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Abstract We study the motion of superfluid vortices with filled massive cores. Previous point-vortex models already pointed out
the impact of the core mass on the vortex dynamical properties, but relied on an assumption that is questionable in many physical
systems where the immiscibility condition is barely satisfied: the fact that the massive core always lays at the very bottom of the
effective confining potential constituted by the hosting vortex. Here, we relax this assumption and present a new point-vortex model
where quantum vortices are harmonically coupled to their massive cores. We thoroughly explore the new dynamical regimes offered
by this improved model; we then show that the functional dependence of the system normal modes on the microscopic parameters
can be correctly interpreted only within this new generalized framework. Our predictions are benchmarked against the numerical
simulations of coupled Gross–Pitaevskii equations for a realistic mixture of atomic Bose–Einstein condensates.

1 Introduction

Boson mixtures of dilute gases formed by two components can feature vortex configurations with massive cores, whose rich
phenomenology has attracted considerable interest in the last two decades. Controlled by the interplay of repulsive inter-species and
intra-species interactions, one of the two components can thicken in the vortex cores of the other component, where the vortices
play the role of a local trapping potential. This leads to a complete phase separation, the immiscibility regime, for sufficiently strong
inter-species interaction.

Vortices characterized by filled cores, experimentally realized in mixtures with different hyperfine components [1, 2], have been
theoretically investigated in Refs. [3–6] to explore their stability and phase-separation properties and have been involved as well
in the study of multi-vortex lattices in rotating condensates. In particular, phase separation plays a crucial role in the formation of
such structures [7], in determining the properties of their phase diagram [8], and in the mixing dynamics of Skyrmion lattices [9,
10]. In the last decade, a renewed interest for this class of systems has highlighted unexplored dynamical behaviours and complex
properties, due to the possibility of combining analytical tools with improved numerical techniques and resources. A variety of
aspects and effects have been investigated which include, in the immiscible regime, the formation of vortices with massive cores
in the form of stable vortex-bright soliton structures [11], vortex-bright soliton dipoles and the tunnelling of the soliton component
[12], and their dynamics with unequal dispersion coefficients [13]. On the other hand, in the miscible regime, the two species do not
separate and exhibit the formation of vortex states representing magnetic defects [14], and configurations with vortices [15, 16] or
half-vortices [17, 18] in both the components, where the cores correspond to density peaks of the other species. Again in the miscible
regime, the phase diagram of complex topological-defect states, for a rotating binary condensate, has been determined as a function
of the spatial separation and the angular velocity [19], while the angular-momentum exchange in vortex-bright soliton structures has
been related to the miscibility of the two components [20]. Also, stable multiply quantized, giant vortices have theoretically proven
to exist [21], and the emergence of vortex dimer and trimer bound states has been related to the vortex pair interaction [22].

Recently, it has been shown that the dynamics of 2D massive vortices in a mixture of components a and b is described by Lorentz-
like electromagnetic ODEs [23, 24], where the a density plays the role of the magnetic field intensity and the vortex interaction force
is analogous to the two-dimensional (2D) electric force. The b core mass adds a classical kinetic energy term. This point-like model
allows for the description, in the immiscible regime, of a system of stable vortices via a set of coordinates or degrees of freedom,
where the comparison with the mean-field Gross–Pitaevskii (GP) equations has been satisfactory. However, one of the assumptions
of the aforementioned point-vortex model (see also Refs. [24–28]) is that the centre of the massive core always coincides with that of
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the hosting quantum vortex. This is, a priori, questionable, especially when the immiscibility condition is barely met, as the massive
core may, in principle, oscillate around the vortex centre.

Here, we overcome this constraint and extend the massive point-vortex model by treating the vortex and its massive core as two
different dynamical objects, associated with two different sets of dynamical variables. In the point-like derivation, we assimilate the
coupling energy to that of a restoring spring. Besides, we extract numerical data from the simulation of GP equations and use them
to investigate the vortex-massive core real dynamics and to validate our analytical model. As previously observed [24], the first
striking effect of the second species is a qualitative change of trajectory. Normally, a massless vortex in a 2D disc moves of uniform
circular motion. In presence of a second species, characteristic radial oscillations arise as the hallmark of the inertial character of
the core mass. Specifically, we find that our new model overcomes the previous one in predicting the dependency of the radial
oscillations from the inter-species coupling parameter gab. This dependency was not intrinsic in the previous model as it did not
include the parameter gab at all. We wish to remark that the predictions of our analytical model are confirmed by the analysis of the
system eigenfrequencies as extracted from GP simulations, despite the fact that there is no significant relative motion between the
vortex and its massive core, in agreement with the recent results of Ref. [29].

Our manuscript is organized as follows: in Sec. 2 we present the physical system and derive an effective point-vortex model where
vortices are harmonically coupled to massive cores. In Sec. 3, we extensively explore the new dynamical regimes and the effects
predicted by such improved point-vortex model, pointing out some important fully analytical properties. Section 4 is concerned with
numerical simulations of coupled GP equations, followed by suitable extractions of the vortices’ and massive cores’ trajectories.
The comparison between numerical results and analytical predictions is extensively discussed. Eventually, Sec. 5 is devoted to the
concluding remarks and sketches some possible future research directions.

2 Point-like model for vortices harmonically coupled to massive cores

We consider a two-component BEC strongly confined along the z-direction by a harmonic trap characterized by a harmonic-oscillator
length dz . Its dynamics is described, at the mean-field level, by two coupled GPEs

i�
∂ψi

∂t
�
⎛
⎝−�

2∇2

2mi
+ Vtr +

∑
j�a,b

gi j |ψ j |2
⎞
⎠ψi , i � a, b (1)

where ψa and ψb are the macroscopic wavefunctions associated with the two components, whose norm is Ni � ∫ |ψi |2 d2r , with
i � a, b. The model parameters ma and mb represent the atomic masses of the two components, while gi j � √

2π�
2ai j/(mi j dz)

represent the intra- and inter-species couplings, which depend on the s-wave scattering lengths ai j and on the effective masses
mi j � (m−1

i +m−1
j )−1 [30]. The term Vtr is the confining potential, which is taken to be a circular hard-wall potential; in the strongly

interacting Thomas–Fermi regime (Niaii � dz), the equilibrium density is almost homogeneous within such a trap and thus better
represents a portion of an extended quasi-2D superfluid system. Equation (1) in the immiscible regime gab >

√
gagb admits a

notable class of solutions, namely a vortex in component a filled by Nb � Na b-component particles.

