL and LGR points have the characteristic
that they are more dense at the beginning and at the end of the trajectory and more
sparse in the middle. This leads to difficulty to reconstruct the second thrust arc
since the number of nodes inside this arc is low.
The error in the final mass for various N is depicted in Figure 4.16. Increasing the
number of nodes does not necessarily lead to more precise outcomes, and there could
be multiple explanations for this phenomenon. For instance, in the case of LGL,
utilizing 25 nodes results in suboptimal outcomes because the method identifies four
thrusting arcs instead of three, with thrust values that are below the maximum, as
can be seen in Figure 4.17a.
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Fig. 4.16 Error on the final mass with different number of nodes for Case 3 and considering
LGL and LGR method

LGR detects three thrusting arcs, however, also in this case, the second firing does
not feature maximum thrust and in the last thrusting arc there is also an instantaneous
thrust switch. s f , as depicted in Figure 4.17b, exhibits oscillations at the boundary
when employing LGL, displaying similar behavior observed in previous cases.
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Fig. 4.17 Thrust and switching function reconstruction for Case 3 using 25 nodes, considering
LGL and LGR method
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However, in this scenario, also when utilizing LGR, s f experiences abrupt
switches between positive and negative values in the final portion of the transfer. For
these reasons, it is possible to state that 25 nodes are not sufficient to have accurate
and reliable results.
When considering 50 nodes, LGL exhibits a distinct behavior as shown in Figure 4.18.
At t = 1.5, the thrust assumes a T = 0.015 value, adding a burn that however cor-
responds to a negative switching function. Additionally, in the final thrusting arc,
there is an intermediate thrust value between zero and the maximum for 3 nodes,
corresponding to a switching function with a positive value, albeit very close to
zero. In this case as well, oscillations of s f can be observed at the boundaries of
the problem. Conversely, LGR outperforms LGL in terms of both functional and
thrust reconstruction. LGR achieves a higher thrust value in the second firing arc,
and the final arc is depicted without the switches observed in LGL. s f closely aligns
with the indirect solution. However, it exhibits an oscillating trend in the latter part
of the trajectory, maintaining a positive value even for t ∈ [15.3,15.5], where s find

becomes negative.
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Fig. 4.18 Thrust and switching function reconstruction for Case 3 using 50 nodes, considering
LGL and LGR method

Results for 70 nodes are depicted in Figure 4.19. In this case, LGR performs well,
but there is a minor imperfection whereby the thrust is null at three nodes in the final
firing arc, corresponding to a negative switching function. Conversely, LGL exhibits
the same behavior as in the previous results at t = 1.5, with a small additional arc
with T = 0.02. Additionally, it can identify the second thrusting arc, but since it
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lasts longer than the arc found using the indirect method, the third thrusting arc
disappears. Also in this case, the switching function presents greats fluctuations
at the beginning of the transfer, still remaining always positive. In the final nodes,
instead, it is negative, in accordance with the null thrust found by the PS.
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Fig. 4.19 Thrust and switching function reconstruction for Case 3 using 70 nodes, considering
LGL and LGR method

As regards the Ind.PS method, it is impossible to find good results. This could be
due to the fact that in this case, we have a system of algebraic equations that must be
satisfied and if the nodes are not placed correctly, convergence is not achieved. Hence
the Ind.PS is not an adequate method to solve problems with very short burning arcs.
This consideration on the thrusting arcs can be done just when the arc distribution is
known and it cannot be done in advance. Moreover, due to the nodes distribution,
this method seems to be more suited for problems with longer thrusting arcs, so that
one can be sure to reconstruct the thrust trend correctly.

4.1.3 Comparative analysis between Pseudospectral Methods
and Trapezoidal Collocation Method

This section undertakes a comparative analysis between Pseudospectral Methods
and the Trapezoidal Collocation (TC) Method. TC transforms a continuous-time
trajectory optimization problem into a NLP through the application of trapezoidal
quadrature, also known as the trapezoid rule for integration. As a result, each contin-
uous element of the problem is converted into a discrete approximation [13, 103]. In
this work results using the TC Method have been obtained using OptimTraj, a matlab
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library designed for solving continuous-time single-phase trajectory optimization
problems [104].
The study is conducted for Case 1 and Case 2 shown in previous sections, with a
focus on analyzing the computational time and the accuracy of the results. Table 4.1
compares LGR, LGL, Ind.PS, and TC methods in terms of computational time
required to achieve the solution in Case 1, for different number of nodes. Notably,
as the number of nodes increases, LGR emerges as the most efficient method for
problem resolution; on the other hand, TC is much slower and has computational
times comparable to or even greater than Ind.PS (where iterations are required by
the smoothing technique). As regard the control solution, TC effectively places the
two thrusting arcs, in line with the results obtained in subsection 4.1.2. Considering
Figure 4.2 and Figure 4.6, it is evident that LGR stands out as the method able to
find cost function values in great accordance with the results of the indirect optimal
solution. This observation holds true even when considering TC, as TC exhibits
a behavior similar to that of LGR. Specifically, when N > 20 both TC and LGR
present errors below 0.001%, then for N > 40 LGR is able to provide smaller errors
(2e−6) compared to 4e−6 found by TC.

Table 4.1 Computational time for Case 1 using LGL, LGR, Ind.PS, and trapezoidal colloca-
tional (TC) method.

Computational time [s] LGR LGL Ind.PS TC

N = 10 0.5833 0.5376 3.3848 1.5046
N = 20 3.4026 2.8493 9.8410 6.3858
N = 30 6.5833 6.3400 21.0159 15.7023
N = 40 14.7675 13.3935 38.7836 43.0655
N = 50 23.1853 26.4501 35.8338 89.9135

In Table 4.2, the computational time for solving Case 2 is presented. Similar to
Case 1, Ind.PS and TC exhibit a lower convergence rate, leading to an increase in
computational time. Additionally, for N ≤ 30, TC shows the highest errors |m∗

f −m f |
among the methods. However, for N > 30, the error decreases and remains below
0.002%. Despite this, an examination of the control results from the TC Method
in Figure 4.20 reveals a notable issue: the method fails to accurately position the
first brief coasting arc and is unable to find a T = 0 for t ∈ [16.333,18.867]. These
issues persist for all the numbers of nodes considered. In conclusione PS methods
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seem superior to TC, both in terms of speed of calculation and, when short arcs are
involved, of solution accuracy.

Table 4.2 Computational time for Case 2 using LGL, LGR, Ind.PS, and trapezoidal colloca-
tional (TC) method.

Computational time [s] LGR LGL Ind.PS TC

N = 20 5.1764 4.8180 9.6195 10.9729
N = 30 12.97933 17.3703 19.6586 21.2379
N = 40 16.3906 22.8714 33.8045 58.6003
N = 50 26.6686 49.0545 57.0068 94.0222
N = 60 44.1000 59.4665 64.9420 183.1912
N = 70 83.9097 87.3692 93.6745 260.6818
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Fig. 4.20 Thrust reconstruction for Case 2 using 60 nodes, considering TC method
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4.1.4 Bellman Pseudospectral Method

PS and Ind.PS methods provide solutions for the state and control variables at discrete
time intervals. To obtain a valid solution to the original continuous-time optimal
control problem, it is necessary to map the discrete solution to the continuous-time
domain. This is accomplished using the Bellman Pseudospectral method, in con-
junction with LGL, LGR, and Ind.PS methods, for Case 1 and 2 that have been
already presented. As previously explained in section 3.4, the control variables must
be interpolated from the discrete results during the propagation of the differential
equations in a segment. It has been seen, for Case 2 specifically, that the Pseudospec-
tral method finds intermediate thrust values. In the case where the thrust cannot
be modulated, we can utilize the switching function to reconstruct the bang-bang
solution. In fact, in line with Pontryagin’s Maximum Principle (PMP):

T =

TMAX if s f > 0

0 if s f < 0
(4.22)

In subsection 4.1.2 we have observed that the switching function presented a
smoother trend when employing LGR nodes. Based on these findings, it has been
determined that implementing the control reconstruction using the switching func-
tion based on the discrete solution of the LGR Pseudospectral method is the most
effective approach, compared to LGL.

