
15 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

CNN-Oriented Placement Algorithm for High-Performance Accelerators on Rad-Hard FPGAs / Sterpone, L.; Azimi, S.;
De Sio, C. - In: IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND
SYSTEMS. - ISSN 0278-0070. - (2023), pp. 1-13. [10.1109/TCAD.2023.3331976]

Original

CNN-Oriented Placement Algorithm for High-Performance Accelerators on Rad-Hard FPGAs

Publisher:

Published
DOI:10.1109/TCAD.2023.3331976

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2983793 since: 2023-11-13T08:41:13Z

IEEE

1
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

CNN-oriented Placement Algorithm for

High-Performance Accelerators on Rad-Hard FPGAs

L. Sterpone, Senior Member, IEEE, S. Azimi, Member, IEEE, and C. De Sio, Member, IEEE

Abstract—Convolutional Neural Networks (CNNs) are quickly

becoming one of the most common applications running on

hardware accelerators. Considering Field Programmable Gate

Arrays (FPGAs), due to their high flexibility and computational

performance, they are suitable for fast classification tasks and

therefore, pave the way for new machine learning inference

approaches. In this work, we first designed a fully interconnected

CNN architecture implementable on a single FPGA. Secondly, we

developed a new Neural Node-oriented placement algorithm to

enable resilient CNN accelerators on space-grade FPGAs. The

proposed solution reduces the single event transient error

sensitivity of CNN single neuron cores while achieving high

performance and effective overall convolutional architecture fault

tolerance. The developed approach has been applied and

integrated into a state-of-the-art Radiation Tolerant FPGAs

(RTG4) implementation flow. The experimental evaluation has

been performed on a Microchip test board through benchmark

application performance evaluation and transient error analysis.

Experimental results demonstrate an improvement of 27.2% of

the maximal working frequency and a reduction of the transient

error sensitivity of about three times with respect to the previous

mitigation approaches.

Index Terms—CNN, Fault Tolerance, FPGA, Place and Route

Algorithm, Radiation Hardened Technology

I. INTRODUCTION

HE progressive advent of vision-oriented elaboration

algorithms adopting deep learning techniques increases

the usage of hardware devices capable of supporting

Convolutional Neural Networks (CNNs) computation. On the

one hand, Graphic Processing Units (GPUs) are one of the most

popular architectures to accelerate CNN computations thanks to

their parallel arrays of streaming multiprocessors allowing a

straightforward elaboration of high-level parallel software

algorithms [1]. On the other hand, the high performance of

recent FPGAs as well as their capability to be reprogrammed

easily lead them to be an appealing solution for high-

performance demanding algorithms with limited power

consumption and high efficiency [2]. Furthermore, by the

advancement of high-level synthesis tools and therefore

speeding up the designers’ productivity [3], the implementation

of FPGA-based CNN core accelerators and the implementation

of GPU-like architectures on FPGA becomes feasible [4][5].

In general, CNN operations require massive parallel

computation. When the main computational core is

implemented on hardware architecture, it is characterized by the

convolutional product that requires several Multiply and

Accumulate (MAC) cores as convolutional computation grows

exponentially [6].

Hardware-implemented CNNs are adopted in many

applications ranging from automotive to biomedical fields.

Besides, nowadays an evident interest is manifested in

aerospace applications which do not only require high-

performance and low-power devices but also a high level of

resiliency, especially with respect to radiation-induced effects

that induce permanent and transient errors within integrated

circuits [7][8][9][10].

Today, various companies manufacture radiation-tolerant

FPGAs such as the Rad-Tolerant Kintex Ultrascale FPGAs at

20 nm from Xilinx [10] and the Rad-Tolerant G4 FPGAs at 65

nm from Microchip [11]. These devices guarantee high

resiliency with respect to radiation effects, however, the circuits

implemented on these devices may undergo design constraints

related to modular redundancy and signal filtering that may

limit the overall circuit performances [12]. Moreover, despite

the reconfigurable capability as well as the radiation tolerant

feature of rad-hard FPGAs, they have a drastic limit in the

available hardware resources considering the acceleration goal.

In this work, we propose a CNN architecture implementable on

a rad-hard FPGA with limited resources. The proposed

architecture not only improves the performance with respect to

the original implementation but also reduces the single event

transient error sensitivity thanks to the developed physical

placement algorithm.

A. The main contributions

The present work has two main contributions. The first one is

the design of a CNN architecture fully implementable on a

single space-oriented FPGA device with optimized external

memory access dedicated to the neural network weights able to

reduce the data transfer overhead during the inference

execution. This result has been achieved thanks to the

application of selective quantization and pruning of the neural

network architecture to meet the rad-hard FPGA resource

constraints. The second one is the development of a placement

technique that can be integrated into commercially available

FPGA development tools, capable of physically mapping CNN

architecture on rad-hard devices while optimizing the

computing performances and reducing the transient error

T

Submitted on July, 21st, 2023. Revised on October, 19th, 2023.

This work was supported in part by the European Space Agency under Grant
4000105142. L. Sterpone, S. Azimi and C. De Sio are with the Dipartimento

di Automatica e Informatica (DAUIN), Politecnico di Torino, Torino, Italy.

For any information, please refer to: luca.sterpone@polito.it.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3331976

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

sensitivity.

At first, the placement algorithm extracts the structural

information of the designed CNN architecture and identifies the

hardware-oriented data quantization resource involved in the

CNN architecture. Secondly, the algorithm generates FPGA

resource constraints that aim to reduce the timing delay of each

single neuron node. This is achieved considering the circuit's

critical path and the memory efficiency of the convolutional

layer while introducing mitigation constraints to improve the

robustness of the CNN versus radiation-induced errors. The

proposed approach is the first placement algorithm specifically

targeting CNN design on Radiation Tolerant FPGAs. The

design obtained using the developed placement algorithm

shows higher performance and better resiliency compared with

previous works.

This placement algorithm focuses on mapping the CNN

circuit and improving the performances thanks to a selective

placement of MAC and DSP resources of the convolutional

neural network core. As a hardware benchmark, we selected the

ZFNet CNN [13] adopting a 16-bit parallelism data size, five

convolutional layers, and 3 fully connected layers.

We implemented the ZFNet CNN design on the Rad-Hard

RTG4G150 device embedded in the RTG4 development kit

manufactured by Microchip. We evaluate the performance of

the implemented CNN considering the maximal working

frequency under different conditions and the resiliency versus

transient error and Total Ionizing Dose (TID) timing

degradation. Please note that the maximal working frequency is

measured during the execution of the implemented CNN on

RTG4 devices while the transient error and TID analysis are

performed using Single Event Transient analysis and timing

simulation with radiation dose accumulation.

Experimental results demonstrated that our approach is

capable of achieving an improvement of the working frequency

by 27.2% with respect to the original implementation of the

ZFNet as well as improving the robustness against transient

error more than three times compared to the traditional transient

error electrical filtering approach. Besides, the obtained

solution does not introduce any timing penalties when TID

effects are considered.

The paper is organized as follows. Section II describes the CNN

architecture adopted in this work. Section III presents the

developed implementation workflow and the integration with

rad-hard mapping tools. Section IV describes the developed

placement algorithm. Experimental results and analysis are

presented in Section V. Section VI reviews previous works.

Finally, Section VII drafts the conclusions and future works.

II. CNN ARCHITECTURES ON RAD-HARD FPGAS

The implementation of Neural Network (NN) architectures

on FPGA hardware is facing two challenges. The former is the

fitting of the neural network elements into a single rad-hard

FPGA chip; the latter is the capability of the applied radiation

tolerant technique to improve the resiliency while avoiding a

drastic degradation of the system performance. Firstly, we

developed a CNN design that is fittable in a rad-hard FPGA.

Secondly, we developed a new placement technique that can be

integrated into commercially available FPGA development

tools with a focus on improving the resiliency of the design

against transient errors while improving the design

performance.

A. 65-nm Rad-Hard FPGA Technology Model

The Flash-based FPGA device adopted for the proposed

work consists of a logic element array of 4-inputs Look-Up

Tables (LUT-4) and a Flip-Flop that can be used independently

from the LUT-4. The layout of the LUT-4 is based on 4 input

pads driving 4 tri-state buffers and connected to a two-input

Multiplexers (MUX2) cascade architecture configured by 16

configuration memory cells. The output of the MUX2 cascade

architecture drives a buffer that provides the output signal on

the output pad through a Programmable Filtering module, as

represented in Figure 1. The Flip-Flop could be configured as a

D-type Flip-Flop (DFF) or as a latch since it has a single data

input and an optional enable and two load inputs: synchronous

and asynchronous load with clear and pre-set configurations.

