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Abstract 
Autonomous drone systems have grown in various industries, but their effectiveness in dynamic 
environments remains challenging. This study addresses the issues faced in path planning and state 
estimation for drones operating in non-static environments. To tackle these challenges, a solution 
combining Kalman Filters and Advanced Reinforcement Learning (RL) Algorithms is proposed. Three 
RL algorithms are compared to evaluate their performance. Combining the Kalman Filter and RL 
techniques improves path planning and decision-making, resulting in successful navigation in simulated 
dynamic scenarios. The approach is designed for continuous state-action environments. 

1. Introduction

Interest in autonomous vehicles covering aerial, terrestrial, and underwater areas has dramatically increased due to 
their prospective ability to transform many industries. The development of reliable path-planning methods is crucial 
for task optimization and the enhancement of the versatility and efficiency of these vehicles. Autonomous drones show 
substantial potential, able to conduct intricate tasks across a wide array of environments. However, the constantly 
changing nature of these environments introduces distinct obstacles, making path planning for drones an intriguing 
field of study. Autonomous drones are utilized in various duties, from surveillance and delivery services to search and 
rescue missions. To carry out these tasks effectively, they require path planning optimization considering the 
immediate environment and the inherent dynamism of real-world settings. Several path planning methodologies have 
been investigated, such as minimum snap path planning and minimum time path planning. Despite their efficacy, these 
strategies are predominantly designed for static environments. Conversely, drones often operate in dynamic 
environments where objects and conditions can shift unpredictably. As a result, path planning for dynamic 
environments is inherently more intricate and demanding. To enable effective path planning and navigation, estimating 
the status of dynamic objects is made even more challenging by the cluttered nature of these environments. Existing 
research has started addressing these challenges. 
Path planning and state estimation are central to the operations of autonomous drones. Path planning involves 
determining the optimal route a drone should take to accomplish its task, which can greatly differ depending on the 
task and environment specifics. A common method involves defining specific waypoints the drone must reach and 
then determining the most efficient route. State estimation complements path planning by supplying vital information 
about the current and future states of the environment. This information facilitates informed decisions about the drone's 
path. State estimation techniques can be employed to identify significant features in the environment, such as the center 
of goal objects. Predicting the future location of these objects, especially in dynamic environments, continues to be a 
field-wide challenge. 
In this study, we put forth a novel methodology to tackle the challenges of state estimation and path planning in 
dynamic environments. Our strategy harnesses the capabilities of Kalman filter algorithms for estimating and 
forecasting the states of dynamic objects in the environment. More specifically, we use these algorithms to estimate 
and forecast the positions of waypoints, which are defined as the centers of gates in our context. The Kalman filter 
facilitates estimation of the current state of these waypoints, and their future states over a variable time horizon, 
contingent on the drone's distance from each gate. 
To complement state estimation, we also suggest the employment of advanced actor-critic reinforcement learning (RL) 
algorithms for optimal path planning. We implement three RL algorithms in a continuous action-state environment to 
discern the optimal path through the predicted waypoints. The path's optimality is defined based on a reward function 
provided to the RL algorithms. The combination of state estimation and path planning techniques is intended to 
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significantly enhance the performance of autonomous drones in dynamic environments. In this paper, our primary 
objective is to explore the effectiveness of a combined approach that uses the Kalman filter to predict future positions 
of gates over changing time horizons and different Reinforcement Learning (RL) algorithms for optimal path planning 
in dynamic environments. We aim to assess and compare the performance of three specific RL algorithms under 
varying environmental conditions, with a particular emphasis on dynamic settings. 

