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Transport and Anisotropic Diffusion Models
for Movement in Oriented Habitats

Thomas Hillen and Kevin J. Painter

Abstract A common feature of many living organisms is the ability to move and
navigate in heterogeneous environments. While models for spatial spread of popu-
lations are often based on the diffusion equation, here we aim to advertise the use
of transport models; in particular in cases where data from individual tracking are
available. Rather than developing a full general theory of transport models, we focus
on the specific case of animal movement in oriented habitats.The orientations can
be given by magnetic cues, elevation profiles, food sources,or disturbances such as
seismic lines or roads. In this case we are able to present andcontrast the three most
common scaling limits, (i) the parabolic scaling, (ii) the hyperbolic scaling, and (iii)
the moment closure method. We clearly state the underlying assumptions and guide
the reader to an understanding of which scaling method is used in what kind of
situations. One interesting result is that the macroscopicdrift velocity is given by
the mean direction of the underlying linear features, and the diffusion is given by
the variance-covariance matrix of the underlying orientedhabitat. We illustrate our
findings with specific applications to wolf movement in habitats with seismic lines.
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1 Introduction

1.1 Biological Motivation

Successful navigation through a complicated and evolving environment is a funda-
mental task carried out by an enormous range of organisms. Migration paths can be
staggering in their length and intricacy: at the microscopic scale, nematode worms
can determine the shortest path through the intricate maze-like structure of the soil
to locate plant roots [40] while at the macroscopic scale salmon return from the
ocean upstream through bifurcating rivers and streams to spawn at their original
birth site [27]. Selecting a path requires the detection, processing and integration of
a myriad of cues drawn from the surrounding environment. In many instances the
intrinsic orientation of the environment provides a valuable navigational aid. The
earth’s magnetic field provides one such example: species such as turtles and whales
use an inbuilt compass to navigate to breeding or feeding grounds [27], while butter-
flies and other insects fly up slopes to local peaks in a mate locating strategy known
as “hilltopping” [38]. Pigeons [26] and cane toads [6] have been shown to fly or hop
in the direction of roads, while caribou and wolves move along the seismic lines cut
into forests by oil exploration companies [31]. An aligned environment also plays
a fundamental role in the migration of individual cells: many cell types, including
immune cells, fibroblasts and certain types of cancer cells migrate in alignment with
the fibre network constituting the surrounding extracellular matrix (ECM).

The above examples provide the motivation for the present paper where we focus
on mathematical models for movement in oriented habitats and their scaling limits.
The aim is to clarify some of the tools of the trade, allowing the reader to adapt the
methods to any given specific situation, such as those outlined above. In the case of
the present paper we shall use cell movement in collagen tissues to derive the model
equations, before demonstrating their adaption to wolf movement on seismic lines
and the motion of organisms in a stream. We note that these should be considered
illustrative examples rather than indepth studies, although we note that a detailed
application to glioma growth will be covered in a forthcoming paper [37].

1.2 Mathematical Modelling

Transport models (often referred to as kinetic models) forma powerful tool in the
analysis and modelling of animal and cell movement. Modern experimental meth-
ods allow us to track an individual’s movement in intricate detail, whether by GPS
tracking of mammals [41, 31] or through confocal microscopyof cells in tissues
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[14, 13]. The wealth of data generated can be employed to extract precise informa-
tion on mean travel speeds, velocities, the distribution ofturning angles, the “choice”
of new velocities amongst others. Within this context the transport model fits natu-
rally, relying on particle speed and turning distributionsas key inputs.

Transport models have a long history in continuum mechanics. For example, the
theory of dilute gases is entirely based on the kinetic Boltzmann equation of inter-
acting gas particles [8]. Over the last few decades this theory has been transferred to
the modelling of living entities, with the obvious advantage of shipping previously
developed methodologies with it [34, 35, 19, 9, 39, 4]. However, wholesale removal
from the shelf of continuum mechanics is inadvisable: methods must be carefully
adjusted to reflect the biological situation.

A highly utilized tool in the study of transport models is a consideration of scal-
ing limits, thus allowing approximation to a reduced (and typically simpler) model
such as a diffusion- or drift-dominated partial differential equation. A variety of scal-
ing limits have been considered, found under the general headings ofparabolic limit,
diffusion limit, hyperbolic limit, Chapman-Enskog expansions, Hilbert expansions,
andmoment closures([19, 9, 10, 16]) (with, most likely, many further terminologies
dispersed throughout the literature).

In the hope that we can make transport equations more broadlyaccessible for
ecological and cellular processes, in this chapter we explore such systems as a means
of modelling migration. We will open the following section with a presentation of
the transport equation approach, as well as a specific formulation that incorporates
guided movement due to a fixed and oriented environment. Thisrelatively simple
model will be used to motivate and illustrate the various scalings. Here, with our
attention fixed on ecological applications, we restrict attention to the three most
commonly used methods: (i) the parabolic scaling, (ii) the hyperbolic scaling, and
(iii) the moment closure. We will not attempt to present the most abstract and general
theory, rather we focus on a nontrivial and interesting casewhich retains enough
simplicity to directly apply each of the scaling limits above. In particular, we will
attempt to answer the following questions:

• Is there a better method among those three methods?
• How and when do we employ hyperbolic scaling, parabolic scaling or moment

closure?
• What are the specific assumptions behind these three methodsand how do they

differ?
• In which cases do these scalings lead to the same results?

While all methods have been discussed individually, as far as we are aware there has
not been a study which directly compares these methods in theecological context.
We find that each of the methods (i), (ii) and (iii) have their own range of applicabil-
ity and there are situations when one is favourable over the other. As it turns out, the
parabolic limit (i) plays a central role, as special cases of(ii) and (iii) both lead back
to (i). To illustrate the findings and methodologies in a transparent manner we will
explore some simple case studies and consider specific applications, including the
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movement of wolves and caribou along seismic lines in Western Canada. Finally,
we will provide a brief discussion of the findings.

2 Transport equations

The application of transport equations to biological processes grew from seminal
work of the 1980s (see [1, 34]) as an approach for modelling biological movement,
whether by cells or organisms. Transport equations typically refer to mathematical
models in which the particles of interest are structured by their position in space,
time and velocity. Here we will usep(t,x,v) to describe the population density of
cells/organisms at timet ≥ 0, locationx ∈ Ω ⊂ Rn and velocityv ∈ V ⊂ Rn. We
will generally consider an unbounded spatial domainΩ = Rn to avoid specifying
boundary conditions and, given that we consider biologicalmovement, the set of
possible velocitiesV is taken to be compact. It is worth noting that this is a key
distinction from the kinetic theory of gas molecules, whereV =Rn permits (at least
theoretically) individual molecules to acquire infinite momentum. Here we shall
typically considerV = [s1,s2]×S

n−1, with 0≤ s1 ≤ s2 < ∞.
The time evolution ofp(t,x,v) is described by thetransport equation

pt(t,x,v)+ v ·∇p(t,x,v) = L p(t,x,v) , (1)

where the indext denotes the partial time derivative andL is theturning operator:
a mathematical representation for modelling the velocity changes of the particles.
In many instancesL could be described by a nonlinear interaction operator incor-
porating changes in velocity due to interactions between individuals. For example,
the coherence of a fish school is maintained through an individual altering velocity
in response to that of an immediate neighbour, while certainpopulations of cells
migrate as a cohort by forming strong adhesive bonds with their neighbours. Here
we will ignore such scenarios, thus allowing us to focus our attention on the simpler
case of linear operatorsL .

Typically,L is defined via an integral operator representation

L ϕ(v) =−µϕ(v)+ µ
∫

V
T(x,v,v′)ϕ(v′)dv′ , (2)

where the first term on the right hand side gives the rate at which particles switch
away from velocityv and the second term denotes the switching into velocityv from
all other velocities. The parameterµ is the turning rate, with 1/µ the mean run
time between individual turns. The kernelT(x,v,v′) denotes the probability den-
sity of switching velocity fromv′ to v, given that a turn occurs at locationx. The
mathematical properties ofT set the stage for much of the theory that follows and,
it is certainly possible to set down a general theory for transport equations (see for
example [19, 39, 7, 25]). However, the resulting burden of advanced functional anal-
ysis would overwhelm the aims of the present paper. Rather, we focus on a simple
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yet non-trivial case which allows us to present the scaling methods in a transparent
manner. Specifically, we restrict to the case in which the turning operator does not
depend on the incoming velocityv′:

T(x,v,v′) = q(x,v)

whereq satisfiesq ≥ 0. This assumption limits the applicability, since animalsas
well as cells have a tendency to maintain a particular direction (persistence) such
that the incoming and outgoing velocities show a strong correlation. Here we ignore
this form of persistence, and we assume that the dominating directional cue is given
by the oriented environment. As mentioned already, a general treatment is possible,
but it would deter from our purpose to present the theory in a relatively transparent
way.

2.1 Movement in an oriented environment

Here we present a dedicated and simple model based on the transport equation (1)
with turning operator (2) to describe movement in an oriented environment. We
follow the modelling approach developed by [17] and extended in [36] to describe
contact-guided movement of cells within a network, for example an extracellular
matrix (ECM) predominantly composed of collagen fibres. We motivate the model
by briefly describing its derivation in relation to cell movement, as in the above
articles, while noting that the model itself is quite general and can easily be adapted
to model the movement of organisms in an oriented landscape,as shown in later
sections.

The ECM imparts orienteering cues to cells through their tendency to follow
fibres, a process known as contact guidance [12, 15]. More generally, contact guid-
ance describes the oriented motility response of cells to anisotropy in the environ-
ment, whether it arises from collagen fibres, muscle fibres, neuronal axons, arteries
and so forth. Contact guidance is believed to play importantroles in tissue develop-
ment, homeostasis and repair, from patterning of the pectoral fin bud of the teleost
embryo [45] to immune cell guidance [43, 44] and fibroblast-mediated tissue repair
following injury [15]. Particular interest in contact-guided migration of cells further
stems from its influence in directing the pathways of invasive cancer cells [13, 14].

