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ABSTRACT: In the evolving field of Structural Health Monitoring (SHM), the integration
of diverse sensing techniques 1s pivotal for comprehensive structural analysis. This study intro-
duces a novel data fusion methodology that synergizes the precision of strain gauges with the
broad coverage of computer vision techniques. Aimed at advancing SHM practices, our
approach facilitates a detailed understanding of structural behavior by concurrently analyzing
strain fields and displacement signals captured through video streams. We employ Physics
Informed Neural Networks (PINNSs) to refine measurements and ensure physical plausibility
in our data interpretation. Our methodology’s effectiveness 1s validated through laboratory
experiments on a simplified structural model, demonstrating enhanced accuracy and rehability
in SHM. This paper highlights the potential of integrating traditional and contemporary sens-
ing techniques 1n infrastructure monitoring, setting a new benchmark in the field.

I INTRODUCTION

Structural Health Monitoring (SHM) 1s vital for ensuring the integrity and safety of key infra-
structures. Conventionally, SHM has heavily relied on direct sensor installations like strain
gauges (Mousa et al., 2021). These sensors are indispensable as they not only detect, localize,
and quantify unusual structural behaviors but also project current and future structural pre-
dictions (Glisic, 2022). Nevertheless, their deployment poses logistical challenges and often
require multiple sensors for single-point displacement estimation (Ma et al., 2023), prompting
the need for alternative methods.

Shifting focus, non-contact methods like utilizing video streams offer a valuable alternative.
These methods capture displacement fields, reflecting the overall stiffness of structures and
providing an accurate assessment of structural conditions (Feng & Feng, 2018). Despite their
precision, vision-based techniques are not without drawbacks, including high computational
demands and sensitivity to lighting conditions (Ma et al., 2023). Alone, these methods may
fall short of the accuracy and consistency achieved through sensor-based approaches.

To address these challenges, our study proposes a multi-modal sensor fusion strategy. Trad-
itional fusions generally combine accelerometers with either strain sensors or vision cameras
(Ma et al., 2023). Our approach goes further, merging strain gauge data with computer vision
outputs. This fusion integrates the precision of strain measurements with the extensive spatial
analysis offered by video-based techniques. The aim is to develop a robust analytical frame-
work that correlates strain and visual data, thus enriching SHM with a more comprehensive
understanding of structural behavior.

Further advancing our methodology, we introduce Physics-Informed Neural Networks
(PINNs) (Raisst et al., 2019) into our vision-based SHM framework. PINNs represent
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a significant evolution from traditional machine learning models, as they offer enhanced inter-
pretability and conform more closely to physical principles (Faroughi et al., 2023). By incorpor-
ating physical laws into the neural network architecture, PINNs ensure that the model’s
predictions are not only accurate but also physically plausible. Their application in SHM is
multifaceted: for instance, they have been effectively utilized in modeling stress and displacement
under varying conditions, an aspect central to understanding structural behaviors (Henkes et al.,
2022). Furthermore, PINNs show promise in accurately simulating the behavior of materials
under different strain rates and temperatures, a factor crucial for assessing the long-term durabil-
ity and resilience of infrastructure (Arora et al., 2022). Importantly, PINNs have the capability
to refine wave velocity estimations from displacement data, enhancing the precision of structural
imaging and enabling the early detection of potential structural failures (Rathod & Ramuhalli,
2022). Additionally, their adeptness in solving complex differential equations relevant to struc-
tural dynamics positions them as an mvaluable tool in SHM, particularly for analyzing intricate
structural responses under varied load conditions (Kollmannsberger et al., 2021).

Overall, this study presents a novel approach in SHM by leveraging the combined strengths
of both strain gauges and computer vision, further augmented by the analytical prowess of
PINNs. This unique combination not only promises to bolster the accuracy and reliability
of structural assessments but also signifies a substantial advancement in the application of
machine learning within the domain of infrastructure monitoring.

2 METHODOLOGY

2.1 Theoretical foundation

In SHM, leveraging the strengths of different sensors is key to achieving comprehensive moni-
toring. Strain sensors offer high-precision local measurements, crucial for detecting minute
changes 1n structural integrity. In contrast, vision-based methods provide extensive spatial
coverage, enabling the capture of broader deformation patterns. This fusion approach 1s vital
for a holistic understanding of structural condition.

A core aspect of our methodology involves shape sensing, which reconstructs a structure’s
displacement field using discrete surface strain measurements (Gherlone et al., 2018). Accord-
ing to the Bernoulli-Euler theory of pure bending, there 1s a direct correlation between axial
strain and the curvature of the beam (Ko et al., 2007). This relationship is mathematically
expressed as k = d*w/dx?, where « represents the curvature, and w(x) denotes the beam’s
deflection along its longitudinal axis. The axial strain (€) at any point 1s linked to curvature by
€ = -yKk, with ‘y’ being the distance from the neutral axis.