1.1 Related works  
The landscape of available training environments includes several three-dimensional reinforcement learning simulation 
environments, such as Gym [2] and AirSim [16], each with their challenges. For instance, despite AirSim's realistic 
and detailed nature, it demands a high-performance system due to its computational intensity. On the other hand, Gym, 
which is less computationally intensive, lacks environments specifically dedicated to drone path planning, with some 
environments supporting only discrete action spaces. Our research aims to surmount these hurdles by formulating a 
customized continuous action-state environment using the Python Pygame library. This tailor-made environment 
reduces the computational demand compared to AirSim and is also precisely suited to our specific task. We have 
integrated a field-of-view feature commonly absent in Pygame environments but vital for authentic drone perception 
to enhance its realism. 
Various studies have explored autonomous drone path planning, utilizing the Potential Field Method (PFM), Rapidly 
exploring Random Tree (RRT), and the Voronoi diagram (VD). Each of these techniques presents its limitations. For 
example, the Potential Field Method is susceptible to local minima, causing a deadlock where the drone gets trapped 
in a position surrounded by obstacles [7, 19]. RRT, although efficient in navigating high-dimensional spaces, may need 
help finding the optimal path, and its performance can be compromised in densely cluttered environments [8, 12]. 
Voronoi Diagrams, while ensuring a safe distance from obstacles, do not necessarily yield the shortest or most efficient 
path, and their generation can be computationally intense, particularly in complex or dynamic environments [1, 13]. 
There has also been considerable effort in applying reinforcement learning to path planning [9, 15, 17]. The Song Et 
al. study didn't test the algorithm's performance in dynamic environments. It depended on Vicon cameras for gate state 
prediction, which may not be universally applicable in real-world contexts [17]. Another study applied three 
reinforcement learning algorithms in a static environment [9]. 
Our research strives to bridge these gaps by leveraging Kalman Filters for state estimation and prediction [6]. We aim 
to design a reinforcement learning environment that meets specific needs, such as supporting a continuous action state 
environment, providing specific state elements, and defining the agent's reward function based on the Kalman filter 
prediction. Additionally, we incorporate the field of view of real cameras as boundary conditions for the environment 
to enhance the realism and practicality of our approach. 
 

2. Methodology 
 
We employed a comprehensive methodology with a 3D simulation environment to address the issues identified in the 
abstract. This environment was used to emulate the dynamic conditions that drones may encounter in real-world 
scenarios. This 3D simulation allowed us to explore all possible outcomes under various scenarios and conditions, 
thereby providing a robust and extensive platform for the training and testing of our autonomous drone systems.  
Our methodology also involved the use and comparison of three different reinforcement learning (RL) algorithms: 
Deep Deterministic Policy Gradient (DDPG), Soft-Actor Critic (SAC), and Proximal Policy Optimization (PPO). 
These algorithms were trained to focus on Path planning and state estimation, two critical factors for successful drone 
operation in dynamic environments. The three algorithms were evaluated on the same scenarios within the 3D 
simulation to ensure a fair comparison. The performance of each algorithm was then analyzed and compared, with 
particular attention paid to their respective ability to navigate successfully in the dynamic simulated scenarios. 
Moreover, the Kalman Filter, a well-known technique for state estimation, was integrated with the RL techniques. The 
goal was to enhance the drones' decision-making process and path planning. Combining these two techniques, we 
aimed to create an autonomous drone system that could adapt and respond effectively to non-static environments.  

2.1 Simulation Environment 
The simulation framework is set within a three-dimensional drone navigation game where the drone's task is 
maneuvering through a pair of gates. This framework was coded from scratch to allow the maximum customization 
possible. It is encapsulated within a class, which establishes several parameters, including the drone's initial location, 
the initial positions of the gates, the drone's field of view (FoV), and the overall dimensions of the simulation 
environment (represented as width and height, length). The system comprises four unique scenarios defined in the 
continuous state-action space, each presenting differing behaviors for the drone and the gates. 
 

● The first scenario involves a static drone starting point and immobile gates. 
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● The second scenario maintains a fixed drone starting point but introduces dynamic moving gates. 
● The third scenario switches to a randomized drone starting point but reverts to static gates. 
● The fourth scenario features both a randomized drone starting point and dynamic gates. 

 

 
Figure 1 Pseudocode of the algorithm implemented. 

