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Abstract: This work aimed to develop an automatic new methodology based on establishing if a
mechanical component, designed for a conventional propulsion system, is also suitable for hybrid
electric propulsion. Change in propulsion system leads to different power delivery and vehicle
dynamics, which will be reflected in different load conditions acting on the mechanical components.
It has been shown that a workflow based on numerical simulations and experimental tests represents
a valid approach for the evaluation of the cumulative fatigue damage of a mechanical component. In
this work, the front half-shaft of a road car was analyzed. Starting from the acquisition of a speed
profile and the definition of a reference vehicle, in terms of geometry and transmission, a numerical
model, based on longitudinal vehicle dynamics, was developed for both conventional and hybrid
electric transmission. After the validation of the model, the cumulative fatigue damage of the front
half-shaft was evaluated. The new design methodology is agile and light; it has been dubbed “Smart
Design”. The results show that changing propulsion led to greater fatigue damage, reducing the
fatigue life component by 90%. Hence, it is necessary to redesign the mechanical component to make
it also suitable for hybrid electric propulsion.

Keywords: sensor data; conventional vehicle model; HEV model; cumulative fatigue damage
evaluation

1. Introduction

Nowadays, purely electric transmission is becoming increasingly popular in the au-
tomotive field [1,2]. The main advantage of this type of transmission is to cut down local
pollutant emission [3–6], so as to improve air quality of urban centres and, hence, help in
the reduction of global pollution. Despite the obvious advantages, many problems mean
this type of architecture is still not strongly present on a global level: high vehicle costs
related to a more complex architecture and control systems [7], battery autonomy [8–11]
and the lack of infrastructure (charging stations) in urban centers [12–14]. For this reason,
hybrid-electric transmission represents the main alternative awaiting more reliable and less
expensive solutions. It is possible to divide hybrid electric transmissions into three main
architectures: series, parallel and combined hybrid [15–18]. Typically, the architectures
have an Internal Combustion Engine (ICE), an electric motor/generator, a power converter,
a batteries pack, a mechanical transmission and a controller for power management. In
the series configuration, the ICE is connected to the electric generator unit, which converts
mechanical power into electric power used to recharge the battery pack. The possibility of
decoupling the ICE from the electric motor would allow the ICE to only be used for recharg-
ing batteries, thereby running the ICE at maximum efficiency points and downsizing the
engine i.e., reducing the number of cylinders with respect to a conventional configuration.
In the parallel configuration, the ICE is directly connected with the transmission and a part
of the mechanical power is used for generating the traction force, together with the electric
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power generated by the electric motor/generator. In the combined hybrid configuration,
one or more electric machines work in concert with the ICE to achieve the advantages
of series architecture and those of parallel configuration. The mathematical modelling
of the transmission, and, in particular, the longitudinal vehicle dynamics, represents a
powerful tool for the evaluation of propulsion system performance. According to the litera-
ture review [19–24], two main approaches are employed: the backward and feed-forward
approaches. The backward approach consists in imposing a driving cycle on the system
and, through the mathematical modelling of the transmissions, evaluating the power re-
quired from the engine. No driver is considered within the system. On the other hand,
the feed-forward approach consists of inserting a driver within the system. In this case,
the information’s flow is the opposite of the backward approach and inherent with reality:
from the engine to the vehicle speed. Finally, the vehicle speed is matched with a reference
speed (drive cycle) through a control system acting on the throttle/brake pedal position.
In addition to the mathematical modelling, the increasing usage of machine learning and
neural network algorithms [25–29] has led to new vehicle control and design strategies [30].
An important aspect to investigate is the stress state acting on the mechanical components
when the vehicle is hybridized, starting from a conventional configuration i.e., only with
the ICE engine propulsion. The different propulsion, transmission and weight distribution
inevitably leads to different vehicle dynamics and, as a consequence, different stresses on
mechanical components [31]. Hence, the initial component design, compatible with the
conventional configuration, may not be suitable for the hybrid electric vehicle. To investi-
gate the effect of different propulsion on the stresses acting on mechanical components, the
authors propose a new agile and light methodology, based on automatic evaluation of the
cumulative stress through the interactions of different software (multibody, FEM, etc.) and
models (consumption, vehicle dynamics, structural, etc.) in the Matlab environment. This
new way of verifying and re-designing mechanical components has been called “Smart
Design” by the authors. Indeed, in the modern era, it is impossible to think that structural
design does not make use of virtual, digital, rapid and secure prototyping methods. So, the
aim is for the CPU to do multifunctional simulations in order to find the optimal result. In
the specific case of this work, through the “Smart Design”, an evaluation of the cumulative
fatigue damage of the front half-shaft was calculated for the purpose of redesign for hybrid
propulsion. The first step was to define the reference vehicle. Then, a drive cycle was
acquired through a SCADAS XS COMPACT control unit provided by the SIEMENSTM