Fig. 1. The LUT-4 architecture configuration of the RTG4 Rad-Hard

FPGA. The programmable filter can be tuned with respect to the Single

Event Transient pulse width to be masked.

The LUT-4 and the DFF resources have the same supply

voltage for the adopted 65nm technology is 1.14 V. The LUT-

4 is configured using a Flash-based configuration memory cell.

The LUT delay has been measured from the input buffer to the

output with a worst-case propagation of 119 ps. The

propagation time will be considered during the execution of the

timing-driven placement routine described in Section V.

The routing architecture consists of a channel-based routing

structure organized in clusters. A cluster consists of a set of

routing segments connecting the same type of resources. The

device has three different types of routing clusters: intra-logic,

interface, and I/O. The intra-logic cluster contains the routing

MUXes of each FPGA logic element. The interface cluster is a

combination of 12 interface logic segments. At the external part

of the LUT-4 logic element, the fabric routing structure consists

of two parts: inter-cluster routing and intra-cluster routing. The

intra-cluster routing provides routing connections between a

subset of LUT-4, while inter-cluster routing provides longer

interconnections between clusters. The inter-cluster routing

connects all the clusters and they never drive the input of the

functional modules such as a LUT-4 or a DFF. Furthermore, the

CNFG [0]
CNFG [1]

CNFG [2]
CNFG [3]

CNFG [4]
CNFG [5]

CNFG [6]
CNFG [7]

CNFG [8]
CNFG [9]

CNFG [10]
CNFG [11]

CNFG [12]
CNFG [13]

CNFG [14]
CNFG [15]

In [0] In [1] In [2] In [3]

Out

Programmable
Filter

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3331976

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

routing architecture provides a further short routing segment

between adjacent clusters on the same row in order to provide

a fast interconnection, typically used for extra carry chains or

specific propagation signals. These paths offer a better

propagation performance to the driven signals

B. CNN-mapping on Rad-Hard FPGA

The mapping and implementation of a neuron on FPGAs

require an accurate understanding of the clock timing and the

parallel operation of the FPGA in order to achieve full

optimization of the hardware. The important parameters that

characterize the implementation of a neuron on FPGAs are

related to the data movement, its implication on caching,

memory requirements, and computational algorithms.

Fig. 2. The Neuron Structure: the basic element of the ZFNet CNN

architecture.

A typical neuron structure within a CNN architecture is

composed of a set of data input buffers, also known as synapses,

each one multiplied by a specific weight. The set of obtained

products (Pi) is added and rectified by the rectified linear unit

(ReLU) as illustrated in Figure 2. The inputs, outputs, weights,

and product outputs are floating-point data, however, for the

sake of the developed implementation, we adopted fixed-point

representation.

In order to implement a complete CNN, several parallel

neurons must be instantiated. All the data flow traversing the

structure from the synapse inputs up to the post-rectified linear

output is represented by 16 bits. The product requires higher

resolution for the multiplication and extra range for the

accumulation to avoid overflow conditions of any arithmetic

process. Therefore, the neural network structure consisting of

fully parallel neurons is not optimized for FPGA devices, since

with a parallel structure the NN is limited in scale by the number

of multiplier and accumulator modules available on the FPGA.

Fig. 3. The implemented structure of the hardware synthesizable

neural neuron.

A feasible solution for an efficient and practical implementation

of CNN on FPGA is based on customizing the MAC units

depending on their architectural organization within the neural

network and tailoring their physical implementation depending

on the FPGA hardwired resource availability and organization.

The scheme of the adopted implementation considered in this

work is illustrated in Figure 3. The structure of the hardware

synthesizable neuron consists of an input stream of 256 16-bit

data words simultaneously read by all the neurons in the same

layer. The layer of parallel neurons reduces the limitations on

the input bandwidth thanks to the essential data caching. The

data inputs are multiplied by the weights; each weight value is

associated with a neuron depending on the number of neuron

instances.

 A crucial implementation detail in producing a CNN

mapped on a single FPGA device is the minimization of the

movement of the data input to the MACs. The developed

implementation exploits data reuse and caching, since all

neurons in the same layer use the same input data, considering

that a layer of parallel neurons is able to minimize the

bandwidth for that computational part. In detail, at the end of

the acquisition of the convolutional network, each weight value

is used several times for every pixel position on the output.

Therefore, for the considered layer, the weight buffer value is

maintained synchronized to the multiplier. This structural

aspect is dependent on the parametric usage ratio of the weight

buffer values. In particular, in the FPGA device used for this

purpose, a portion of the 18Kb memory blocks are used for each

multiplier in synchronization with the MAC modules.

In the present work, we considered the ZFNet CNN [13], a

convolutional network with reduced size, suitable to evaluate

mapping and implementation tools. The architecture of ZFNet

consists of 5 convolutional layers and 3 fully connected layers.

TABLE I

CHARACTERISTICS OF ZFNET RESOURCES REQUIREMENTS

WITH 16-BIT DATA PARALLELISM

Layer Neurons

[#]

Routing

Channels [#]

Weight

SRAM [Kb]

#0 96 6 28

#1 256 192 1,228

#2 384 512 1,768

#3 384 768 2,654

#4 256 768 1,768

#5 4,096 18,432 75,496

#6 4,096 8,192 33,554

#7 1,000 8,192 8,192

The input data stream consists of a 224 by 224 image crop

with 3-color map convolved with 96 filters at the first layer,

each one with a size of 7 by 7 and adopting a horizontal and

vertical stride of 2. The feature map is then passed through a

rectifier linear function, max pooled with a 3x3 matrix with

stride 2, and finally normalized across feature maps generating

a 55 x 55 elements feature map. The intermediate layers 2 to 5

repeat the same operation, while the final two layers are fully

connected and elaborate the features from the top convolutional

Input buffer #0

Input buffer #1

Input buffer #2

Input buffer #3

Weight #0

Weight #1

Weight #2

Weight #3

x

x

x

x

+ ReLU

P0

P1

P2

P3

S

Neuron
Node

output

Upcounter

RAM Weight

Bias

Pi

S

Input Select Bias Select

MAC

Input
Data

ReLU

Data Valid

Output
Data

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3331976

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

layer in a vector of 9,216 dimensions. Finally, the last layer is a

soft-max function with i-way, with i being the number of

classes. The characteristics of the ZFNet are shown in Table I;

where, for each layer, we reported the number of neuron cores,

the number of routing channels of the 16-bit data bus between

the neurons, and the total amount of SRAM memory Kb

demanded to store the CNN weights.

We performed the implementation of ZFNet on the

RT4G150 Radiation Hardened Flash-based FPGA embedded in

the RTG4 development kit. The RTG4 is the first FPGA fabric

for high-performance applications, resilient to radiation-

induced effects in several space environments ranging from

Low Earth Orbit to deep space with high Total Ionizing Dose

(TID) robustness and Single Event Transient (SET) filtering

feature. However, we needed to face two design challenges

before having a ZFNet working on our platform.

The former involves memory optimization. In fact, the total

weight memory size for the convolutional network layers is

7.5MB, while the total weight memory size for the fully

connected layers is 116 MB. Storing all the weights on the

FPGA fabric large SRAM is not feasible. Therefore, we used

the DDR3 memory available on the FPGA development kit for

storing all the weights, while the on-chip memory is used as a

cache memory for the weights temporarily involved in the

computation.

The second challenge has been the design of the

convolutional layer with particular emphasis on the neural

structure and its connection to the neuron within the same layer.

Considering the architecture of ZFNet for the first five layers,

the access to the data inputs is very homogeneous since the data

for a given computed frame is stored in a contiguous buffer that

can be read from the external DDR3 memory module. This

configuration produces a data stream that can be buffered on the

fabric's large SRAM memory with a size equivalent to the mask

used for the convolutional product. This results in a memory

page associated with each convolutional layer with a tunable

size with respect to the computational mask of each

convolutional filter. The memory is sufficiently deep to store

the weights of the larger layer; however, this may result in a

minimal overhead on extra memory resources when the

computation is performed for the smaller layers.