2.1 Lagrangian variational approach

In general, the essential time evolution of the complex fields ψa and ψb can be captured according to a time-dependent variational
approximation [24, 31, 32]. This technique allows one to bypass the need of solving Eqs. (1) and to reduce the dynamics of complex
fields ψa and ψb to that of few selected time-dependent variational parameters. For the present problem, the ansatz

ψa �
√
na − nae−|r−rv(t)|2/σ 2

a eiθa for|r|< R (2)

is such that its density field |ψa |2 is uniform within the hard-wall trap of radius R, apart from a Gaussian-like hole centred at rv and
having width σa . As regards the phase field

θa � arctan

(
y − yv
x − xv

)
− arctan

(
y − y′

v

x − x ′
v

)
, (3)

it features singularities at |rv|< R and at |r ′
v|> R, where (x ′

v , y′
v) :� r ′

v � rvR2/r2
v . The first one coincides with the centre of the

Gaussian-like hole and thus represents an actual vortex, while the second one is the so-called image vortex, originating from the
presence of the circular boundary and ensuring that the a-component velocity field va ∝ ∇θa is purely tangential to it.

In the same spirit of Ref. [24], we assume that b-component bosons are described by a Gaussian wavefunction

ψb(r) �
(

Nb

πσ 2
b

)1/2

e−|r−rc(t)|2/2σ 2
b ei r·α(t) (4)
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but, as opposed to our previous study, in this work we take into account the possible relativemotion between the vortex and its massive
core. Therefore, in general, rv 	� rc, a circumstance resulting in an increased number of time-dependent variational parameters and
thus in a more accurate modelling of the physical problem.

Substituting time-dependent variational ansatzes (2) and (4) in the field Lagrangian

LGP[ψa , ψb] �
∑
i�a, b

[
i�

2

∫
d2r

(
ψ∗
i

∂ψi

∂t
− ∂ψ∗

i

∂t
ψi

)

−
∫

d2r

(
�

2

2mi
|∇ψi |2+Vtr|ψi |2+

gi
2

|ψi |4
)]

− gab

∫
d2r |ψa |2|ψb|2 (5)

[generating Euler–Lagrange Eq. (1) ], and after integrating out the fields’ degrees of freedom, one obtains the following effective
Lagrangian, up to additive constant terms

L � �naπ ṙv × rv · ẑ − naπ�
2

ma
log

[
1 −

(rv
R

)2
]

+
1

2
Nbmb ṙ2

c − gabnaNbσab|rv − rc|2 (6)

where the density–density repulsion energy [see the term ∝ gab in Eq. (5) and appendix (1)] has been expanded to the second order
in the displacement |rv − rc| and where σab � σ 2

a /(σ 2
a + σ 2

b )2. We remark that, as opposed to the massive-point vortex model
presented in Refs. [23–25, 33], in this model, vortices and massive cores are described by different sets of dynamical variables.

The associated Euler–Lagrange equations

2πh ṙv × ẑ � h2

ma

rv

R2 − r2
v

+ 4πgabNbσab(rc − rv), (7)

mbNb r̈c � −2gabσabnaNb(rc − rv) (8)

show that the vortex velocity ṙv not only depends on the vortex position rv (as is customary the case for a standard superfluid
vortex [32]), but also on the position rc of its massive core, which is in turn subjected to a recoil force towards the vortex centre. On
the other hand, the motion equation for rv(t) is of first order, in analogy with well-established (massless) point-vortex models [32,
34–45], but unlike the massive-point vortex model discussed in Refs. [23–26, 33, 46] where the time evolution of vortex positions
is governed by second-order motion equations. Eventually, it is worth remarking that, upon multiplying both sides of Eq. (7) for the
2D number density na , all terms have the dimensions of a force. In this optics, one can conclude that the (massless) vortex moves
to ensure that the total force acting on it is zero, which is exactly the Magnus effect [25]. For gab → ∞ and rc → rv , the two
equations reduce to the previous model ones, as in Ref. [24].

2.2 Hamiltonian description

We introduce the equivalent description of the system dynamics within the Hamiltonian framework, which will prove particularly
convenient for the study of the system’s normal modes and of their properties (see Sec. 3). Preliminarily, we compute the canonical
momenta of the vortex

pv � ∂L/∂ ṙv � nah

2
rv × ẑ (9)

and of the massive core

pc � ∂L/∂ ṙc � mbNb ṙc, (10)

and observe that, while the second momentum exhibits the expected linear dependence on the velocity, the first one is structurally
different as the momentum components of the vortex depend on the vortex-position coordinates. The presence of constraints between
canonical variables apparently prevents the transition to the Hamilton formalism. This pathology is removed by applying the Dirac
procedure for constrained Hamiltonian systems [47, 48] which allows one to derive new Dirac-Poisson brackets incorporating the
dynamical constraints. In the current case, the new brackets read

{A, B} � 1

hna

(
∂A

∂xv

∂B

∂yv
− ∂B

∂xv

∂A

∂yv

)

+
∂A

∂xc

∂B

∂pxc
− ∂B

∂xc

∂A

∂pxc
+

∂A

∂yc

∂B

∂pyc
− ∂B

∂yc

∂A

∂pyc
, (11)
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with the Hamiltonian

H � h2na
4πma

log

[
1 −

(rv
R

)2
]

+
p2
c

2mbNb
+ gabσabnaNb|rv − rc|2. (12)

The effect of Dirac’s method is clearly visible in formula (11) where xv and yv have the status of canonically conjugate variables.
This property, extended to many-vortex systems, allows for the derivation of Helmholtz-Kirchhoff equations within the Hamilton
picture [49].

Upon defining the vector of dynamical variables z � (xv , yv , xc, yc, pxc , pyc ), the Hamilton motion equations are given by

ż � {z, H} (13)

which are indeed equivalent to Eqs. (7 and 8). The canonical angular momenta for the vortex and the mass read

lv � rv × pv � −hna
2

r2
v ẑ (14)

lc � rc × pc � mbNb rc × ṙc, (15)

respectively. Due to the planar character of the mass and vortex motions, the two angular momenta lv and lc are aligned with the z
axis as well as the total angular momentum L � Lz ẑ � lv + lc. Then, one easily verifies that {Lz , H} � 0, a conservation property
which comes from the rotational symmetry of the system.