 
In a tri-dimensional context, the study centers on continuous action states. When dealing with stationary gates, the state 
is expressed as (𝑥, 𝑦, 𝑧),	that represent the relative coordinates of the drone with respect to the gate along the 
corresponding 𝑥, 𝑦 and 𝑧 axes. This model provides enough data to steer the drone in a 3D setting with unchanging 
gate positions. Nevertheless, in scenarios featuring movable gates, the state definition requires to be expanded to 
encompass supplementary details about the relative velocities in the 𝑦 and 𝑧 axes. Consequently, the state is presented 
as (𝑥, 𝑦, 𝑧, 𝑦̇, 𝑧̇). The added elements (𝑦̇, 𝑧̇), account for the relative speed in the 𝑦 and 𝑧 directions, respectively, 
empowering the drone to respond more effectively to shifting gates. By incorporating both immobile and moving gates 
in a three-dimensional space, the analysis becomes more extensive and versatile, supporting the operation of the drone 
into various circumstances. This strategy enables a more resilient understanding of drone navigation and control, which 
can be advantageous in use-cases like drone racing, search and rescue operations, and environmental surveillance, 
where the capability to navigate through intricate environments is critical. 
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Figure 2 View of the 3D Simulation Environment. It is possible to observe some samples of the initial positions of 

the drone, represented by the small circles and the trajectories of the first and the second gates, respectively, in green 
and red. 

 
The action space, encompassing both stationary and movable gates, involves the magnitude of displacement along the 
𝑥, 𝑦 and 𝑧 axes. Each of these magnitudes lies within the interval of [−1, 1], signifying the shift in the respective 
direction. By balancing the total of all movements, the overall displacement's magnitude at each step equals one unit. 
Within this action space, the drone can traverse in any direction within the tri-dimensional space by blending the 
appropriate magnitudes for each axis. This adaptable methodology enables the drone to navigate and adjust to various 
scenarios, irrespective of whether they involve stationary or movable gates. Maintaining a normalized range for the 
magnitudes ensures uniformity and comparability across different movement directions and environments. This 
depiction of the action space is apt for drone navigation and control applications, as it allows the system to react 
effectively to a broad range of situations. 
With each time increment, the reward function has been crafted to motivate the drone to gravitate toward the gate's 
center. A generous positive reward is allocated when the drone progresses closer to the gate's center, while a negative 
reward is doled out if the drone strays further from the center. Additionally, suppose the drone collides with any 
boundaries, including the environment's limits and areas where the gate centers are outside the camera's field of view. 
In that case, the reward will be a notably negative value at that step. The formula for the reward function is presented 
as follows: 
 

𝑅𝑒𝑤𝑎𝑟𝑑(𝑡) 	= 	5
−30	𝑖𝑛	𝑐𝑎𝑠𝑒	𝑜𝑓	𝑐𝑜𝑙𝑙𝑖𝑡𝑖𝑜𝑛𝑠

+30	𝑖𝑓	𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒	𝑡ℎ𝑒	𝑒𝑝𝑖𝑠𝑜𝑑𝑒
𝑑!"#$%& = (𝑠!"#, 𝑎!"#) − 𝑑!$%&(𝑠! , 𝑎!)	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

	 ( 1 ) 

 
Where 𝑅𝑒𝑤𝑎𝑟𝑑(𝑡) represents the reward at time 𝑡, 𝑑!$%&(𝑠! , 𝑎!) is the relative distance at time 𝑡 given the state 𝑠 and 
the action 𝑎 and (𝑠!"#, 𝑎!"#) denotes the state respectively and the action at the previous time step (𝑡 − 1).	This reward 
function incentivizes the drone's navigation system to streamline its path toward the gate's center, enhancing its overall 
performance across various environments. 

2.2 Single-Instruction Multi-data Kalman 
The Kalman filter is a mathematical algorithm that provides an efficient computational solution to estimate the state 
of a process in a way that minimizes the mean of the squared error. It is used in a wide range of engineering [3] and 
data analysis applications to filter out noise and provide accurate data about the state of a system over time. 
The Kalman filter becomes even more powerful when integrated with the SIMD concept. The SIMD (Single 
Instruction, Multiple Data) Kalman filter leverages the power of modern processors to perform multiple operations 
simultaneously. The SIMD Kalman filter significantly increases the data processing speed by packing several data 
items into one register and operating on all of them simultaneously. This approach is particularly beneficial in scenarios 
where operations can be naturally parallelized, such as high-energy physics experiments where large volumes of data 
need to be processed quickly. Using the SIMD Kalman filter, these operations can be performed much faster, leading 
to more efficient data processing and analysis. 