Case 1

In light of the outcomes achieved through the LGL and LGR Pseudospectral ap-
proaches as well as the Ind.PS method in Case 1, we are now presenting the solution
attained using the Bellman approach to build a continuous solution. Four Bellmann
segments, equally space throughout the transfer, are used here.
The thrust applied during integration is depicted in Figure 4.21, which has been
obtained through interpolation of the discrete control solutions using LGL, LGR, and
Ind.PS methods for solving the problem. All the methods are able to reconstruct the
two thrusting arcs. The first one has a longer duration compared to the indirect solu-
tion, because the transition from a maximum thrust to a null one occurs gradually for
all the methods. In addition, Table 4.3 illustrates the errors between the adimensional
final integrated states and the target conditions, as well as the adimensional final
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Fig. 4.21 Thrust reconstruction for Case 1 using 30 nodes and NB = 4, considering Bellman
algorithm with LGR, LGL and Ind.PS. The thrust was reconstructed interpolating the discrete
control

mass. The small errors observed across all the methods provide compelling evidence
of their capability to attain the desired target conditions. Among the methods, LGL
yields the smallest error in reaching the final radius, while Ind.PS exhibits the largest
discrepancies from the target conditions.
However, Ind.PS has the highest final mass, whereas LGL and LGR achieve final
masses that are 0.04% and 0.03% lower (even though very close) than the indirect
solution, respectively. It should be noted that, as mentioned earlier, the thrust is inter-
polated from discrete outcomes in this analysis, meaning that intermediate values
between maximum and zero thrust can occur during integration. Furthermore, the
LGL solution presents an instantaneous thrust value of 0.01 at t = 4 (see Figure 4.21).
This can occur during the transition between two segments, where the continuation
of control is not applied, and the control law in the subsequent segment may differ
from the one determined previously.
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Table 4.3 Errors for the final states for Case 1 using Bellman + PS with NB = 4. The thrust
was reconstructed interpolating the discrete control.

∆x = |xT − xB| LGL LGR Ind.PS

∆r f 3.2e−5 4.6e−5 5.7e−5

∆u f 8.2e−5 5.2e−5 1.3e−4

∆v f 9.1e−5 9.7e−6 2.2e−4

m f 0.828246 0.828314 0.828638

Alternatively, if a purely bang-bang control is desired, the knowledge of s f can
be exploited to assess the thrust, as previously described. The results of this type of
reconstruction, using the Bellman algorithm in conjunction with LGR and Ind.PS,
can be observed in Figure 4.22. Here, we have illustrated both the thrust and the
switching function. Visibly, the switching function is not continuous: each segment
is, in fact, solved independently from the previous one, except for state continuity.
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Fig. 4.22 Thrust reconstruction for Case 1 using 30 nodes and NB = 4, considering Bellman
algorithm with LGR and Ind.PS method. The thrust was reconstructed using s f
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Therefore, the adjoint variables (both reconstructed/mapped for LGR PS meth-
ods or obtained by the Ind.PS solution) may be discontinuous at segment junctures.
Additionally, when utilizing LGR, there are three extra thrusting arcs, while Ind.PS
requires just two additional burns for t ∈ [1.33,1.26] and t ∈ [2.66,2.7]. To gain a
better understanding of the necessity for these extra arcs, Figure 4.23 presents the
evolution of periapsis (rp ) and apoapsis (ra ) with time.
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Fig. 4.23 Periapsis and apoapsis evolution for Case 1 using 30 nodes and NB = 4, considering
Bellman algorithm with LGR and Ind.PS method. The thrust was reconstructed using s f

When considering Bellman+LGR solution, after the initial burning arc, the
apoapsis has not attained the optimum value (as represented by the indirect solution).
Therefore, an additional arc is required to increase it as quickly as possible since it
is more convenient to modify it when closer to the periapsis. The other two burns
are instead used to slightly increase the periapsis. Conversely, when employing
Ind.PS, the apoapsis is already greater after the first burning arc, since it has a longer
duration; hence, two small braking arcs are incorporated. As a consequence, the
final mass is reduced, but the decrease amounts to only 0.28% for LGR and 1.3%
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for Ind.PS. Table 4.4 illustrates the errors between the adimensional final integrated
state and the target state.

Table 4.4 Errors for the final states and final mass for Case 1 using Bellman + LGR and
Ind.PS with NB = 4. The thrust was reconstructed using s f .

∆x = |xT − xB| Ind.PS LGR

∆r f 2.5e−4 3.6e−4

∆u f 2.2e−4 9.7e−5

∆v f 6.7e−4 7.6e−4

m f 0.817545 0.826287

Remarkably, the Ind.PS method demonstrates a propensity to attain the final
radius with more accuracy, despite the greater propellant requirement to achieve this
outcome. However, interpolating the control form the discrete solution yields smaller
errors on the final state, as can be seen comparing Table 4.3 and Table 4.4.
The Bellman method offers two distinct ways of utilization. The first approach
occurs when the evolution of states after integration does not deviate significantly
from the discrete solution. In this scenario, the Bellman solution closely resembles
the discrete solution, effectively transitioning from a discrete-time solution to a
continuous-time solution. This is exemplified by the solution obtained through the
interpolation of discrete controls ( Figure 4.21). Conversely, when the switching
function is employed, a strict bang-bang control is imposed. This control law differs
from the one used to achieve the PS solution. PS methods have in fact solutions with
intermediate thrust values and cannot attain a strict bang-bang control history. As a
result, the evolution of integrated states may differ from the discrete solution. In such
cases, the Bellman algorithm starts a new optimization process from the updated
initial states, allowing for the discovery of a new control law that may differ from
the solution obtained in previous iterations.

Case 2

When analyzing Case 2, different segment numbers (NB =4, 6, and 8) are used in
the Bellman method. Table 4.5 and Table 4.6 show the error between the obtained
final states (adimensional) and the target one, together with the final mass resulted
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after the integration. The errors exhibit a decreasing trend as the number of segments
increases for LGL, LGR, and Ind.PS, with all the considered cases yielding final
masses greater than those obtained through the indirect method (but do not exactly
attain the required final orbit). However, two exceptions, where the obtained final
masses are lower than the indirect one, are observed for LGL with NB = 4 and
LGR with NB = 8. In the former case, the final mass is 0.827024, requiring only an
additional 0.04% of propellant compared to the optimal required propellant mass.
As for LGR with NB = 8, the percentage of additional propellant decreases to just
0.01% when compared to m∗

p.

Table 4.5 Errors for the final states for Case 2 using Bellman + PS with NB = 4,6,8. The
thrust was reconstructed interpolating the discrete control.

NB = 4 NB = 6 NB = 8

∆x = |xT − xB| LGL LGR LGL LGR LGL LGR

∆r f 1.5e−4 5.3e−4 2.4e−5 1.7e−5 2.6e−7 2.6e−5

∆u f 1.5e−4 3.4e−5 7.5e−6 1.7e−6 3.4e−6 3.5e−5

∆v f 4.9e−6 3.7e−4 2.2e−5 4.1e−5 2.2e−6 9.2e−6

m f 0.827024 0.827160 0.827094 0.827112 0.827088 0.827067

Table 4.6 Errors for the final states for Case 2 using Bellman + Ind.PS with NB = 4,6,8. The
thrust was reconstructed interpolating the discrete control.