Following the approach in [17] and [36], we represent the oriented structure of
the environment by defining a directional distribution ˜q(x,θ ) for θ ∈ Sn−1, with
q̃≥ 0 and

∫

Sn−1 q̃(x,θ )dθ = 1. In the case of cell migration, the fibres along which
cells migrate do not provide a particular direction to movement (i.e. there is no
“up” or “down” a collagen fibre) and in such instances we wouldassume symmetry
q̃(x,−θ ) = q̃(x,θ ) for all θ ∈ Sn−1. For more on distinct forms for the directional
distribution, see below.

To model contact-guided migration, we assume that cells choose their new direc-
tion according to the given fibre network, henceq(x,v)∼ q̃(x, v̂), where ˆv= v/||v||
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denotes the corresponding unit vector. Note that this assumes that cells only take
guidance information from the directional distribution: there is no explicit compo-
nent for random migration or orientation to chemical signalling cues built directly
into the turning operator, although these can be built into the directional distribution
as we demonstrate later. Sinceq is a probability distribution onV, andq̃ a probabil-
ity distribution onSn−1, we need to scale appropriately:

q(x,v) :=
q̃(x, v̂)

ω
, with ω =

∫

V
q̃(x, v̂)dv=

{

1
n(s

n
2− sn

1) for s1 < s2

sn−1 for s1 = s2 = s.

For this choice of turning kernel, equation (2) simplifies to

L ϕ(v) = µ(q(x,v)ϕ̄ −ϕ(v)), with ϕ̄ :=
∫

V
ϕ(v)dv.

We make one final simplification, which is to assume individuals have a fixed speed
s, i.e.V = sSn−1. While the extension toV = [s1,s2]×Sn−1 is trivial, it introduces
some cumbersome integration constants that blur the analytical details.

To summarise, the transport model we study in this paper is given by

pt(t,x,v)+ v ·∇p(t,x,v) = µ(q(x,v)p̄(t,x)− p(t,x,v)) (3)

onRn×sSn−1, whereq(x,v) is the direction distribution that represents the external
network structure.

It is worth noting that different cell types adopt distinct migration strategies,
with correspondingly variable degrees of interaction withthe surrounding network.
For individually migrating cells the two principle migration strategies are amoeboid
and mesenchymal. While the former is characterised by fleeting contact between
cells and the ECM, and correspondingly minimal distortion of the network [44],
the latter involves extensive structural modification of the ECM via a processes of
cell-mediated proteolytic degradation. Consequently thestand-alone equation (3)
is more appropriately a model for amoeboid rather than mesenchymal migration.
The latter would require augmentation of (3) with an evolution equation for varying
q(t,x,v) due to cell-matrix interactions: while such extensions have been extensively
considered in detail in [17] and [36], we do not consider thisfurther here.

As mentioned earlier, while originally developed in the context of cell migration
the above transport equation can easily be adapted to ecological applications. For
example, to model the population movements of hilltopping butterflies we would
reinterpretp as the density of butterflies,q as a spatially varying directional dis-
tribution with a maximum corresponding to the local direction of increasing slope,
with parameterss andµ for butterfly speed and frequency of turns to be estimated
from tracking of individual flights.
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2.2 Environmental distributions

Representing anisotropy of the environment through the directional distributionq
provides the means to describe a wide range of oriented landscapes. Here we briefly
consider some potential forms forq.

Strictly-aligned environments
A strictly aligned environment with local directionγ ∈ Sn−1 can be modelled by
choosing the singularq-distribution:

q(x,v) =
1
ω

δ0(v̂− γ).

The above effectively forces an individual to chooseγ as a movement direction fol-
lowing a turn. A full mathematical solution theory of (3) forsuchq requires a notion
of measure valued solutions, which was developed in [18] . Wediscuss this case in
connection to applications in Section 7.3.

Regularly-aligned environments
For many landscapes, while oriented structures provide a directional cue, the in-
dividuals will typically move over a wide range of directions. For example, while
wolves preferentially follow the seismic lines cut into forested areas they also move
off the lines and into surrounding forest. Similarly, butterflies do not take the steep-
est route during hilltopping, rather their flight pattern fluctuates [38]. Such be-
haviours can be accounted for by allowingq to take the form of a regular probability
distribution overV.

In summary, we assume thatq has the general form

q(x, .) ∈ L2(V), q(x,v)≥ 0,
∫

V
q(x,v)dv= 1. (4)

With the above assumptions in place it is noteworthy to mention two statistical quan-
tities later revealed to be of importance, the expectation and the variance-covariance
matrix:

Eq(x) =
∫

V
vq(x,v)dv, Vq(x) =

∫

V
(v−Eq(x))(v−Eq(x))

Tq(x,v)dv.

The productvvT denotes the dyade product of two vectors and it defines a matrix.
Other authors prefer to use tensorial notation such asvvT = v⊗ v [9, 10].

Furthermore, we consider potential restrictions onq that could result from dis-
tinct forms of environmental anisotropy. While information provided by magnetic
cues, the sun and ocean currents could provide a unidirectional movement cue, to-
pographical information in the form of roads, seismic linesand collagen fibres may
only provide bidirectional anisotropy, i.e. animals or cells choose both directions
with equal probability. In this latter case, we would assumesymmetry ofq,
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q(x,−v) = q(x,v).

A direct consequence of this symmetry is

Eq = 0 and Vq(x) =
∫

V
vvTq(x,v)dv.

3 The parabolic scaling

In this and the following two sections we discuss the three principal scalings: (i)
parabolic scaling, (ii) hyperbolic scaling and (iii) moment closure. We will show
that each of the methods have their own range of applicability, and that there are sit-
uations when one is favourable over the other. With the aim ofmaking this method-
ology broadly accessible, we aim for transparent presentation by revealing all steps
in the analysis, noting that such details are often omitted in the literature. To illus-
trate the structuring of what follows, the graphic (Figure 1) outlines the relationships
between the scalings as they will be discussed in this manuscript. The parabolic limit
(i) is found to play a pivotal role, as special cases of (ii) and of (iii) both lead back
to (i). For readers less motivated by the technical aspects of what follows, we would
like to note that each section is concluded with a summarising box and a comparison
between the scalings is presented in Section 6.

3.1 Motivation of the parabolic limit

As illustrated in Figure 1, the parabolic limit marks a full-stop for scaling in our
analyses, with all paths eventually leading to it. Given it’s obvious and considerable
importance to the modelling community, we therefore discuss this case first. Two
ways to motivate the parabolic limit are (a) an appropriate scaling of space and time,
and (b) large turning rates and large speeds of the particles. These two approaches
are, in fact, equivalent, as we next illustrate.

E. coli bacteria on a petri-dish display an average turning rate ofµ ≈ 1/secand
an average speed ofs≈ 10−2mm/sec(see [19]), whereas durations for experiments
that investigate population level dynamics are typically of the order of hours or days.
Taking a unitU = 10000sec(≈ 3h), the turning rate and speed on this timescale
become

µ = 104 1
U

and s= 102mm
U

.

Hence, introducing a small parameter

ε = 10−2 ,

we have
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kinetic model

drift−diffusion equation

mass, momentum and energy

hyperbolic limit

balance equations for

moment closure

diffusion equation
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scaling
hyperbolic

fast momentum
relaxation

diffusion

transport equation

dominated

scaling
parabolic

Fig. 1 Relations between the scalings and limit equations as discussed in the text.

µ = O(ε−2), ands= O(ε−1).

By writing µ = ε−2µ̃ ands= ε−1s̃we obtain the equation

pt + ε−1s̃θ ·∇p= ε−2µ̃(qp̄− p),

where, forv ∈ V, we writesθ = v with θ ∈ Sn−1. Removing the ˜’s on the scaled
parameters and rearranging we obtain

ε2pt + εv ·∇p= µ(qp̄− p) . (5)

Alternatively, we can simply introduce macroscopic time and space scales

τ = ε2t, ξ = εx

and rescale model (3) accordingly to obtain

ε2pτ + εv ·∇ξ p= µ(qp̄− p). (6)

Formally, equations (5) and (6) are identical, though we note that we shall employ
the second formulation with the new time and space coordinates(τ,ξ ).
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3.2 Parabolic limit in an oriented landscape

We first study the properties of the turning operator defined on L2(V):

L ϕ(v) := µ(q(x,v)ϕ̄ −ϕ).

The kernel ofL is given by the linear space〈q(x, .)〉. Hence we work in the
weighted Lebesgue spaceL2

q−1(V) where the inner product of a functionf with
q is given by

∫

V
f (v)q(x,v)

dv
q(x,v)

=
∫

V
f (v)dv= f̄ .

On the complement set,〈q〉⊥, we can define a pseudo-inverse by solving the resol-
vent equation. Given a functionψ ∈ 〈q〉⊥ we solve forφ ∈ 〈q〉⊥ such that

L φ = ψ . (7)

Sinceφ ,ψ ∈ 〈q〉⊥, we haveφ̄ = ψ̄ = 0 and the resolvent equation (7) reduces to

φ =− 1
µ

ψ . (8)

where the pseudo-inverse appears as multiplication with−µ−1.
To analyse the scaled equation (6) we take the scaled coordinates(τ,ξ ) and make

a regular expansion inε, called aHilbert expansion:

p(τ,ξ ,v) = p0(τ,ξ ,v)+ ε p1(τ,ξ ,v)+ ε2p2(τ,ξ ,v)+h.o.t.

Substituting into (6) and comparing orders of magnitude ofε:

• ε0: The terms of leading order areL p0(τ,ξ ,v) = 0 which implies

p0(τ,ξ ,v) = q(ξ ,v)p̄0(τ,ξ ).

• ε1: The terms of order one are

(∇ ·v)p0 = L p1 .

This equation can be solved on〈q〉⊥, if the right hand side satisfies the solvability
condition(∇ ·v)p0 ∈ 〈q〉⊥. This condition reads

∫

V
(∇ ·v)q(ξ ,v)p0(τ,ξ ,v)

dv
q(ξ ,v)

= ∇ ·
∫

V
vq(ξ ,v) dv p̄0(τ,ξ ).

Crucially, this term is only equal to zero for arbitraryp0 when we impose the
following extra condition onq:

Eq =

∫

V
vq(ξ ,v)dv= 0. (9)
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We can then solve for the first order term and find

p1(τ,ξ ,v) =− 1
µ

∇ ·v p0(τ,ξ ,v).

• ε2: The second order terms are

p0,τ + v ·∇p1 = L p2.