We implemented on the Radiation Tolerant FPGA the first

five convolutional layers of the ZFNet interfaced with a

buffering controller which transfers the weights from the

external DDR3 memory located on the bank0 to the internal

fabric large SRAM memory and two DMA channels connected

to the ZFNet input stream and to the output map generated by

the last convolutional layer, linking the DDR3 bank 9 for

transmitting and receiving the I/O data.

The implementation resource details of the original ZFNet

infrastructure are reported in Table II. We provide the number

of 4-input LUT, DFF, Math 18x18 DSP core, and block RAM

of 18Kb. The results show that for the first five layers, we use

192 shared multiplication units, 384 accumulators, and 2.8Mb

of fabric large SRAM on 155 blocks for storing the internal

ZFNet weights. The number of resources used for the buffering

and DMA interfaces is around 4% for the 4-LUT and 6% for

the DFFs. The architecture does not use any fabric micro-

SRAM embedded in the RT4G device.

TABLE II

RESOURCE IMPLEMENTATION FOR THE ORIGINAL ZFNET

INFRASTRUCTURE

Resource Available
Utilization

[#] [%]

4LUT 151,824 130,560 85.9

DFF 151,824 137,472 90.1

Math 18x18 462 192 41.6

LSRAM 18K 209 155 74.2

C. CNN quantization and pruning

The implementation requirements of ZFnet include a

significant amount of storage, external memory bandwidth, and

FPGA external computational resources. As demonstrated in

the previous subsection, a large amount of memory storage is

not supported by the RTG4 and hence the weights have to be

stored on external memory and transferred to the FPGA during

computation. This problem is exacerbated by the increasing

number of layers since it is expected that future CNN models

will get more complex and with a larger number of layers. In

addition, different layers in CNNs have different characteristics

resulting in different parallelism and memory access

requirements.

In order to achieve a CNN implementation on a unique

FPGA device, we applied a pruning method to the original

ZFNet implementation. Pruning is an approach for removing

nodes from the neural network architecture without incurring

drastic accuracy loss. It could be done either by removing

weights, neurons, or even entire channels of the neural network.

We applied the following pruning approaches to the ZFNet

original architecture:

1. Unstructured pruning of random weights: pruning of the

largest memory fully connected layers and convolutional

layers

2. Unstructured pruning of the smallest weights: removal of

neurons with weight values below a given threshold (Ksmall).

3. Structured pruning: specific removal of neurons belonging

to the largest layers (#5, #6, and #7) with a maximal weight

SRAM per layer of 5Mb.

TABLE III

ZFNET PRUNING TEST ACCURACY COMPARISON

ZFNet method
Pruned

Parameters [%]

Test

Accuracy[%]

Original n.a. 99.26

Random Weights 39.19 88.87

Smallest Weights 38.26 74.85

Structured 76.17 90.24

The architecture of ZFNet has been evaluated using 8,000

patches of 224 x 224 extracted from the European Space

Agency (ESA) dataset of 26 unprocessed and raw images taken

by the onboard camera of the OPS-SAT [20].

Table III reports the comparison of the different ZFNet

architecture methods with the percentage of pruned parameters

and the measured test accuracy. According to our analysis, both

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3331976

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

the unstructured pruning based on random and smallest weights

have worse performance than structured pruning, while having

a similar percentage in terms of pruned parameters. On the

contrary, the structured ZFNet version removes a consistent

percentage of weights exclusively on larger layers, while

outperforming the test accuracy of the random and smallest

weights methods. It is interesting to notice that, in case would

be necessary a further reduction of area, it would be possible to

adopt approximation techniques in order to minimize the

storage and memory bandwidth.

We applied the pruning selection to the ZFNet hardware

architectural model. Thanks to the structured pruning, we

obtained a substantial reduction of the neuron nodes belonging

to the large layers as illustrated in Table IV which accounts for

74.87% of the total neuron nodes and 76.06% of the total

routing channels. Thanks to the structured pruning, we achieved

two fundamental goals. The former consists of reducing the

requested combinational and sequential resources for

implementing simultaneously all the ZFNet layers on a single

FPGA; the latter consists of reducing the maximal requested

SRAM for the weight storage to less than 5.2Mb (e.g., the

maximal on-chip SRAM size for the RTG4 device considered),

thus nullifying the data transfer overhead of the fully connected

layer with an external memory bank. Thanks to this solution,

we estimated a saving of around 9% of the overall

computational load, this is due to the memory accesses

performed by the fully connected layers during inference

computation.

TABLE IV

ZFNET LARGE LAYERS PRUNING CHARACTERISTICS

Layer Neurons

[#]

Routing

Channels [#]

Weight

SRAM [Kb]

#5 512 2,526 4,804

#6 512 2,048 4,096

#7 256 2,048 2,048

Fig. 4. The on-chip implementation architecture of ZFNet on the

RTG4 development kit.

Finally, we implemented all the ZFNet layers on the

Radiation Tolerant RTG4 FPGA while maintaining an external

RAM memory for storing the I/O data stream and storing all the

layer weights. The convolutional layers of the ZFNet are

interfaced with a synchronized buffer controller which transfers

the weights from the external DDR3 memory located on the

Bank-0 to the FPGA internal fabric large SRAM memory. Two

DMA channels are connected to the ZFNet input and output

stream, linking the DDR3 Bank-9 for transmitting and receiving

the I/O data.

The scheme is illustrated in Figure 4, while the resource

details are depicted in Table V, where we report the number of

4-input LUTs, DFF, Math 18x18 DSP core, and block RAM of

18Kb. As it is possible to notice, even if we are now mapping

all the nine layers, the 4-LUT and DFF number is reduced by

around 7%, on average, versus the original 5 layers ZFNet. This

is due to the selective pruning that is also reducing the number

of requested routing channels, therefore a reduction of the

number of hardware neurons on the larger layers is impacting

also the circuit resources of the first layer routing channels

(essentially the connections between the layer 4th and the 5th).

On the contrary, the number of Math DSP cores and LSRAM

drastically increased. A total of 382 DSPs are now used for

shared multiplication units, while 428 accumulators are

implemented with standard programmable logic. The fabric’s

large FPGA is used for 202 blocks for storing the maximal peak

of around 4.8Mb due to the 5th layer. Similarly to the original

implementation, the number of resources used for the buffering

and the DMA interfaces is around 5% of the total resources. The

architecture does not use any fabric micro-SRAM embedded in

the RT4G device.

TABLE V

RESOURCE IMPLEMENTATION FOR THE ON-CHIP ZFNET

Resource Available
Utilization

[#] [%]

4LUT 151,824 120,904 85.9

DFF 151,824 123,084 81.1

Math 18x18 462 382 82.7

LSRAM 18K 209 202 96.7

The overall ZFNet implementation contains tensor types

defined for the different fixed point precision data types used in

the network layer. The input data, weights, bias, products,

accumulators values, and rectified linear output registers are all

represented by the same size of 16-bit type. This type of

implementation may result in some performance degradation,

in the case of data input of a different data parallelism (e.g., 8-

bit image data or unsigned values). In general, using a single

arithmetic type may result in a loss of performance and higher

energy consumption.

In order to guarantee higher flexibility and further

compatibility of the developed ZFNet with other FPGA

platforms, we modified the ZFNet model with parametric and

reconfigurable parallelism on the input image data size and

weights. The former parameter affects the memory bandwidth

and on-FPGA data memory cache, in particular, a lower bit size

will result in a deduction of the memory bandwidth

requirement, while the latter affects the weight memory cache,

a lower number allows more neuron computation to be mapped

in parallel on the FPGA architecture.

Furthermore, we modified the ZFNet hardware description

model adding the possibility to configure the convolutional

structure, in particular, to guarantee the implementation of fully

DDR3
Bank0
Weight

ZFNet
Layer #0 - #7

Synchronized
Weight Buffer

Output DMA

RT4G150

DDR3
Bank9

I/O Stream

Layer
Done

Input DMA

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3331976

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

interconnected layers with a parametric number of neurons. In

detail, we adopted a MAC-based unit shared between several

neurons that allow us to implement the network even in the case

of drastically limited resources. The number of neurons sharing

the same MAC unit affects the real parallel computation since

a higher number of parallel neurons increases the overall

network throughput.