∆x = |xT − xB| NB = 4 NB = 6 NB = 8

∆r f 1.2e−3 8.1e−5 2.5e−5

∆u f 4e−4 1.5e−5 7.3e−5

∆v f 6.3e−4 1.6e−4 2.2e−5

m f 0.827099 0.827256 0.827113

Figure 4.24 displays the thrust behavior achieved with Ind.PS, LGL, and LGR in
the Bellman algorithm using 8 segments and shows that, within the first coasting arc
of the indirect optimal solution, Ind.PS detects the lowest thrust value. However, as
already shown in Figure 4.11a and Figure 4.14b, the PS methods, both in its direct
or indirect formulation, are unable to find that first coasting arc and this leads to an
integration that considers intermediate thrust value in this transfer region.
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Fig. 4.24 Thrust reconstruction for Case 2 using 40 nodes and NB = 8, considering Bellman
algorithm with LGL and LGR method. The thrust was reconstructed interpolating the discrete
control.
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Fig. 4.25 Thrust reconstruction for Case 2 using 40 nodes and NB = 4, considering Bellman
algorithm with Ind.PS and LGR method. The thrust was reconstructed using s f .
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To identify the initial coasting arc, where the thrust is null, one approach is to
leverage the information regarding the value of s f . As explained in subsection 4.1.4,
if s f at a given moment is negative, the use of zero thrust becomes optimal and
T = 0 is imposed during the integration process. This specific technique yields the
results presented in Figure 4.25. Bellman+Ind.PS approach successfully determines
the placement of the first coasting arc, exhibiting a remarkable alignment with the
solution obtained through the indirect method. Nevertheless, a slight variation arises
in the positioning of the second coasting arc, which occurs slightly earlier in the
transfer. Furthermore, this method exhibits engine switch-off during the latter part
of the transfer, specifically in the time interval t ∈ [19.8,20]. This contrasts with the
behavior of the indirect solution, which continues to thrust throughout this period.
However, when utilizing the Bellman+LGR approach, the position of the coasting
arc differs compared to the indirect solution. In this case, the first coasting arc
occurs within the time interval t ∈ [7.1,7.2], which is later compared to the timing
in the indirect solution (refer to Figure 4.25). Furthermore, the second coasting
arc takes place earlier and has a shorter duration. These variations in the control
strategy impact the evolution of periapsis and apoapsis, as depicted in Figure 4.26.
While the Ind.PS method closely follows the behavior of the indirect solution, the
Bellman+LGR approach exhibits a distinct pattern in the latter part of the transfer.
This is evident from the significantly different values of the final periapsis and
apoapsis compared to the target conditions. These discrepancies are also reflected
in Table 4.7, where the errors in the final state for LGR prove to be greater than
those obtained with Ind.PS. Regarding the final mass, the Bellman+LGR approach
yields m f that is 0.7% lower than the optimal final mass (m∗

f ). Conversely, the final
mass obtained by Bellman+Ind.PS aligns closely with the solution derived from the
indirect method. One should also note the larger error on the required velocity of the
Bellman+LGR approach, and the higher accuracy when Ind.PS is employed.

Table 4.7 Errors for the final states and final mass for Case 2 using Bellman + Ind.PS
NB = 4,6,8. The thrust was reconstructed interpolating the discrete control.

∆x = |xT − xB| LGR Ind.PS

∆r f 6.5e−3 1e−3

∆u f 1.9e−2 3.3e−4

∆v f 3.4e−3 6.2e−4

m f 0.821296 0.827020
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Fig. 4.26 Periapsis and apoapsis evolution for Case 2 using 40 nodes and NB = 4, considering
Bellman algorithm with LGR and Ind.PS method. The thrust was reconstructed using s f

In this particular case, employing the switching function to reconstruct the thrust
profile leads to a control law that, after integration, fails to precisely satisfy the final
target conditions when using Bellman+LGR (Table 4.7). However, results improve
when Bellman is used in conjunction to Ind.PS.

4.1.5 3D Case

So far, only two-dimensional scenarios have been taken into account. However, in
this particular section, a three-dimensional case will be examined. In this scenario,
a modification of inclination is also necessary. Initial and final orbits have orbital
parameters:

a(0) = 1, e(0) = 0, i(0) = 0, ω(0) = 0, tp(0) = 0, Ω(0) = 0, m(0) = 1 (4.23)

a(t f ) = 1.524, e(t f ) = 0, i(t f ) = 2deg, ω(t f ) = 0, tp(t f ) = 0, Ω(t f ) = 0 (4.24)

The required transfer must be accomplished in t = 7 with a thrust of T = 0.1 and
c = 1.
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Fig. 4.27 Trajectory, thrust, switching function, and control angles for Case 3D solved with
the indirect method

The trajectory and control results obtained from solving the problem using the
indirect method are presented in Figure 4.27. The solution showcases three regions
of thrust application. During the first two arcs, the thrust is primarily exerted in the
tangential and normal directions, as illustrated in Figure 4.27c. The angles σ and
ψ are depicted throughout the transfer, with the highlighted regions indicating the
firing arcs. The majority of the plane change maneuver occurs within the second arc,
where ψ reaches its highest value. Regarding the final thrusting event, it is executed
with a nearly zero σ angle and a ψ value ranging between 5.7deg and 7.9deg. This
transfer requires a propellant mass equal to the 17.5% of the initial total mass and at
the end of the maneuvers m f = 0.824977.
First, we perform an analysis utilizing 40 nodes for the LGL, LGR, and Ind.PS tech-
niques. The resultant thrust is depicted in Figure 4.28. All three methods accurately
position the three firing arcs along the trajectory. LGL found a longer second firing
arc where it places just one node with maximum thrust value while the other three
have intermediate values. This results in a slightly different trend of the inclination,
that starts to change earlier in the transfer, see Figure 4.29. All the methods ensure
that the orbital parameters follow the same evolution as the optimal indirect solution,
as evident from Figure 4.29, satisfying the required final conditions. Furthermore,
in terms of maximizing the final mass, all the methods yield a close approxima-
tion of the exact value. Specifically, Ind.PS obtains a final mass (m f ) that is only
0.04% lower than the optimal solution obtained via the indirect method, and this
discrepancy reduces further to 0.005% and 0.002% with LGL and LGR, respectively.
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Fig. 4.28 Thrust reconstruction for 3D Case using LGR, LGL, and Ind.PS method with 40
nodes
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Fig. 4.29 Semi-major axis, eccentricity and inclination for 3D Case using LGR, LGL, and
Ind.PS method with 40 nodes
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The transition from a discrete-time solution to a continuous-time solution, uses
Bellman method along with LGL, LGR, and Ind.PS. In this problem, the system is
divided into four segments, and the control values are interpolated from the discrete
solution during integration.
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Fig. 4.30 Thrust reconstruction for 3D Case using Bellman algorithm with LGR, LGL, and
Ind.PS with 40 nodes and NB = 4. The thrust was reconstructed interpolating the discrete
control.

Figure 4.30 shows that all three methods can identify the first two thrusting arcs,
but due to the control interpolation, the arcs are longer and have an intermediate
region where the thrust gradually decreases from its maximum value to zero. As
a result, integrated states deviate from the solutions obtained by Pseudospectral
methods. After the second burn, all methods behave differently from the optimal
indirect solution, as seen in Figure 4.30. Ind.PS identifies an additional brief burn at
t = 4.4. LGL finds a thrust that oscillates with values below Tmax at the beginning
of the third arc and then uses Tmax after t = 6.87. On the other hand, LGR finds
an additional firing arc with T < Tmax for t ∈ [6,6.27] to increase inclination and
periapsis, and decrease eccentricity, as shown in Figure 4.31. The use of interpolated
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controls results in a smooth variation of the orbital parameters.
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Fig. 4.31 Periapsis, apoapsis, inclination and eccentricity evolution for the 3D Case using 40
nodes and NB = 4, considering Bellman algorithm with LGL, LGR, and Ind.PS. The thrust
was reconstructed interpolating the discrete control.