Company, together with a GPS sensor. A mathematical model of both conventional and
hybrid electric transmission was created in AVL CruiseMTM, according to a feed-forward
approach. Both models were calibrated, matching the vehicle speed to the reference speed
through a feedback controller (PI type) acting on throttle/brake pedal position. Moreover,
from the simulations, it was possible to evaluate the torque at the front half-shaft that would
be used for evaluation of the cumulative fatigue damage. The component object of this
study was tested through fatigue tests [32] with three different load levels and oscillating
amplitudes i.e., load ratio R = −1. From the experimental tests, the Ta-N torsion curve
(torque amplitude-number of cycles) of the component was obtained. This curve allowed
for the evaluation of the fatigue life of the component subjected to a torque history. The
results showed that the cumulative damage (design at 400,000 km) was around 14% for
the ICE torque history, while it was around 90% for the HEV torque history. This meant
that propulsion change led to more damage reducing the fatigue life of the component.
Therefore, it is necessary to redesign the component for hybrid propulsion in order to
ensure a better fatigue life.

2. Materials and Methods

This work aimed to develop a methodology based on evaluation of cumulative fatigue
damage in order to assess a mechanical component, realized for conventional propulsion,
to determine if it was also suitable for hybrid electric propulsion. Figure 1 shows the
workflow adopted.
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Figure 1. Workflow adopted for the evaluation of the cumulative fatigue damage of the component.
It is possible to choose two different workflows, depending on the availability of the experimental
data of the component.

The workflow started with the definition of the vehicle parameters, in terms of trans-
mission and geometry, and the acquisition of the driving cycle. Then, through a numerical
simulation of both transmissions (ICE and HEV), it was possible to evaluate the load cycle
on the component. Depending on the availability of experimental data on the component
under examination, two possible approaches existed:

• Experimental data of the component. In this case, it was necessary, through the
Rainflow method [33], to extract an equivalent load cycle in terms of stress amplitude
(or, in this case, torque amplitude) and the number of cycles. Then, it was necessary to
obtain an equivalent load history at load ratio R =−1, using the Goodman criterion [34].
This was done because it is common practice to test the component [32] or the material
component [35] at constant amplitude. Finally, the cumulative fatigue damage was
evaluated using the Palmgren-Miner criterion [36].

• No experimental data on the component. In this case, it was necessary to characterize
the component material through fatigue tests, firstly. This allowed obtaining the σ− N
curve (stress amplitude-number of the cycle) of the material, which would be used
for the cumulative fatigue damage calculation. Then, through a Finite Element Model
(FEM) of the component, it was possible to pass from load to equivalent stress σ on the
component. Usually, for steels, the most common criterion to evaluate the equivalent
stress is the Von Mises criterion [37]. At this point, the procedure followed the same
steps as the previous case.
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2.1. Reference Vehicle

The conventional vehicle adopted in this work was a mid-size sedan, the parameters
of which are shown in Table 1.

Table 1. Reference vehicle geometry and transmission main parameters.

Parameter Value

mv, vehicle mass 1505 kg
Sa, frontal area 1.77 m2

Cx, drag coefficient 0.445
l, wheelbase 2.817 m

rw, wheel rolling radius 0.305 m
τ1, gear ratio-1st 3.54
τ2, gear ratio-2nd 1.92
τ3, gear ratio-3rd 1.28
τ4, gear ratio-4th 0.91
τ5, gear ratio-5th 0.67
τ6, gear ratio-6th 0.53

τFD, final drive ratio-front 4.35

Figure 2 shows the maximum torque map and the consumption map of the ICE engine
adopted for the simulation.
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Hybrid Electric Vehicle

The architecture chosen for vehicle hybridization was a parallel hybrid drivetrain in
P2 configuration i.e., the electric motor was placed on the driving axis (front axis). Table 2
shows the main parameters of the HEV.

Table 2. HEV geometry and transmission main parameters.