III. CNN-ORIENTED IMPLEMENTATION FLOW

Radiation Tolerant (RT) FPGAs have realized with

radiation hardening by design (RHBD) rules; these devices are

generally characterized by a very high resiliency against Single

Event Latch-Up (SEL). Moreover, they are practically immune

to Single Event Upsets (SEUs). In particular, the RT4G devices

have logic elements with TMR flip-flops; therefore, the

designer does not need to apply global or partial TMR

techniques generally adopted for SRAM-based FPGAs.

The implementation workflow for RT FPGAs provided by

the commercial tool is based on two main objectives: limiting

the timing degradation induced by the radiation dose

accumulation or Total Ionizing Dose (TID) and mitigating the

impact of Single Event Transient (SET) on the circuit behavior.

Both TID and SET phenomena are mitigated by acting on EDA

tool constraints. However, when these methods are applied to

CNN, the performances are drastically limited. In this section,

we describe a placement algorithm able to consider the

characteristics of CNN circuitry and force logic element

location on the FPGA architecture in order to optimize the

circuit performance while satisfying the radiation-tolerant

constraints regarding SET phenomena.

A. Physical Design Constraints Instrumentation

The CNN implementation on rad-hard FPGAs follows the

traditional FPGA design steps such as synthesis, mapping, and

place and route. In order to apply the developed design flow,

we act on the physical implementation of the place and route

step controlling the executed algorithm by the Physical Design

Constraints (PDC). We use the Verilog description of the CNN

as input, and we merge the netlist information into a Physical

Design Description (PDD) file.

The PDD contains the number of elements that belong to a

specific function hardwired on the RT4G device that consists of

the RT4G slice, as illustrated in Figure 5; for each of the

functions, it provides the identifier, name, coordinates, and the

list of input and output elements connected. The PDD file is

used as an input for the developed placement algorithm, as well

as the interface with the commercial toolchain used to finally

upload the CNN on the RTG4 device. The developed placement

algorithm will require an area constraint associated with each

CNN neuron before it is executed. In order to properly generate

the area constraints, it is necessary to characterize the device

topology.

The implementation flow is based on the computation of the

centroid that allows defining any logic node position that

minimizes the average distance with all the connected units

considering the wire length and the delay. In order to identify

the best location for the neural network resources, we identify

two strategies for each logic node of the neural network:

1. Centroid strategy: where the centroid is connected to the

neural network resources that belong to a given layer. The

computation of the centroid allows the definition of the

LUTs and DFFs position that minimizes the average routing

distance with the entire connected unit and therefore the

wire length.

2. Data-path strategy: where the centroid is computed again

with respect to the neural network resources belonging to a

given layer, but then places the node within the area region

related to the specific node minimizing the wire length

related to the data path of the considered neuron.

Since it is not possible to elaborate the constraints

independently from the layers and each specific neuron, an

appropriate placement algorithm must be defined to take into

account the two CNN implementation strategies and to

implement the selective SET mitigation on the critical nodes.

Fig. 5. A portion of the RT4G150 device: The RT4G slice.

B. Physical Placement

The placement workflow for CNN adopts the PDD file as an

input description of the CNN netlist graph and it generates a

physical constraint file (PDC) including the physical location

of every single basic resource of the RT4G FPGA according to

the CNN implementation flow. The flow is based on defining

the CNN constraint regions illustrated in Figure 6.a and it is

executed by the following three phases:

1. It defines the maximal area associated with each layer

region. The constraints will limit the placement algorithm to

allocate the resources belonging to a single layer (internal to

each neuron or for connecting them) into a region that will

be optimized for the layer performance.

2. The layer region is divided into neural node slices: groups

of RT4G slices dedicated to implementing the single neuron

computational capabilities. Each neural node slice may

contain 2 LSRAM memory blocks and at least 1 MAC

block.

3. The neural node slices are organized in data path regions

and other resources. The data-path region is an exclusive

region since only the 4LUTs and DFF dedicated to

implementing the data path of the neural neuron will be

located there, while all the other resources are located

outside of this region. This constraint will guarantee a better

reduction of the timing delay due to the combinational logic

resources associated with the multiplication, sum, and

rectifier functions.

Once the coordinates of the layers, neural node slices, and data-

path regions are fixed, the elements associated with a proper

hierarchical region should be placed exclusively inside the

RT4G slice

4LUTs DFFs 4LUTs 4LUTsDFFs DFFs

4LUTs DFFs 4LUTs 4LUTsDFFs DFFs
MAC MAC MAC MAC MAC MAC

4LUTs DFFs 4LUTs 4LUTsDFFs DFFs
MAC MAC MAC MAC MAC MAC

LSRAM LSRAM LSRAM LSRAM LSRAM LSRAM

LSRAM LSRAM LSRAM LSRAM LSRAM LSRAM

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3331976

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

region, while the remaining nodes must be placed only by

connection with nodes of the same layer with the objective of

not introducing any timing delay penalties.

Fig. 6. A top-down overview of the CNN constraint regions (a): layer,

neural node, data path, and SET filtering DFFs area. The three-

searching path from Manhattan distance 1 to Manhattan distance 3 (b).

To manage this kind of placement, a new algorithm for

CNN core has been developed. A new set of fixed placement

locations defines each specific neuron data path and when the

placement algorithm is executed, it will set the position of the

fixed logic node, and then, it will run a 2D placement algorithm

on the remaining nodes. In this way, the wire length will be

optimized on the current logic dedicated to each single neuron

data path, while the links to the memory block dedicated to the

weight are managed without a timing priority. This process is

repeated for all the neural neurons' logic and in each step, it

manages the reduction of the wire length and the vertical

connection to the memory blocks storing the weights. Finally,

the DFF registers storing the input operands for the MAC unit

will be placed within a specific SET filtering area. The filter

area can be expanded up to the maximal Manhattan distance of

3 units, as illustrated in Figure 6.b. At this stage, the filtering

activation is not performed yet. Please note that this constraint

is one of the most complex phases in relation to the mitigation

capabilities of the obtained CNN circuit. In particular, the

weight data will be transferred to the input of the MAC unit

during the execution of the CNN, and the weight values will be

stored in DFF registers and sampled during the synchronization

of the MAC execution phase, during this phase and depending

on the resistive and capacitive load of the routing segment a

transient effect may be sampled by the CNN network and

therefore should be filtered. Therefore, once the placement is

performed, the last phase requires the selective activation of the

SET mitigation filter.

IV. THE PLACEMENT ALGORITHM FOR CNN NODES

Once the placement constraints are defined, the placement

algorithm is executed. The solution may adopt a commercially

available placement tool in order to define an intermediate

solution. Otherwise, the placement algorithm should be

instrumented to achieve better optimization for the

convolutional nodes. In fact, placing the resources of each

convolutional node of a specific layer, according to the routing

delay minimization, led to fixing the 4-inputs LUTs position

within the RT4G slice with respect to the distance with the

MAC and the LSRAM hardwired component available. This

means that each logic element should be optimized with respect

to the coordinates of the neighborhood LUTs and DFFs and

with respect to the hardwired component.

The developed placement algorithm for convolutional

nodes has the objective of minimizing the inter-LUTs

connections and the connections toward the hardwired

components. The main optimization provided by the placement

algorithm is the reduction of the wire length within each neural

node slice without inserting a single point of failure while the

LUTs are placed in the neighborhood of the MAC and

LSRAMs. The placement is executed sequentially for each

convolutional node resource, therefore the interconnections

between resources not belonging to the same neural node are

not considered.

Please consider that commercial placement algorithms do

not achieve good results because the algorithm may locate the

logic resources linked by a MAC or LSRAM connection in a

distant position, thus increasing the wire length needed to

connect, thus implicitly increasing the sensitivity of the routing

segment to radiation-induced transient effects. For this reason,

it is important to properly manage the logic element position

aside from the hardwired component because they will heavily

affect the total circuit wire length. Moreover, due to the

topological location of the MAC and LSRAM within the RT4G

slice, their interconnection channels, which are used towards

the generic routing segments used for the programmable

routing links with LUTs, are generally slow, and therefore they

can easily create a critical path.

