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ABSTRACT Many modern applications are modeled using graphs of some kind. Given a graph, assigning

labels (usually called colors) to vertices is called graph coloring. Colors must be assigned so that no

two vertices connected by an edge share the same color. Graph coloring has essential applications in

many different elds, and many scalable algorithms have been proposed to solve it efciently, such that

researchers have recently started experimenting with coloring, even on many-core GPU devices. In our work,

we selected, analyzed, implemented, and compared state-of-the-art algorithms suited for multi-core CPU

and many-core GPU architectures. Our analysis allowed us to discover the advantages and disadvantages of

each algorithm, and enabled us to implement new strategies for those algorithms running on CPU and GPU

devices. We propose a new technique based on ‘‘value permutation’’ and ‘‘index shifting’’ that, once applied

to the Jones-Plassmann-Luby algorithm can reduce both the runtime and the number of colors. We compare

our code on standard graph benchmarks with the two most used state-of-the-art applications, cuSparse’s

csrColor and Gunrock’s implementations, and one innovative approach named Atos. We present extensive

results in terms of computation time and quality of the solution. We show that our fastest implementation

is able to achieve high average speedups on mesh-like graphs, with a geometric mean (harmonic mean) of

3.16x (3.05x) against Gunrock, 4.09x (3.06x) against cuSparse, and 4.45x (2.21x) against Atos. Nonetheless

it proves to be signicantly less effective on scale-free graphs, winning consistently only against Gunrock,

with geometric mean (harmonic mean) speedups of 2.76x (2.71x) against Gunrock, 0.13x (0.11x) against

cuSparse, and 0.03x (0.01x) against Atos. Moreover, it produces 47% fewer colors than cuSparse, 7% fewer

colors than Gunrock, and 63% more colors than Atos.

INDEX TERMS Graph, graph algorithms, parallel computing, parallel architectures, parallel applications,

algorithm design and analysis.

I. INTRODUCTION

The rapid accumulation of massive graphs from a diversity

of disciplines, such as social and biological networks,

geographical navigation, Internet routing, databases, and

XML indexing, among others, requires fast and scalable

graph algorithms.

Graph coloring is one of the many problems applied

to graphs that benet from algorithms that can produce

reasonable solutions quickly. Graph coloring is useful in

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabrizio Marozzo .

many different elds, such as timetable scheduling [1],

[2], register allocation in compiler optimization [3], Sudoku

solving [4], parallelization of tasks [5], and many others.

Graph coloring aims to assign a label (i.e., a color) to

every vertex of the graph, such that adjacent vertices never

have the same label. The problem of generating the best

solution, i.e., the solution with the least number of labels,

is known to be NP-hard [6]. Luckily, many applications

that benet from graph coloring do not strictly require an

optimal solution, and a good approximation is often enough.

As a consequence, many scalable heuristics [7], [8], [9],

[10] have been proposed over the years to approximate the
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perfect coloring in a reasonable time. However, heuristics

typically present a tradeoff between the time to nd a solution

and the quality of the coloring process such that very often,

the fastest heuristics produce the worse results and vice-

versa. Moreover, data is being produced and collected faster,

encompassing more information than ever, and graphs are

also getting larger, causing the need for scalable algorithms

to keep up with the times. Thus, researchers are focusing on

solving graph coloring on huge graphs, derived from current

data, in a faster and more scalable way.

Interestingly, general-purpose computing on GPUs

(Graphical Processing Units) is increasingly used to deal with

computationally intensive algorithms coming from several

domains [11], [13]. The advent of languages such as OpenCL

and CUDA has transformed GPUs into highly-parallel

systems which scale gracefully, have a considerable

bandwidth, and possess enormous computational power. As a

consequence, there has been a continuous effort to redesign

graph algorithms to exploit GPUs and CUDA, both from

NVIDIA, with its NVIDIA Graph Analytic library, and from

independent projects, such as the recent Gunrock library.

Our effort in this paper is directed toward developing a fast

algorithm to generate a non-trivial coloring.