Using this principle, curvature 1s deduced from localized strain measurements. Subsequent
numerical integration allows us to calculate the beam’s slope (dw/dx) and overall deflection
(w(x)). The precision of these estimations hinges on the density of strain data points, the
accuracy of the numerical integration method, well-defined boundary conditions, and an
exact characterization of the beam’s properties and loading.

Utilizing the strain data recorded by our sensors, we augment our analysis by contrasting
these sensor-derived displacement values at specific sensory points against the displacement
data acquired through vision-based displacement measurement techniques.

2.2 Image based displacement measurement

To facilitate vision-based displacement measurement, the Demons algorithm 1s employed. The
Thirion’s image matching algorithm (Thirion, 1998), known as the Demons algorithm, is a linear
complexity technique for nonrigid image registration, crucial in applications requiring intense
value preservation. The proposed algorithm consists of estimation of the demon forces for every
demon (more precisely, the result of the application of a force during one iteration step, that 1s

a deformation field), and update of the transformation based on the calculated forces (Sotiras
et al., 2013).
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The core of the Demons algorithm lies in its optical flow component, which calculates pixel
displacements by comparing sequential images. This comparison relies on the assumption of
constant brightness over time, enabling accurate estimation of pixel movement between
images. Essentially, the algorithm computes the displacement needed at each pixel (treated as
a “demon”) to align the moving image with the reference image. This calculation involves ana-
lyzing intensity gradients and differences between pixels.

In implementing this method, our study involved converting each frame into grayscale to
standardize intensity values, followed by applying normalization techniques to ensure uni-
formity across images, countering variations in illumination. This preprocessing set the stage
for the effective application of the Demons algorithm.

For enhanced efficiency and accuracy, a pyramidal approach i1s employed. This involves
performing multiple iterations at progressively coarser image resolutions, starting with a low-
resolution overview and gradually refining the displacement field at finer scales. This multi-

scale approach balances computational efficiency with detailed displacement estimation
(Zitova & Flusser, 2003).

2.3 Physics informed neural network

Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019) operate by incorporating
physical laws into the neural network architecture and its loss function, and aim to approxi-
mate solutions that closely match both the training data and the underlying physical equa-
tions. Here, the SCIANN (Haghighat & Juanes, 2021), a Keras/TensorFlow wrapper i1s
employed to create the PINN model.

2.3.1 Network architecture and data fitting

The architecture of the PINN 1s based on a standard feed-forward neural network (Kollmanns-
berger et al., 2021). The network 1s designed to predict displacement and strain as a function of
the position along the beam, taking into account the beam’s length (L), applied load (P), and
material properties such as the modulus of elasticity (E) and moment of mnertia (I).

To train the network, a synthesized dataset is created using analytical solutions for displace-
ment and strain under various loading conditions. The data 1s further augmented by adding
Gaussian noise, to mimic the real scenario. The data-fitting loss, L., 1S formulated as the
mean squared error between the network’s predictions and the actual values from the dataset.
It 1s expressed as:

1 N [~ 2 2
Liata = (N) Zl (d(xf) - ddata(x;‘)) T (8(;\‘5) - 3data(,\‘s))

where N is the number of data points, d and & are the network’s predictions for displacement
and strain, respectively, and subscript data refers to the corresponding true values.

2.3.2 Incorporation of physical laws
The distinct feature of a PINN i1s its ability to integrate physical laws into the learning process.
This 1s achieved by adding terms to the loss function that represent the governing equations of
the system being modeled.

For a cantilever beam under a point load P, the Euler-Bernoulli beam theory provides the
necessary physical laws. The physics-based loss for deflection, Lgyefiecrion, €nsures the network’s
compliance with the deflection equation of the beam. It is given by:

2
Ldeﬂectr’on = ( ) Zl (d(\ 6E] (3L - xt))

Strain in a beam 1s directly related to its curvature, and the curvature at any point along the
beam 1s mathematically represented by the second derivative of displacement with respect to
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the position. Similarly, the physics-based loss for strain, Lg,.;,, enforces the correct strain pro-
file as per the beam theory. It 1s calculated as:

" 2
1 M. d’d
Lstrain — (H) ZI (S(X:' o W (X,'))

where the term corresponding to the second derivative of the predicted displacement, indicates
the curvature of the beam.

2.3.3 Total loss function and training
The overall loss function, L, for the PINN is a weighted sum of the data-fitting loss and the
physics-based losses. It 1s defined as:

Liotal = aLgaia + /BLdeﬂection + VLstra.in

Here, a, B, and y are coefficients that balance the importance of fitting the data and adher-
ing to the physical laws.

2.4  Data fusion

The process begins with the calculation of the beam displacement field from the image
sequence, designated as v(z). This computation i1s conducted first through conventional image
pre-processing, encompassing image cropping, selection of the Region of Interest, black
welight artifact removal, and illumination correction. Following these initial steps, the punc-
tual displacements are determined using the Demon algorithm, as previously stated. Then, the
longitudinal strain field, termed ¢(z), 1s derived directly from the previously calculated dis-
placement field, v(z).