Parameter Value

mv, vehicle mass 1770 kg
Sa, frontal area 1.77 m2

Cx, drag coefficient 0.445
l, wheelbase 2.817 m

rw, wheel rolling radius 0.305 m
τ1, gear ratio-1st 3.54
τ2, gear ratio-2nd 1.92
τ3, gear ratio-3rd 1.28
τ4, gear ratio-4th 0.91
τ5, gear ratio-5th 0.67
τ6, gear ratio-6th 0.53

τFD, final drive ratio-front 4.35
Eb, battery energy 1299.5 Wh

V0, battery nominal voltage 230 V
Cb, battery capacity 5.65 Ah

Figure 3 shows the maximum torque map of the electric motor/generator adopted for
the simulation.
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2.2. Data Acquisition

The speed profile, road inclination and vehicle position were acquired through a
SCADAS XS compact control unit provided by the SIEMENSTM Company, together with a
GPS sensor. Figure 4 shows the instrumentation used for data acquisition.
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Figure 5a shows the speed profile and altitude, while Figure 5b shows the vehicle position.
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2.3. Conventional Vehicle Feed-Forward Model

The mathematical model of the conventional vehicle was based on longitudinal vehicle
dynamics and the model allowed a feed-forward approach, as shown in Figure 6.
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The main elements were:

Driver. The task of the driver block was to match the vehicle speed vv with the reference
speed vre f acquired during the driving cycle, through a controller (PI type) acting on the
throttle/brake pedal position.
Internal Combustion Engine (ICE). It received the information from the cockpit block
(torque command) in order to develop the required torque Te.
Clutch. The clutch block had the task of coupling/decoupling the transmission from the
ICE, letting the torque T1 pass or not.
Gearbox (GB). The gearbox block allowed switching the inserted gear (and hence, gear
ratios). The torque level passed from T1 to T2 = γGBT1.
Final drive (FD). It was the final element of the transmission and consisted of a gear ratio
defined according to the datasheet. Also, in this case, the torque level passed from T2 to
T3 = τFDT2.
Vehicle. In the vehicle block, longitudinal vehicle dynamics equations were considered.
The traction force, assumed to be applied in the longitudinal direction at the tire contact
patch, would be given by the sum of the aerodynamic drag force, rolling resistance force,
inertial force (chassis, wheel and engine contribution) and road inclination force.

The ICE vehicle model was developed in AVL CruiseMTM and the functional schemes
are shown in Figure 7.
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Through the model, it was possible to evaluate the vehicle speed, thrust force, fuel
consumption and torque at the front half-shaft.

2.4. HEV Feed-Forward Model

For the HEV, the modelling followed a feed-forward approach, as shown in Figure 8.
Figure 9 shows the HEV model developed in AVL CruiseMTM.
The driving modes managed by the control unit were:
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Full electric mode. The vehicle ran in full electric mode and the power flow was B-P-EM-
GB-FD-drive axis. This driving mode was activated when the batteries had a sufficiently
high state of charge and the driving cycle was not so hard as to require the intervention of
the ICE (for example, urban driving).
Hybrid electric mode or power assist. The vehicle ran in hybrid mode and the thrust force
was due to the combined action of both the electric motor and thermic motor.
Battery recharging. The vehicle ran in hybrid mode but a part of the electric energy was
used for battery recharging.
Regenerative braking. The electric machine recovered the braking force by acting as
generator and recharging the batteries.
Full thermic mode. The vehicle ran in full thermic mode when the speed was such as to
bring the electric motor into the overspeed condition.
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Through the model, it was possible to evaluate the vehicle speed, thrust force, fuel
consumption, state of charge of the batteries and torque at the front half-shaft.

2.5. Cumulative Fatigue Damage Evaluation

Among the available outputs of the numerical simulation for both the ICE vehicle
and the HEV model, the torque at the front half-shaft was the one used to calculate the
cumulative fatigue damage of the component for both cases. This was done because,
considering the actual operation of the component, the twisting torque represented the
heaviest stress on the component. Experimental fatigue tests were carried out on the
component [32]. The component was tested with three tests at three different load levels
with a constant load ratio of R = −1, defined in Equation (1):

R =
Ti
Ts

= −1 (1)

where Ts is the superior limit torque while Ti is the inferior limit torque. The
definition of average torque and range torque were also considered, defined in
Equations (2) and (3), respectively:

Tm =
Ts + Ti

2
(2)

Ta =
Ts − Ti

2
(3)