The errors between the final and target states, as well as the final mass obtained
after integration, are presented in Table 4.8. In general, LGL method exhibits the
largest errors, which can be attributed to the intermediate values in the final thrusting
arcs, as previously explained. However, it manages to achieve a final mass that
is only 0.05% lower than m∗

f . On the other hand, the LGR method demonstrates
the greatest error in the final velocity v f and requires approximately 0.3% more
propellant. Despite the inclusion of an additional brief firing arc, the Ind.PS method
achieves a final mass that is merely 0.04% lower than the optimal solution. Moreover,
it proves to be the most effective method in avoiding abrupt switches in the thrust
reconstruction.
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Table 4.8 Errors for the final states and final mass for the 3D Case using Bellman + PS/ Ind.PS
with NB = 4. Results are shown for the two techniques: thrust reconstructed interpolating
the discrete control (T interpolated) and thrust reconstructed using the switching function
value (s f ).

T interpolated s f

∆x = |xT − xB| LGL LGR Ind.PS LGR Ind.PS

∆r f 2.1e−5 7.5e−5 5.4e−5 1.9e−3 1.2e−3

∆u f 1.2e−4 9.2e−5 4e−5 1.9e−3 1.1e−3

∆v f 1.5e−4 4.4e−4 9.6e−5 1.7e−3 1.9e−4

∆w f 2.3e−4 3.5e−5 2.6e−4 2.4e−4 2.1e−3

m f 0.824546 0.824433 0.824627 0.821759 0.823821

When the thrust value is determined based on the switching function value,
the outcomes differ as shown in Figure 4.32. In this scenario, the Bellman+LGR
approach yields a solution similar to the indirect method, but with an additional
brief thrusting interval between t = 5.25 and t = 5.3. This thrusting arc is primarily
employed to increase the inclination since, after the second burn, the spacecraft is un-
able to achieve the desired final inclination of 2deg ( Figure 4.33). Bellman+Ind.PS
discovers a distinct thrust profile with some notable differences. It includes a slightly
lengthier initial thrusting phase, followed by a second burn executed later during the
transfer, specifically between t = 3.96 and t = 4.58. In this case, between t = 5.25
and t = 5.38, the engine thrust is employed to decrease the inclination and eccentric-
ity while increasing the periapsis, as depicted in Figure 4.33. Then, for t ∈ [6.66,6.8]
the spacecraft performs the final thrusting arc. The discrepancies between the tar-
get and final states, along with the final mass, are presented in Table 4.8. Ind.PS
achieves marginally more accurate results and exhibits a final mass of 0.823821,
which demonstrates a 0.14% reduction compared to the optimal solution obtained
through the indirect method (m∗

f = 0.824977). Although this approach deviates from
the indirect method’s outcome, it solves the problem without significantly increasing
propellant consumption. Bellman+LGR produces results that align more closely with
the indirect method, yielding a final mass 0.39% smaller than the indirect method’s
solution. Also in this case, the errors on the final states are greater compared to the
one obtained using the interpolated discrete control.



90 Results

-0.05

0

0.05

0.10

0 2 4 6

LGR

Ind.PS

sf
 ind

time

T

Fig. 4.32 Thrust reconstruction for 3D Case using Bellman algorithm with LGR and Ind.PS
with 40 nodes and NB = 4. The thrust was reconstructed using s f .

0

0.5

1.0

1.5

2.0

0 2 4 6

LGR

Ind

ind.PS

e

i

r
p

r
a

time

Fig. 4.33 Periapsis, apoapsis, inclination and eccentricity evolution for the 3D Case using
40 nodes and NB = 4, considering Bellman algorithm with LGR and Ind.PS. The thrust was
reconstructed using s f .
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The cases examined thus far show that the control law derived from Pseudospec-
tral methods, which allow for the utilization of intermediate thrust values, ensure
a higher likelihood of reaching the desired target. In contrast, reconstructing the
control during integration based on the switching function does not always guarantee
the attainment of the desired target conditions. Specifically, in Case 2 solved with
Bellman+LGR, significant errors are observed in the final velocity. Nonetheless,
notable improvements are observed when the Bellman algorithm is combined with
Ind.PS, leveraging the s f value.
Interpolating the discrete control during the integration appears to be the most suit-
able method for effectively solving these types of problems. However, when a
bang-bang control is required, employing the switching function value to reconstruct
the control law using Bellman+Ind.PS allows for results that are still sufficiently
accurate.
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4.2 Formation Reconfiguration

In the preceding section, we employed Pseudospectral methods to solve orbital
transfer problems. However, these methods can be utilized in a wide range of
applications [105, 49]. In order to highlight their versatility, we have chosen to
apply the LGL, LGR, and Ind.PS methods to a formation reconfiguration problem.
This section is based on the work done in Ref.[106] and it considers a finite-thrust
reconfiguration of the relative motion between two spacecraft. One spacecraft, which
defines the reference orbit, is designated the “chief” and it is uncontrolled. The other
spacecraft is designated the “deputy” and it is controlled by a three-component thrust
input. The procedure searches to reconstruct the thrust profile to reach an aimed
final relative configuration, in a specified fixed time window. The study considers
Keplerian motion for the two spacecraft and the dynamics equations are developed in
terms of Relative Orbital Elements (ROE) [107, 108], that are nonlinear combination
of absolute orbital elements of the chief and deputy spacecraft.
In the Earth Centered Inertial reference frame (ECI), a spacecraft orbit can be
described using the absolute orbital elements:

x = OE =



a
e
i
Ω

ω

M


(4.25)

where a is the semi-major axis, e is the eccentricity, i is the inclination, Ω is the right
ascension of the ascending node, ω is the argument of perigee and M is the mean
anomaly. Considering the chief’s orbit as the reference one, it is possible to express
the ROE as: 

δa
δΛ

δex

δey

δ ix
δ iy


=



ad −ac

ac
(ϑd −ϑc)+(Ωd −Ωc)cos ic

ed cosωd − ec cosωc

ed sinωd − ec sinωc

id − ic
(Ωd −Ωc)sin ic


(4.26)
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Equation 4.26 can be used for circular reference orbits, but it is still singular for
equatorial ones (not used in this paper). Here the subscripts c and d correspond to
chief and deputy, respectively, and ϑ = ω +M is the mean argument of latitude. For
near-circular reference orbit, the relative semi-major axis δa and the relative mean
longitude δΛ represent the offsets in radial and tangential directions in the Radial-
Tangential-Normal (RTN) reference frame. Three unit vectors define the RTN frame:
ir in the radial direction positive outwards from the center of the Earth to the chief, it
in the direction of the spacecraft motion and in in the normal direction positive in
accordance to the direction of the angular momentum vector. This moving reference
frame is centered at the center of mass of the chief satellite, whose motion again
defines the reference orbit. δe is the relative eccentricity vector and it describes
amplitude and phase motion on the plane of the chief’s orbit, whereas δ i is the
relative inclination vector and it is related to the out-of-plane motion [107].
The problem can be stated as: Maximize:

J(u) =−
∫ t f

t0

√
u2dt (4.27)

Subject to:
ẋ = Ax+Bu (4.28)

x(t0) = x0 (4.29)

x(t f ) = xf (4.30)

u(t)≤ 1, t ∈ [t0, t f ] (4.31)

Here we consider just the in-plane motion, hence the dynamics can be expressed
using:

A =


0 0 0 0

−3
2

n 0 0 0

0 0 0 0
0 0 0 0

 (4.32)

where n is the chief’s mean motion. Equation 4.32 expresses the Keplerian motion
for both spacecraft, since perturbation can be neglected if the time control window
is short enough [109]. The simplified Gauss Variational Equations (GVE) [107]
map the effects of thrusting vector u = urir +ut it to variations of ROE, when the
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reference orbit is near-circular:

B =


0 2
−2 0

sinϑ 2cosϑ

−cosϑ 2sinϑ

 (4.33)

The Hamiltonian can be written as:

H =−|u|+λ
T (Ax+Bu) (4.34)

According to the Pontryagin’s Maximum Principle, the optimal control maximize H.
To this purpose, the thrust direction must be

u(t) = u(t)p(t) (4.35)

where u ∈ [0,1] and p is the primer vector defined as:

p(t) = BT
λ (4.36)

For this problem the switching function can be expressed as:

s f = |λ T B|−1 (4.37)

whereas the costate differential equations take the following form:

λ̇ =−∂H
∂x

=−AT
λ (4.38)

Considering Equation 4.32, it is possible to state that only λδa has a non-null
derivative, while the other costates stay constant throughout the trajectory.
The analysis is conducted for formation reconfiguration problems with the following
characteristics: the chief orbit is the same throughout the cases and its absolute
orbital elements are:

{a,e, i,Ω,ω,M}c = {7128.137km,0.001,80.19deg,50deg,0deg,0deg} (4.39)

that is a low-Earth, near circular orbit, with RE = 6378.137km Earth radius. Two
study-case are considered: Case FR 1 presents variations of δa and δΛ between
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Table 4.9 Initial and final ROEs (meters) for Case FR 1 and 2.

Case FR 1 Case FR 2

δa0 -100 0
δa f 0 0
δΛ0 1000 10000
δΛ f 9000 10000
δex0 500 500
δex f 500 200
δey0 -10 -10
δey f -10 100

the initial and final configuration with a maximum acceleration amax = 3e−5m/s2.
Whereas, Case FR 2 considers variations of the eccentricity vector δex and δey with
amax = 5e−5m/s2. The initial and final relative orbital elements used in Case FR

1 and 2 are shown in Table 4.9 and the considered final time is t f = 2P, where P
defines the chief’s orbital period.
In the following subsections, the two cases are studied using both LGL and LGR
PS and Ind.PS methods, then the Bellman method is applied to the same problems.
Results are found using 50 nodes and compared, in terms of required ∆V , with
the impulsive solutions obtained by Costigliola [110] ∆VCase FR1 = 0.1200m/s and
D’Amico [107] ∆VCase FR2 = 0.1676m/s.

4.2.1 PS Method

To address the problems using the PS method, it is necessary to have initial tentative
solutions for both the states (ROEs) and controls (u,α). In the formation reconfig-
uration problem, the control angle α is related to the ratio of radial velocity ur to
tangential velocity ut through the equation tanα = ur/ut . For the states, a standard
tentative solution can be easily constructed by creating linearly spaced vectors that
span from the initial values to the final values. On the other hand, for the control,
a constant value of the thrust angle α = π/2 is arbitrarily considered, along with a
tentative u that includes three burning arcs equally spaced throughout the trajectory.
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LGL

For Case FR 1 solved using LGL nodes, the acceleration profile and the corresponding
trajectory are presented in Figure 4.34. Results do not show the net thrusting arcs
we were expecting; the method tends to favor frequent on/off switches of the engine.
Consequently, the final ∆V value is ∆V = 0.1557m/s, which is 29% higher than the
value reported by Costigliola [110] for an impulsive case.
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Fig. 4.34 Acceleration and trajectory for Case FR 1 solved with LGL PS method
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Fig. 4.35 Acceleration and trajectory for Case FR 2 solved with LGL PS method

While the method is capable of achieving a solution with a ∆V value that is
reasonably close to the case involving impulsive thrust, the resulting acceleration
profile is not suitable for real problems. Results obtained for Case FR 2 exhibit
similar behavior to Case FR 1 (Figure 4.35) with the acceleration switching from
maximum to zero instead of finding net burning arcs. However, it is possible to
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identify five distinct thrusting regions, where the acceleration is primarily directed in
the transverse direction. The final ∆V = 0.1641m/s2 is 2% lower than the one found
by D’Amico [107] (note that the PS solution is an approximation so the obtained
mass value may not correspond to the actual one). Also in this case, even though the
∆V estimation is good, the acceleration profiles are not applicable to a real mission
concept.
In this thesis, a basic algorithm such as fmincon was used to avoid the requirement
of sophisticated software. However, when IPOPT [111], a software library designed
for large-scale nonlinear optimization of continuous systems, is employed, better
results are obtained as illustrated in Figure 4.36 and Figure 4.37. Here, it is possible
to identify net thrusting arcs, primarily exerted in the tangential direction. Regarding
the required ∆V for the reconfiguration, IPOPT determines a ∆V of 0.1711m/s for
Case FR 1, which is 9.9% higher than the fmicon solution. Conversely, for Case FR 2,
the ∆V is 0.1755m/s, representing a 7% increase compared to fmincon result.
The limits of using a less sophisticated optimization toolbox, such as fmincon, be-
come clear in this case, as it fails to accurately locate net thrusting arcs. Nonetheless,
the following section will show how this problem can also be solved by employing
different collocational points, such as LGR.
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Fig. 4.36 Acceleration and trajectory for Case FR 1 solved with IPOPT LGL PS method
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Fig. 4.37 Acceleration and trajectory for Case FR 2 solved with IPOPT LGL PS method

LGR

The utilization of the LGR discretization point leads to enhanced outcomes for both
cases. In Figure 4.38, four propulsion arcs are depicted for Case FR 1, displaying an
additional arc compared to the three-impulse solution found by Costigliola [110].
This leads to a required ∆V for executing the maneuver that is 48% higher compared
to the impulsive scenario. This increase can be attributed to the transition from an
impulsive case to a finite thrust scenario, where the impulse is spread across arcs.
Consequently, the thrust is applied not only at the most favorable points but also in
the surrounding region, leading to a degradation in the final performance.
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Fig. 4.38 Acceleration and trajectory for Case FR 1 solved with LGR PS method
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In relation to Case FR 2, a total of five thrusting arcs are observed (Figure 4.39).
Nevertheless, when examining the switching function generated exploiting the CMT,
it becomes apparent that the fourth firing arc does not align with the region char-
acterized by a positive switching function. This indicates a discrepancy between
the Pseudospectral control and the switching function value. However, despite this
inconsistency, applying the discrete control found by LGR results in a ∆V that is
only 1.4% higher than that of the impulsive case. The significant agreement with
the impulsive solution observed here can be attributed to the shorter duration of the
thrusting arcs, highlighting the potential of utilizing LGR PS method to solve this
class of problems.
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Fig. 4.39 Acceleration and trajectory for Case FR 2 solved with LGR PS method

4.2.2 Ind.PS Method

In the Ind.PS method, it is necessary to provide an initial tentative solution for the
costates as well. For this purpose, the values of λδΛ0 , λδex0

, and λδey0
are set as

constants with a value of 0.1. As for λδa, it is divided into five segments with
alternating values of 1 and 0. Furthermore, the smoothing technique is initiated
with an ε value of 1 and continues until the ε value reaches 1e−7, at which point
the smoothing process is stopped . Results regarding Case FR 1 are presented in
Figure 4.40. Also in this case, the optimal three-impulse solution in Costigliola [110]
is converted in four thrusting arcs. However, it has been verified that when the value
of the maximum acceleration is increased, one of the arcs vanishes with the remaining
three short arcs in correspondence with the impulses. The acceleration is primarily
applied in the tangential direction near the apsides, as depicted in Figure 4.40b, where
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the highlighted regions represent the burning arcs. The ∆V required to perform the
reconfiguration is equal to 0.1679m/s, 40% greater than the one obtained with an
impulsive strategy. Also in this case, the discrepancy arises due to the distribution
of thrust across relatively long arcs, rather than being solely applied in the most
advantageous positions. As a result, the overall performance is diminished. However,
when the acceleration is increased to a = 6e−5m/s2, the solution closely resembles
the impulsive approach, leading to a decrease in the required ∆V to 0.1388m/s
(only 15.7% greater than the optimal value). This demonstrates that by employing
lower acceleration values, the ∆V increases due to the use of thrust in non-favorable
positions.
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Fig. 4.40 Acceleration, primer vector and trajectory for Case FR 1 solved with Ind.PS method