From assumption (4) it follows that
∫

V L φ(v)dv= 0 for all φ ∈ L2
q−1. Hence we

integrate the above equation and use index notation for summation over repeated
indices:

0 =

∫

V
(p0,τ + v ·∇p1)dv,

= p̄0,τ −
1
µ

∫

(v ·∇)(∇ ·v)(p̄0(τ,ξ )q(ξ ,v)) dv,

= p̄0,τ −
1
µ

∂i∂ j

(

∫

V
viv jq(ξ ,v) dv p̄0(τ,ξ )

)

.

This last equation can be written as a diffusion equation forthe macroscopic
densityp̄0(τ,ξ ):

p̄0,τ(τ,ξ ) = ∇∇(D(ξ )p̄0(τ,ξ )). (10)

with a macroscopicdiffusion tensor

D(ξ ) =
1
µ

∫

V
vvTq(ξ ,v)dv. (11)

Since we assumedEq = 0 in (9), we find that the diffusion tensor for the particles
is given by the variance-covariance matrix of the underlying fibre network:

D(ξ ) =
1
µ
Vq(ξ ) .

With q assumed to be non-singular, the variance-covariance matrix Vq (and hence
the diffusion tensorD) is positive definite and symmetric and equation (11) is uni-
formly parabolic.

We summarise this limit in the following result:



14 Contents

The Parabolic Scaling. In addition to (4) we make the following assumptions:

(A1)

Eq =

∫

V
vq(x,v)dv= 0. (12)

(A2) There exists a small parameterε > 0 such that either

µ = ε−2µ̃ , s= ε−1s̃,

or
τ = ε2t, ξ = εx,

whereµ̃ , s̃,τ,ξ are of order one.

Let p(τ,ξ ,v) be a solution of the scaled kinetic equation

ε2pτ + εv ·∇ξ p= µ(qp̄− p). (13)

Then the leading order termp0 of a regular expansionp= p0+ε p1+ε2p2+ ...
satisfies

p0(τ,ξ ,v) = p̄0(τ,ξ )q(ξ ,v),

wherep̄0(τ,ξ ) is solution of the parabolic limit equation

p̄0,τ(τ,ξ ) = ∇∇(D(ξ )p̄0(τ,ξ ))
(

= ∂i∂ j(D
i, j(ξ )p(τ,ξ ))

)

(14)

with diffusion tensor

D(ξ ) =
1
µ

∫

V
vvTq(ξ ,v)dv. (15)

4 The hyperbolic scaling

The parabolic limit of the previous section considered macroscopic time and space
scales, where time is scaled quadratically inε and space linearly. For the parabolic
limit to work it was necessary to specifyEq = 0, with a diffusion equation arising.
In the hyperbolic scaling we will observe thatEq corresponds to a drift term, which
dominates when nonzero, and that in the hyperbolic limit we derive both a drift term
and a diffusion correction1 . For that, we assume that macroscopic time and space
scales are both linear inε, i.e.

σ = εt, ξ = εx.

1 This section is an adaptation of Section 4.1.3 from[17]. It was inspired by Dolak and Schmeiser
[11] who apply this scaling to chemotactic movement and, while their results do not directly apply
here, the methods are the same.
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Under this rescaling, the transport equation (1) becomes

ε pσ + ε(v ·∇)p= L p. (16)

Again, we use the operator properties ofL on the spaceL2
q−1(V) and split the

solution into two parts (theChapman-Enskog expansion):

p(σ ,ξ ,v) := p̄(σ ,ξ )q(ξ ,v)+ ε p⊥(σ ,ξ ,v) (17)

with
∫

V
p⊥(σ ,ξ ,v)q(ξ ,v)

dv
q(ξ ,v)

=

∫

V
p⊥(σ ,ξ ,v)dv= 0.

Substituting the expansion (17) into (16) gives:

ε p̄σ q+ ε2p⊥σ + ε(v ·∇)(p̄q)+ ε2(v ·∇)p⊥ = L

(

p̄q+ ε p⊥
)

= εL p⊥. (18)

Integrating (18) overV and dividing byε yields

p̄σ +∇ ·
(

∫

V
vqdvp̄+ ε

∫

vp⊥dv
)

= 0, (19)

where we used
∫

V
p⊥σ dv=

∂
∂σ

∫

V
p⊥dv= 0.

Once again, the expectation ofq appears

p̄σ +∇ ·
(

Eq p̄+ ε
∫

V
vp⊥dv

)

= 0, (20)

and to leading order this is the drift-dominated model

p̄σ +∇ · (Eqp̄) = 0, (21)

where the drift velocity is given by the expectation ofq.

We determine the next order correction term by constructingan approximation
to p⊥. From (20) we obtain ¯pσ , substitute into (18) and divide byε:

L p⊥ = −q∇ ·
(

Eqp̄+ ε
∫

V
vp⊥dv

)

+ ε p⊥σ +(v ·∇)(p̄q)+ ε(v ·∇)p⊥

= (v ·∇)(p̄q)−q∇ · (Eqp̄)+O(ε). (22)

Hence to leading order we have:

L p⊥ ≈ q(v−Eq) ·∇p̄+(v ·∇q−q∇ ·Eq)p̄. (23)

To apply the pseudo-inverse ofL on 〈q〉⊥, we must check the solvability condition
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∫

V
L p⊥q

dv
q

=

∫

V
L p⊥dv,

≈ ∇p̄·
∫

V
(q(v−Eq)dv+ p̄

∫

V
(v ·∇q−q∇ ·Eq)dv,

= ∇p̄· (Eq−Eq)+ p̄∇ · (Eq−Eq) ,

= 0.

Hence we can apply the pseudo-inverse ofL and find

p⊥ ≈− 1
µ
(

q(v−Eq) ·∇p̄+(v ·∇q−q∇ ·Eq)p̄
)

. (24)

Substituting (24) into (20) we obtain

p̄σ + ∂ j(E
j
q p̄)

=
ε
µ

∂ j

(

∫

V
v j
[

q(vi −E
i
q)∂i p̄+(vi∂iq−q∂iE

i
q)p̄
]

dv

)

=
ε
µ

∂ j

∫

V
v j(vi −E

i
q)qdv∂i p̄

+
ε
µ

∂ j

(

[

∫

V
v j(vi∂iq−q

∫

V
v
′ i∂iqdv′)dv

]

p̄

)

.

The two integrals inside the square brackets can be written as
∫

V
v j(vi∂iq−q

∫

V
v
′i∂iqdv′)dv

=

∫

V
v jvi∂iqdv−

∫

V
v jqdv

∫

V
v
′ i∂iqdv′

=
∫

V
(v j −E

j
q)v

i∂iqdv

=

∫

V
(v−Eq)v ·∇qdv,

Hence we obtain

p̄σ +∇ · (Eqp̄) =
ε
µ

∇ ·
∫

V
v(v−Eq)

Tqdv·∇p̄

+
ε
µ

∇ ·
((

∫

V
(v−Eq)(v ·∇q)dv

)

p̄

)

. (25)

We define the diffusion tensorD as before, i.e. as a multiple of the variance-
covariance matrix ofq:

D(x) :=
1
µ
Vq =

1
µ

∫

V
(v−Eq)(v−Eq)

Tq(x,v)dv. (26)
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We collect two properties ofD:
∫

V
v(v−Eq)

Tq(ξ ,v)dv=
∫

V
(v−Eq)(v−Eq)

Tq(ξ ,v)dv= µD(ξ ),

and

∇∇(Dp̄) = ∂i∂ j(D
i j p̄)

= ∂i∂ j

(

1
µ

∫

V
vi(v j −E

j
q)qdvp̄

)

=
1
µ

∂i

(

−
∫

vi∂ jE
j
q qdvp̄+

∫

vi(v j −E
j
q)∂ jq dvp̄+

∫

vi(v j −E
j
q)qdv∂ j p̄

)

=
1
µ

∇ ·
(

−
∫

v divEqqdvp̄+
∫

v(v−Eq) ·∇qdvp̄+
∫

v(v−Eq)qdv·∇p

)

Then, with (25), we arrive at the limit equation with correction term

p̄σ +∇ · (Eqp̄) = ε∇
(

∇(D(ξ )p̄)+
1
µ
Eq(∇ ·Eq)p̄

)

. (27)

Equivalently, we can use the moments ofq to write the limit equation as

p̄σ +∇ · (Eqp̄) =
ε
µ

∇
(

∇(Vq(ξ )p̄)+Eq(∇ ·Eq)p̄
)

. (28)

Critically, if Eq ≈ 0 (as in the parabolic case) we obtain the same diffusion term
as for the parabolic scaling in (14). In fact, forEq = 0 we can simply rescale the
hyperbolic limit equation (28) byτ = εσ to obtain an identical limit to (14).

The Hyperbolic Scaling. Further to (4) we make the following assumptions:

(B1)
σ = εt, ξ = εx,

whereσ ,ξ are of order one.

Let p(σ ,ξ ,v) be a solution of the scaled kinetic equation

ε pσ + εv ·∇ξ p= µ(qp̄− p). (29)

Then the solutionp can be split intop = p̄q+ ε p⊥, where the leading order
term p̄(σ ,ξ ) is approximated by the solution of the drift-diffusion equation

p̄σ +∇ · (Eqp̄) =
ε
µ

∇
(

∇(Vq(ξ )p̄)+ [Eq(∇ ·Eq)]p̄
)

. (30)

From the construction it is expected that the approximationshould be second order
in ε, although to our knowledge this has not yet been shown.
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5 The moment approach

Moment closure provides a third way to derive macroscopic equations from the
transport model (1). As in the previous cases, it was first developed in a physical
context to describe the dynamics of fluids and gases and we will therefore adopt the
physical definitions within the present biological context. The principle players are
mass, momentum and energy, with the goal of defining model equations for these
quantities2.

Given a particle distributionp(t,x,v), the mass is defined as

p̄(t,x) =
∫

V
p(t,x,v)dv,

the momentum as
p̄(t,x)U(t,x) :=

∫

V
vp(t,x,v)dv,

and the internal energy by

E(t,x) =
∫

V
|v−U(t,x)|2p(t,x,v)dv.

The momentum implicitly defines the ensemble (or macroscopic) velocity

U(t,x) =
1

p̄(t,x)

∫

V
vp(t,x,v)dv.