We remark that, while lc corresponds to the expectation value 〈L̂〉ψb of the angular-momentum L̂ evaluated with respect to ansatz
(4), one can easily verify that lv differs from 〈L̂〉ψa � hna(R2 − r2

v )/2 ẑ [computed using ansatz (2) in the limit σa → 0] due to
a constant additive term hna R2/2. This difference does not constitute an issue since Lagrangians are known to be defined up total
time derivatives. By defining the Lagrangian L ′ :� L + �naπR2 (dθv/dt) one obtains the same motion equations of Lagrangian (6)
together with the expected vortex angular momentum lv � 〈L̂〉ψa .

2.3 Uniform circular orbits

Equations (7) and (8) admit a notable class of solutions, such that both the vortex and its massive core exhibit a uniform circular
motion with angular frequency �. In this case, the trajectory can be parametrized as

xv � r̃v cos(�t), yv � r̃v sin(�t), (16)

xc � r̃c cos(�t), yc � r̃c sin(�t), (17)

where r̃v and r̃c are time-independent quantities depending on � (and on the other model parameters) whose defining equations are
discussed in Appendix (1). Although the analytic expression of the orbits’ radii r̃v(�) and r̃c(�) is rather complex, it is possible to
point out some remarkable properties. Their ratio

r̃c
r̃v

� 2gabnaσab
2gabnaσab − mb�2 (18)

is always greater than 1 because the massive core is subject to an effective centrifugal force and tends to 1+ for gab → +∞ (highly
immiscible species). In this limit, as shown in Appendix (1), one recovers the results of Ref. [24], i.e.

�
(+)
0 �

1 +
√

1 − 2μ/(1 − r2
0 )

μ
(19)

and

�
(−)
0 � 2/(1 − r2

0 )

1 +
√

1 − 2μ/(1 − r2
0 )

(20)

here expressed in units of �/(maR2) (frequency) and R (length), where μ � maNa/(mbNb) represents the mass imbalance,
r0 :� r̃0/R is the effective radius, and r̃v , r̃c � r̃0 (see also Fig. 1). Moreover, in the massless limit Nb → 0, �(+)

0 diverges (and thus

turns unphysical), while �
(−)
0 reduces to � � �/[ma(R2 − r2

v )], the well-known frequency for a vortex inside a circular boundary
[32].
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Fig. 1 Functional dependence of
Eqs. (19) (dashed line) and (20)
(solid line) on the normalized
radial distance r0 for μ � 0.05

Fig. 2 Numerical solution of Eqs.
(7 and 8). Solid blue (red dashed)
line corresponds to the trajectory
of the vortex (massive core). The
inset allows one to appreciate the
rapid precession of the vortex
around its massive core. The
frequency of their rapid precession
can be estimated by Eq. (25). The
microscopic parameters are those
of a 23Na +39 K-mixture [50]. In
particular, the interspecies
scattering length is taken to be
a12 � 24 a0 (where a0 is the Bohr
radius), dz � 0.4 μm, σa � 5 μm,
σb � 4 μm, Na � 105,
Nb � 5 × 103, R � 50 μm. The
dynamics is triggered by
perturbing the overall uniform
circular orbit corresponding to a
radius of R/2. The dynamics has
been simulated for �t � 2 s

3 Normal modes

Small perturbations of the uniform circular orbits discussed in Sec. 2.3 trigger small-amplitude oscillations and result in more
complex trajectories. A typical example is presented in Fig. 2, where one can appreciate, besides an overall motion of precession
around the trap centre at frequency ∼ �, two additional modes: a radial oscillation of the vortex-massive-core complex, and a circular
motion of precession of the vortex around its massive core. While the former has been already described in Ref. [24] and explained
to be the hallmark of the core’s inertial mass, the latter consists in a relative motion between the quantum vortex and its massive
core and could not be predicted within previous approaches [23, 24], which relied on the approximation rv ≡ rc. Interestingly,
the direction of the precession of the vortex around its massive core (clockwise in Fig. 2) is opposite with respect to that of the
vortex-massive-core complex around the tarp centre (anticlockwise in Fig. 2).

3.1 Linear response

The dynamical stability of the uniform circular orbits discussed in Sec. 2.3, as well as the analysis of the system’s normal modes,
is carried out according to the standard techniques from dynamical systems theory. One starts from Lagrangian (6) written in the
laboratory reference frame xOy, and then switches to a reference frame XOY , rotating at angular frequency �, by means of the
transformations

xi � XiC(t) − Yi S(t), yi � Xi S(t) + YiC(t), (21)

where C(t) � cos(�t), S(t) � sin(�t) and i � (v, c) (the velocities transform accordingly). The Hamiltonian Hrot of the system
in this new reference frame is readily computed (notice that it is formally equivalent to H − �Lz). The six Hamilton equations are
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written as Ż � E(∇HT
rot) [their explicit expression is given in Appendix (1)], where Z � (Xv , Yv , Xc, Yc, PX , PY )T is the vector

of dynamical variables, i.e. the generalized coordinates and their momenta in the rotating frame, and

E �

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1
hna

0 0 0 0
− 1

hna
0 0 0 0 0

0 0 0 0 1 0
0 0 0 0 0 1
0 0 − 1 0 0 0
0 0 0 − 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(22)

is a suitable symplectic matrix (notice that xv and yv are canonically conjugate, as is customary in classical nonviscous hydrodynamics
[35], while the massive core is associated with actual pairs of coordinates and conjugate momenta). The fixed points of this dynamical
system correspond to the uniform circular orbits discussed in Sec. 2.3. Then one computes the Hessian matrix H and the Jacobian
matrix J � EH associated with the dynamical system (see Appendix (1)) and evaluates the latter at the previously found fixed
points (see Sec. IV of Ref. [51] for a detailed explanation). The eigenvalues of J characterize the stability of the fixed point (namely
the uniform circular orbit in the laboratory frame): if they are purely imaginary (have a nonzero real part), then the fixed point is
dynamically stable (unstable). The imaginary parts ω j of the eigenvalues λ j � ±iω j represent the eigenfrequencies of the system’s
normal modes (we remark that a pair of eigenvalues is always zero, a circumstance which originates from the presence of a conserved
quantity, namely l · ẑ).