The refinement process involves enhancing the strain field, now referred to as €5, (z), utiliz-
ing data from strain gauges. The displacement field, denoted as vy (z), 1s then fine-tuned by
numerically integrating this enhanced strain field, ¢4, (z). An important assumption is the con-
sideration of zero displacements at the beam ends. The interpolation of the displacement field
employs smoothing splines. This stage i1s followed by a re-interpolation process, wherein an
adjusted smoothing parameter 1s utilized to give precedence to data smoothness.

The computation of &(z) involves transforming the displacement data into strain data,
guided by the principles of Hooke’s and Navier’s laws. The strain field, 4.(z), 1s then calcu-
lated using a smoothing spline interpolation function. This function 1s designed to fit the data
accurately and detect changes in slope, ensuring adherence to these changes. The computation
of the refined displacement field 1s achieved through the double integration of linear functions.
This process necessitates the imposition of boundary and continuity conditions.

2.5 Experimental setup and testing procedure

Our experimental investigation was conducted on a 6063 Aluminum beam, with dimensions
of 50.80 mm width, 18.50 mm height, 1.60 mm thickness, and 2414.6 mm length. The beam
was mnstrumented with six Type I strain gauges, arranged in a half-bridge configuration at
intervals of L/4, L/2, and 3L/4 along the beam (Figure 1). This configuration, known for its
high sensitivity and ability to compensate for temperature variations, ensured accurate strain
measurement. Data from the strain gauges were captured using an NI cDAQ-9188 system,
complemented by an optoNCDT 1420 laser sensor and an industrial-grade Ueye camera for
deflection and motion tracking. To enhance image processing, the beam was marked with
a colored speckle pattern, facilitating optical flow computations, and was positioned against
a whiteboard for optimal contrast (Figure 2). The laser sensor acted as ground truth data for
the investigations.
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The experimental procedure involved a series of controlled static load tests with pinned
ends to simulate hinge connections. The objective was to examine the beam’s structural
response to different load intensities, focusing on consistency and repeatability. Each test was
conducted thrice to ensure the reliability of the data. The testing scenarios included 0.05, 0.2
and 0.5 kg load the beam’s midpoint.
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Figure 1. Beam section and strain gauge locations.
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Figure 2. Experimental setup.

3 RESULTS AND DISCUSSION

This section presents the findings from our experimental tests, focusing on displacement and
strain measurements under a 0.2 kg load at the centerline of the beam (Case 2), as these were
typical for all conducted experienced. The results are illustrated in Figures 3 to 6.

Figure 3 displays the displacement curve obtained using the Image-based Measurement
(IIm) method for Case 2. This graph results from iterative interpolation using smoothing
splines, with the exclusion of residuals exceeding a set tolerance. The graph features an error
measure focusing on data point fitting to the spline, along with a roughness measure:

prz = 41— )/l(j;) dz

Figure 4 illustrates the strain curve derived from both strain gauge readings and the analyt-
ical approach for Case 2. The stress-displacement relationship 1s characterized as

d*v(z) _ @
dz? Y
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by assuming zero second derivatives at the beam’s extremes. This accounts for the beam’s
properties as slender, elastic, and isotropic, with shear effects neglected.

The results of the corrected strain field, integrating strain gauge measurements, are pre-
sented 1n Figure 5. The process involves iterative and weighted interpolation with smoothing
splines, exclusion of data points that degrade the distribution, and enforcement of interpol-
ation at strain gauge measurements. Correction 1s applied based on the boundary condition of
zero strain at the clamp section.

The comparison of the neural network’s performance with and without the inclusion of the
physics-based loss function is depicted in Figure 6. It 1s evident that the incorporation of the
physics-based loss function enhances the model’s generalizability and alignment with the phys-
ical phenomena for both strain and deflection.

Experiment 1 - Centreline load
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Figure 3. Image-based displacement measurement.
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Figure 4. Strain analysis with strain gauges and analytical method.
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Figure 5. Corrected strain field with strain gauge measurements.

4 CONCLUSION
This study introduces an innovative approach that effectively combines strain gauge data and

computer vision with an underlying physical formulation. Our method represents a significant
advancement over traditional SHM techniques, particularly in its ability to accurately assess
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Figure 6. Neural network performance with and without physics-based loss function.

structural integrity. This 1s achieved by correlating displacement and strain data through cor-
rected measurements. The incorporation of Physics-Informed Neural Networks (PINNSs) sub-
stantially enhances the accuracy and physical plausibility of the predictions, ensuring close
alignment with actual structural responses under various load conditions. While our approach
1s effective 1in standard configurations, future work could aim to further enhance and integrate
the model’s accuracy in more complex structural scenarios, particularly through the applica-

tion of PINNs. Such advancements promise to broaden the applicability of this innovative
approach in the field of SHM.
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