The energy is the trace of the pressure tensor

P(t,x) =
∫

V
(v−U(t,x))(v−U(t,x))T p(t,x,v)dv,

in the sense that
E(t,x) = tr P(t,x).

In a physical context mass, momentum and energy have very precise meanings yet
applied to biology we must consider carefully their appropriate biological reinter-
pretation. The total mass, ¯p, and ensemble velocity,U , correspond directly to their
physical quantities, describing respectively the total density of individuals and their
average velocity. The momentum ¯pU is somewhat different, since cells and animals
generally cannot be regarded as hard spheres and hence ¯pU is not the physical mo-
mentum an ensemble of cells would generate if it hits an object, for example. The
biological momentum can simply be regarded as the average particle flux, i.e. the
total density, ¯p, multiplied by the mean velocity,U . The energy is the trace of the
full pressure tensor and direct interpretations of either pressure or energy are hard
to find. We can, instead, consider these from a statistical perspective. The ratiop/p̄

2 This section is an adaptation from [10].
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is a probability density with respect to the velocity, withU/p̄ the expectation and
P/p̄ the variance-covariance matrix. Consequently,U/p̄ gives the mean velocity
andP/p̄ gives information on the breadth of the distributionp/p̄. The variance-
covariance tensorP/p̄ is symmetric, but can be anisotropic and allowing greater
spread in one direction than others. The energyE/p̄ is the (magnitude of the) vari-
ance with

√

E/p̄ the standard deviation.
We need one more variable which, in the physical context, corresponds to the

energy flux:

Q(t,x) =
∫

V
|v−U(t,x)|2(v−U(t,x))p(t,x,v)dv.

The vectorQ is a trace of a full third order moment, with magnitude dominated by
cells not moving with the mean velocity and direction given by the mean direction
of the outliers, relative to the ensemble velocityU .

In a similar way, we can also define the ensemble pressure tensor of the system

P0(t,x) =
∫

V
U(t,x)U(t,x)T p(t,x,v)dv= p̄(t,x)U(t,x)U(t,x)T

and the ensemble energy flux

Q0(t,x) =
∫

V
U2(t,x)U(t,x)p(t,x,v)dv= p̄(t,x)U2(t,x)U(t,x).

Next, we will derive differential equations for the macroscopic quantities mass,
p̄, momentum, ¯pU, and energy,E. To obtain the mass conservation equation, we
simply integrate (3) overV to obtain

p̄t(x, t)+∇ · (p̄(t,x)U(t,x)) = 0. (31)

The momentum equation is derived through multiplication of(3) by v and integrat-
ing (omitting space, time andv dependencies for clarity):

∫

V
vpt dv+

∫

V
v(v ·∇)p dv= µ

∫

V
vq dvp̄− µ

∫

V
vp dv,

(p̄U)t +∇ ·
∫

V
vvT pdv= µ p̄Eq− µ p̄U . (32)

The pressure tensor can be written as

P =
∫

V
(v−U)(v−U)T p dv,

=

∫

vvT p dv−
∫

UvT p dv−
∫

vUT p dv+
∫

UUT p dv,

=

∫

vvT p dv− p̄UUT . (33)

We use this expression in (32) and obtain the momentum equation
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(p̄U)t +∇ · (p̄UUT) =−∇P+ µ(p̄Eq− p̄U). (34)

For the energy equation, we multiply (3) byv2 and integrate:
∫

v2ptdv+
∫

v2(v ·∇)p dv= µ
∫

v2q dv p̄− µ
∫

v2p dv,

Et +∇ ·
∫

vv2p dv= µ
∫

v2q dv p̄− µE . (35)

We study the two integral terms in (35) separately. To obtainan expression for
∫

vv2p, we study the heat fluxQ:

Q =

∫

|v−U |2(v−U)p dv,

=

∫

vv2pdv−
∫

v2U pdv−
∫

2(vU)vpdv

+

∫

2(vU)U pdv+
∫

U2vpdv−
∫

U2U pdv,

=

∫

vv2pdv−UE−2U ·
∫

vvT pdv+2U · (p̄UUT) ,

=
∫

vv2pdv−UE−2U ·P, (36)

where we used (33) in the last equality.
To obtain the second orderq term, we compute

tr Vq =

∫

V
(vi −E

i
q)(vi −Eqi)q dv,

=
∫

viviqdv−
∫

vi
Eqiqdv−

∫

E
i
qviqdv+

∫

E
i
qEqiqdv,

=

∫

v2qdv−E
2
q . (37)

Hence the energy equation (35) becomes

Et +∇ · (EU) =−∇Q−2∇ · (U ·P)+ µ(tr Vq+E
2
q−E). (38)

The equations for mass, ¯p, momentum, ¯pU, and energy,E, are given by (31, 34, 38)
respectively. However, this system is not closed, due to theinclusion of the higher
order momentsP andQ. To resolve this, we can attempt a derivation of differential
equations for these higher moments, although in doing so even higher order mo-
ments will appear: if fact, the sequence of moment equationsis unending and we
face amoment closure problem. Thus, we must find a mechanism for estimating the
higher order moments in order to close the system of equations (31, 34, 38). Two
standard ways of finding a moment closure are through (1) the equilibrium distribu-
tion and (2) entropy maximisation. Here we focus on the first method, noting that
details of the entropy method can be found elsewhere (e.g. [16]).
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5.1 Moment closure

The principal assumption here is that the system is close to equilibrium and that
the higher order moments are dominated by this equilibrium.Earlier, we computed
kerL = 〈q〉. Hence the equilibrium distribution has the form

pe(t,x,v) = p̄(t,x)q(x,v).

For this distribution, we can explicitly compute the moments:

• mass,

p̄e(t,x) =
∫

p̄(t,x)q(x,v) = p̄(t,x) ;

• momentum,

p̄e(t,x)Ue(t,x) =
∫

vp̄(t,x)q(x,v)dv= p̄(t,x)Eq(x) ;

• pressure tensor,

Pe(t,x) =
∫

(v−Eq)(v−Eq)
T p̄(t,x)q(x,v)dv= p̄(t,x)Vq(x) ; (39)

• energy flow,

Qe(t,x) =
∫

|v|2vp̄(t,x)q(x,v)dv= p̄(t,x)Tq(x), (40)

where we introduce the third order moment ofq

Tq(x) =
∫

v2vq(x,v)dv.

These formulae reveal that at equilibrium all momentum is carried by the ensemble,
which is moving in the mean network directionEq, and that all energy and pressure
is produced by the variance-covariance matrix of the underlying distribution. The
above expressions for the pressure tensor and energy flux areemployed to close
system (31, 34, 38) for mass, momentum, and energy. We shouldstress that here
we are making an approximationand that even though we retain the equality sign
p̄,U,E areapproximationsto the exact ¯p,U,E values.
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Moment Closure. In addition to (4) we assume that

(C1) the macroscopic quantitiesP andQ are given by their equilibrium dis-
tributions (39, 40).

Then the mass ¯p, the momentum ¯pU and the energyE are approximated by the
solution of the closed system:

p̄t +∇(p̄U) = 0 (41)

(p̄U)t +∇ · (p̄UUT) = −∇(p̄Vq)+ µ(p̄Eq− p̄U) (42)

Et +∇ · (EU) = −∇(p̄Tq)−2∇ · (U · (p̄Vq))

+µ(tr Vq+E
2
q−E) (43)

We note that for the closed system (41, 42, 43), the first two equations are inde-
pendent of the energyE. Hence, equation (43) decouples and we can study the first
two equations (41) and (42) independently.

5.2 Fast flux relaxation

The derivatives on the left hand side of equations (41, 42, 43) all have characteristic
form ∂tφ +∇ · (Uφ), termed the directional derivative ofφ in the direction of the
flow U (also known as the material derivative or characteristic derivative). As a
special case we assume that the flux relaxes quickly to its equilibrium, i.e. we set

0=−∇(p̄Vq)+ µ(p̄Eq− p̄U),

which we can solve for ¯pU to give

p̄U =− 1
µ

∇(p̄Vq)+ p̄Eq.

Using this expression in (41) yields the drift-diffusion equation

p̄t +∇(p̄Eq) =
1
µ

∇∇(p̄Vq). (44)
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Fast Flux Relaxation. In addition to (4) we assume that:

(C1) the macroscopic quantitiesP andQ are given by the equilibrium dis-
tributions as in (39, 40);
(C2) the momentum ¯pU relaxes fast to its equilibrium.

Then the total mass ¯p(t,x) is approximated by the solution of the drift-diffusion
limit equation

p̄t +∇(p̄Eq) =
1
µ

∇∇(p̄Vq). (45)

6 Comparison between scalings

In this section we will summarise the various scaling methods and compare and
contrast our findings. First we will focus on the forms of the limit equations them-
selves, with an explanation of the relationships between them, before proceeding
to examine their underlying assumptions. For convenience of comparison, we unify
the notation by settingu= p̄= p̄0 and specifying a generic time coordinatet (not-
ing thatt had been rescaled toτ for the derivation of the parabolic and hyperbolic
limits).

6.1 Relationships between limit equations

The three scaling approaches resulted in the following fourlimit equations:

• Parabolic scaling (PS) ,

ut =
1
µ

∇∇(Vqu) ; (PS)

• Hyperbolic scaling (HS) ,
ut +∇ · (Equ) = 0; (HS)

• Hyperbolic scaling with correction terms (HC) ,

ut +∇ · (Equ) =
ε
µ

∇∇(Vqu)+
ε
µ

∇ · (Eq(∇ ·Eq)u) ; (HC)

• Moment closure (MC) ,

ut +∇(Equ) =
1
µ

∇∇(Vqu) . (MC)

Clearly the above equations reveal significant overlap. Forexample, moment closure
(MC) is a combination of the parabolic (PS) and hyperbolic scaling (HS), containing
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both diffusion and drift terms. Consequently, we refer to the parabolic scaling as
thediffusion-dominatedcase, with the hyperbolic scaling thedrift-dominatedcase.
More formally, the relationships between the limiting equations can be grouped into
the following lemma.

Lemma 1. We summarise the relationships into five scenarios.

1. (Diffusion-dominated) In the caseEq = 0 all three approaches (PS,HC,MC)
lead to the parabolic limit (PS), while (HS) is trivial.