First of all, we implemented two parallel versions of the

Gebremedhin-Manne [7] (GM) algorithm, and a version of

the Jones-Plassmann-Luby [8], [9] (JPL) on CPU. The GM

approach rst colors graphs in parallel, leaving conicts in

the coloring process (i.e., adjacent vertices with the same

color), and then it recties those inconsistencies with one

parallel and one sequential phase. The JPL strategy rst nds

non-maximal independent sets by assigning random numbers

to vertices, and then color each independent set with a single

color. We compare the results of our implementations with

state-of-the-art approaches, we analyze their inner steps and

use them as a starting point for the subsequent phase.

Then, we present a many-core GPU-based design of the

coloring algorithm based on the JPL approach. To avoid

neighboring nodes assigned with the same random value,

we enhance our implementation with a method based on

value permutation and index shift. At the beginning of

the coloring process, we generate unique random values

by permuting sets of unique items. Then, inspired by the

Gunrock implementation, we changed the random values

assigned to each node by simulating a new permutation by

circularly shifting the array. We analyze the behavior of our

value permutation and our index shift strategies on several

graphs. On the one hand, we discover that the permutation

process may have some overhead on large arrays. Thus,

we implement a faster randomization function producing a

weaker scattering but with no signicant overhead and no

penalty for the rest of the process. On the other hand, we show

that our shifting strategies could deliver better results when

performed with different modules, especially on graphs with

linear dependencies on the node list. As a consequence, our

nal implementation of the value permutation and index

shift makes our code faster, allowing a coloring process with

fewer colors. Finally, following the Cohen-Castonguay and

the Gunrock implementation, we also nd and color two

independent sets of nodes per iteration [14], one of the local

maxima and one of the local minima.

We compare our versions against two state-of-the-art

GPU implementations, NVIDIA’s cuSparse library [10]

and the Gunrock framework [15], and against a task-

based approach for solving graph-related problems, i.e.,

Atos [16]. We present the number of colors used and the

time required to perform the pre-processing, coloring, and

post-processing phases on publicly available benchmarks.

When we concentrate on the core (coloring) phase, we illus-

trate that our fastest implementation presents geomean

(harmean) speedups of 3.16x (3.05x) against Gunrock, 4.09x

(3.06x) against cuSparse, and 4.45x (2.21x) against Atos on

graphs with low average degree. Nonetheless it is slower

on scale-free graphs and ones with high average degree,

presenting geomean (harmean) speedups of 2.76x (2.71x)

against Gunrock, 0.13x (0.11x) against cuSparse, and 0.03x

(0.01x) against Atos. When we concentrate on the entire

process (pre-processing, processing, and post-processing

phases, including transfer times), we present geomean (peak)

speedups of 7.43x (61.07x) against Gunrock. Moreover, our

fastest technique produces 47% fewer colors than cuSparse

and 7% fewer colors than Gunrock, based on the same JPL

approach. Furthermore, it generates 63% more colors than

Atos based on the GM approach, which is known to be slower

but produces better coloring results.

Our code and all related experiments are currently

available in an open-source repository at https://github.com/

stefanoquer/graph-coloring-code and are free for use by

external developers.

A. ROADMAP

We organized the paper as follows. Section II introduces

our notation, the related works on graph coloring, and the

necessary background on SIMT (Single Instruction, Multiple

Thread) architectures. Section III presents our implementa-

tions for several state-of-the-art algorithms, identifying their

advantages and disadvantages. Our experience in the area

allowed us to write the procedure presented in Section IV.

Section V discusses our experimental analysis, comparing

our implementation as presented in Section IV with the

fastest versions described in Section III. Section VI concludes

the paper by summarizing our work and reporting some

comments on possible future works.

II. BACKGROUND

A. NOTATION

We refer to a graph G as G = (V ,E), where V =

{v1, v2, . . . vn} is the set of vertices, and E ⊆ V × V the set

of edges. More specically, we will manipulate undirected

graphs, where an edge e ∈ E is an unsorted pair of vertices

(v, u) ∈ E ⇐⇒ (u, v) ∈ E ∀v, u ∈ V

VOLUME 11, 2023 125227
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We also refer to the cardinality of V and E with n and m,

respectively. Moreover, we use the notation

adj(v) = {u | (u, v) ∈ E}

to indicate the adjacency list of v, i.e., the set of nodes that

share an edge with v.

Given a graph G, an independent set of nodes I is

dened as:

I = {v, u | (v, u) /∈ E, ∀v, u ∈ V , v ̸= u}

that is, the independent set I includes vertices that are not

adjacent. A maximal independent set is an independent set

that is not a subset of a larger independent set.