In the following, we use the symbol ω1 to denote the frequency of the very rapid precession of the vortex around its massive core
(see the inset of Fig. 2) and the symbol ω2 to indicate the frequency of the radial oscillations of the vortex-massive-core complex
(see the main panel of Fig. 2).

3.2 Eigenfrequencies of a vortex-massive-core at the trap centre

While for generic values ofR, gab, and Nb, the eigenfrequencies ω1 and ω2 do not exhibit simple analytic expressions, it is instructive
to discuss their properties for r̃c � r̃v � 0. In this case, in fact, the vortex and its massive core both lie at the trap centre, a circumstance
which implies that the image vortex is infinitely far and hence does not affect the system dynamics. Under these hypotheses, the
eigenfrequencies can be written as:

ω0
1 � γab

√
2

hmb

√√√√1 +
h2na
γabNb

+

√
1 + 2

h2na
γabNb

, (23)

ω0
2 � γab

√
2

hmb

√√√√1 +
h2na
γabNb

−
√

1 + 2
h2na
γabNb

, (24)

with γab � gabσabmbNb. Interestingly, in the limit of high immiscibility gab → +∞, the rapid-precession frequency ω0
1 diverges

and thus turns unphysical, while the oscillation frequency of the overall transverse oscillations ω2 tends to hna/(mbNb). The latter
value exactly corresponds to the small-oscillation frequency computed in Ref. [24].

The limit of large Nb, describing a very heavy massive core, provides another interesting case. In this circumstance, the large
inertia of the massive core dominates the dynamics of the overall system, and transverse radial oscillations of the vortex-massive-core
complex are prohibited, i.e. ω2 � 0. On the other hand, one can verify that, for Nb large enough

ω∗
1 � 2gabσabNb

h
(25)

which is indeed a finite quantity. Notice, in this regard, that the latter value may have been derived directly from the inspection of
Eq. (7) and, more specifically, by applying the classical counterpart of the Born-Oppenheimer approximation to it. Observing Fig. 2,
in fact, one can notice the presence of a very rapid precession of the vortex around its massive core. Since, during a full precession
cycle, the massive core can be regarded as stationary, one can neglect the time dependence of rc. Under this approximation, (and in
the limit of large R), the effective dynamical equation of the vortex is thus

2πh ṙv × ẑ � 4πgabNbσab(rc − rv), (26)

which depends on the only unknown rv(t). The solution of this equation, formally equivalent to that of a charge in a constant
magnetic field, corresponds to a uniform circular motion centred at rc whose precession frequency exactly corresponds to limit (25)
derived above within the linear-response framework. We remark that, in this regime, the eigenfrequency ω1 linearly depends on the
coupling constant gab.
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Fig. 3 Functional dependence of
the two eigenfrequencies ω1 (left
panel) and ω2 (right panel) with
respect to the interspecies
coupling gab . Blue dots
correspond to numerical results,
while grey dashed line
corresponds to analytical
predictions Eq. (25) [Eq. (27)] for
the left (right) panel. Microscopic
model parameters are those used
in Fig. 2

Fig. 4 Functional dependence of
the two eigenfrequencies ω1 (left
panel) and ω2 (right panel) with
respect to the number of core
particles Nb . Blue dots correspond
to numerical results, while grey
dashed lines correspond to
analytical predictions [Eq. (25) for
the left panel, and Eq. (27) for the
right panel]. Microscopic model
parameters correspond to the ones
used in Figs. 2 and 3

With reference to Fig. 2, for example, over a simulated time interval of 2 s, the vortex performs 279 revolutions around its massive
core, corresponding to a rate of 877 rad/s. These “experimental” data deviate less than 5% from the estimate one can obtain from
Eq. (25), namely 836 rad/s, and less than 2% from the estimate provided by Eq. (23), i.e. 861 rad/s.

3.3 Eigenfrequencies of an off-centred vortex-massive-core complex

As already mentioned, the eigenfrequencies ω1 and ω2 can be written in closed form [see Eqs. (23) and (24)] only upon neglecting the
presence of the circular trap. Already within this approximation, and, surprisingly, also upon introducing the further simplification
that the massive core is stationary with respect to the fast precession of the massless vortex [see Eq. (25)], the analytical estimates of
ω1 are in good quantitative agreement with the results extracted from the full solution of the time-dependent dynamical equations.

In the following, we present a full-fledged analysis of the system eigenmodes, computed numerically taking into account the
finite size (R) of the superfluid sample as well as the presence of the hard-wall circular boundary. Figure 3 illustrates the functional
dependence of ω1 and ω2 with respect to the intercomponent repulsive interaction gab. As visible from the left panel, ω1 features
a persistently linear dependence on gab, signalling the fact that neither the overall motion of precession of the quantum-vortex-
massive-core complex nor its transverse oscillations significantly affect this eigenmode, which is, instead, governed mainly by the
effective attraction between the vortex and its massive core [see Eq. (26)].

As regards the right panel of Fig. 3, one can notice a strong dependence of ω2 on the interspecies coupling. In the limit gab → 0+,
in fact, ω2 tends to zero, a circumstance signalling the fact that the quantum vortex, upon being disconnected from its massive core,
looses its inertia and ceases to oscillate. In the opposite limit, i.e. for gab → +∞, ω2 asymptotically approaches the limiting value

ω∗
2 � �

maR2

2

μ

√
1 − μ

2 − r̃2
0

(1 − r̃2
0 )2

(27)

where μ � mbNb/(manaπR2) is the mass ratio, and r̃0 is the position (given in units of R) of a massive core tightly bound to the
centre of its hosting quantum vortex. This expression was indeed derived in Ref. [24] upon assuming rv ≡ rc, a constraint which is,
in turn, consistent with the condition gab → +∞. In this case, in fact, the system tends to minimize the overlap between |ψa |2 and
|ψb|2, thus resulting in a tight confinement of the massive core within its hosting quantum vortex. We remark that, unexpectedly,
the oscillation frequency of the massive vortex depends on the spring constant ∝ gab because the presence of the image vortex can
be interpreted as an external force.