2. (Diffusion-dominated) If Eq ≈ O(ε2), then equations (HC) and (MC) coincide
with the parabolic limit (PS) to orderε.

3. (Drift-diffusion limit) If Eq ≈ O(ε) equation (HC) is identical to (MC) to lead-
ing order (assuming a suitable scaling of time in (HC)).

4. (Drift-dominated) If Vq ≈ O(ε), then (MC) coincides with the hyperbolic scal-
ing (HS) to leading order.

5. (Drift-dominated) If µ ≈ O(ε−1), then (MC) once again coincides with (HS) to
leading order.

6.2 Assumptions behind limit equations

Having explored the relationships behind the limit equations, we next consider their
underlying assumptions.

(Parabolic) Here the expectationEq = 0 and there exists a small parameterε > 0
such that eitherτ = ε2t,ξ = εx, whereτ andξ are both of order one, orµ =
ε−2µ̃,s= ε−1s̃, whereµ̃ ands̃are both of order one.
(Hyperbolic) There exists a small parameterε > 0 such thatσ = εt,ξ = εx,
whereσ andξ are both of order one.
(Moments) The higher momentsP andQ are given by the equilibrium distribu-
tion and the momentumρU relaxes quickly.

While an all-encompassing interpretation of these assumptions is somewhat diffi-
cult, we provide the following intuitive scenarios. In the following section, these
distinctions will be illuminated further through specific applications.

(Parabolic) The time scale is one in which particles are fast and turn frequently,
with movement close to a Brownian random movement. The environment pro-
vides no specific directional cue (or, at least, a relativelyweak directional cue)
and henceEq ≃ 0 (i.e. movement up or down a given direction is effectively
equal). Directional bias is included through possible anisotropy of the variance-
covariance tensorVq of the underlying medium.
(Hyperbolic) Once again, time and space scales are chosen such that particles
are fast and turn often. But now the movement has a very clear directional com-
ponent,Eq 6= 0 and the drift component dominates.
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(Moments) Here it is assumed that the pressure tensor is close to the pressure
tensor of the equilibrium. Effectively, the system as a whole is near to equilib-
rium with subsequently small differential pressure terms.This implies that the
population densityp is “somewhat” closely aligned with the underlying tissue.

We note that all three methods lead to an anisotropic diffusion equation of the
form

Ut = ∇∇(DU) (46)

i.e. the diffusion tensor lies inside the two derivatives. In the literature, anisotropic
diffusion is usually associated with an equation in divergence form,

Vt = ∇(D∇V). (47)

This second form is derived from material physics, where thematerial flux is taken
to be proportional to the gradient∇V with proportionality factorD. As we also dis-
cuss in section 7.1.3 below, the above two models are quite different. IfD is positive
definite, equation (47) obeys the maximum principle and solutions converge to ho-
mogeneous steady states (on bounded domains with zero-flux boundary conditions,
for example). In contrast, equation (46) does not have a maximum principle and, as
we see later, spatial patterns can evolve.

When deriving diffusion equations from stochastic processes, both of the above
versions (46) and (47) can be generated. For example, Othmerand Stevens [35]
present a careful analysis that reveals how different assumptions for an individual’s
local response to the environment results in distinct macroscopic models, including
the above two forms. Here we have shown how a model of type (46)arises very
naturally. It is certainly possible that a distinct set of assumptions to those used in
this paper could also give rise to a model of type (47), however we do not take this
further at present.

7 Examples and applications

During the last few sections we have established a toolkit for generating distinct
macroscopic equations, originating from the same transport model for movement of
an individual (whether cell or organism) in an oriented environment. In this section
we demonstrate these findings through a combination of examples and some specific
applications.

7.1 Bidirectional and nondirectional environments

Here we consider environments in which the orientational cues do not provide a
single direction to the biased movement. Examples range from the movement of
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wolves along seismic lines, hikers along footpaths, animals along roads or cells
along collagen fibres: i.e., while there is a tendency to movewith the alignment of
the environment, there is no specific “up” or “down”. As previously specified, we
model this by assuming symmetry inq:

q(x,−v) = q(x,v) ,

with the direct consequence

Eq = 0 and Vq(x) =
∫

V
vvTq(x,v)dv.

In relation to the above scaling methods, Item 1. of Lemma 1 applies: we have no
drift term and all methods lead (eventually) to the diffusion limit

p̄t = ∇(∇D(x)p̄) , (48)

whereD(x) = 1
µ Vq(x) is an anisotropic diffusion tensor.

7.1.1 Isotropic diffusion: the Pearson walk

We illustrate the above with the simplest version of a transport process as expressed
by (3) in a completely uniform directional field (i.e. we havea nondirectional envi-
ronment): the Pearson walk. Individuals are assumed to movewith a constant speed
s (V = sSn−1) and the underlying directional field is uniform:

q(x,v) =
1
|V| =

s1−n

|Sn−1| .

Again,q is symmetric and henceEq = 0. The variance is computed as

Vq =

∫

vvTq(v)dv=
s1−n

|Sn−1|s
2sn−1

∫

Sn−1
γγTdσ =

s2

|Sn−1|
|Sn−1|

n
In =

s2

n
In,

whereIn denotes the identity matrix.
Hence, the drift component will be zero and the diffusion is isotropic with diffu-

sion constant3

d =
s2

µn
.

3 A general formula for directional moments, such as
∫

γγTdγ = |Sn−1|/n In can be found in Hillen
[16].



Contents 27

7.1.2 Anisotropic diffusion example

We present a specific example together with some simulationsof the transport model
and its diffusive limit. Specifically, we consider a migrating population within a
simple rectangular landscape (set to be of dimensions[−10,10]× [−10,10]) with an
oriented section centring on the origin. The orientationalfield strength is assumed
to reduce with distance, effectively becoming isotropic inthe periphery. See Figure
2A-D for a representation of this environment.

For the directional distributionq we consider the bimodal von Mises distribution:

q(x,θ ) =
1

4π I0(k)

(

ekθ ·γ +e−kθ ·γ
)

, (49)

whereθ ∈ S1 defines the movement direction of the population andγ ∈ S1 defines
the dominating alignment of the local environment.In denotes the modified Bessel
function of first kind of ordern. Note that the von Mises distribution is the ana-
logue of a normal distribution on a circle. The parameterk defines the strength of
anisotropy and is termed theparameter of concentration. The above bimodal von
Mises distribution clearly has two local maxima, one forθ = γ and one forθ =−γ
[3]. Fork→ 0 it converges to a uniform distribution (i.e. isotropic), while for k→ ∞
it converges to a sum of two point measures in directionsγ and−γ.

To represent an environment in which anisotropy varies in the manner described,
we assumek(x) decays exponentially with distance from the origin

k(x) = k0e−r|x|2 ,

where, in this example, we setk0 = 10 andr = 0.25. This leads to high anisotropy in
the centre of the domain and almost no directional bias in theperiphery. Generally,
γ could vary in space (for example, as in a curving road) however here we set it
constant and in the direction of the diagonal,γ(x) = (1/

√
2,1/

√
2)T . Figure 2A

represents the environmental anisotropy for the central portion of the field, with the
orientation and size ofk represented by the direction and length of the individual line
segments. For the three field positions indicated we plot thecorresponding bimodal
von Mises distributions in 2B-2D.

We first simulate the original transport model by substituting the abovek and
γ into (49) and solving equation (3). For details of the numerical methods used
throughout this section, we refer to the Appendix. We assumethe population is ini-
tially homogeneous and unaligned, withp(x,v,0) = constant and ¯p(x,0) = 1. To
limit the impact from boundaries we impose periodic boundary conditions along
edges. In Figure 2E-G we plot the macroscopic cell density ¯p(x, t) at t = 50 for
three distinct speeds,s, and turning rate,µ : (E) s= 0.1,µ = 0.01; (F)s= 1,µ = 1;
(G) s= 10,µ = 100. Note that the parabolic limit corresponds to the limiting sce-
nario in whichs→ ∞, µ →∞ with s2/µ constant and we can therefore expect (G) to
most accurately reflect the solution to the parabolic model.The simulations reveal
the impact of the environmental anisotropy on the population. Far from the origin
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the population is almost uniformly distributed. Nearer thecentre a heterogeneous
population distribution arises due to movement into the aligned region with subse-
quent transport in the direction of alignment. The bidirectional movement in this
region results in symmetry in the population distribution,with a “dumbbell-like”
pattern arising composed from regions of higher and lower density. The aggrega-
tions develop due to transport along the aligned region where they accumulate in
the peripheral, isotropic regions. Notice that there is no taxis or adhesion involved
in these aggregations; the patterns result solely from the geometry of the underlying
network.

We next determine the corresponding drift (Eq) and diffusion (Vq) for the macro-
scopic equations by finding the moments of the bimodal von Mises distribution.
Such computations are usually quite involved and require multiple trigonometric in-
tegrals (see [30]), however in the Appendix we present an alternative method based
on the divergence theorem. Specifically, we find

Eq(x) = 0,

Vq(x) =
1
2

(

1− I2(k(x))
I0(k(x))

)

I2+
I2(k(x))
I0(k(x))

γγT . (50)

Thus, as expected for the bidirectional case, the drift termdisappears while diffusion
generates a tensor composed from an isotropic (I2-term) and non-isotropic compo-
nent (γγT-term). Consequently, the macroscopic version of the transport equation
simulated above is the anisotropic diffusion equation

p̄t =
s2

µ
∇(∇Vq(x)p̄) , (51)

where the heterogeneous and anisotropic diffusion tensor is given by (50) using the
choices forγ andk(x) above that define our direction distribution. Simulations are
shown in Figure 2H for a simulation of (51) withs2/µ = 1, with p̄(x, t) plotted at
t = 50. Notably, the population distribution quantitatively matches the output from
the transport model under the simulated parabolic limit scaling of sandµ .