DOI: 10.13009/EUCASS2023-326



Navigation in Non-Static Environments with Autonomous Drones 
     

5 
 

This makes it especially useful when large volumes of data need to be processed quickly. 
The SIMD (Single Instruction, Multiple Data) Kalman filter operates in several steps to leverage the power of modern 
processors for efficient data processing. Initialization: The algorithm begins with an initial approximation of the 
system's state. This approximation is represented as a vector, and its covariance matrix is set to a large positive number, 
indicating a high level of uncertainty. Prediction: The algorithm predicts the state of the system at the next time step. 
This prediction is based on the current state and the system's dynamics, represented by the prediction matrix. The 
prediction step produces an estimated state vector and its associated covariance matrix, which represents the 
uncertainty of the prediction. Process Noise: This step accounts for the probabilistic deviations in the system's state 
due to process noise. The estimated state vector and covariance matrix are updated to reflect this noise. Filtration: The 
state vector is updated with the new measurement to get the optimal estimate of the system's state and covariance 
matrix. The Kalman gain matrix, which determines how much weight to give to the new measurement based on its 
uncertainty, is calculated and applied. The total deviation of the obtained estimation from the measurements is also 
calculated. The filter's complete mathematical formulations are reported in [4].  
 

 
Figure 3 Block diagram representation of the Kalman Filter processing steps. 

 
In the study discussed in this paper, the SIMD version of the Kalman filter has been employed to filter the data related 
to the position of the gates. This application enabled us to acquire a precise estimate of the gate's motion after a limited 
number of observations. The downstream algorithm subsequently utilized this information to approximate the gate's 
position at a specific time point. In the prediction step of the Kalman filter, an estimate of the new position of the gate 
is made based on the previous state. This step incorporates the state transition model and the control input, if any, to 
predict the current state of the gate. This prediction forms the prior estimate for the state of the system. The observations 
from the environment then come into play during the update step. These observations adjust the prediction based on 
what was measured, which can be particularly beneficial when there is uncertainty or noise in the system. In this case, 
the measurements pertain to the gate's movement. The difference between the prediction from the prior state and the 
observation from the environment, also known as the innovation or residual, is then used to update the state estimate. 
This updated estimate is a weighted average of the prior estimate and the current measurement, with more weight given 
to estimates with more certainty. Through several iterations, the above process yields an accurate estimate of the gate's 
movement, effectively tracking the gate's position over time. This ability to use observations to predict and correct the 
position estimate makes the Kalman filter an excellent tool for dealing with the dynamics of moving objects like the 
gate in our study. 

2.3 Deep Reinforcement Algorithms Trained 
 
Reinforcement Learning (RL) in robotics is an application of machine learning where an agent learns to make decisions 
by interacting with its environment. The core idea is to have robots learn how to perform tasks by trying out different 
actions and learning from the outcomes rather than being explicitly programmed to carry out specific tasks. 
In a typical RL setup, the robot, or the agent, observes the state of the environment and takes actions based on these 
observations. The environment then provides feedback in the form of rewards or penalties. The agent's goal is to learn 
a policy, which is a mapping from states to actions, that maximizes the cumulative reward over time. 
In this work, two different types of RL algorithms were implemented, Actor-Critic and Policy-based. The Actor-Critic 
method is a popular approach used in RL, combining the benefits of value-based and policy-based methods. This 
approach divides the RL agent into two parts: an actor and a critic. 
The "actor" is responsible for choosing actions given the current state of the environment. In other words, the actor is 
the component that decides how the agent should behave (its policy). The "critic", on the other hand, estimates the 
value of taking these actions, typically using something like the Bellman equation. In essence, the critic evaluates the 
performance of the actor's chosen policy. Policy-based Deep Learning algorithms, such as pure policy-gradient 
methods, offer a unique approach to RL by directly optimizing stochastic policies. Central to these methods are 
stochastic policies, which define a probability distribution over actions for each state. This characteristic promotes 
exploration in the action space, allowing the agent to discover potentially superior actions over time. By continuously 
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updating and refining the policy based on observed outcomes, pure policy-gradient methods offer a direct and efficient 
means of learning optimal strategies for agents operating in complex and dynamic environments. 
One advantage of pure policy-gradient methods is their ability to bypass the need for intermediate value estimations. 
While accurately determining the values of states in reinforcement learning can be a complex task, employing a rough 
approximation can prove beneficial. By incorporating approximate state values, the variance of the policy-gradient 
objective can be reduced, leading to enhanced stability and convergence of the learning process. 
Deterministic Policy Gradient (DDPG) and Soft-Actor Critic(SAC) are designed to handle continuous action spaces, 
making them well-suited for tasks such as drone navigation, where the range of possible actions is not discrete but 
continuous. also, these algorithms are off-policy, meaning they learn from past experiences stored in a replay buffer. 
This is beneficial as it allows the algorithms to learn from a broad range of experiences and policies, and not just the 
policy that is currently being executed. This can lead to more robust learning and better performance. SAC introduces 
an entropy term into the reward function to encourage exploration, which is crucial in dynamic environments where 
the agent must constantly explore new strategies to adapt to changing conditions. On the other hand, Proximal Policy 
Optimization (PPO) introduces a novel approach to policy optimization, including a clipping mechanism to prevent 
overly large policy updates. By comparing these three algorithms, you can highlight the strengths and weaknesses of 
different techniques in RL and provide insight into what techniques are most effective for drone navigation in dynamic 
environments. 
 