1 : CNN_placement (ports, nodes, layer_area)

2 : nodes: list of logic/sequential elements

3 : port: module pin ports

4 : layer: area constraints (size and layer_edges)

5 : nodes = sort (nodes)

6 : for id in nodes do

7 : x,y = Centroid (id,nodes)

8 : adder = 1

9 : padding = 2

10: n_Man = 1

11: if y > layer_edge/2 then

12: y = layer_edge + padding

13: else

14: y = -padding

15: end if

16: Closest_pos(id,nodes)

17: while allocated != TRUE do

18: if resource_free(x,y) in position_macro then

19: (x,y)=locate(x,y)

20: if (x,y) > 0 then //centroid-shifting

21: centroid_shifting (n_Man = n_Man + 1)

22: else

23: centroid_shifting (n_Man = n_Man - 1)

24: end if

25: else

26: allocated = TRUE

27: end if

28: end while

29: nodes[position]=(x,y)

30: if nodes==combinational_side then

31: add2layer (x, y, datapath) //re-allocation

32: else

33: add2layer (x, y, other)

34: end if

35: end for

36: filtering_fill(x,y) //filtering area

Alg. 1. The pseudo-code of the Placement algorithm oriented to the

Convolutional node for radiation-hardened FPGAs.

Layer region

Neural Node slices

Data-path region

Manhattan
Distance 1

Manhattan
Distance 2

Maximal
Distance 3(a) (b)

SET Filtering DFFs area

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3331976

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

The execution of the placement algorithm is performed after

the generation of the area constraints described in Figure 6.a.

During the generation of the area constraints, the hardwired

components have been allocated to the respective layer and

data-path regions according to the RT4G slice availability.

Once all the resources are allocated to the different hierarchical

regions, the placement algorithm is executed. It generates a

detailed placement location for each combinational logic and

sequential resource and the hardwired macro physical mapping.

The developed placement algorithm is based on five phases

as described in the pseudo-code reported in Alg. 1: centroid

computation, closest edge identification, centroid shifting,

reallocation, and filtering fill.

The algorithm starts by extracting the list of elements

belonging to a given layer area and individuating the port pin

interconnections and the area constraints in terms of size and

edge locations. The first phase consists of computing the

centroid for the considered set of combinational and sequential

logic elements including the LSRAM and the MAC ones. Once

the centroid coordinates are computed, the algorithm identifies

the closest edge of the area constraint and updates the padding,

accordingly, as illustrated in Figure 7. Please consider that the

padding is used to separate the logic nodes between the

hardwired element, and it may increase the initial size of the

neuron area. Once the edge and the padding are calculated, the

algorithm applies the centroid shift to the closest edge. If the

new position is available, the resource is placed; otherwise, the

algorithm iterates recursively to find a free location.

Fig. 7. A view of the centroid computation (a) and the identification of

the closest edge (b) phases of the developed placement algorithm.

In detail, starting from the shifted centroid, if its position is

not available, the resource_free function recursively checks,

with a step initially set to n=1, if the position on its maximal

Manhattan distance n neighborhood is available. If one of these

four locations is available, it becomes the final position of the

resources. Otherwise, step n is incremented by one until a free

location is found. The maximal Manhattan distance has been

settled to 3. The positionmacro structure is used to keep track of

all the placement spots already used by the resource. At the end

of this phase, the position of the node is determined, and the

position added to the layer detailed placement in the data-path

region if they are combinational, and vice versa in the general

neuron slice area. Finally, once all the layer resources have been

placed, the filtering_fill function generates a dummy area that

would be subsequently used to allocate the logic resources to

implement the guard gate structure for transient effect

mitigation. Since the requirements for filtering are not

determined yet at this stage, its position is generally allocated

in the bottom part of the neuron slice.

Fig. 8. A view of the placement execution performed for the Hard

Macro MAC module (HM) surrounded by 6 combinational gates and

1 sequential element.

An example of the placement execution is illustrated in

Figure 8, where it is possible to notice how the hard macro

(HM) resources are placed within the data-path region (a), the

combinational resources aside from the HM are located within

the data-path region (b), while the centroid sequential element

surrounded by four combi-national elements are placed within

the neural node slice area (c). Finally, the insertion of the

filtering area is added to the obtained placement solution (d).

A. Placement setting customization

The placement algorithm is based on a graph representation

that models the logic and routing resources of the FPGA

physical layer. The graph representation includes the standard

modeling of Look-Up Tables (LUTs) and Flip-Flops (FFs); the

model of Multiply and Accumulate (MAC) modules, and the

Large Static RAM (LSRAM) modules. Besides, the FPGA

architectural graph describes the routing segments used for the

programmable interconnections within each routing box and to

the hard-wired connection used for the long connectivity

channel within the FPGA.

Fig. 9. A portion of the FPGA programmable logic array and the

corresponding customizable placement setting parameters: hardwired

interconnections, combinational and sequential vertex, programmable

wires and hard macros (a) and the relative model including parametric

elements mapping the realistic FPGA architecture.

The architectural graph resources have been balanced

according to the effective availability on the considered FPGA

platform, in details each resource has been parametrized with a

weight that can be adapted to the used FPGA architecture and

that can be settled in order to manage routing congestions,

clock-skew and logic cone delay balancing. In particular, the

(a) (b)

Neural Node slices Neural Node slices

(a)

S
C
C

C

C
C

C

(b)

Neural Node Slices

Data-path region

HM

(c)
(d)

S
C

C C

C
C

C

Neural Node Slices

Data-path region

HM

SC

C C

C
C

C

Neural Node Slices

Data-path region

HM

SC

C C

C
C

C

Neural Node Slices

Data-path region

HM

Filtering Area

Programmable Wires

HM

SC C S C

HM

Combinational and Sequential Vertices

Hard Macros

Hardwired interconnections

(a) (b)

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3331976

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

9
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

portion of the FPGA programmable logic consisting of at least

four clusters of slices and connected with customized hardwired

interconnections is illustrated in Figure 9.a. The single slice,

illustrated in Figure 9.b, has a parametric definition of the

number of combinational and sequential vertices, topology, and

a number of programmable wires, and, finally, a distributed set

of hard macro (HM) modules.

B. Integration with radiation-induced SET filtering

The main consequence of radiation effects on radiation-

tolerant FPGAs are Single Event Transients (SETs) effect. The

radiation-tolerant FPGA implements a SET filtering

architectural approach. Each Data Flip-Flop in the

programmable logic array and at the input of the DSP

multiplication blocks has a SET filter.

The filter can be selectively enabled on individual Flip-

Flop, functional blocks, or the entire FPGA. The innovation of

the proposed method is to analytically evaluate the maximal

duration of the transient pulse at the input of each sequential

element once the placement is performed and to selectively

activate the SET filtering capabilities provided by the RTG4

FPGA. The selective activation of the SET filtering will avoid

drastic performance degradation due to the massive SET

filtering application on each LUT.

In order to select the FFs candidate for the SET filtering, we

analyzed the detailed placement, and we evaluated the

propagation radiation-induced transient pulse towards the

sequential elements located on the boundary between the neural

node slice and the filtering area. We exploited the feature

provided by the Microsemi implementation tool to apply the

selective insertion of the SET filtering and we considered that

for the RT4G device, the manufacturing filtering capability of

transient pulses is settled at 0.6 ns.

Fig. 10. The original detailed placement (a) and the selective insertion

of the guard-gate structure within the filtering area (b).

We analyzed the transient pulse propagation using the

analytical tool developed in [21] that provides the maximal SET

pulse width observable at the input of a sequential resource, and

we implemented two alternative SET filtering methods. In case

the SET width is lower than 0.6 ns we enable the selective

filtering on the considered Flip-Flop by setting the mitigation

option per instance, vice versa we insert a guard-gate logic

structure before the input of the element located in the neuron

slice area, as illustrated in Figure 10. The guard-gate logic

structure is composed of four combinational gates individually

mapped on four LUTs and several inverter pairs able to insert a

filtering capability. The number of inverter pairs is computed

based on the maximal pulse width computed for the destination

Flip-Flop. As it is possible to notice in Figure 9, the placement

of the guard-gate logic resources and the inverter pairs requires

a fixed placement location in order to guarantee the exact

filtering capability.

V. EXPERIMENTAL RESULTS

The developed design flow has been applied on the ZFNet

implemented on the RT4G150 Radiation Tolerant Flash-based

FPGAs manufactured by Microchip. The scheme of the

implemented ZFNet is illustrated in Figure 10. We physically

implemented the eight layers of the network and we evaluated

the performance and the reliability of a pre-trained network

using the OPS-SAT sub-set images.