Let us now turn to the analysis of the dependence of ω1 and ω2 on the number of b-component particles.
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The left panel of Fig. 4 shows that ω1 linearly depends on Nb for large values of Nb, the oblique asymptote being given by Eq.
(25). Interestingly, the numerically obtained data deviate from the aforementioned asymptote for small values of Nb. One can verify
that

lim
Nb→0

ω0
1 �

√
2gabσabna

mb
, (28)

a quantity which basically corresponds to the harmonic-oscillator frequency associated with Eq. (8) under the approximation that rv

is constant. Further comments will follow in Sec. 3.4. As regards ω2 (right panel of Fig. 4), one can see that its functional dependence
on Nb is well captured by Eq. (27) in the large Nb limit (blue dots are essentially on top of the grey dashed line). Nevertheless, as
opposed to the behaviour predicted by Eq. (27), ω2 does not diverge for Nb → 0, but approaches a limiting value very close to
quantity (28). This unexpected circumstance will be discussed in more detail in Sec. 3.4.

3.4 Light-core vortices and hybridization of the eigenmodes

As already mentioned, in the limit of very light massive cores (Nb → 0), both ω1 and ω2 basically tend to quantity (28). In this
circumstance, in fact, both eigenfrequencies reduce to those ones of an isotropic 2D harmonic oscillator, constituted by the light
massive core trapped within a stationary harmonic potential. It is worth remarking that, if the centre of the harmonic potential is not
stationary, but orbits at a rate �, then the original system’s eigenfrequencies ω1 � ω2 given by Eq. (28) modify as follows:

ω1 → ω′
1 :� ω1 + �, ω2 → ω′

2 � ω2 − �.

Upon increasing the value of Nb, the (quasi-)degeneracy of ω1 and ω2 is lifted (see Fig. 5) and, up to the first order in Nb, the two
eigenfrequencies

ω1 ≈
√

2gabσabna
mb

+ � +
gabσab

h
Nb + O(N 2

b ) (29)

ω2 ≈
√

2gabσabna
mb

− � − gabσab
h

Nb + O(N 2
b ) (30)

symmetrically depart from quantity (28) [see also the two dashed lines on the left-hand side of Fig. 5a]. We remark that, in this
limit, the normal modes consist only in the oscillations of the light massive core around a centre orbiting at frequency �, while the
quantum vortex is basically unaffected [see Fig. 5b].

On the other hand, for large values of Nb, ω1 and ω2 are well approximated by Eq. (25) and Eq. (27), respectively [see grey
dashed lines on the right-hand side of Fig. 5a]. In this limit, the structure of the normal modes is very different: the eigenmode
associated with ω1 consists in a very rapid precession of the quantum vortex around its massive core [see Eq. (26) and the relevant
discussion], while that associated with ω2 consists in radial oscillations of the quantum-vortex-massive-core complex [see Fig. 5c].

As visible from Fig. 5a, there exists a range of values of Nb (in this case Nb ∼ 1500) where the analytical estimates of ω1 and
ω2 valid for small (grey lines on the left-hand side) and large (grey lines on the right-hand side) values of Nb get (pairwise) similar.
This implies that the two pairs of previously discussed normal modes “hybridize”, meaning that their shape [see Fig. 5b] inherits
some properties of both parent eigenmodes. More specifically, the resulting eigenmodes involve the oscillations of both the quantum
vortex and its massive core, thus resulting in rather complex trajectories, which, to the best of our knowledge, elude further analytical
description.

4 Gross–Pitaevskii results

We compare the predictions of the analytical model discussed in Sec. 2 and Sec. 3 with numerical simulations of coupled Gross–Pi-
taevskii Eq. (1), which, in turn, well capture the essential physics of a Bose-Bose mixture at very low temperature.

We consider, in particular, a 23Na +39 K-mixture [label “a” (“b”) being associated with 23Na (39K)], featuring aa ≈ 52 a0 and
ab ≈ 7.6 a0 (see the caption of Fig. 2 for the other microscopic parameters). This specific mixture is particularly suitable to test our
analytical model because mb > ma and ab < aa , meaning that the massive cores are relatively small and heavy, thus constituting a
good physical implementation of a “massive point vortex”. We present the results of our numerical simulations, together with some
observables and indicators extracted upon post-processing the raw numerical data as suitable.

We employ imaginary time propagation [i.e. Eq. (1) following the substitution t → −iτ ] to prepare a state where a-component,
confined in a disk-like domain of radius R, features an off-centred vortex, while b-component is localized within its core. This
state is initially generated by imprinting a nontrivial phase field (unitary winding number) in ψa and is stabilized by the immiscible
character (gab >

√
gagb) of the two BECs. To avoid undesired drifts of the vortex-massive-core complex towards the trap boundary
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Fig. 5 Panel a: Functional dependence of the two eigenfrequencies ω1 (blue line) and ω2 (orange line) on the number of core particles Nb . They were
computed numerically taking into account the finite size (R) of the superfluid sample. Grey dashed lines correspond to some analytical estimates: the upper
left grey line corresponds to Eq. (29), lower left grey line corresponds to Eq. (30), upper right grey line corresponds to Eq. (25), while the lower right grey
line corresponds to Eq. (27). Panels b–d illustrate the detailed structure of the normal modes for three different values of the mass ratio μ. b corresponds to
μ � 10−5, a regime where the very light massive core basically oscillates within the hosting vortex, which plays the role of an isotropic 2D harmonic trap
(and whose trajectory is almost unaffected by the presence of the massive core). Panel d corresponds to μ � 1.7×10−2, a regime where the quantum vortex
exhibits a very rapid precession around its massive core and the whole complex features radial oscillations. Panel c corresponds to μ � 8.5×10−2, a regime
where the aforementioned normal modes get hybridized and result in rather complex trajectories, which cannot be easily described. The same microscopic
model parameters of Fig. 2 were used, with Nb � 1, 103, 5 × 103 for panel b–d, respectively

[52] (we recall that the imaginary-time propagation is a fictitious dynamics and does not conserve the energy), we make use of
a strong and sharp Gaussian pinning potential acting only on ψa and whose centre coincides with the centre of the b-component
wavepacket. We also consider a frame rotating at angular frequency �, a circumstance corresponding to the introduction of the
term −�L̂ z (where L̂ z is the third component of the angular-momentum operator) in Eq. (1) for both components. The value of
� is chosen according to massive point vortex model (7) and (8) to support a nonzero precession velocity ṙc, v � � × rc, v of the
vortex-massive-core complex.