2.3.1 Deterministic Policy Gradient (DDPG) 
The Deep Deterministic Policy Gradient (DDPG) [22] algorithm builds upon the Deep Q-Network (DQN) concepts 
yet is tailored for continuous action spaces. It uses a replay buffer to store and randomly sample experiences, thus 
allowing off-policy training of an action-value function and employing target networks for added stability. However, 
DDPG distinguishes itself from DQN by utilizing an approximate deterministic policy that symbolizes the best possible 
action, qualifying it as a deterministic policy-gradient technique aptly suited for continuous action spaces. Like DQN, 
DDPG gathers experiences online and stows them in a replay buffer. These experiences, gathered in mini-batches, are 
leveraged to compute a bootstrapped Temporal Difference (TD) target and refine a Q-function. Contrary to DQN's 
approach, DDPG adopts a target deterministic policy function trained to mimic the greedy action instead of invoking 
the 𝑎𝑟𝑔𝑚𝑎𝑥 operation on the target Q-function. This deterministic policy function bears multiple advantages. It 
circumvents the need for an 𝑎𝑟𝑔𝑚𝑎𝑥 operation, which can be computationally demanding in continuous action spaces. 
Furthermore, it directly approximates the best action, potentially resulting in expedited convergence. It can also 
mitigate the exploration-exploitation dilemma by immediately targeting the optimal action for each state. 
Within DDPG, a policy network is utilized to propose the optimal action for a given state. This network must be 
differentiable concerning the action, necessitating the action to be continuous for efficient gradient-based learning. The 
optimization goal involves leveraging the expected Q-value derived from the policy network. The agent's objective is 
to ascertain the action that maximizes this value. In our rendition of DDPG, we streamline the architecture and training 
process by using online networks for policy (action selection) and value function (action evaluation), in place of target 
networks. 

2.3.2 Soft-Actor Critic (SAC) 
The Soft Actor-Critic (SAC) [21] algorithm is an off-policy technique in RL that combines aspects from deterministic 
and stochastic policy frameworks. Much like the Deep Deterministic Policy Gradient (DDPG), SAC operates off-
policy, leveraging a replay buffer to learn from various experiences generated by varying behavioral policies. However, 
a key difference lies in SAC's use of a stochastic policy, which promotes exploration, as opposed to the deterministic 
policy employed by DDPG. A defining characteristic of SAC is incorporating an entropy term into the Bellman 
equations, effectively folding the entropy of the stochastic policy straight into the value function. This process of 
concurrently maximizing both expected cumulative reward and expected cumulative entropy inherently foster varied 
behaviors while ensuring the agent consistently seeks to maximize the expected return. By considering entropy, SAC 
promotes the agent to explore a wide spectrum of potential actions and strategies, enhancing its versatility and 
proficiency in tackling complex environments. 
This expectation spans the reward, the subsequent state, and the subsequent action. It encompasses the reward and the 
discounted value of the upcoming state-action pair, in addition to the entropy of the policy at the forthcoming state. 