Equation (1) also means that Tm = 0. The experimental results allowed the obtaining
of the Ta-N curve (torque amplitude-number of cycles) of the mechanical component.
In addition, it was necessary to fit the experimental tests to have a linear trend in a bi-
logarithmic diagram, also called the Wöhler diagram [35]. Linear fitting was performed
using the Basquin equation [38,39], defined in Equation (4):

Ta = 2bT′f Nb
f (4)

where Ta are the ranges of torque, T′f is approximately equal to the twisting torque at
the break, N f are the failure cycles and b is a constant. As a matter of fact, the torque
history evaluated from the numerical simulation represented a random load in the time
domain. As a consequence, it was necessary to extrapolate from the starting load history,
an equivalent load history referred at R = −1, in order to evaluate the fatigue damage. At
first, the Rainflow method [33] was applied to the load history. Through this method it
was possible to obtain much load history characterized by a certain torque range Ta, torque
mean Tm, number of working cycle N and load ratio R which, in the vast majority of cases,
turned out to be different to R = −1. Hence, in order to convert all the load histories into
an equivalent one at R = −1, the Goodman criterion [34] was applied. It is defined in
Equation (5):

Ta

Tar
+

Tm

Tu
= 1 (5)

where Ta is the torque range computed from the Rainflow method, Tar is the equivalent
torque range referred at R = −1, Tm is the torque mean evaluated from the Rainflow
method and Tu. is the twisting torque at the break. Finally, it was possible to evaluate
the cumulative fatigue damage by applying the Palmgren-Miner criterion [36], defined in
Equation (6):

∑i
Ni
N f i

= 1 (6)

where Ni are the number of working cycles and N f i are the corresponding failure cycles.
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3. Results

In this section, the main results of the proposed methodology will be presented. In
the first results part, a comparison between the ICE and the HEV model was performed
from an energetic point of view. Then, starting from the torque history evaluated from the
numerical simulation, the cumulative fatigue damage of the front half-shaft was evaluated
for both configurations.

3.1. ICE Vehicle Model and HEV Model Energetic Comparison

To calibrate the model based on the acquired data, the vehicle must follow the imposed
driving cycle shown in Figure 1a. To allow the vehicle to follow the speed profile, a feedback
controller (PID type) was designed to act on the throttle/brake pedal position. The gains
used for the controller are shown in Table 3, while in Figure 10 shows the comparison
between the reference and the vehicle speed for both configurations.

Table 3. Gains used for feedback controller design.

Parameter Value

P, proportional gain 10

I, integrative gain 0.2
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After matching the reference speed with the vehicle speed, the thrust force Ft was
evaluated. It took into account the following contributions:

Aerodynamic friction losses (drag force)
Rolling friction loss, the energy dissipated in the brakes
Force caused by gravity when driving on non-horizontal roads
Thrust force for both configurations, as shown in Figure 11.

Vehicles 2022, 4, FOR PEER REVIEW 12 

 

 

After matching the reference speed with the vehicle speed, the thrust force 𝐹𝑡 was 

evaluated. It took into account the following contributions: 

Aerodynamic friction losses (drag force) 

Rolling friction loss, the energy dissipated in the brakes 

Force caused by gravity when driving on non-horizontal roads 

Thrust force for both configurations, as shown in Figure 11. 

 

Figure 11. Thrust force comparison between ICE vehicle model and HEV model. 

The state of charge of the batteries was managed by a control system that switched 

the generator on or off in function of the driving cycle request. The control strategy was 

designed so that the vehicle had a residual state of charge of approximately 40% at the 

end of the driving cycle, in order not to damage the batteries. In order to consider a 

complete charge/discharge cycle of the batteries, until the same state of charge was 

achieved at the end of the driving cycle, so as to calculate fuel consumption of the HEV, 

the highlighted time laps in Figure 12 were considered. 

Figure 11. Thrust force comparison between ICE vehicle model and HEV model.

The state of charge of the batteries was managed by a control system that switched
the generator on or off in function of the driving cycle request. The control strategy was
designed so that the vehicle had a residual state of charge of approximately 40% at the end
of the driving cycle, in order not to damage the batteries. In order to consider a complete
charge/discharge cycle of the batteries, until the same state of charge was achieved at the
end of the driving cycle, so as to calculate fuel consumption of the HEV, the highlighted
time laps in Figure 12 were considered.

Figure 13 shows the comparison of fuel consumption for both configurations.
Taking into account the consideration mentioned in Figure 12, the average fuel con-

sumption expressed in km/L is shown in Table 4.
Finally, Figure 14 shows the torque at the front half-shaft (driving axis) that would be

used for the fatigue damage calculation.
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Table 4. Average fuel consumption comparison for both configurations.