The wavefunctions output by the imaginary-time propagation are taken as initial conditions for the real-time evolution, which is
performed in the absence of both the pinning potential and the rotation frequency. We remark that, in order to excite the system’s
normal modes (see also Sec. 4.1 and Sec. 4.2), ψb is preliminary perturbed as follows: ψb → ψ ′

b :� ψbei r·α , where α � mb(�ṙc)/�

and �ṙc is the perturbation which is imparted to the core’s velocity. In the absence of this perturbation, i.e. for α � 0, the vortex
and its massive core would exhibit a simple uniform precession around the origin.

4.1 Trajectories

While performing the real-time evolution of ψa and of (the perturbed) ψb, we track and record the positions rc(t) and rv(t) of both
the massive core and its hosting vortex. The former is computed according to the well-known formula

rc � 1

Nb

∫
r|ψb|2 d2r (31)

while the latter demands a different approach since the vortex corresponds to a density depletion. One may define rv as the position
of the local minimum of |ψa |2, but this choice would lead to a rather noisy output, reminiscent of the discrete sampling of ψa (i.e.
of the real-space mesh). Instead, we found it convenient to follow the following procedure: i): construct ψ̃a by cropping |ψa |2 to a
circle of radius 0.9 R thus getting rid of the tiny annulus (having width ∼ ξa , where ξa is the healing length associated with ψa)
over which the density profile |ψa |2 decays from its bulk value down to zero; ii) determine Ma :� max|ψ̃a |2 and define the new
density-like distribution |�a |2:� Ma − |ψa |2, which is positive definite by construction. In this way, density depletions in |ψa |2
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Fig. 6 Trajectories of the quantum vortex and its massive core as extracted from numerical simulations of coupled GP Eq. (1) according to formulas (31)
and (32). Left panel: light-core regime, obtained for Nb � 1. The inset shows that the massive core oscillates within its quantum vortex, as predicted by
the analytical model [see Fig. 5b and Sec. 3.4]. Right panel: moderate-weight-core regime, obtained for Nb � 5 × 103. Na � 105. In agreement with the
analytical model, the trajectories feature overall radial oscillations resulting in a multi-lobed trajectory [see Fig. 5d and Sec. 3.3]. But, as opposed to the
predictions of the analytical model, there is no trace of the rapid precession of the quantum vortex around its massive core (see inset). The microscopic
model parameters are listed in the caption of Fig. 2

are mapped to density peaks in |�a |2, thus naturally offering the possibility of using a formula of the type (31); iii) the vortex centre
can now be defined as

rv �
∫
r|�a |2 d2r∫ |�a |2 d2r

, (32)

which manifestly involves the weighted average of a fictitious density distribution.
The plot of rc(t) and rv(t) as extracted from the real-time simulations of Eq. (1) according to formulas (31) and (32) is illustrated

in Fig. 6 for two different values of Nb.
For small values of Nb � Na (see left panel), the massive core oscillates within its hosting quantum vortex, which, instead,

travels along an (almost) unaffected uniform circular orbit. This phenomenology is qualitatively analogous to that illustrated in
Fig. 5b and discussed in Sec. 3.4.

For larger values of Nb/Na , the analytical model predicts radial oscillations of the massive-core-quantum-vortex complex
associated with a very rapid precession of the quantum vortex around its massive core [see Fig. 5d]. Our extensive numerical
experiments indeed confirm the occurrence of the former phenomenon, resulting in a multi-lobed overall trajectory, but do not
provide evidence of the latter (see right panel of Fig. 6). We argue that this discrepancy is not due to the thickness of the adopted
spatial mesh, which should indeed allow to resolve this rapid precession, if it was present. Instead, we believe that the total lack of
this feature is intrinsic to the physical system under investigation and may be ascribed either to a fast dissipation of such oscillations
into sound, or to the partial validity of the assumptions of the analytical model presented in Sec. 2, i.e. the fact that the vortex profile
is actually not static, but can deform so to adjust, at any time, to the instantaneous effective potential landscape represented by the
peaked |ψb|2.

Altogether, the trajectories illustrated in Fig. 6 disclose rather elusive phenomena, either because the relative motion between
the vortex and its massive core is not visible (moderate-mass-core case, see right panel of Fig. 6) in GP simulations, or because
such relative displacement may be so small (we recall that it would be of the order of the a-component healing length) that a direct
experimental detection may be not possible (light-mass-core case, see left panel of Fig. 6). As we will show in Sec. 4.2, this is not
the whole story, since there exists a well-defined and experimentally accessible physical observable which unambiguously discloses
the signature of the finite coupling between the vortex and its massive core.

4.2 Lobes frequency

As already mentioned in Sec. 3.3 (see also the right panel of Fig. 3), in the moderate-mass-core case, the eigenfrequency ω2, which
is proportional to the number of lobes in the overall trajectory of the quantum-vortex-massive-core complex, strongly depends on
the intercomponent repulsion gab. We remark that this nontrivial dependence could not be appreciated in the framework of the
previously proposed massive-point-vortex model [23–25] as gab did not play any explicit role (one only relied the assumption that
gab was large enough to ensure a tight confinement of the massive core within its hosting quantum vortex).
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Fig. 7 Radial distance of the massive core as function of time for different values of gab . Each peak of the function rc(t) corresponds to a lobe of a trajectory
of the type illustrated in the right panel of Fig. 6. As pictorially illustrated by the grey arrow, increasing gab , the period of the sine-like waves gets smaller,
that means that its inverse, i.e. ω2, gets larger. The main frequency of each sine-like wave is extracted by FFT and illustrated in Fig. 8 as a function of gab .
The assumed microscopic parameters are listed in the caption of Fig. 2 and at the beginning of Sec. 4, with Na � 9 × 104 and Nb � 2 × 103

Fig. 8 Functional dependence of
the numerically determined
frequency of the radial oscillations
of the vortex-core complex on the
interspecies interaction gab . The
value of ω2 corresponds to the
frequency at which the (absolute
value of the) FFT of rc(t) (see
Fig. 7) is peaked. The red dashed
line corresponds to
gab-independent relation (27) i.e.
to the model [24] where the
massive core was assumed to be
always centred at the centre of the
quantum vortex. Our new model
prediction is again in red. It
qualitatively shows a correct
dependence of ω2 on gab; the
agreement quantitatively improves
if ga is incremented together with
gab , or, in some sense, if the
massive vortex is more
“point-like”. σa � 10 μm,
σb � 5 μm. The other
microscopic parameters are those
listed in the caption of Fig. 2 and
at the beginning of Sec. 4

In agreement with the analytical model presented in Sec. 2 and 3, our numerical simulations indeed show that ω2 increases upon
increasing gab and eventually saturates to a limiting value.