7.1.3 Steady states

The above simulations suggest a capacity of the model to generate inhomogeneous
steady states, at first a little surprising for a pure diffusion model. Closer scrutiny
of (51) reveals how these patterns could arise as we demonstrate through the one-
dimensional example. Consider the following distinct models for movement of a
population within an interval:

ut = (d(x)ux)x (52)

and
ut = (d(x)u)xx (53)
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Fig. 2 Population heterogeneity arising due to bidirectional orientation of the environment. (A)-
(D) representation of the imposed anisotropy, with (A) representing strength of anisotropyk (length
of line segments) and alignment in the field (figure truncatedat±5 to aid clarity of presentation)
and (B)-(D) plotting the corresponding distribution (49) at each point indicated, as a function of
θ = (cosφ ,sinφ ) for φ ∈ [0,2π). Note that two dominating and equal orientations arise corre-
sponding toγ =±(

√
2/2,

√
2/2). (E)-(G) Simulation of the transport model (3) under the imposed

q, showing the predicted macroscopic cell density ¯p at timet = 50 for (E)s= 0.1,µ = 0.01; (F)
s= 1,µ = 1; (G) s= 10,µ = 100. (H) Simulation of the parabolic limit (51) at the same time
t = 50 withs2/µ = 1 and the diffusion tensor as computed from (50). For detailsof the numerical
implementations we refer to the Appendix.
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with homogeneous Neumann conditions assumed at the boundaries. Equation (53)
can be expanded intout =(d′(x)u+d(x)ux)x, revealing an additional advective term
with advective velocityd′ in comparison to (52). To determine the impact of this
extra term we examine steady states for (52) and (53).

At steady state, Equation (52) leads to(d(x)ux)x = 0 which, after integrating
and applying the boundary conditions, yieldsd(x)ux = 0. This impliesux = 0 and
u(x) is constant at steady state. This is what we expect for a pure diffusion process.
Steady states for (53), on the other hand, satisfy(d(x)u)xx = 0 and hence we find
(d(x)u)x = 0. Thus,d(x)u= c (constant) and

u(x) =
c

d(x)
.

For spatially varyingd(x), equation (53) clearly allows nonuniform steady states,
with the correspondingu(x) being high or low in small or large diffusion regions,
respectively. The additional advective term lies at the heart of this nontrivial steady
state.

7.1.4 Application to seismic line following

Having confirmed that the diffusion model (51) can accurately capture predicted
behaviour of the original transport model, at least under relevant scalings, we now
apply the method to tackle a specific ecological problem: wolf movement in certain
habitats. The model as discussed is particularly useful fordescribing the movements
of populations in environments containing linear featuressuch as roads, rivers, val-
leys, or seismic lines. Work by McKenzie and others [30, 31] determined the move-
ment patterns of wolves in a typical Western Canadian habitat, consisting of boreal
forest cut by seismic lines. Seismic lines are clear-cut straight lines (with a width
of about 5m) used by oil exploration companies for testing ofoil reservoirs. Typical
densities are approximately 3.8kmof lines on 1km2 and both wolves and ungulates
(such as caribou) use these lines to move and forage, leadingto significant impact
on predator prey-interactions.

To describe the movement of wolves in such a habitat, McKenzie used GPS
data generated from 4 individual wolves and estimated parameters for a diffusion-
advection model, dividing the habitat into three areas: (i)seismic lines, (ii) near
seismic lines (less or equal 50 m), and (iii) far from seismiclines (larger than 50m).
Wolves demonstrated preferred movement along lines, whileoccasionally leaving
lines to reenter forest. In particular, wolf movement data on seismic lines supported
a fit to the directional distribution given by the bimodal vonMises distribution (49),
whereγ(x) ∈ S1 now describes the direction of the seismic line andθ ∈ S1 the
movement direction of the wolves.

To model this scenario we consider the parabolic limit of an underlying transport
model in which wolf direction varies according to being on oroff a seismic line.
With no up or down information provided by the seismic line, we therefore have
a bidirectional local environment and can expect the density of wolves,w(x, t), to
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follow the anisotropic diffusion equation

wt =
s2

µ
∇(∇Vqw) , (54)

where the anisotropic diffusion tensorVq is given by equation (50),γ(x) will corre-
spond to the direction of a seismic line whilek(x) varies according to a position on
or off a seismic line.

To illustrate the applicability, consider for the moment a coordinate system
aligned with a seismic line, i.e.γ = e1. Here we can directly compute the diffusion
tensor:

Vq̃ =





1
2

(

1+ I2(k)
I0(k)

)

0

0 1
2

(

1− I2(k)
I0(k)

)



 .

The termI2(k)/I0(k) enhances the mobility along a seismic line and reduces mobil-
ity in perpendicular direction. Moreover, fork→ ∞ (corresponding to an increasing
strength of anisotropy),I2(k)/I0(k)→ 1 and the above diffusion tensor collapses to
one-dimensional diffusion along the seismic line.

Away from the seismic lines wolves show no clear tendency to migrate towards
or away from seismic lines [30]. Effectively, away from the lines we setk(x) = 0 in
the bimodal von Mises distribution (49) and we obtain the isotropic diffusion tensor:

Vq̃ =
1
2
I2. (55)

Using these ideas, we next simulate the expected populationdistribution for
wolves in a typical habitat containing seismic lines. The aerial photograph in Figure
3A is of a Northern Alberta landscape in winter, demonstrating a woodland habitat
criss-crossed with a combination of roads (thicker lines) and seismic lines (thinner
lines). This image was digitised into a binary map, Figure 3B, showing areas of
seismic lines (or roads) (white) and away from seismic lines(black). An automated
processing of this image was applied to calculate the orientation at a point speci-
fied as seismic line, with this orientation determining the vector fieldγ(x) used to
compute the anisotropic diffusion tensor (50). In Figure 3Cthis anisotropy is repre-
sented for a small square section indicated by the boxed areain 3B, with the long
axes at each point representing the direction (and strength) of the alignment. We
setk = 2.5 for points marked as on a seismic line andk = 0 for points marked as
off a seismic line. To limit the impact from boundary conditions we remark that the
digitised region in B was buffered with a perimeter of isotropic diffusion.

Preliminary simulations for the distribution of wolves,w, are shown for two ini-
tial conditions: a uniform distributionw(x,0)= 1 in Figure 3D-F and a 2D Gaussian-

type distribution centered in the field for 3G-I,w(x,0) = 100e−|x−xc|2. In the former
we observe the emergence of a spatially variable wolf population from homogeneity,
with a clear tendency of the population to accumulate and move preferentially along
the lines, shown at times (D)t = 0, (E)t = 1 and (F)t = 10. The diffusion from the
concentrated initial distribution further reveals this preferential spread, with wolves
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clearly dispersing more rapidly along the lines than through the surrounding lines;
here, wolf distribution is shown at (G)t = 0, (H) t = 1 and (I)t = 5.

FD

A C

E

G H I

B

Fig. 3 Wolf distribution in anisotropic environments. (A) Aerialphotograph of a Northern Al-
berta (Canada) landscape, showing criss-crossing seismiclines and roads. (B) Binary map created
from (A) with lines marked as white. (C) Blow-up of boxed region in (B), showing detail of the
anisotropic diffusion tensor automatically generated from the image in (B). (D-F) Numerical sim-
ulation of equation (54) for a uniform distributionw(x,0) = 1, using the computed diffusion tensor
generated from (B) and settings2/µ = 1. Wolf densityw(x, t) is plotted at times (D)t = 0, (E)t = 1

and (F)t = 10. (G-I). Numerical simulation forw(x,0) = 100e−|x−xc|2 (wherexc marks the domain
centre), showingw(x, t) at times (G)t = 0, (H) t = 1 and (I)t = 5. Note that the simulated domain
is a little larger than that plotted, with the surrounding zone assumed isotropic and implemented to
reduce the impact of boundary conditions (note that this hasnegligible impact on the qualitative
results presented). For details of the numerical implementation we refer to the Appendix.
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7.2 Unidirectional environments

In many cases an environmental cue can provide a specific direction, as in the mag-
netic fields used by migrating turtles and whales, the slope of the ground for hilltop-
ping butterflies, the movement of organisms towards food sources or the current of a
river. To include such cues we can remove the symmetry assumption for q imposed
in the bidirectional case.

To examine how this impacts on the scaling limit we consider the specific exam-
ple of attraction to a food supply. We letF(x) denote a given food distribution, with
x ∈ R2, and assume that individuals more or less accurately identify the direction
of the food source (e.g. by smelling) and move towards maximaof F . We therefore
consider the unit vector that describes the orientation of the field to be given by

γ(x) =
∇F(x)
‖∇F(x)‖ .

Since orientation of individuals is rarely perfect (i.e. movement will not be directly
in the direction of the food) we take a (unimodal) von Mises distribution about the
gradient ofF:

q̃(x,θ ) =
1

2π I0(k)
ekθ ·γ . (56)

The above defines a direction distribution in which individuals align and migrate in
the direction of the source. Note that varying degree of alignment could also be in-
corporated, for example through allowingk to depend on the size ofF or ‖∇F(x)‖.
To determine the macroscopic terms we again compute the moments of the distri-
bution (see Appendix):

Eq(x) =
I1(k)
I0(k)

γ ; (57)

Vq =
1
2

(

1− I2(k)
I0(k)

)

I2+

(

I2(k)
I0(k)

−
(

I1(k)
I0(k)

)2
)

γγT . (58)

Notably, the drift termEq is now nonzero and in the direction of∇F(x), whereas the
diffusion term has two components: an isotropic part and an oriented nonisotropic
part, which is proportional to∇F(x)∇F(x)T . The resulting macroscopic equation is
therefore of the form of an anisotropic drift-diffusion equation

pt + s∇(Eqp) =
s2

µ
∇(∇Vqp) . (59)

It is worth noting two limiting scenarios. For the parameterof concentrationk
becoming small (i.e. the food source provides a weak orientational cue), then

lim
k→0

Eq = 0 lim
k→0

Vq =
1
2
I2 ,
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and we obtain uniform isotropic diffusion and no accumulation at the food source.
For the parameter of concentrationk becoming large (i.e. the food source provides
a strong orientational cue), then

lim
k→∞

Eq = γ lim
k→∞

Vq = 0,

and hence we obtain the pure drift equation in which cells move directly towards
the food source with speeds.

7.2.1 Anisotropic diffusion-drift example

To illustrate how unidirectional environments impact on patterning, we present a
scenario analogous to the example of (7.1.2). Specifically,we consider a population
in a landscape with a unidirectional patch in the centre of the domain. We assume
the above von Mises distribution (56) with the main orientation along the diagonal
γ = (1/

√
2,1/

√
2)T ,

q(x,θ ) =
1

2π I0(k)
ek(x)θ ·γ .