In our implementations, we store a graph G adopting

the so-called Compressed Sparse Row (CSR) representation.

CSR is particularly efcient when large and sparse graphs

must be represented since it is a matrix-based representation

that stores only non-zero elements of every row. Using this

strategy, we can offer fast access to the information related to

each row, avoiding useless overhead for very sparse matrices

at the same time. Essentially, in the CSR format, edges are

represented as a concatenation of all adjacency lists of every

node. One additional array is used to index the adjacency list

of each vertex in the main array. It is also possible to use a

third array to store information about the weight of each edge.

We will not use this additional array since we work with non-

weighted graphs. Figure 1b reports the CSR representation

for the graph of Figure 1a. As an example, in order to iterate

through the neighbors of node 1, we would have to access the

elements of the adjacency list array starting from the node

at position 3 and ending at position 4, since the next node

would start at position 5. In general, adj(v) is the sub-array

of the adjacency list array starting from indexes[v] included,

and ending at indexes[v+ 1] excluded.

FIGURE 1. A small example of the Compressed Sparse Row (CSR) format:
Graph (a) and corresponding CSR representation (b).

B. GRAPH COLORING

Given a graph G, the target of graph coloring is to assign a

color color(v) to every vertex v ∈ V , such that if u ∈ adj(v)

then color(v) ̸= color(u). It is worth noting that the graph

coloring problem is well-dened only for undirected graphs;

given that no pair of adjacent vertices can have the same color,

it is required that the property of being adjacent is symmetric.

In other words, if vertex v is adjacent to vertex u, vertex u

must also be adjacent to vertex v. For this reason, we run

our experiments on graphs that are either undirected or are

directed but have been pre-processed to double all their edges.

The classical approach to graph coloring sequentially visits

all vertices v ∈ V , and assigns to each of them the color iden-

tied by the lowest number not yet assigned to its neighbors.

Algorithm 1 reports the pseudo-code of this greedy approach.

The quality of the solution depends on the order in which

the nodes are considered. There exists a specic ordering that

generates the optimal solution with the least number of colors

possible, but nding this ordering is NP-hard [6]. Different

heuristics have been proposed as approximate orderings.

For example, the Largest-Degree First (LDF) heuristic [2],

which colors vertices in order of decreasing degree, usually

produces surprisingly good results. Unfortunately, albeit very

simple, the greedy algorithm is inherently sequential and

difcult to parallelize without major modications.

Algorithm 1 Greedy Graph Coloring.

Greedy (G = (V ,E), colors)

1: V ′ ← V

2: for i = 1 to n do

3: Choose a vertex vi from V ′

4: color(vi) ← min c ∈ N \ {colors(u) | u ∈ adj(vi)}

5: V ′ ← V ′ \ {vi}

6: end for

C. GPUS AND CUDA

With the current technology, GPUs (Graphical Processing

Units) can be used well outside the area of computer graphics

to solve general-purpose problems. To enable GPGPU (Gen-

eral Purpose GPU) programming, we use a GPGPU software

framework to exchange data bi-directionally between the

CPU and GPU memory, and we program the GPU’s many

threads to solve the problem on that data concurrently. Two

main frameworks lead the market: OpenCL is the primary

open-source framework, and CUDA is the leading proprietary

one. In general, if a platform supports both OpenCL and

CUDA, the latter is preferable, as the proprietary integration

is always excellent, thus leading to a slight increase in

execution speed. The algorithms presented in this paper rely

on the CUDA framework for their implementation.

The CUDA framework makes use of streaming processors

to run tasks in parallel. Each streaming processor in a

CUDA-enabled GPU manages threads running on CUDA

cores in a way that cores of the same streaming multi-

processor execute the same instruction simultaneously. This

implementation of the SIMD (Single Instruction Multiple

Data) paradigm is called SIMT (Single Instruction Multi-

ple Thread). Threads are usually scheduled as groups of

32 elements, called ‘‘warps’’. Threads can only access the

GPU-dedicated memory, so data must be transferred with

the appropriate framework API. Memory access pattern

from threads is signicant in GPGPU, and can greatly

undermine an application’s performance. CUDA receives

memory requests from the CUDA cores, and joins the
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ones referring to adjacent portions of memory to lower

the long latency of memory operations. Some applications,

especially graph applications like the one we study, have an

unpredictable access pattern, making the memory throughput

a bottleneck during the execution. However, CUDA also

provides the CUDA Stream1 data structure. A stream is

a sequential set of operations, such as memory alloca-

tions, memory transfers, and kernel calls, that need to

be performed on the GPU. Different streams can perform

different operations concurrently on the same GPU, and an

implicit synchronization is performed after each operation.