On the other hand, Case FR 2 presents five thrusting arcs, aligned with region of
positive s f and distributed as shown in Figure 4.41. Upon analyzing Equation 4.33,
it becomes evident that tangential thrust at the apsides yields more favorable results
for altering the eccentricity vector. This observation is supported by Figure 4.41b,
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which demonstrates that the thrusting arcs align with the maximum value of |pt |.
Remarkably, the obtained results exhibit close agreement with the impulsive strategy.
In this case the three-impulse solution is transformed to a five-arc solution. However
the duration of these arcs is short (around 15 minutes), resulting in a ∆V that is just
4% greater than the one found by D’Amico [107]. This highlights the suitability of
this approach for efficiently and effectively solving such problems.
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Fig. 4.41 Acceleration, primer vector and trajectory for Case FR 2 solved with Ind.PS method

4.2.3 Trapezoidal collocational method

Similar to the approach taken for orbital transfer problems, we aim to assess the
performance of the TC method in comparison to the PS methods for formation
reconfiguration problems. The results depicted in Figure 4.42 and Figure 4.43,
utilizing 50 nodes and the TC method, show excellent agreement with solutions
obtained through LGR and Ind.PS. The placement of thrusting arcs is accurate,
and the required ∆V s for reconfigurations align with those obtained from different
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methods. Specifically, for Case FR 1 ∆V = 0.1721m/s and ∆V = 0.1835m/s for
Case FR 2, requiring respectively, an additional 43.4% and 9.5% in change in velocity
compared to the impulsive cases. Therefore, it can be affirmed that the TC method is
well-suited for addressing these types of problems. Additionally, the computational
time of TC is comparable to that of the LGR and Ind.PS methods, since the rate of
convergence is slower for all these methods when solving formation reconfiguration
problems.
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Fig. 4.42 Acceleration and trajectory for Case FR 1 solved with TC method
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Fig. 4.43 Acceleration and trajectory for Case FR 2 solved with TC method

4.2.4 Bellman Algorithm

After obtaining results for both PS and Ind.PS methods, the next step involves
applying the Bellman algorithm to map the discrete solutions into the continuous
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time domain for the same problems. In this study, two and four Bellman segments
(NB) are deemed sufficient to achieve satisfactory accuracy and are thus utilized.
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Fig. 4.44 Acceleration and trajectory for Case FR 1 solved using Bellman+LGL PS method
and NB = 2.
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Fig. 4.45 Acceleration and trajectory for Case FR 2 solved using Bellman+LGL PS method
and NB = 2.

During the application of the Bellman method in the LGL PS case, the occurrence
of numerous engine switches is also observed, leading to significant errors in the final
states (on the order of hundreds of meters), as depicted in Figure 4.44 and Figure 4.45.
A clear distinction can be observed when comparing Figure 4.45b with Figure 4.35b,
where the final position deviates entirely from the desired position (indicated by a
red cross). Notably, the errors on the final δa and δΛ are as large as 115m and 305m,
respectively. The LGL PS method appears inadequate for solving this type of bang-
bang problem, as it fails to identify an appropriate acceleration profile. Consequently,
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when the Bellman algorithm is applied, the resulting trajectories deviate significantly
from the required end conditions.
Figure 4.46 and Figure 4.47 showcase the acceleration trend and trajectory derived
from the utilization of the Bellman algorithm in conjunction with the LGR PS and
Ind.PS method, respectively, for Case FR 1. Notably, in this instance, the control
employed during the integration process is interpolated from the discrete control
solution. In Figure 4.46a, using LGR and NB = 2 the thrust retains the same trend
as in the discrete solution. However, when considering 4 segments the forth arc is
divided in two separated arcs, with a brief coasting arc for time/P ∈ [1.42,1.44]. On
the other hand, when considering solution of the Bellman+Ind.PS (Figure 4.47), four
thrusting arcs are still present.
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Fig. 4.46 Acceleration and trajectory for Case FR 1 solved with Bellman+LGR PS method,
using discrete control interpolation
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Fig. 4.47 Acceleration, primer vector and trajectory for Case FR 1 solved with Bell-
man+Ind.PS method, using discrete control interpolation

Due to the lack of continuity equations for the costates between the segments,
Figure 4.47b shows the components of the primer vector p display sudden changes
in their values. Considering both results using LGR and Ind.PS in the Bellman
algorithm, the errors on the final states for Case FR 1 after integration are presented
in Table 4.10. Using 2 segments already achieves a satisfactory level of accuracy in
meeting the final condition. However, when 4 segments are employed, the errors are
reduced to just a few meters, indicating a higher level of precision. These findings
emphasize the effectiveness of interpolating discrete controls during integration,
resulting in favorable outcomes within the continuous time domain.
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Table 4.10 Errors on the final ROEs after the application of Bellman algorithm for Case FR 1,
using discrete control interpolation.

Ind.PS LGR

Errors on final ROEs [m] NB = 2 NB = 4 NB = 2 NB = 4

δa f 4.9 0.5 0.6 0.1
δΛ f 20.3 8.3 16.6 9.8
δex f 0.01 1.5 2.7 0.9
δey f 2.8 2.3 0.5 0.5

The same considerations can be done for Case FR 2. Figure 4.48a illustrates
the results obtained using Bellman+LGR method. The thrust presents three addi-
tional short thrusting arcs when employing NB = 4, loosing the net five-arc solution
obtained by the Pseudospectral case (see Figure 4.39a). However, this assures fi-
nal states well aligned with the desired problem final conditions (Figure 4.48b).
Greater errors are instead found for NB = 2, especially for the δΛ f , where the error
is 16.6m/s, as shown in Table 4.11. Hence, also in this case, using 4 segments
allows for better results. As regard results obtained with the Ind.PS method, the
acceleration retains the five-burning arcs structure both for NB = 4 and 2. The primer
vector changes its value through the segments as result of the change in the costates
(Figure 4.49b). Moreover, also in this case, NB = 2 presents a 33.7m/s error on δΛ f

(Table 4.11), resulting in an end point in the trajectory that goes beyond the required
end conditions (red cross). Results improve when using NB = 4, with errors below
3.5m/s for all the states.

Table 4.11 Errors on the final ROEs after the application of Bellman algorithm for Case FR 2,
using discrete control interpolation.

Ind.PS LGR

Errors on final ROEs [m] NB = 2 NB = 4 NB = 2 NB = 4

δa f 6.9 1.5 6 0.9
δΛ f 33.7 3.4 13.4 4.8
δex f 4.1 0.5 1.3 5.8
δey f 6.2 0.1 0.8 2
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Fig. 4.48 Acceleration and trajectory for Case FR 2 solved with Bellman+LGR PS method,
using discrete control interpolation
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Fig. 4.49 Acceleration, primer vector and trajectory for Case FR 2 solved with Bell-
man+Ind.PS method, using discrete control interpolation
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When a pure bang-bang control is sought, it is possible to exploit the switching
function to evaluate the thrust magnitude, as already done for the orbital transfer
problem. Figure 4.50 displays the results obtained with Bellman+LGR PS for
Case FR 1, using s f . Case FR 1 presents an additional arc when considering 4 Bellman
segments when time/P ∈ [1.59,1.62]. Even if this does not lead to appreciable
differences in the trajectory (Figure 4.50b), Table 4.12 shows smaller errors, below
5m, when considering 4 segments. The same behavior is also observed when
using Bellman+Ind.PS, with the addition of a firing arc for NB = 4 when time/P ∈
[1.59,1.62]. Moreover, when NB = 2, the acceleration is mostly exerted in the
tangential direction in the second segment, as shown in Figure 4.51, where, in
the highlighted region, pt = −1 and pr = 1e−6. Furthermore, Table 4.12 shows
decreasing errors when increasing the number of segments, with the error on δΛ f

that goes from 81.9m when NB = 2 to 12m when NB = 4.