Once againk(x) is assumed to decay exponentially from the centre to the periphery
of the domain, with

k(x) = k0e−r|x|2 .

Here we setk0 = 5 andr = 1.0.
We again perform a direct simulation of the original transport model (3) with the

above choice forq and solving subject to the same initial and boundary conditions
as for the example of Section 7.1.2. As we observe in Figure 4E, the directed patch
significantly impacts on the subsequent distribution of thepopulation. Rapid trans-
portation through the oriented region results in a markedlydecreased population
density within this region. This generates a large “plume”-like structure adjacent to
this region.

We simulate the correspondinganisotropic diffusion-drift equation. For the above
von Mises distribution we compute the heterogeneous drift and diffusion terms from
(57) and (58) respectively and substitute these into (59). Simulations show an excel-
lent quantitative match with the transport model, Figure 4F, once again confirming
the validity of the macroscopic scaling process.

7.2.2 Relation to haptotaxis and chemotaxis

As a brief remark we note that unidirectional environments can be reinterpreted in
terms of modelling haptotaxis (directed migration of cellsin response to regions
of high adhesivity in the ECM), chemotaxis (directed movement in response to
chemical gradients) and other forms of gradient following.Haptotaxis and chemo-
taxis are typically modelled by an advective type term in PDEmodels (e.g. see
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Fig. 4 Population heterogeneity arising due to unidirectional orientation of the environment. (A)-
(D) representation of the imposed anisotropy, with (A) representing strength of anisotropyk (length
of line segments) and the directional alignment of the field (figure truncated at±3 to aid clarity
of presentation) and (B)-(D) plotting the corresponding distribution (56) at each point indicated,
plotted as a function ofθ = (cosφ ,sinφ ) for φ ∈ [0,2π). Note that the dominating orientation
corresponds toγ = (

√
2/2,

√
2/2). (E) Simulation of the transport model (3) under the imposed

q, showing the predicted macroscopic cell density ¯p at timet = 50 for s= 10 andµ = 100. (F)
Simulation of the diffusion-drift limit (59), usings= 10 ands2/µ = 1 and plotted att = 50, with
the diffusion tensor computed from (58) and the drift term calculated according to (57). For details
of the numerical implementation we refer to the Appendix.

[24, 20, 33, 29, 2]), with cell velocity proportional to the adhesion/chemical gradi-
ent.

The present work provides new motivation for such models. For example, we
assumeF(x) describes the ECM adhesivity field surrounding a cell and take the von
Mises distribution (56) to describe oriented movement towards higher adhesion, i.e.
we takeq to be given by

q(x,v) = δs(‖∇F‖)(‖v‖) 1
2π I0(k)

exp

(

k
v ·∇F(x)

‖v‖ ‖∇F(x)‖

)

.
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Furthermore, we let the speedsdepend on the strength of the gradient,s(‖∇F(x)‖).
SinceEq 6= 0, the parabolic limit does not apply and we employ instead the hyper-
bolic scaling. Drift subsequently dominates with diffusion of lower order and the
corresponding macroscopic model becomes (to leading order)

ut +2π I1(k)∇ ·
(

s(‖∇F‖)
‖∇F‖ ∇Fu

)

= 0.

The fieldF could also be reinterpreted to describe other forms of tactic migration.

7.3 Singular distributions

The theories above have been derived for regular measuresq∈ L2 only and, while it
is possible to extend some of the results to singular measures (see for example [18,
7]), the mathematical overhead becomes enormous; here we simply apply the formal
limit equations in good faith. Singular measures, however can play an important
role either in describing certain oriented fields or representing a limit scenario for
previously considered cases.

7.3.1 Strictly bidirectional: degenerate diffusion

If we consider the earlier bimodal von Mises distribution (49) and letk → ∞ we
converge to two point measures in directionsγ and−γ. Such distributions could be
considered as completely aligned and bidirectional networks. Specifically, we let

q(x) :=
1
2
(δγ(x)(v)+ δ−γ(x)(v)) ,

and find
Eq = 0 and Vq = γγT . (60)

Thus, there is zero drift and diffusion is given by a rank-onetensorVq, i.e. diffusion

occurs only along theγ/− γ axis. The corresponding diffusion tensorD = s2

µ Vq is
degenerate and not elliptic, hence the general solution theory for parabolic equa-
tions does not apply. In a forthcoming paper we develop methods that allows us to
describevery weaksolutions for such degenerate problems [21].

7.3.2 Strictly Unidirectional: Relation to ODEs

For the corresponding unimodal von Mises distribution (56)with k → ∞ we obtain
a singular distribution. This defines a strictly aligned unidirectional field and, as
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described in [17], there is a striking relation between these limit equations and the
theory of ordinary differential equations (ODE).

The solution of the autonomous differential equation

ẋ(t) = f (x(t)) (61)

in the domainRn is given by the solution semigroupΦ(t,x0) which describes orbits
that are tangential to the vector fieldf (x). In our notation here, we assume that this
vector field f (x) ∈V defines a given direction at each point inRn and define

q(x,v) = δ f (x)(v), (62)

whereδ f denotes the point measure with mass inf ∈V. In this case we find

Eq(x) = f (x), and Vq = 0.

This is a clearly drift-dominated situation and the hyperbolic scaling is appropriate.
Item 4. of Lemma 1 applies and we obtain the limit equation

ut +∇( f (x)u) = 0.

This hyperbolic PDE has the characteristics

ẋ(t) = f (x(t)),

which is the ODE from above. Hence typical movement paths of particles in an
environment given by a singular measure (62) are orbits of the corresponding ODE.

7.4 Life in a stream

An example that amalgamates various cases above (nondirectional, unidirectional
and singular) is the movement of living organisms in a stream(which, for conve-
nience, is assumed to be two dimensional).

Movement can be split into two principal contributions: (i)transport due to the
current, and (ii) active movement by the individuals. For transport due to the cur-
rent we letγ(x) denote the direction of the stream (assumed quasi-constantover the
timescale of interest), and letq1(θ ) = δγ(x)(θ ) define the stream current. We aug-
ment this transport with a degree of turbulence, expressed via the random movement
contributionq2(θ ) = |Sn−1|−1.

For the active movement we assume individuals are biased towards a given food
source

q3(θ ) =
1

2π I0(k)
ekθ ·Γ (x), with Γ (x) =

∇F(x)
‖∇F(x)‖ ,
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whereF(x) describes the distribution of food inside the stream. To simplify compu-
tations, we assume individuals have a preferred speeds, i.e.V = sSn−1. Hence,q is
a convex combination of the above effects:

q(x,v) = s1−n (α1q1(v̂)+α2q2(v̂)+α3q3(v̂)) ,

whereα1+α2+α3 = 1, andαi ≥ 0 for i = 1, ...,3., and ˆv= v/‖v‖ denotes the unit
vector in direction ofv.

In this case, the macroscopic drift component is given by

Eq = α1γ(x)+ sα32π I1(k)Γ (x).

Drift arises as the interplay between transport due to the streamγ(x) and movement
towards the food sourceΓ (x). The diffusion term is given by

D(x) =
s2

µ

[

α2

2
I2+

α3

2

(

1− I2(k)
I0(k)

)

I2+α3

(

I2(k)
I0(k)

−
(

I1(k)
I0(k)

)2
)

Γ (x)Γ (x)T

]

,

derived from a combination of random movement and the imperfect response to the
food source. We note that more detailed modelling of river ecosystems and species
survival has been undertaken by Lutscher, et al. [28].

8 Conclusion and Discussion

The principal aims of this paper have been to demonstrate theeffectiveness of
transport equations as a method for modelling cell or animalmovement, to explain
and summarise the various scaling limits that allow their approximation to distinct
macroscopic models, and to consider a few pertinent ecological applications, such
as wolf movement on seismic lines, attraction to a food source and movement in
rivers.

The transport model is a natural model for movement, relyingas it does on ex-
perimentally measurable data such as speeds and turning rates for its key inputs.
While it is certainly possible to study the transport model directly, both the analyt-
ical and numerical overheads can be costly. For example, thenumerical solution of
the simple (and assumed 2D) transport model given by (3) requires discretisation
not only over space, but also orientation; extensions to relevant scenarios such as
3D, variable speeds or more intricate turning functions would significantly add to
the computational time. Simplifying to the relatively straightforward macroscopic
model, which still possesses details of the underlying microscopic processes in its
macroscopic parameters, allows far faster numerical computation while opening the
vault to a wealth of analytical tools.

Typically the scaling methods considered here (parabolic scaling, hyperbolic
scaling, and moment closure) are studied separately and it can be difficult for unfa-
miliar readers to determine why one method is chosen over another. By focussing
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on a specific formulation of a transport model, originally developed to describe cell
movement in network tissues, we could transparently derivethe various limiting
equations and expose the assumptions that underlie them.

Responding to a question posed during the introduction, it would be bold to cate-
gorically state a “best” method and instead models must be treated on a case by case
basis. Succinctly, it comes down to the relative size of drift and diffusion terms:
when the model is drift-dominated, as occurs for environments with a strong cue
in a specific direction, the hyperbolic approximation applies; when the model is
diffusion-dominated, as for environments with either nondirectional or bidirectional
orientation, the parabolic limit is appropriate; if the twoeffects are of a similar order
then either the moment closure or the hyperbolic model with corrections provide the
most appropriate approximation.

It is worth noting that the clarity of the analysis here is a direct product of the
simplicity of our transport model. Full analyses for more general kinetic equations
can become highly technical and fill entire textbooks (for example, see [8] for di-
luted gases or [39, 5] for biological applications). With the aim of illuminating the
various scaling limits we have made a number of convenient assumptions and it is
worth describing some of the limiting factors here, and their potential importance
for biological applications.

• We have not considered time-varying habitats. In many instances, the environ-
ment can change considerably on the timescale of movement, either indepen-
dently (for example, the changing position of the sun or alterations in wind
strength) or through direct modification by the migrating population (e.g. forma-
tion of pheromone trails by ants or restructuring the ECM by cells). The addition
of t-dependence in the orientation functionq adds a significant level of com-
plexity and, while the scaling limits do apply, they requiredetailed analysis and
consideration on a case by case basis. For details of such analyses in the context
of mesenchymal cell migration we refer to [17].