A. ZFNet Architecture implementation details

The ZFNet architecture is a convolutional network model

based on 8 layers, as described in Figure 11. The input data is

based on a 224 by 224 image crop with 3 color planes. This

image is convolved with 96 different filters for the red

component at the first layer. Each filter has a size of 7 by 7,

using a stride of 2 in both x and y coordinates. The obtained

feature map is then computed in three different phases:

1. It is passed through a rectifier linear function

2. It is pooled with a kernel matrix of 3x3 regions, using a

stride of 2 units

3. It is contrast normalized across a feature map to generate

96 different 55 by 55 element feature maps.

The same operations are repeated in layers 1 to 4. Layers 5 and

6 are fully connected, elaborating features from the top

convolutional layer as input in vector form of 512 dimensions.

The final layer is a C-way softmax function with 256 functional

units.

Fig. 11. The architecture of the pruned ZFNet implemented on the

RTG4 radiation-hardened FPGA.

The pruned ZFNet architecture has been implemented on

the RTG4 device using three approaches:

• Original: implemented with timing performance

optimization and without any specific placement and

mitigation constraints.

• Commercial: implemented with the SET filtering feature

provided by commercial tools (i.e., up to 600 ps of filtering

capabilities) for all the sequential resources on the device

and without any specific placement constraint.

• Proposed: implemented with the developed placement

constraints targeting DSP performance and LSRAM

resources and adopting selective SET filtering.

B. Single Event Transient analysis

The Single Event Transient analysis has been performed on

the entire mapped circuitry on the radiation-hardened FPGA,

FFA

D Q

CLK

DELEN

ΔBR10= Pw(A)

ΔBR1= Pw(B)

ΔBR23=Pw(D)
ΔBG1= Pw1

ΔBG2=Pw(C)

Neural Node slices area

Filtering area

Data-path region

(a)

FFA

D Q

CLK

DELEN

Neural Node slices area

Filtering area

Data-path region

(b)

ΔBR10= Pw(A)

ΔBR1= Pw(B)

ΔBR23=Pw(D)
ΔBG1= Pw1

ΔBG2=Pw(C)

ΔFGG>=Max Pw(FFA)

Input image

Filter size 7

stride 2

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4

Image size 224 110

3x3 max pool

55 2
5

ReLu

26 13 13

13

96
256 384 384

2561
3

1
3

3x3 max pool
stride 2
output

Layer 5 Layer 6

512 512

256

Layer 7

Output

class
softmax

units

units
units

3 3x3 max pool

2
5

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3331976

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Drift effect Contribution from the
heavy ion traversed

Volumes

Diffusion shape

Contribution from the
propagation Volumes of the

cell

Contribution from the
radiation particle

Drift effect

Diffusion shape

Contribution from the
propagation

49,800 50,000 50,200 50,400 50,600

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

A
m

pl
it

ud
e

[V
]

Transient Pulse [ps]

therefore transient pulses have been injected and propagated on

the resources belonging to the ZFNet architecture, on the

synchronized weight buffer and on the Input/Output DMAs. For

the purpose of our analysis, we used a drift-based transient

pulse voltage glitch model introduced in [22] and developed an

analyzer tool for FPGAs in [23] adapted to the radiation-

hardened 65-nm Flash-based FPGA technology.

Fig. 12. A SET pulse with an amplitude of 1.8V and duration of

180ps.

The propagation of the SET pulse within the node has been

done by modeling two pulse effects:

1. Drift Pulse: this function describes the physical generation

of the pulses. The generation is performed according to the

sensitive volume cross-section. The amplitude of the

generated pulse depends on the cumulative Energy (E) on

the crossed volumes and the relative distributed eV per

node. The eV outcome values are used as the input point of

the subset value for the SET generation. The results are the

description of the drift glitch, as in Figure 12, the left part of

the glitch shape.

2. Diffusion Pulse: this function describes the physical

behavior of the Voltage glitch diffusion effect. The shape of

the diffusion is computed on the basis of the cell volumes

involved in the propagation of the glitch, as illustrated in

Figure 12, the right part of the glitch shape

Fig. 13. The maximal SET pulse width distribution for the overall

CCN sequential element (FFs and Block RAMs).

We modeled four different SET pulses in order to mimic the

overall scenario of radiation-induced SET pulses thus analyzing

pulses with the following widths: 150 ps, 250 ps, 350 ps, and

450 ps. We compared the original, commercial, and proposed

ZFNet implementations with two analyses: the former consists

of evaluating the maximal pulse width at the input of each

sequential element (e.g., DFF and input memory pin) with an

exhaustive injection in all the circuit-sensitive nodes, and the

latter consists of evaluating the pulse width distribution over a

random injection of 10,000 transient pulses.

The exhaustive maximal pulse width distribution after the

propagation is illustrated in Figure 13. The Propagation Induced

Pulse Broadening (PIPB) effect is strongly present in the

original ZFNet implementation, especially for the longest

source pulse that is broadened more than one order of

magnitude, thus generating SET pulse glitches at the input of

an FF with a duration of 4.8 ns. On the contrary, small source

pulses have a reduced PIPB effect which is marginal for the

three ZFNet implementations. The commercial ZFNet

implementation adopting full filtering of 600ps per each FF is

only marginally reducing the impact of long transient pulses for

350 and 450 ps. The application of the proposed

implementation flow efficiently filters the maximal transient

pulse width duration, reducing the maximal pulse width

duration by approximately 4 times with respect to the original

version.

Fig. 14. Monte Carlo SET pulse width distribution obtained thanks to

random fault injection on the CCN resources.

The random transient pulse width distribution has been

computed using a Monte Carlo approach with a maximal

injection of 10,000 transient pulses in the overall sensitive

nodes of the ZFNet implementation, including FFs and Block

RAM input resources. The results are illustrated in Figure 13.

The PIPB effect does not substantially change with respect to

the exhaustive transient analysis, however, it is possible to

notice that the median pulse width distribution is higher than

the maximal pulse width ones. In particular, the original ZFNet

implementation has a median pulse distribution higher than 0.5

ns on average for the 250 ps, 350 ps, and 450 ps original pulse.

This means that more than 50% of the transient pulse will be

broadened by a factor between 4 and 6 times the original

radiation-induced pulse. The commercial implementation of the

ZFNet does not improve effectively the original ones, since

there is only a marginal reduction of the median pulse

distribution of 0.12 ns while the overall median pulse

distribution is broadened by a factor between 3 and 4 times with

respect to the maximal width distribution. Finally, the proposed

Maximal SET Width Distribution

Original Commercial Proposed
0.15ns 0.25ns 0.35ns 0.45ns 0.15ns 0.25ns 0.35ns 0.45ns 0.15ns 0.25ns 0.35ns 0.45ns

[ns]

Original

MonteCarlo SET Width Distribution

Commercial Proposed
0.15ns 0.25ns 0.35ns 0.45ns 0.15ns 0.25ns 0.35ns 0.45ns 0.15ns 0.25ns 0.35ns 0.45ns

[ns]

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3331976

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

11
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

solution drastically reduces the median pulse distribution of a

factor of more than 4 times, similar to the maximal pulse width

distribution. This demonstrates that the proposed approach is

not only able to effectively filter the critical sensitive nodes of

the ZFNet impacting on the maximal pulse overshoot, but it is

also capable of effectively selecting the filtering nodes in order

to achieve overall lower sensitivity to transient effects. This will

result in a lower error rate of the ZFNet computation.

C. Reliability analysis

The evaluation of the maximal and random pulse width

distribution is not sufficient to have an effective reliability

analysis of the ZFNet behavior under radiation-induced

transient errors. Therefore, we evaluated further metrics: the

Single Event Transient (SET) sensitive nodes and the error

propagation vulnerability. The first metric aims to compare how

many ZFNet circuit nodes are sensitive to a radiation-induced

transient pulse, thus being able to trigger a transient pulse on

their sensitive silicon regions. The second metric focuses on

evaluating the propagation of the transient pulse after its

generation on the sensitive node, thus evaluating how much a

circuit is prone to propagate a transient pulse to a circuit

sequential resource and then, transform the transient pulse into

a computed behavioral error.

The result of the SET-sensitive nodes comparison is

illustrated in Figure 15. As it is possible to notice the ZFNet

original implementation has from 37.0% to 65.3% of circuit

nodes potentially sensitive to SET ranging from 0.15 ns up to

0.45 ns; the ZFNet commercial implementation is drastically

reducing the sensitive node that ranges from 21.7% up to 36.9%

of the overall ZFNet circuit nodes. The ZFNet proposed

implementation is characterized by a further reduction of the

percentage of sensitive nodes to a range from 22.8% to 28.1%.