Synchronization with the CPUmust be explicit, thus allowing

the program to performmore operations sequentially on GPU

without the CPU waiting for the results.

In general, not all problems benet from being executed

on a GPU. GPUs typically work on matrices representing

pixels on the screen, applying mathematical transformations

to those pixels following the fast refresh rates of the screen.

Because of this, the ideal problems that a programmer can

solve via GPGPU are those that present a wide degree of

data parallelism, where the operations to be performed are

independent of each other and can be computed in parallel.

III. COLORING ALGORITHM

We develop two versions of the Gebremedhin-Manne and one

of Jones-Plassmann-Luby algorithm for multi-core CPUs.

We also present two versions of the Jones-Plassmann-Luby

approach for many-core GPU architectures.

We compare our versions, architecturally and experimen-

tally, with the csrColor routine from the cuSparse library [17],

the graph coloring program distributed with the Gunrock

library [18], and the task-based approach implemented in

Atos [16].

We analyze these algorithms in the following sections.

A. GEBREMEDHIN-MANNE

Gebremedhin and Manne [7] propose a parallel graph

coloring algorithmwhose core idea is to allow inconsistencies

in the coloring process. Specically, they rst divide the

vertices into p blocks. Then, they mock-color the vertices of

all blocks in parallel. We use the term ‘‘mock-color’’ because

the resulting coloring may present a conict every time two

(or more) adjacent vertices are colored by two (or more)

different threads simultaneously. Thus, the mock-coloring

phase is followed by a parallel phase to discover all conicts

and a nal sequential phase where the conicts are rectied.

They also present an improved version of the same algorithm

to reduce the number of colors generated during the mock-

coloring step.

Algorithm 2 and Algorithm 3 show the standard and an

improved algorithms, respectively.

Algorithm 2 is formed by three sections, each correspond-

ing to one for-loop. In the rst part (line 1), every graph

1https://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html#streams

node is colored in parallel, allowing for coloring errors, i.e.,

two adjacent nodes can be assigned the same color. In the

second part (line 6), the errors generated in before are found.

Each pair of neighboring nodes is checked in parallel so that

conicting pairs are saved to be managed later. The number

of pairs to check can be reduced by only considering pairs of

nodes that were colored at the same time frame during therst

part of the process. Time frames, or steps, are a consequence

of using a barrier in the rst part. As only the nodes that

are colored at the same time can present a conict in the

colors assigned, and race conditions between the working

threads cause these conicts, the authors suggest to reduce

the pairs of neighbors to avoid coloring inconsistencies.

In Algorithm 2, this is shown in the set of nodes S colored

in the same step as the current node on line 7, and on the

intersection adj(v)∩S on line 8. Thus, K represents the nodes

that need to be recolored. In the third part (line 14), the nodes

that were in conict are recolored, this time sequentially,

to avoid adding more coloring errors that would need to

be discovered and corrected in the same way. The standard

algorithm is relatively slow, as the slowest thread, i.e., the

one that colors the node with the most neighbors each time

frame, blocks the other threads on the barrier synchronization

on line 3. Experimentally, this is shown to take up between

80% and 90% of the execution time.

Algorithm 2 Gebremedhin-Manne Standard Algorithm.

Gebremedhin-Manne-standard (G = (V ,E), colors)

1: for v ∈ V in parallel do

2: colors(v) ← min c ∈ N \ {colors(u) | u ∈ adj(v)}

3: Barrier wait

4: end for

5: K ← ∅

6: for v ∈ V in parallel do

7: S ← nodes colored in the same step as v in line 2

8: for u ∈ (adj(v) ∩ S) do

9: if colors(v) = colors(u) then

10: K ← K ∪min{v, u}

11: end if

12: end for

13: end for

14: for v ∈ K do

15: colors(v) ← min c ∈ N \ {colors(u) | u ∈ adj(v)}

16: end for

Figure 2 shows a simple graph being colored following

Gebremedhin-Manne standard formulation using two blocks.