Parameter Value (ICE) Value (HEV)

Considered total distance 17.28 km 16.09 km
Fuel consumption 0.9 kg 0.5 kg

Fuel density (Diesel) 0.835 kg/L 0.835 kg/L
Average fuel consumption 15.44 km/L 27.71 km/L
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3.2. ICE Vehicle Model and HEV Model Mechanical Comparison

As described in Section 2.5, the front half-shaft was tested through fatigue tests with
three tests at three different twisting torque levels and a load ratio of R = −1. Moreover, the
experimental results were interpolated using the Basquin equation, defined in Equation (4).
Figure 15 shows the experimental fatigue tests carried out on the component. The torque
amplitude values were normalized concerning the maximum value for industrial reasons
of secrecy.

Then, the Rainflow method was applied to both the torque history of the ICE vehicle
model and the HEV model. In addition, the mechanical design foreseen referred to the load
histories to 400,000 km. Considering that the distance of the acquired driving cycle was
around 17 km, the load histories must be repeated for (Equation (7)):

n =
400, 000

17
≈ 23, 000 counts (7)
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The application of the Rainflow method allowed the obtaining of a 3D Rainflow
histogram for both configurations. It was characterized by torque range, mean torque, and
number of cycles. Figure 16 shows the Rainflow histogram of the ICE vehicle model’s
torque history.
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As an example, considering the high number of equivalent load histories, Table 5
shows the first ten load histories from the Rainflow method’s counting.

Table 5. First ten load histories from Rainflow method counting (ICE vehicle model).

Torque Range
Ta [Nm] Torque Mean Tm [Nm] Cycles N Superior Torque

Ts [Nm]
Inferior Torque

Ti [Nm] Load Ratio R

22.5 20 34,500 42.5 −2.5 −0.05
25 20 57,500 45 −5 −0.1

27.5 20 69,000 47.5 −7.5 −0.15
32.5 20 11,500 52.5 −12.5 −0.23
35 20 11,500 55 −15 −0.27
0 40 1,000,500 40 40 1

2.5 40 529,000 42.5 37.5 0.88
5 40 506,000 45 35 0.77

7.5 40 218,500 47.50 32.5 0.68
10 40 149,500 50 30 0.60

Figure 17 shows the Rainflow histogram of the HEV model torque history.
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Table 6 shows the first ten load histories from the Rainflow method’s counting.
In order to evaluate the fatigue damage, it was necessary to obtain an equivalent load

history referred to R = −1 for both configurations, using the Goodman criterion, defined
in Equation (5). Figure 18 shows the equivalent load history in the Ta − N curve for the
ICE vehicle model. Only the torque level above the fatigue limit, settled to 5× 106 cycles
according to literature review [35], were considered. This was decided because below the
fatigue limit the mechanical component could be considered, from a theoretical point of
view, to have an infinite life and, hence, these torque values did not influence the fatigue
life of the component.
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Table 6. First ten load histories from Rainflow method counting (HEV model).

Torque Range
Ta [Nm] Torque Mean Tm [Nm] Cycles N Superior Torque

Ts [Nm]
Inferior Torque

Ti [Nm] Load Ratio R

45 −40 46,000 5 −85 −17
87.5 −40 11,500 47.5 −127.5 −2.68

112.5 −40 11,500 72.5 −152.5 −2.10
202.5 −40 11,500 162.5 −242.5 −1.49

0 −20 1,978,000 −20 −20 1
2.5 −20 552,000 −17.5 −22.5 1.28
5 −20 345,000 −15 −25 1.6

7.5 −20 253,000 −12.5 −27.5 2.2
10 −20 230,000 −10 −30 3

12.5 −20 69,000 −7.5 −32.50 4.3
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Table 7 shows the values of Ta
Ta max

, working cycles N and the corresponding failure
cycles N f .
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Table 7. Torque amplitude, working cycles and failure cycles for the ICE vehicle model.

Ta
Ta max

[%] Working Cycles N Failure Cycles Nf

45.4 11,500 3951282.5
48 11,500 2889408.1

49.4 23,000 2516954.1
60.6 11,500 919579.2
63.4 34,500 833674.3
66.3 46,000 747769.4
45.8 11,500 3752326.1
49.2 11,500 2553792.5

By applying the Palmgren-Miner criterion it was possible to calculate the fatigue
damage (Equation (8)):

8

∑
i=1

Ni
N f i

= 0.1390 ∼= 14% (8)

Figure 19 shows the equivalent load history in the Ta − N for the HEV model through
the application of the Goodman criterion:
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Table 8 shows the values of Ta
Ta max

, working cycles N and the corresponding failure
cycles N f .