Fig. 15. CCN sensitive nodes comparison for the original, commercial,

and proposed solution.

The result of the error propagation vulnerability is

illustrated in Figure 16. The vulnerability factor is computed as

the total number of circuit paths that undergo transient pulse

propagation over the total number of injected transient pulses

performed during the Monte Carlo random distribution. A

factor lower than 1 means that the propagation is reduced, while

a higher value means that the propagation is exacerbated by the

circuit topology and that any eventual pulse filtering solution is

not effective.

The analysis shows that the ZFNet original implementation

propagation vulnerability is drastically high with a factor

ranging from 1.35 up to 6.95. The ZFNet commercial

implementation has effective propagation reduction only for

small transient pulses while it is not efficient for longer pulses

with a factor ranging from 1.36 up to 1.72. The proposed ZFNet

implementation is acting efficiently in reducing the error

propagation since for all the transient pulse scenarios, the error

propagation vulnerability factor is largely lower than 1 with a

factor ranging from 0.28 up to 0.37.

We further investigate the SET propagation within a single

CNN neuron node. In order to depict the critical locations, we

extracted the locations of the routing segments and the LUT-4

and DFF. We use the SET model of the RTG4 to calculate the

distribution of the transient pulse among the chains and we

calculated the distribution per ion for every resource classifying

the transient pulse with respect to the voltage amplitude: small

if the pulse is between 0.1 V and 0.5 V, middle in case of 0.5 V

and 1.0 V and high in case of 1.0 V up to 5.0 V. The model does

not show any pulse provoking a transient glitch greater than 2.4

V. The transient effects affecting the sensitive nodes have

widths ranging from 160 ps up to 550 ps. Finally, we observed

that short and small SETs have a greater PIPB contribution that

is progressively reduced with the increasing width of the pulses.

Interestingly, the PIPB effect has a lower impact on high-

voltage SET pulses.

Fig. 16. CCN implementation Error Propagation Vulnerability for the

original, commercial and proposed solutions.

D. Accuracy and Performance Analysis

In order to evaluate the overall impact of transient pulses on

the ZFNet accuracy and performance, we used the framework

proposed in [24] in order to electrically inject SET effects

within the logic resources of the RTG4 device. The obtained

results are presented in Table III, where we show the percentage

of injections that erroneously affect the output of the ZFNet last

layer.

TABLE III

FAULT INJECTION ACCURACY RESULTS

Resource

Critical

Errors

[%]

Tolerable

Errors

[%]

ZFNet Original 23.5 23.4

ZFNet Commercial 12.9 12.1

ZFNet Proposed 5.2 5.3

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3331976

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

12
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

 The fault injection results are reported in terms of critical

errors, for all the injections that provoke no masked effect, and

tolerable errors, in the case that the injection does not affect the

final network classification. The result shows that the proposed

solution outperforms around three times the commercial

mitigation approach. On the other hand, it is possible to notice

a comparable trend between tolerant and critical errors, except

for the ZFNet proposed solution where tolerable errors are more

likely to happen. In addition, we analyzed the critical errors on

ZFNet and we observed that DSP and Block RAMs have

similar protection for most of the FFs below the maximal pulse

of 590 ps, while the proposed solution is the better alternative

if the whole SET spectra are considered.

We compared the performance of the implemented ZFNet

architectures by evaluating the maximal working frequency and

the maximal clock-to-out delay. The result shows that the

proposed ZFNet implementation adopting a DSP filtering

priority combined with selective filtering on the neural network

logic resources outperforms the traditional mitigation solution

by more than 27%.

TABLE IV

PERFORMANCE CHARACTERISTICS OF THE ZFNET

Resource

Max

Frequency

[MHz]

Max Clock-

To-Out

[ns]

ZFNet Original 228.833 12.394

ZFNet Commercial 182.183 12.688

ZFNet Proposed 201.884 12.456

We evaluated the performance of the implemented ZFNet

architecture in terms of end-to-end performance characteristics.

We chose a set of 40 images from the ImageNet collection on

fauna has been selected for the evaluation set. The input has

been pre-processed to be suitable for the 224 by 224 image crop

with 3 colors, where we measured the average computing time

for the given implementations. We observed that the ZFNet

original was able to provide a complete classification within 19

ms, while the commercial solution took 24 ms. Vice versa, the

proposed implementation was able to reach the classification in

an average time of 21 ms.

E. Trade-off Performance Analysis

In order to evaluate the overall characteristics of the ZFNet

implementation, we performed a set of experimental

measurements with the main objective of evaluating the

performances under varying conditions of robustness and

accuracy criteria. In particular, we analyzed the behavior of

ZFNet in terms of mean-time-to-failure (MTTF), at different

conditions of injected SET pulses and accuracy. The MTTF,

which is the mean time between two faulty outcomes of the

network, has been measured for all the evaluated SET pulses

and in two different accuracy conditions at 95% and 85%. The

obtained results are reported in Figure 17.

The experimental analysis shows how the proposed ZFNet

solution has an almost constant MTTF at different SET pulse

conditions and with different accuracy criteria. It is interesting

to notice that, the 10% accuracy difference slightly improves

the final MTTF.

Fig. 17. Mean Time To Failure (MTTF) for the three ZFNet

implementations considering two accuracy levels and with the

injection of the SET pulse scenario.

VI. RELATED WORK

Recently, several implementations of CNN architectures on

FPGAs have been proposed. In particular, it has been

demonstrated in [3] that is possible to achieve a complete

design flow for mapping CNN on FPGA. The FPGA

reconfigurability provides the advantage of adapting their

design to the CNN inference models without requiring

significant modification of the hardware architecture [14].

Besides, FPGAs achieve extensive computational parallelism,

enabling the usage of depth-wise separable convolution instead

of standard convolution CNN, reducing the number of used

Multiply and Accumulate (MAC) modules [15]. Since

convolutional computation requires many DSPs, a recent

solution investigated the adoption of a CNN-optimized systolic

array for improving the CNN working frequency on FPGAs

[16]. Several solutions based on a sequential computation on a

single layer per computation time have been provided; these

methods require a sequential connection between layers at each

computation time [17]. Even if these methods can exploit the

reconfiguration capability of FPGAs, they have a drastic limit

in the hardware resources considering the acceleration goal.

Furthermore, these approaches cannot be applied in aerospace

applications when the reliability requirements require the

adoption of Flash-based FPGA technologies that do not support

dynamic reconfiguration. Considering the performance

improvement, CNN architecture based on sequential

computation suffers from scalability problems since the

designed layers are generally not reconfigurable and each layer

must be completely redesigned in case of network architectural

modification.

Another issue is represented by the feature maps that

typically contain tensors and neuron weights. Since they are

stored within on-chip memory, sequential architecture is not

applicable for deeper CNNs due to the limited availability of

Block RAMs on FPGAs [18]. A study proposing the evaluation

of traditional selective redundancy techniques has been

proposed in [19] showing the drastic degradation in terms of

area and performance when mitigation approaches such as

Triple Modular Redundancy (TMR) are adopted. However, it is

a known issue that the redundancy implementation of CNN on

FPGAs would require a large amount of logic and memory

resources. Therefore, the adoption of FPGA devices that are

immune to radiation-induced changes in the configuration is a

0

0,5

1

1,5

2

2,5

150ps 150ps 250ps 250ps 350ps 350ps 450ps 450ps

Mean Time To Failure [s]

ZFNet Original ZFNet Commercial ZFNet Proposed

95% 85%
150ps

95% 85%
250ps

95% 85%
350ps

95% 85%
450ps

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3331976

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

13
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

major need.

In the present work, we designed the CNN considering a

non-timed model and adopting a bit-width parametric

architecture. The CNN has been mapped for the first time on a

rad-hard device that is immune to transient radiation effects

within the configuration memory. Thanks to the robustness of

the rad-hard FPGA, the circuit does not require scrubbing or

reconfiguration of the FPGA in order to mitigate changes in the

configuration due to radiation particles. Therefore, we focus the

mitigation exclusively on avoiding transient pulse corrupting

the CNN functionalities.