Nodes with the same border color (red or green) belong

to the same block. We also assume that processors color

the nodes based on the status of the previous time frame,

without entering race conditions within the same frame. This

assumption is a simplication, as the actual behavior depends

on how the processors are scheduled at runtime. Nodes within

a block are colored in lexicographical order, whichwe assume

is clockwise, outer to inner, starting from the top-most node.

We report the state of the coloring after each time frame in
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FIGURE 2. Application of the Standard Gebremedhin-Manne algorithm on
a small graph of 10 nodes.

Figures 2b, 2c, 2d, 2e, and 2f. Figure 2g shows the state

after the conict search step, which only detects a single

conict. Lastly, Figure 2h reports the nal coloring after the

conict correction step is completed. The solution produced

uses three colors, which we know is the lower bound to the

number of colors for this graph.

Algorithm 3 tries to reduce the number of colors produced

by Algorithm 2. It can be logically divided into four parts.

Parts one, three, and four are equivalent to the ones appearing

in the standard algorithm, in parts one, two, and three,

respectively. Part two performs a second coloring, still

allowing for mistakes. The coloring is performed by rst

dividing the nodes into color classes. A color class is the set

of nodes assigned the same color in part one of the algorithm.

Then the coloring from part one is deleted, and all nodes are

recolored in parallel, starting from the ones belonging to the

color class that was assigned the largest color in part one, and

continuing with the color classes assigned with lower colors,

until all nodes are colored a second time. At the end of part

four, the improved algorithm nds a solution using a number

of colors lower or equal to the number of colors used during

the rst coloring at the end of part one [7]. Despite producing

Algorithm 3 Gebremedhin-Manne Improved Algorithm

Gebremedhin-Manne-improved (G = (V ,E), colors)

1: colors′ ← colors

2: for v ∈ V in parallel do

3: colors′(v) ← min c ∈ N \ {colors′(u) | u ∈ adj(v)}

4: Barrier wait

5: end for

6: for k from maxv∈V colors′(v) down to minv∈V colors′(v) do

7: ColorClass ← {v ∈ V | colors′(v) = k}

8: for v ∈ ColorClass in parallel do

9: colors(v) ← min c ∈ N \ {colors(u) | u ∈ adj(v)}

10: end for

11: Barrier wait

12: end for

13: K ← ∅

14: for v ∈ V in parallel do

15: for u ∈ adj(v) do

16: if colors(v) = colors(u) then

17: K ← K ∪min{v, u}

18: end if

19: end for

20: end for

21: for v ∈ K do

22: colors(v) ← min c ∈ N \ {colors(u) | u ∈ adj(v)}

23: end for

better coloring, the improved algorithm is slower than the

standard algorithm, as the coloring is performed twice. The

conicts after part two are fewer than with the standard

algorithm, as shown empirically in the original research.

The two previous procedures can be considered as ‘‘syn-

chronous’’ as all threads wait on a barrier (Algorithm 2 on

line 3, and Algorithm 3 on lines 4 and 11) before proceeding

to the next iteration. Unfortunately, in these algorithms, 90%

of the time is spent waiting on the barriers. Thus, Algorithm 2

can be converted to an asynchronous version by removing

the barrier wait synchronization on line 3; consequently,

line 7 is substituted with S ← V as, without the barrier,

there are no more time frames. Similarly, Algorithm 3 can

be made asynchronous by removing the barrier wait call on

lines 4 and 11. The asynchronous formulations run faster

than their synchronous counterpart as the bottleneck on the

barrier synchronization is removed. However, the coloring

produced by the asynchronous algorithm is more affected by

the execution schedule and generally uses more colors than

the synchronous algorithm.

In their paper, Gebremedhin and Manne propose to divide

the n nodes to be colored in p blocks of n/p nodes. Each block

Vi is then assigned to a processor pi, with (1 ≤ i ≤ p),

that works on that block alone. The paper fails to address

how the nodes are distributed across the blocks. The chosen

distribution rule determines how, in cases where (n/p) is

not an integer, the remaining (n mod p) nodes are distributed

into the partitions. In our implementation of the algorithms,

we decided to assign the nodes to the blocks based on their
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lexicographical ordering. The rst p nodes are assigned one

to each block, then the second p nodes, and so on. Each block

Vi is composed of the nodes:

{vk∗p+i | 1 ≤ k ≤ ⌈n/p⌉}

like in the example of Figure 2. With our distribution policy,

if (n/p) is not an integer, we consider (n mod p) more nodes

that are not part of the original set V . We call these ‘‘ghost’’

nodes, and they are distributed so that all blocks are of the

same size ⌈n/p⌉. Ghost nodes are dummy nodes and do not

belong to the original graph, so they do not need to be colored.