2.3.3 Proximal Policy Optimization (PPO) 
Proximal Policy Optimization [20] represents a notable breakthrough in reinforcement learning, presenting a surrogate 
objective function that facilitates several gradient steps utilizing the same mini-batch of experiences. This starkly 
contrasts conventional on-policy approaches like Advantage Actor-Critic (A2C) [], which necessitate the disposal of 
experience samples following a single optimization maneuver. The surrogate objective function evaluates the new and 
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old policy via a likelihood ratio, striving to maximize expected return while ensuring policy updates remain confined 
to a trust region. 
An integral aspect of PPO is its clipped objective function, which regulates the extent of policy updates. This clipping 
device inhibits drastic alterations post each optimization step, guaranteeing cautious and measured updates. This 
methodology alleviates the issue of performance deterioration, a frequent occurrence in on-policy gradient methods. 
A prevalent issue with the typical policy gradient is its sensitivity to tiny changes in the parameter space, which can 
dramatically influence performance. This mismatch between changes in the parameter space and their resulting impact 
on performance necessitates using small learning rates in policy-gradient methods. Nevertheless, these methods may 
still exhibit high variance. Clipped PPO addresses this by restricting the objective, ensuring the policy change remains 
within defined bounds at each training step. 
We can also extend this clipping strategy to the value function. This approach shares the same central idea: limit the 
changes in the parameter space such that the alterations in Q-values are controlled and don't exceed a certain threshold. 
As a result, this clipping approach ensures smooth variation in the aspects we are concerned with, regardless of whether 
changes in the parameter space are smooth or not. 

3. Experiments and Results 

In our research, we employ three main criteria to evaluate the performance of the reinforcement learning algorithms: 
cumulative score per episode, the count of episodes in which the agent accomplished the objective, and the duration 
per episode (𝑒𝑝𝑖𝑠𝑜𝑑𝑒	𝑒𝑙𝑎𝑝𝑠𝑒𝑑). These criteria can be further divided into five metrics defined as follows:  
 

1. Cumulative Score Per Episode: The cumulative score per episode directly measures the agent's performance 
in its assigned task. Superior scores suggest that the agent optimizes its actions to fulfill its objective. 

2. Count of Episodes to Accomplish the Objective: This criterion assesses the agent's learning proficiency. An 
agent that reliably accomplishes the objective in fewer episodes proves to be quicker in resolving the task and 
adaptation to the environment. 

3. Duration per Episode (𝑒𝑝𝑖𝑠𝑜𝑑𝑒	𝑒𝑙𝑎𝑝𝑠𝑒𝑑): By evaluating the duration spent on each episode, we can gauge 
the agent's computational efficiency. This becomes crucial when comparing algorithms that garner similar 
scores, as computational efficiency could be the deciding factor in algorithm choice. 

4. Average Reward per Action: The average reward per action offers a measure of the quality of the decisions 
made by the agent. An increased average reward per action indicates that the agent is making superior 
decisions, leading to higher rewards for each action. This becomes particularly noteworthy in scenarios where 
the agent has a limit on the number of actions it can execute in an episode or when the objective is to garner 
the highest reward in the least possible time or number of steps. This metric balances the speed (number of 
steps) and the quality (reward) of the actions, preventing strategies that excessively prioritize one aspect at 
the detriment of the other. 

5. Success Rate: This represents the ratio of episodes where the agent accomplishes its objective. A higher 
success rate indicates that the agent can more reliably complete its task.  

Finally, by multiplying Success Rate and Average Rewards together, you get a new metric that can be interpreted as 
follows: 

● High Average Reward per Action, High Success Rate: If the product is high, it suggests that the algorithm is 
both proficient (it receives a high reward per action) and successful (it frequently accomplishes its goal). This 
is the optimal situation. 

● Low Average Reward per Action, High Success Rate: It might imply that the algorithm frequently 
accomplishes its goal but could be more proficient (it receives a low reward per action). 

● High Average Reward per Action, Low Success Rate: Conversely, a moderate product might suggest that the 
algorithm is proficient (it receives a high reward per action) but does not frequently accomplish its goal. 

● Low Average Reward per Action, Low Success Rate: If the product is low, it suggests that the algorithm 
needs to be proficient and successful. This would imply that the algorithm's performance is subpar. 