• In this paper, the environment has been assumed to only impact on the turning of
individuals, not on their speed. While it is trivial to extend the original transport
model to incorporate more general speed dependencies, the subsequent compu-
tations to calculate the scaling limits are often complex and obscure their basic
features. We note that in the context of taxes above, we have given one simple
example on how to perform scaling for nonconstant speeds. The one-dimensional
case has been studied in detail in [23, 22]

• Appropriate boundary conditions on bounded domains require special attention.
For example in the case of the seismic lines above, what wouldbe meaningful
boundary conditions on and off the seismic lines for both theoriginal transport
model and the subsequent macroscopic limits? We circumnavigated this issue in
the simulations by buffering the simulated region with a surrounding isotropic
region and using periodic boundary conditions, however other conditions could
certainly be considered. For example, zero-flux boundary conditions could be
one relevent choice, as assumed in [31].

• More complicated formulations for the turning kernelT(x,v,v′) and non-constant
turning ratesµ(t,x, p,v) arise naturally in many applications. Obviously, any
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such choice should be tailored according to the applicationunder analysis, how-
ever the ensuing calculations can become highly intricate.One important yet
complicated case is the incorporation of interactions between individuals. For
example, the patterns formed by many migrating populations, from bird flocks
to wildebeest, are highly structured through the response of an individual to the
movement of a neighbour.

• The simple model here has neglected aspects such as a restingphase (individuals
are assumed to move continuously) or population kinetics. For example, mod-
elling the impact of seismic lines on the predator-prey dynamics of wolves and
caribou would require an extension of the model to include a separate caribou
population and appropriate predator-prey interactions. Again, while tailoring the
original transport model to include such extensions is relatively straightforward,
the subsequent calculation of scaling limits would requiretreatment on a case by
case basis.

• On a technical side, in our theorems we have typically used the notion“is ap-
proximated by” to denote the formal limit considerations. Rigorously, to refer to
an approximation property would require proof of convergence in an appropri-
ate function space and we have completely omitted these issues here. Rigorous
convergence results for the parabolic limit can be found in [19, 9].

Migration, whether cellular or animal, clearly is immensely relevant to a plethora
of crucial biological and ecological processes. Distinct methods offer different ad-
vantages, allowing multiple windows through which the underlying mechanisms
can be observed. In this paper, our aim has been to concentrate on the transport (and
associated macroscopic) equations, with the key aim of shedding illumination on
this useful modelling approach.

Appendix

9 Moments of von Mises distributions

The appendix is used to present an alternative method for computing moments of
a von Mises distribution. Usually, moments are computed through explicit trigono-
metric integrations (see e.g. [30], [32], [3]) however herewe instead apply the di-
vergence theorem. While this method is easily generalised to arbitrary space dimen-
sions, explicit trigonometric integration becomes increasingly cumbersome with in-
creases in the space dimension.

Given a unit vectorγ ∈ Sn−1, we first study the (unimodal) von Mises distribution

q(θ ) =
1

2π I0(k)
ekθ ·γ (63)

In the main text it is noted that the moments employ Bessel functions and we
begin by collecting a few of their properties. IfJn(x) denote the Bessel functions of
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first kind, then
In(x) := (−i)−nJn(ix)

denotes the Bessel function of first kind with purely imaginary argument, or the
modified Bessel functions. For these we have the relation

In(k) =
1

2π

∫ 2π

0
cos(nφ)ekcosφ dφ . (64)

Two further important relations include the differential recurrence

d
dx

(xnJn(x)) = xnJn−1(x) (65)

for n≥ 0, and the recurrence relation

Jn+1(x) =
2n
x

Jn(x)− Jn−1(x). (66)

9.1 Unimodal von Mises distribution

To compute the total mass of the (unimodal) von Mises distribution (63) we denote
the angle betweenθ andγ by φ :

∫

S1
q(θ )dθ =

1
2π I0(k)

∫ 2π

0
ekcosφ dφ = 1,

where we used (64).
To compute the expectation, we note

2π I0(k)Eq =
∫

S1
θekθ ·γ ,

=
∫

B1(0)
divv ekv·γ dv,

=

∫

B1(0)
kγekv·γ dv,

= kγ
∫ 1

0

∫ 2π

0
erkcosφ rdrdφ ,

= kγ
∫ 1

0
2πrI0(rk)dr ,

= 2πkγ
∫ 1

0
rI0(rk)dr .

To solve the last integral, we use (65) and write
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rI0(rk) =
irkJ0(irk)

ik
=

1
ik

d
dx

(xJ1(x))|x=irk =
1
ik

d
dr

(rJ1(irk)).

Then
∫ 1

0
rI0(rk)dr =

1
ik

rJ1(ik) =
1
ik

iI1(k) =
I1(k)

k
. (67)

and we find

Eq =
I1(k)
I0(k)

γ. (68)

The variance-covariance matrix is given by

Vq =
∫

S1
(θ −Eq)(v−Eq)

Tq(θ )dθ =
∫

S1
θθ Tq(θ )dθ −EqE

T
q .

To find the second moment ofq we consider two test vectorsa,b∈ R2 and employ
index notation for automatic summation over repeated indices

2π I0(k)a
∫

S1
θθ Tq(θ )dθ b =

∫

S1
aiθ ib jθ jekθ l γl dθ

=

∫

S1
θ i(aib jθ jekθ l γl )dθ

=

∫

B1(0)

∂
∂vi (aib jv

jekvl γl )dv

=

∫

B1(0)
aibie

kv·γ dv+
∫

B1(0)
ai(v ·b)kγie

kv·γ dv

= a ·b
∫

B1(0)
ekv·γ dv+ ka· γ b ·

∫

B1(0)
vekv·γ dv (69)

The first integral in (69) can be solved directly

∫

B1(0)
ekv·γ dv=

∫ 1

0

∫

S1
erkθ ·γ rdrdθ =

∫ 1

0
2πrI0(rk)dr = 2π

I1(k)
k

,

where we used (64) and (67) in the penultimate and ultimate step respectively. Using
(64) we can transform the second integral from (69) as follows:

∫

B1(0)
vekv·γ dv=

∫ 1

0

∫

S1
rθerkθ ·γ rdrdθ =

∫ 1

0
r2
∫

S1
θerkθ ·γ dθ

= 2πγ
∫ 1

0
r2I1(rk)dr, (70)

where we used (68) in the last step.
Now we use the differential recurrence relation (65) to write

r2I1(rk) =− 1
ik2 (irk)

2J1(irk) =− 1
ik2

d
dx

(x2J1(x))|x=irk =−1
k

d
dr

(r2J1(irk)).
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Continuing from (70) we find

∫

B1(0)
vekv·γ dv=−2πγ

∫ 1

0

1
k

d
dr

(r2J1(irk))dr =−2πγJ2(ik) = 2πγ
I2(k)

k
. (71)

Substituting all the integrals back into equation (69)

a
∫

S1
θθ Tq(θ )dθ b = a ·b 2π I1(k)

k

2π I0(k)
+ ka· γ 2πγ ·b I2(k)

k

2π I0(k)

= a

(

1
k

I1(k)
I0(k)

I2+ γγT I2(k)
I0(k)

)

b.

Finally, we use the identity (66) forn= 1 to replace

1
k

I1(k)
I0(k)

=
1
2

(

1− I2(k)
I0(k)

)

and the second moment is given by

∫

S1
θθ Tq(θ )dθ =

1
2
I2+

I2(k)
I0(k)

(

γγT − 1
2
I2

)

. (72)

Together with the formula for the expectation (68) we find

Vq =
∫

S1
θθ Tq(θ )dθ −EqE

T
q

=
1
2
I2+

I2(k)
I0(k)

(

γγT − 1
2
I2

)

−
(

I1(k)
I0(k)

)2

γγT (73)

=
1
2

(

1− I2(k)
I0(k)

)

I2+

(

I2(k)
I0(k)

−
(

I1(k)
I0(k)

)2
)

γγT . (74)

Clearly, if the parameter of concentrationk becomes small (i.e.k→ 0) thenEq → 0
andVq → 1

2I2.

9.2 Bimodal von Mises distribution

Computations for the bimodal von Mises distribution

q(θ ) =
1

4π I0(k)

(

ekθ ·γ +e−kθ ·γ
)

are very similar. Since the bimodal von Mises distribution is symmetric (or undi-
rected) we haveEq = 0 andVq =

∫

θθ Tq(θ )dθ . We apply formula (72) for each of
the componentsekθ ·γ ande−kθ ·γ separately and sum. We find
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Vq =
1
2

(

1− I2(k)
I0(k)

)

I2+
I2(k)
I0(k)

γγT .

10 Numerical methods

10.1 Simulations of transport model

Simulations of the transport model (3) were performed with aMethod of Lines
(MOL) approach, in which space and velocity are discretisedinto a high-dimensional
system of time-dependent ODEs (the MOL-ODEs). For the transport equations
presented, the rectangular spatial domain (of dimensionsLx × Ly) was discretised
into a uniform mesh of 201 by 201 points, while velocityv = s(cosα,sinα) (for
α ∈ [0,2π)) was discretised into 100 uniformly spaced orientations with a fixed
speeds. Spatial terms for particle movement were approximated in conservative
form using a third-order upwinding scheme, augmented by flux-limiting to maintain
positivity. The resulting MOL-ODEs were integrated in timeusing the ROWMAP
stiff systems integrator [42], with a fixed absolute and relative error tolerance of
10−7. Similar approaches to those above were employed in [36].

10.2 Simulations of macroscopic models

Simulations of both the anisotropic diffusion (51) and anisotropic drift-diffusion
(59) model were performed with a similar MOL approach. The anisotropic diffusion
term was factored into diffusive and convective terms and solved in conservative
form, applying a central difference scheme for the former and first order upwinding
for the latter. The additional drift terms in the drift-diffusion model were also solved
with first order upwinding and the resulting MOL-ODEs were integrated in time
using ROWMAP with error tolerances of 10−7. For the two simulations in Figures
2 and 4 we used 201 by 201 mesh points for the spatial discretisation, while for the
simulations in Figure 3 we use 500 by 500 mesh points. We note that simulations
with finer spatial discretisations and smaller tolerances demonstrated no appreciable
quantitative difference.
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