VII. CONCLUSIONS

We propose a physical implementation methodology of the

ZFNet convolutional neural network on Radiation Tolerant

Flash-based FPGAs. The developed solution represents the first

implementation of CNN on a radiation-hardened FPGA device.

Furthermore, we evaluated the robustness capability and the

performance characteristics of the network considering

different types of mitigation solutions and configurations. The

experimental result shows that a placement algorithm

combining DSP and LSRAM routing optimization is the best

trade-off between accuracy, resiliency, and performance. In

future works, we intend to evaluate the impact on SRAM-based

radiation-tolerant FPGAs and to compare the implementation

tool also considering the synthesis and the mapping phases.

REFERENCES

[1] M. Imani, D. Peroni, Y. Kim, A. Rahimi and T. Rosing, "Efficient neural network
acceler-ation on GPGPU using content addressable memory," Design, Automation

& Test in Eu-rope Conference & Exhibition (DATE), 2017, Lausanne, Switzerland,

2017, pp. 1026-1031
[2] O. Segal, N. Nasiri, M. Margala and W. Vanderbauwhede, "High level

programming of FPGAs for HPC and data centric applications," 2014, IEEE High

Performance Extreme Computing Conference (HPEC), Waltham, MA, USA,
2014, pp. 1-3

[3] K. Guo et al., "Angel-Eye: A Complete Design Flow for Mapping CNN Onto

Embedded FPGA," in IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 1, pp. 35-47, Jan. 2018

[4] R. Ma et al., "Specializing FGPU for Persistent Deep Learning," 2019, 29th

International Conference on Field Programmable Logic and Applications (FPL),
Barcelona, Spain, 2019, pp. 326-333

[5] J. E. R. Condia, B. Du, M. Sonza Reorda and L. Sterpone, "FlexGripPlus: An

improved GPGPU model to support reliability analysis," Microelectronics
Reliability 109, 113660, 2020

[6] David Gschwend, "ZynqNet: An FPGA-accelerated embedded convolutional

neural network", arXiv, Computer Vision and Pattern Recognition, pp. 85
[7] M. Wirthlin, "High-Reliability FPGA-Based Systems: Space, High-Energy

Physics, and Beyond," in Proceedings of the IEEE, vol. 103, no. 3, pp. 379-389,

March 2015
[8] C. De Sio, S. Azimi and L. L. Sterpone, "FireNN: Neural Networks Reliability

Evaluation on Hybrid Platforms," in IEEE Transactions on Emerging Topics in

Computing, 2021, doi: 10.1109/TETC.2022.3152668.
[9] C. De Sio, S. Azimi and L. Sterpone, "An Emulation Platform for Evaluating the

Reliability of Deep Neural Networks," IEEE International Symposium on Defect

and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), 2020, pp. 1-4,
doi: 10.1109/DFT50435.2020.9250872.

[10] N. Lusardi, F. Garzetti, N. Corna, R. D. Marco and A. Geraci, "Very High-

Performance 24-Channels Time-to-Digital Converter in Xilinx 20-nm Kintex
UltraScale FPGA," 2019 IEEE Nuclear Science Symposium and Medical Imaging

Conference, Manchester, UK, 2019, pp. 1-4

[11] N. Rezzak, J. Wang, D. Dsilva and N. Jat, "TID and SEE Characterization of
Microsemi's 4th Generation Radiation Tolerant RTG4 Flash-Based FPGA," 2015

IEEE Radiation Effects Data Workshop, Boston, MA, USA, 2015, pp. 1-6

[12] S. Azimi, B. Du, L. Sterpone, D.M. Codinachs, R. Grimoldi, L. Cattaneo, A new

CAD tool for Single Event Transient Analysis and mitigation on Flash-based
FPGAs, Integration, Volume 67, 2019, Pages 73-81, ISSN 0167-9260

[13] Matthew D. Zeiler and Rob Fergus, "Visualizing and Understanding Convolutional

Networks," Lecture Notes in Computer Science, vol. 8689, pp. 818-833, 2014,
Springer

[14] L. Chang, S. Zhang, H. Du, Y. Chen and S. Wang, "A Reconfigurable Neural

Network Processor With Tile-Grained Multicore Pipeline for Object Detection on
FPGA," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, pp.

1 - 14, 2021

[15] L. Lu, Y. Liang, Q. Xiao and S. Yan, "Evaluating Fast Algorithms for Convolutional
Neural Networks on FPGAs," 2017 IEEE 25th Annual International Symposium on

Field-Programmable Custom Computing Machines (FCCM), 2017, pp. 101-108

[16] J. Zhang, W. Zhang, G. Luo, X. Wei, Y. Liang and J. Cong, "Frequency
Improvement of Systolic Array-Based CNNs on FPGAs," 2019 IEEE International

Symposium on Circuits and Systems (ISCAS), 2019, pp. 1-4

[17] A. Boutros, B. Grady, M. Abbas and P. Chow, "Build fast, trade fast: FPGA-based
high-frequency trading using high-level synthesis," 2017 International Conference

on ReConFigurable Computing and FPGAs, Cancun, Mexico, 2017, pp. 1-6

[18] M. Abusultan and S. P. Khatri, "Exploring static and dynamic flash-based FPGA
design topologies," 2016 IEEE 34th International Conference on Computer Design

(ICCD), 2016, pp. 416-419

[19] F. Libano et al., "Selective Hardening for Neural Networks in FPGAs," in IEEE
Transactions on Nuclear Science, vol. 66, no. 1, pp. 216-222, Jan. 2019

[20] D. Derksen, G. Meoni, G. Lecuyer, A. Mergy, M. Martens, D. Izzo, “Few-Shot

Image Classification Challenge On-Board OPS-SAT”, 35th Conference on Neural
Information Processing Systems (NeurIPS 2021), 2021.

[21] L. Sterpone, N. Battezzati, F. L. Kastensmidt and R. Chipana, "An Analytical Model
of the Propagation Induced Pulse Broadening (PIPB) Effects on Single Event

Transient in Flash-Based FPGAs," in IEEE Transactions on Nuclear Science, vol.

58, no. 5, pp. 2333-2340, Oct. 2011
[22] R. Harada, Y. Mitsuyama, M. Hashimoto and T. Onoye, "Impact of NBTI-Induced

Pulse-Width Modulation on SET Pulse-Width Measurement," in IEEE

Transactions on Nuclear Science, vol. 60, no. 4, pp. 2630-2634, Aug. 2013
[23] B. Du, M. Colucci, S. Francola, L. Aranci, E. Artina, N. Ratti, E. Picardi, R. Mancini,

V. Piloni, S. Azimi, L. Sterpone, "A Novel Propagation Model for Heavy-Ions

Induced Single Event Transients on 65nm Flash-based FPGAs," 2020 20th
European Conference on Radiation and Its Effects on Components and Systems

(RADECS), 2020, pp. 1-4

[24] L. Sterpone, N. Battezzati and V. Ferlet-Cavrois, "Analysis of SET Propagation in

Flash-Based FPGAs by Means of Electrical Pulse Injection," in IEEE Transactions

on Nuclear Science, vol. 57, no. 4, pp. 1820-1826, Aug. 2010

Luca Sterpone (Senior Member, IEEE) received the

M.S. and Ph.D. degrees in computer engineering from

the Politecnico di Torino, Italy, in 2003 and 2007,
respectively, where he is currently a Full Professor with

the Department of Computer and Control Engineering.

He has authored more than 220 papers and he received
several awards for his research activities. His current

research interests include re-configurable computing,

computer-aided design algorithms, fault tolerance
architectures, and radiation effects on components and

systems.

Sarah Azimi (Member, IEEE) received her Ph.D. from

Politecnico di Torino, Turin, Italy, in 2019. Currently,

she is working in the CAD & Reliability group of the

Department of Computer and Control Engineering In

Politecnico di Torino as an Assistant Professor. Her

research interests include fault-tolerant electronic
design, intelligent informative systems, physical

models, and validation platforms.

Corrado De Sio (Member, IEEE), received the B.S.
and M.S. degrees in Computer Engineering from the

University of Pisa, Pisa, Italy, in 2018. He was a

Research Assistant in the CAD and Reliability Group,
Department of Computer and Control Engineering,

Politecnico di Torino. Currently, he is a Ph.D. Student

at Politecnico di Torino. His research interests include
the reliability of reconfigurable devices, radiation

effects, and soft errors.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3331976

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