Table 4.12 Errors on the final ROEs after the application of Bellman algorithm for Case FR 1,
using s f for control reconstruction.

Ind.PS LGR

Errors on final ROEs [m] NB = 2 NB = 4 NB = 2 NB = 4

δa f 18.9 1.6 3.6 3.5
δΛ f 81.9 12 23 1.8
δex f 6.4 1.7 6.9 4.9
δey f 3.3 2.1 15.7 3.1
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Fig. 4.50 Acceleration and trajectory for Case FR 1 solved with Bellman+LGR PS method,
using s f for control reconstruction
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Fig. 4.51 Acceleration, primer vector and trajectory for Case FR 1 solved with Bell-
man+Ind.PS method, using s f for control reconstruction

Regarding the resolution of Case FR 2 using the Bellman algorithm in conjunction
with LGR PS, we have observed in Figure 4.39a that the fourth region of positive
switching function (s f ) does not align with the thrusting arc obtained from the
PS method. Additionally, the first arc does not exhibit a maximum thrust value.
Consequently, when integrating the system by considering a maximum thrust based
on the positive s f , the evolution of the relative orbital elements (ROEs) differs from
the pure Pseudospectral solution. Moreover, in the final region of the problem s f
does not present positive values, leading to the disappearance of the last thrust arc
when employing 2 segments. This discrepancy also results in greater errors in the
final states, as illustrated in Table 4.13. However, notable improvements are observed
when 4 segments are utilized in the trajectory reconstruction, where the five-arc
solution is still found. Moreover, a highly accurate solution is achieved when solving
the problem using the Bellman algorithm in conjunction with Ind.PS, as depicted in
Figure 4.53. Here an additional brief firing arc is applied when time/P = [1.52,1.54].
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Table 4.13 Errors on the final ROEs after the application of Bellman algorithm for Case FR 2,
using s f for control reconstruction.

Ind.PS LGR

Errors on final ROEs [m] NB = 2 NB = 4 NB = 2 NB = 4

δa f 7.6 1 6.5 2.5
δΛ f 27.2 3.1 10.2 2.2
δex f 0.2 0.1 35.3 3.1
δey f 0.6 0.2 2.3 5.6

Figure 4.51c shows how the two trajectories deviates after the second burn, since
when using NB = 4 the arc lasts longer. Despite these differences both the cases are
able to reach really accurate results (Table 4.13), with NB = 4 having always errors
below 3.1m.
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Fig. 4.52 Acceleration and trajectory for Case FR 2 solved with Bellman+LGR PS method,
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Fig. 4.53 Acceleration, primer vector and trajectory for Case FR 2 solved with Bell-
man+Ind.PS method, using s f for control reconstruction

The resulting ∆V obtained after the integration are summarized in Table 4.14,
when considering a discrete control interpolation and in Table 4.15, when considering
s f . Case FR 1 exhibits larger errors compared to Case FR 2. As already, explained,
this can be attributed to the longer arcs present in Case FR 1, which result in a higher
∆V compared to the impulsive strategy. The overestimation rapidly decreases as
the acceleration is increased, for instance, decreasing from 40% to 15% when the
acceleration grows from 3e−5m/s2 to 6e−5m/s2. Furthermore, using Bellman+LGR
with NB = 4 approach, leads to larger ∆V in both cases; this is due to the additional
thrusting arcs found by the solution. Furthermore, when reconstructing the bang-
bang control profile using the switching function (s f ), a larger amount of ∆V is
required to execute the reconfiguration. This is primarily due to the fact that, in some
cases, the integration process results in the spacecraft deviating from the expected
states determined by the PS method. As a consequence, additional thrust arcs are
necessary to correct the trajectory and satisfy the final conditions.
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Table 4.14 Resulting ∆V after the application of Bellman algorithm, using discrete control
interpolation.

Ind.PS LGR

impulsive NB = 2 NB = 4 NB = 2 NB = 4

Case FR 1 0.1200 m/s 0.1732 m/s 0.1660 m/s 0.1712 m/s 0.1849 m/s
Case FR 2 0.1676 m/s 0.1780 m/s 0.1720 m/s 0.1795 m/s 0.1861 m/s

Table 4.15 Resulting ∆V after the application of Bellman algorithm, using s f .

Ind.PS LGR

impulsive NB = 2 NB = 4 NB = 2 NB = 4

Case FR 1 0.1200 m/s 0.1670 m/s 0.1941 m/s 0.1838 m/s 0.1710m/s
Case FR 2 0.1676 m/s 0.1871 m/s 0.1972 m/s 0.1689 m/s 0.1769 m/s

This algorithm enables the consideration of the spacecraft’s position at a given
moment and allows for the formulation of a new optimization problem starting from
that point. Consequently, this can lead to a greater demand for ∆V , with potential
increases of up to 58% (as observed in Bellman+Ind.PS Case FR 1 with NB = 4 using
s f ). Nonetheless, both the methods Bellman+LGR and Bellman+Ind.PS proved to
be viable approach to solve formation reconfiguration problem, reconstructing a
thrust profile that enables to have small errors on the final mass, albeit at the expense
of requiring larger ∆V s .