To show this, we analyse the raw data rc(t) :� √
xc(t)2 + yc(t)2 extracted from real-time GP simulations for different values of

gab, but for the same value of Nb and of the initial perturbation α.
While the rapid increase of ω2 with gab is already evident from the observation of Fig. 7, a more quantitative observation can

be made by applying the fast Fourier transform (FFT) to rc(t), which ultimately constitutes the discrete sampling of a continuous
signal. The output of (the absolute value of) this transform is a distribution peaked around a certain frequency, which is identified
with ω2 and illustrated in Fig. 8 as a function of gab.

For comparison, in the aforementioned figure, we also illustrate the gab-independent value corresponding to Eq. (27), derived
in Ref. [24] within a massive-point-vortex model which did not account for the possible relative motion between the vortex and its
massive core. While this quantity was shown to be the asymptotic value which ω2 tends to for gab → +∞ according to the analytical
model discussed in Sec. 2 and 3 (see also the right panel of Fig. 3), our GP simulations show that the numerically computed values
of ω2 actually tend to a smaller limiting value for large values of gab. This quantitative, but not qualitative, discrepancy with respect
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Fig. 9 Comparison of the GPE
solution with the previous and the
here extended point-like model.
Our new model improves the
prediction of the macroscopic
radial oscillations frequency. The
GPE core trajectory and our model
prediction show approximately
five complete oscillations and a
half, whereas the old model
predicts six complete oscillations.
For illustrative purposes we
choose a some higher gab and ga
values, with gab/ga the same as at
the beginning of Sec. 4; this way,
we select a naturally more
“point-like” regime. Here:
Na � 105, Nb � 2 × 103

to the analytical predictions is somehow intrinsic to a variational point-vortex model, as the vortex with filled massive core is not
really point-like in GP simulations, but has a finite typical size. We indeed verified that, upon increasing the microscopic parameters
gab and ga , the typical size of vortices in ψa gets increasingly smaller and that the asymptotic value which the relevant relation
ω2(gab) tends to, is quantitatively well captured by Eq. (27).

Figure 9 shows a result of a GPE simulation and our model prediction, as compared to the previous model’s one. As shown, our
model leads to a lobe frequency that is closer to the GPE solution. For illustrative purposes we choose a some higher gab and ga
values, with the same gab/ga as at the beginning of Sec. 4; this way, we select a naturally more “point-like” regime.

5 Concluding remarks

Motivated by recent theoretical results [23–26, 46] according to which the dynamics of quantum vortices with filled massive cores
requires second-order acceleration terms ensuing from the inertial character of the core-filling component, we studied the impact
of a finite coupling energy between the vortex and its massive core. In fact, the basic assumption which previous models [23–26,
46] relied on, i.e. that the centre of the massive core always coincides with that of the hosting quantum vortex, may seem a priori
questionable, especially when the immiscibility condition gab >

√
gagb is barely met.

We thus develop a point-vortex-model where the quantum vortex and its massive core are described by different sets of dynamical
variables. It turns out that the quantum vortex is still described by first-order motion equations, as it is customarily in superfluid
vortex dynamics [32, 53], but it is harmonically coupled to a massive particle, which is, in turn, described by Newton’s second law.
The effective point-like motion equations for the composite object are extracted from the two coupled GP equations according to a
standard time-dependent variational Lagrangian approximation scheme [31, 32], where the vortex is modelled by a Gaussian-like
density depletion from an otherwise uniform density distribution, and the massive core by a Gaussian wavepacket. The effective
“spring constant” associated with the vortex-massive-core interaction is shown to depend on a number of microscopic parameters,
including the interspecies repulsion and the typical widths of the aforementioned Gaussian-like density distributions.

While the predictions of the obtained dynamical model correctly reproduce those of the more simple massive-point-vortex-model
(see Refs. [23–25]) in the limit gab → +∞, some phenomena that we observed in GP simulations can be correctly explained only
within this more refined framework. One of them, which is also amenable to experimental detection with current technology, concerns
the frequency at which the quantum-vortex-massive-core complex oscillates when it is displaced radially from its equilibrium orbit
[24]: it steadily increases upon increasing the stiffness of the effective spring, before eventually saturating to a constant value when
the effective spring gets so stiff not to allow any relative displacement.
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The developed analysis is expected to provide a reliable effective dynamical model for the dynamics of vortices with filled
massive cores, especially in those regimes where the immiscibility condition is barely met. This is possibly the case of thermal
atoms trapped within the core of a vortex in a dilute atomic BEC at finite temperature [54] (see also chapter 9 of Ref. [55]), or of
the quasi-particle bound states of a vortex in a fermionic superfluid [56]. It should also stimulate the already very active research in
the real-time dynamics of few-vortex systems [56, 57] and in two-component vortices [8, 11, 14, 58–65].

Possible future research directions include the extension of the current model to vortex lines in 3D superfluid samples [66, 67],
as well as the adoption of more sophisticated ansatzes in the derivation of the analytical point-vortex model (the very recent Ref.
[29] suggested, for example, that the vortices’ and the cores’ profiles are better described by super-Gaussian wavefunctions for large
atom numbers of the in-filling component, a circumstance which may possibly result in an anharmonic effective coupling). Also,
one may want to excite some internal modes of the in-filling component (e.g. the monopole and the quadrupole mode [31, 68])
and investigate their possible effect on the overall motion of the vortex-massive-core complex. Eventually, the proposed analytical
point-vortex model may be further generalized to account for possible dissipative effects [69] or to systems featuring an additional
inter-component coherent coupling [62].
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Appendix A: Inclusion of the spring-like energy term in the point-like model

We perform the derivation of the gab-dependent energy term describing the vortex-mass coupling in Lagrangian (6). The ansatz is
(see also Eqs. (2–4))

ψa(r , t) �
√
na − nae−|r−rv (t)|2/σ 2

a eiθa (33)