These metrics offer a comprehensive perspective of the effectiveness and efficiency of the reinforcement learning 
algorithms under study. 
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3.1 Results Obtained 
 
In reviewing the outcomes of our experiments, several key findings were discernable. The performance of the 
reinforcement learning algorithms was primarily evaluated through metrics: cumulative score per episode, the number 
of successful episodes, and the episode duration. The cumulative score per episode served as a crucial indicator of the 
overall efficiency of the algorithms, offering insights into the ability of the agent to accumulate rewards over the course 
of an episode. The count of successful episodes measured the agent's reliability in achieving the objectives. Lastly, the 
duration per episode or 𝑒𝑝𝑖𝑠𝑜𝑑𝑒	𝑒𝑙𝑎𝑝𝑠𝑒𝑑, allowed us to gauge the speed of the agent's learning process, with shorter 
durations reflecting faster convergence to optimal behaviors. These criteria collectively provided a comprehensive 
understanding of the algorithms' capabilities in various aspects of reinforcement learning. 
 

 
(a) 

 
(b) 

 
(c) 

Figure 4 Overview of the results for the fixed starting point (FSP) the environment with static (SG) and dynamic 
(DG) gates and the three reinforcement learning algorithms: DDPG (a), SAC (b) and PPO (c). 

 
Figure (4) offers a comprehensive summary of the results attained using the three selected algorithms, all originating 
from a consistent starting point across all episodes. The Soft Actor-Critic (SAC) algorithm stands out for its rapid 
convergence to high rewards with a minimal episode count in both static (SG) and dynamic (DG) environments. 
However, despite this swift convergence, the SAC manifests some instability, even at high episode counts. On the 
other hand, the Proximal Policy Optimization (PPO) algorithm demonstrates a slower convergence rate but eventually 
reaches similar end-of-training rewards as SAC and exhibits less uncertainty in resolving the environment. The slower 
convergence of PPO is attributed to its inherent design that encourages more conservative policy updates. This 
approach, while leading to a slower learning rate, also contributes to the algorithm's superior stability, as it avoids 
drastic policy changes that could potentially disrupt the learning process and result in increased uncertainty. 
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Table 1 Summary of the results obtained with the fixed starting point (FSP) environment. 

Algorithm Environment Total 
Episodes 

Episodes where 
Goal was 
Reached 

Average 
Elapsed Time 

Average Reward 
per Step Success Rate (%) 

FSP_SG_DDPG_3D 

Static 

1000 432 6,768 0,778 0,432 

FSP_SG_SAC_3D 1000 990 9,223 0,709 0,990 

FSP_SG_PPO_3D 984 886 0,640 0,795 0,900 

FSP_DG_DDPG_3D 
Dynamic 

1000 770 10,801 0,997 0,770 

FSP_DG_SAC_3D 1000 944 20,647 0,694 0,944 

FSP_DG_PPO_3D 984 802 1,986 0,743 0,815 
 
The results compiled in Figure (5) provide a detailed overview of the outcomes achieved using the three selected 
algorithms, each initiated from a random starting point defined at the beginning of each episode. The Soft Actor-Critic 
(SAC) algorithm is noteworthy due to its speedy convergence toward high rewards, requiring only a low number of 
episodes in both static (SG) and dynamic (DG) settings. Conversely, the Proximal Policy Optimization (PPO) 
algorithm displays a slower convergence rate but eventually attains comparable end-of-training rewards to SAC and 
shows less volatility when navigating the environment.  
 

 
(a) 

 
(b) 

 
(c) 

Figure 5 Overview of the results for the random starting point (RSP) the environment with static (SG) and dynamic 
(DG) gates and the three reinforcement learning algorithms: DDPG (a), SAC (b) and PPO (c). 
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Table 2 Summary of the results obtained with the random starting point (RSP) environment. 

Algorithm Environment Total 
Episodes 

Episodes 
where Goal 

was Reached 

Average 
Elapsed Time 

Average Reward 
per Step Success Rate (%) 