Chapter 5

Conclusion

The main focus of this thesis was to investigate and enhance the effectiveness and
efficiency of Legendre Pseudospectral methods in the context of solving optimal
control problems. Both direct and indirect formulations of these methods were
thoroughly examined in order to improve their performance. The primary objec-
tive was to assess the impact of the number of nodes on the results, considering
that reducing the number of nodes can significantly decrease computational time,
which is particularly important for potential applications in autonomous guidance
systems. Results have been presented for three orbital transfer problems solved using
Legendre-Gauss-Lobatto (LGL), Legendre-Gauss-Radau (LGR), and Indirect LGL
PS (Ind.PS) methods. The several tests conducted in this thesis show that Legendre
PS can successfully obtain accurate solutions using a limited number of nodes in
most of the cases. This holds, with some differences, for all the tested formulations.
The number of nodes, however, has an impact on performance and accuracy for
this kind of bang-bang problem as the placement of nodes is crucial in accurately
capturing the behavior of the control and its switching points. For this reason, simply
increasing the number of nodes did not always lead to improved outcomes, contrary
to what one might intuitively expect. A key aspect to consider is the length of the
firing/coasting arc. In general, it is essential to ensure that an adequate number of
nodes are positioned within the critical region of the transfer to accurately capture
the underlying control law. Careful attention should be given to this aspect to ensure
proper detection and representation of the control behavior. However, this thesis
showed that, with low number of nodes and without specifically adjusting the node
positions, even though the resultant control law may not always perfectly align with
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the optimal solution (such as when intermediate thrust values are included), the
obtained final masses consistently demonstrate an impressive level of closeness to
those of the reference solution. The average error is a mere 0.01%, with a maximum
deviation of 0.3%. Among the methods that were evaluated, LGR stands out as the
most effective in minimizing errors in the final mass calculation. When it comes to
arc detection, Ind.PS excels in reducing the occurrence of intermediate thrust values
within its arcs and more closely replicates the optimal control law, except when the
sought solution has only very short thrusting arcs. On the other hand, LGR and LGL
do not exhibit consistent differences.
By leveraging the Covector Mapping Theorem, we have successfully reconstructed
the switching function associated with both the LGL and LGR Pseudospectral meth-
ods. Through this mapping, a control law based on the switching function can be
used instead of the discrete controls provided by the PS solution. This approach
is extremely accurate and precise when LGR formulation is used, as the switching
function shows a smooth and regular behavior. In contrast, the approach is unsatis-
factory in the case of LGL points, with the switching function showing an oscillatory
trend at the boundary of the problem. This behavior arises due to the need to satisfy
the double boundary conditions required for closure.
An additional approach that combines the indirect formulation with PS interpolation
is proposed in this thesis, in order to tackle the challenges encountered by the di-
rect method when dealing with bang-bang control problems. Results show that the
indirect formulation (Ind.PS) overcomes the issues associated with the oscillating
switching function observed in the direct method. This achievement is made possible
by directly computing the switching function using the problem’s adjoint variables,
eliminating the reliance on KKT multipliers as mandated by the Covector Mapping
Theorem. As a result, the indirect formulation yields a switching function that is
not only smooth but also perfectly aligned with the thrust values obtained through
the smoothing technique. Besides, already mentioned issues may arise when short
thrusting arcs are present.
The computational efficiency and cost functional evaluation of three PS meth-
ods—LGL, LGR, and Ind.PS— is also compared with the Trapezoidal collocational
method. The analysis revealed that, with an increasing number of nodes, LGR proves
to be the most efficient method for problem resolution both in terms of computa-
tional time and cost function evaluation. In contrast, Ind.PS and TC display relatively
higher computational time. While the slower convergence of Ind.PS can be attributed
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to the utilization of a smoothing technique, TC’s slower convergence seems just to
be the result of a lower rate of convergence.
After deriving solutions using a limited number of discretization points through
the direct and indirect Pseudospectral methods, it became essential to assess their
practical applicability from an engineering standpoint. To enable the transition from
discrete-time to continuous-time solutions, the integration of the Pseudospectral
methods with the Bellman algorithm was employed. Through this comprehensive
analysis, the practical feasibility of the obtained solutions was rigorously evaluated.
This work explored two distinct approaches for reconstructing the control during
integration. The first approach involved interpolating the discrete control obtained
from the Pseudospectral methods. The second approach leveraged the knowledge of
the switching function value to impose a purely bang-bang control. Both methods
were thoroughly investigated to determine their effectiveness in accurately recon-
structing the control profiles and the satisfaction of the target conditions after the
integration. The interpolation of the discrete control led to results that aligned more
closely with the desired final conditions. The errors between the adimensional final
states and the target states fall within the range of 2e−4. Whereas, when employing
the switching function to impose the thrust value, the average errors in the final
states increase by an order of magnitude to 2e−3. These errors still remain within
the acceptable range of 0.1%. This disparity arises from the fact that the optimiza-
tion problem is solved using a Pseudospectral method, and through the Bellman
method, we observe that the discrete control effectively guides the system toward
the target conditions. On the contrary, when employing a bang-bang control based
on the switching function, the control law is intrinsically different from the one
adopted by the PS method to obtain the trajectory and therefore the evolution of
the states might deviate from the discrete solution. However, it was insightful to
analyze this alternative approach, which leveraged the knowledge of the switching
function obtained through the covector mapping theorem. Although the results are
one order of magnitude less accurate compared to interpolation, they are still fully
acceptable. Moreover, this method provides an opportunity to explore the benefits
of incorporating the switching function into the Pseudospectral control scheme, as
this control law can be applied to cases where the thruster has only an on/off throttle,
and intermediate thrust values are not allowed.
A very different problem was also analyzed in order to explore the flexibility and
adaptability of the methods developed in this thesis. Pseudospectral methods and



116 Conclusion

Bellman algorithm were used to solve two low-thrust formation reconfiguration prob-
lems, utilizing the comprehensive knowledge we acquired throughout this research.
The results revealed that both LGR and the Ind.PS proved to be very effective in
solving these formation reconfigurations, while the LGL method was not suitable for
this type of problem, as it generated acceleration profiles that were impractical for
real scenarios and it required more sophisticated optimization toolbox to improve its
results. Once the discrete solutions were obtained, the application of the Bellman
algorithm to these case studies was also explored. By using four segments, it was
possible to achieve small errors between the final and target conditions (never exceed-
ing 12m) at the expense of higher required ∆V (up to a 58% of additional change in
velocity). This increase in ∆V can be attributed to several factors. First of all, the
consideration of firing arcs instead of impulsive maneuvers introduced discrepancies
due to the distribution of thrust over relatively long durations, rather than applying it
solely at the most advantageous points. An increase in the acceleration magnitude
shows that this is the dominant effect in the growth of the ∆V s. Additionally, the
implementation of the Bellman algorithm shows that additional thrusting arcs may
be required to correct discrepancies in the orbital changes obtained in the previous
segments with respect to the optimal ones. These adjustments are introduced by
Bellman algorithm, as it considers a new optimization problem starting from the
state at the end of each segment: they are fundamental to achieve the final state with
sufficient accuracy, but penalize the propellant consumption.
Overall, the combination of Pseudospectral methods and the Bellman algorithm
provided valuable insights into the feasibility and challenges associated with solving
formation reconfiguration problems, highlighting the importance of careful method
selection and the potential trade-off between solution accuracy and required ∆V .
The utilization of PS methods, both in direct and indirect formulation, has demon-
strated that a reduced number of nodes (ranging from 20 to 50) is sufficient for
approximating the optimal solutions in the considered orbital transfer and formation
reconfiguration problems. These computations can be completed within a few sec-
onds in most cases and always within a minute, making them highly compatible with
real-time on-board applications for the examined maneuvers. Notably, these methods
accurately identify both the cost function value and successfully derive trajectory
control laws that align with the optimal solution. Moreover, the indirect formulation
of the Pseudospectral method has demonstrated its effectiveness in overcoming the
challenges encountered by the direct Pseudospectral methods when dealing with
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bang-bang control problems. It effectively solved issues such as incorporating inter-
mediate thrust values into the control law and it accurately evaluated the switching
function. The Bellman algorithm further demonstrates the practical applicability of
discrete solutions in a continuous time domain. Generally, the errors in achieving the
final desired state are typically lower than 0.1%, and only a few exceptional cases
show unsatisfactory results.
In future research, it would be intriguing to investigate problems with longer du-
rations and a higher number of revolutions to determine if the current number of
considered nodes remains adequate to accurately evaluate the cost function and the
control law reconstruction. Additionally, while global interpolation methods were
employed throughout the thesis, exploring the use of Pseudospectral methods on a
local scale could be valuable to better detect the switching regions. The problem
interval can be divided into segments, with each segment being spanned by a global
interpolating polynomial. These segments will then be connected using linkage
conditions for the continuity of the states.
Further enhancements can also be applied to the Bellman algorithm. Currently, the
segments are evenly spaced during the algorithm, however, it would be interesting to
explore solutions obtained by correlating the beginning and end points of a firing
arc with the corresponding beginning and end of a Bellman segment. This approach
would result in closely spaced nodes being concentrated in these critical regions,
of great interest when solving bang-bang control problems. Alternatively, another
intriguing concept to investigate is positioning the start of a segment in a region
where the Pseudospectral solution has exhibited an intermediate thrust value. By
increasing the number of nodes in these specific regions, a more comprehensive
understanding of the control behavior in those areas could be obtained.
It would be highly beneficial to expand the application of the proposed methods to
encompass rendezvous missions and formation reconfiguration problems in a three-
dimensional setting. The inclusion of rendezvous missions would involve orbital
transfers from a given orbit to a specific time-dependent position on a target orbit.
On the other hand, addressing formation reconfiguration would require accounting
for the influence of the J2 effect, which introduces perturbations due to the Earth’s
oblateness, and considering circular as well as elliptic orbits. These extensions would
significantly contribute to the development of realistic and robust approaches for
practical scenarios. They would greatly enhance our ability to design efficient and



118 Conclusion

accurate maneuver plans, taking into account the complexities of operating within
realistic orbital environments.
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