ψb(r , t) �
(

Nb

πσ 2
b

)1/2

e
− |r−rc (t)|2

2σ2
b ei rαi (t), (34)

for |r|< R, with

θa � arctan

(
y − yv
x − xv

)
− arctan

(
y − y′

v

x − x ′
v

)
. (35)

The corresponding densities satisfy the conditions∫
d2r |ψa |2� Na ,

∫
d2r |ψb|2� Nb. (36)

With the narrow-Gaussian approximation, the integration domain becomes [−∞, +∞]. After substituting the ansatz, it follows:

Eab � gab

[
naNb − naNbσabe

− |rc (t)−rv (t)|2
σ2
a +σ2

b

]
, (37)

with σab � σ 2
a

σ 2
a +σ 2

b
. For the dynamics evaluation purpose, the constants can be neglected. Also, the exponential can be approximated

by a first-order Taylor expansion, since the relative displacement of the vortex and core-mass centres is assumed very small due to
immiscibility. Thus:

Eab � gabnaNbσab|rc(t) − rv(t)|2 (38)

in other words, the coupling energy is comparable to that of a spring coupling the two species, whose constant depends on the system
parameters. Finally, note that the higher gab or σab (i.e. the inter-species repulsion), the stiffer the spring, or the more rigid the core
confinement.
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This computation can be easily extended to the case of more vortices. Here, a summation over the number of vortices appears in
ψa and ψb. Again, with the narrow-Gaussian approximation, all the multiple summations reduce to a single-index summation and
the integration domain becomes [−∞, +∞].

Appendix B: Circular-orbit solutions of Lagrange equations

Equations (7) and (8) exhibit constant-radius solutions that depend on the angular velocity � and on the other model parameters.
By substituting expressions (16) and (17) in Eqs. (7) and (8), one obtains the equations for the radii r̃c and r̃v

mbNb�
2r̃c � 2K (r̃c − r̃v), K � gabσabnaNb, (B7)

nah�r̃v � h2nar̃v
4maπ(R2 − r̃2

v )
+ 2K (r̃c − r̃v), (B8)

which one easily recasts into the form

r̃c � 2K

2K − mbNb�2 r̃v ,

[
(nah� + 2K ) − h2na/ma

4π(R2 − r̃2
v )

− 4K 2

2K − mbNb�2

]
r̃v � 0.

For � � 0, the first equation gives r̃c � r̃v , while the second entails r̃v � 0: both the mass and the vortex are placed at the origin,
and no motion takes place. For gab → ∞ one recovers the model where the vortex is integral with the mass (r̃v → r̃c) due to the
infinite strength K of the harmonic force. Characteristic frequencies (19) and (20) of the circular orbits for this limiting model are
easily obtained from the second equation.

Appendix C: Hamilton equations

The dynamical equations relevant to Hamiltonian (12) can be easily found by means of Poisson brackets (11). The latter preserve
their structure when introducing the canonical coordinates Xc, Yc, PX , PY , Xv , and Yv of the rotating frame [see equation (21)]
where Hamiltonian H takes the form

H � P2
X + P2

Y

2Mb
− �(XcPY − YcPX ) +

hna
2

�(X2
v + Y 2

v )

+ K
[
(Xv − Xc)

2 + (Yv − Yc)
2)
]

+
nah2

4πma
ln34.

[
R2 − X2

v − Y 2
v

R2

]

with K � gabσabnaNb and Mb � mbNb. Then the explicit expression for the Hamilton equations Ż � E(∇H )T , discussed in
section (3.1), is

Ẋv � 2K

nah
(Yv − Yc) + �Yv − h

2πma

Yv

R2 − X2
v − Y 2

v

,

Ẏv � − 2K

nah
(Xv − Xc) − �Xv +

h

2πma

Xv

R2 − X2
v − Y 2

v

.

Ẋc � PX

Mb
+ �Yc, Ẏc � PY

Mb
− �Xc,

ṖX � 2K (Xv − Xc) + �PY ,

ṖY � 2K (Yv − Yc) − �PX .

The fixed-point solutions of these equations

X̄v , Ȳv , X̄c, Ȳc, P̄X , P̄Y ,

reproduce formulas (B7) and (B8), with r̃2
c � X̄2

c + Ȳ 2
c and r̃2

v � X̄2
v + Ȳ 2

v , and thus identify with constant-radius solutions.
Perturbed solutions representing deviations from fixed points are found by introducing new local variables such that

Xc �X̃c + ξx , Yc � Ỹc + ξy ,

PX �P̃X + πx , PY � P̃Y + πy ,

Xv �X̃v + ηx , Yc � Ỹc + ηy ,
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In the new picture involving perturbation variables ξx , ξy , πx , πy , ηx and ηy it is advantageous to write Hamiltonian H, up to a
constant term H0, in the quadratic form

H2 �H0 + A11η
2
x + A22η

2
y + 2A12ηxηy

+ 2A13ηxξx + 2A24ηyξy + A33ξ
2
x + A44ξ

2
y

A55π
2
x + A66π

2
y + 2A36ξxπy + 2A45ξyπx

where the elements Amn (m, n ∈ [1, 6]) of the symmetric Hessian matrix H � A are given by

A11 �K +
hna

2
� +

h2na
4πma

Ỹ 2
v − X̃2

v − R2

(R2 − r̃2
v )2 ,

A22 � K +
hna

2
� +

h2na
4πma

X̃2
v − Ỹ 2

v − R2

(R2 − r̃2
v )2 ,

A12 � − h2na
4πma

2X̃v Ỹv

(R2 − r̃2
v )2 ,

A33 � A44 � K , A55 � A66 � 1

2Mb
,

A13 � A24 � −K , A36 � −�

2
, A45 � �

2
.

The elements not included in this list are zero. The motion equations for the perturbative solutions then read

V̇ � E(∇H2)T

where V � (ηx , ηy , ξx , ξy , πx , πy)T and

(∇H2)T � 2

⎡
⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 0 0 0
A21 A22 0 A24 0 0
A31 0 A33 0 0 A36

0 A42 0 A44 A45 0
0 0 0 A54 A55 0
0 0 A63 0 0 A66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ηx
ηy

ξx
ξy
πx

πy

⎤
⎥⎥⎥⎥⎥⎥⎦

The stability character and other properties of the ensuing perturbative solutions are discussed by computing the eigenvalues of the
matrix associated with this linear dynamical system.
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