Table 8. Torque amplitude, working cycles and failure cycles for the HEV mode.

Ta
Ta max

[%] Working Cycles N Failure Cycles Nf

54.3 11,500 1,546,168.7
102.8 11,500 69,226.8
45.48 11,500 3,917,411.8
81.8 11,500 274,118.1
49.5 11,500 2,488,406.4
50.6 11,500 2,186,339.2
49.4 11,500 2,498,245.4
55.4 11,500 1,375,488.1
78.5 11,500 374,097.2
56.1 11,500 1,286,968.4
127.1 11,500 20,284.3
49.2 23,000 2,566,367.9
69.2 23,000 657,144.8
59.2 11,500 962,304.3

By applying the Palmgren-Miner criterion it was possible to calculate the fatigue
damage (Equation (9)):

14

∑
i=1

Ni
N f i

= 0.9038 ∼= 90% (9)

4. Discussion

The comparison of both vehicle configurations from the energetic point of view showed
that both models were calibrated on the basis of the speed profile acquired experimentally.
Figure 10, in fact, shows a near perfect adhesion between the vehicle speed computed
from the numerical simulation and the acquired speed profile. Figure 13 shows the fuel
consumption comparison for both configurations. As expected, the HEV exhibited a
lower average fuel consumption, which was around 27.71 km/L at the end of the driving
cycle. The ICE vehicle exhibited a greater average fuel consumption, which was around
15.44 km/L at the end of the driving cycle. Hence, despite the more complex transmission
architecture of the HEV, it saved more fuel, also, thereby, reducing emission of pollutants.
This was also possible due to the control strategy that managed the State of Charge of the
batteries. As shown in Figure 12, the control strategy managed the State of Charge through
switching the generator on or off in function of the driving cycle request and according to
the driving mode exposed in Section 2.4, with a residual State of Charge of around 40% at
the end of the driving cycle. The torque at the front half-shaft, shown in Figure 14, represents
the connection with the mechanical point of view. As expected, the torque evaluated for
the ICE vehicle was always positive. This was due to the fact that the braking force was
due to the brake callipers only. Possibly, there was some resistant mechanical torque of
minor entity that was neglected in this study. On the other hand, the torque evaluated
for the HEV also exhibited the negative part. This was due to the regenerative braking
in which the electric machine acted as a generator (Figure 3). The experimental fatigue
tests, shown in Figure 15, exhibited a low data dispersion for higher torque amplitude ratio,
while it increased for lower values close to the fatigue limit of the mechanical component.
The application of the Palmgren-Miner criterion to both load histories showed that the
changing propulsion led to greater fatigue damage on the mechanical component. As
shown in Equation (7) and Equation (8), respectively, the ICE vehicle load history led to
14% fatigue damage on the component, while the HEV load history led to 90% fatigue
damage on the component. This was because the HEV load history, being also defined
in the negative axis, led to, according to Equation (3), a greater torque amplitude and,
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therefore, the torque history was closest to the Ta − N curve. Figures 18 and 19 also confirm
this. Hence, it was shown that changing propulsion led to greater fatigue damage and it
was necessary to redesign the component to make it suitable for hybrid electric propulsion.

5. Conclusions

In this work, the authors presented a new automatic methodology (Smart Design)
which aimed to verify and re-design mechanical components through virtual multi-physics
analyses. In this specific case, Smart Design was used to evaluate the cumulative fatigue
damage of a front half-shaft of a road car when the propulsion system was changed from
conventional to hybrid electric. The following conclusions could be drawn:

The results of both the ICE vehicle model and the HEV model developed in AVL CruiseMTM

showed that both models were validated, based on the acquired speed profile. Moreover,
the control system designed in this work was able to manage the State of Charge of the
batteries until the end of the driving cycle, without damaging the batteries.
As expected, the adoption of hybrid electric propulsion led to lower fuel consumption and,
as a consequence, fewer pollutant emissions.
It was shown that, through the application of the Palmgren-Miner criterion, the hybrid
electric propulsion led to greater fatigue damage on the front half-shaft with respect to
conventional propulsion.
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