RSP_SG_DDPG_3D 

Static 

1000 941 5,475 1,038 0,941 

RSP_SG_SAC_3D 1000 994 9,688 0,752 0,994 

RSP_SG_PPO_3D 984 822 0,721 0,805 0,835 

RSP_DG_DDPG_3D 
Dynamic 

1000 414 14,652 0,743 0,414 

RSP_DG_SAC_3D 1000 759 34,967 0,542 0,759 

RSP_DG_PPO_3D 984 726 2,327 0,746 0,738 
 

3.2 Effects of Gate Movement Speed 
 
In summarizing our research efforts, we scrutinized the performance of various reinforcement learning algorithms 
under the diverse dynamism of our environment. Specifically, we focused on the gate speeds' variability effect on the 
reward function. For the sake of this experiment, we parametrized the velocity, setting it to a low limit of 0.45	𝑟𝑎𝑑/𝑠, 
which denoted the starting point, scaling up to a high end of 0.90	𝑟𝑎𝑑/𝑠.  
Our observations exposed those algorithms, such as DDPG (Deep Deterministic Policy Gradient) and SAC (Soft Actor-
Critic), which appeared to be considerably swayed by the varying speeds of the gates. Consequently, a broad spectrum 
was evident in the range of rewards during the different trials, indicating high variability and inconsistency in the 
outcomes.  
 

 
(a) 

 
(b) 
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(c) 

Figure 6 Performances of the algorithms under different conditions of gates speed (𝑟𝑎𝑑/𝑠). DDPG (a), SAC (b), and 
PPO (c). 

In stark contrast, the PPO (Proximal Policy Optimization) algorithm showcased a more robust performance. PPO 
produced a more stable learning process. It yielded a persistent decrement in the spread across multiple trials, which 
signifies a smoother, more predictable learning curve. This finding is consistent with what we noted for the static and 
dynamic gate simulations. Hence, it implies that PPO might be a more suitable choice when dealing with environments 
characterized by rapid, unpredictable changes. This reinforces PPO's status as an advantageous approach in 
reinforcement learning, particularly in highly dynamic environments. 

4. Discussions and Conclusions 

Our research findings offer valuable insights into the performance of Deep Deterministic Policy Gradient (DDPG), 
Soft Actor-Critic (SAC), and Proximal Policy Optimization (PPO) algorithms in intricate environments. Dynamic 
environments pose significant challenges for robotics systems, primarily due to their unpredictability and high 
adaptability required for successful operation. These challenges stem from such environments constantly changing, 
with the robot needing to react and adapt in real-time to achieve its objective. 
In particular, DDPG's deterministic policy approach showed limitations in these settings. While beneficial in directly 
approximating the optimal action and possibly hastening convergence, DDPG's exploration strategy could benefit from 
further refinement to enhance performance in more complex, evolving scenarios. 
 

 
Figure 6 Trajectory obtained with the algorithm PPO in a dynamic environment for increasing episodes. 

DOI: 10.13009/EUCASS2023-326



Navigation in Non-Static Environments with Autonomous Drones 
     

12 
 

On the other hand, SAC displayed rapid learning, attributed to its unique integration of a stochastic policy and an 
entropy component within its objective function. By continually seeking to balance reward maximization and action 
diversification, SAC skillfully negotiates the exploration-exploitation trade-off, fostering speedy learning in complex 
environments. 
While not the fastest to learn, PPO demonstrated robust and steady performance after adequately approximating the 
optimal policy and value functions. PPO's stability is derived from its clipped objective function, which regulates 
policy updates to avoid drastic changes that could lead to performance volatility. 
We also leveraged the Kalman filter to accurately predict the gate's position in space, effectively managing the dynamic 
nature of the moving gate. The filter uses an iterative process of prediction and correction based on previous states and 
current measurements, demonstrating its prowess in handling dynamic motion tracking. 
However, these findings are based on simulations, and as we move forward, we need to consider the next steps: 
transitioning from simulation to hardware testing. Despite the fidelity of our simulations, real-world scenarios can 
introduce unforeseen variables and challenges that need to be accounted for in the simulation environment. Issues such 
as sensor noise, mechanical failures, and real-world physics discrepancies may arise and can significantly impact the 
performance of the robotics systems and the algorithms controlling them. 
To bridge this 'reality gap', future research will focus on hardware-in-the-loop testing, where the algorithms will be 
integrated with physical systems in controlled environments. These tests will provide valuable data on how these 
algorithms perform under real-world conditions and how they can be further optimized. Additionally, we anticipate 
refining our models to handle environmental changes better, incorporating more advanced perception capabilities, and 
increasing the robustness of the systems. We aim to enhance our robotics systems' practical applicability and 
performance in dynamic environments by carefully iterating our designs and algorithms based on this new data. Finally,  
a GitHub page1 was created to support the visualization of what was obtained throughout the RL agents in this paper. 
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