Instead, in the synchronous versions of the algorithm, they

serve the purpose of keeping all processors inside the rst

for-loop (Algorithm 2 line 1 and Algorithm 3 line 2). In this

way, all processors leave the for-loop after ⌈n/p⌉ iterations,

and there is no need to resize the barrier to accommodate

processors that would exit earlier. For the sake of brevity

and simplicity, we did not add the block-separator steps in

Algorithm 3, since the algorithm itself still implies that the

concurrency is limited by the number of processors.

B. ATOS

Chen et al. [16] propose Atos, i.e., a parallel task-based

methodology applicable to GPUs that derives from the GM

approach. Atos proposes to run a pair of GPU kernels split

over two different algorithms. The rst kernel works on a

frontier consisting of the non-colored nodes and assigns a

color to it in a Gebremedhin-Manne-like manner. In practice,

the kernel selects a color based on the node’s neighborhood,

and then adds the node to the frontier of the second kernel.

The second kernel checks the correctness of the assignment,

making sure that two adjacent nodes never have the same

color. It then consumes the nodes newly colored by the rst

kernel and treats them differently based on the success or

failure of the check. In the case of no conict, the node is

removed from the frontier and is permanently colored; on the

contrary, in the case of a conict the node is reassigned to the

frontier of the rst kernel, forcing it to a new coloring phase.

The process continues until all nodes have been permanently

colored and no conict is present anymore. The approach

has been designed to prevent the two main problems of

Bulk Synchronous Parallel algorithms, i.e., programs that

fully utilize the GPU launching a single GPU-wide kernel.

The two problems are Load Imbalance and Small Frontier.

The former of the two occurs when some threads are faced

with signicantly more computations than others. The latter

happens when there are fewer processes available than the

number of threads available.

C. JONES-PLASSMANN-LUBY

Luby [8] suggests that an independent set of nodes can be

colored in parallel with the same color without conicts, and

develops an algorithm to nd maximal independent sets in a

graph.

Jones and Plassmann [9] develop Luby’s approach using

independent sets. Their strategy nds non-maximal indepen-

dent sets by assigning a random number to each vertex, and

selecting all nodes whose random numbers are local maxima.

Each node in the independent set is then colored separately

in parallel with the lowest color not assigned to one of their

neighbors.

We dene the Jones-Plassmann-Luby procedure (JPL)

as a middle ground between Jones-Plassmann and Luby’s

algorithm. First, we nd non-maximal independent sets

using the random values approach from the Jones-Plassmann

algorithm. Then, we color each independent set with a single

color like Luby’s algorithm. The process is repeated until

all nodes are colored. The JPL procedure is reported in

Algorithm 4. First, every node v is assigned a random number

ρ(v). Then, the algorithm iterates until all nodes are colored.

At each step, i of the iteration, an independent set Ii is

computed using random numbers. More specically, a node v

is part of Ii if and only if it is yet to be colored, and every one

of its neighbors u ∈ adj(v) is assigned a random value ρ(u)

so that ρ(v) > ρ(u). We can say that, if v ∈ Ii, v is a local

maximum because its assigned random value is a maximum

in the locality of its (non-colored) neighbors. The iteration

ends when all members of Ii are assigned with the color i.

Algorithm 4 Jones-Plassmann-Luby Coloring Heuristic

JPL-color (G = (V ,E))

1: N ← V

2: i ← 1

3: for v ∈ N do

4: ρ(v) ← random number

5: end for

6: while N ̸= ∅ do

7: I ← ∅

8: for v ∈ N in parallel on GPU do

9: I ← I ∪ {v}

10: for u ∈ (adj(v) ∩ N ) do

11: if ρ(v) ≤ ρ(u) then

12: I ← I \ {v}

13: end if

14: end for

15: end for

16: for v ∈ I in parallel do

17: color(v) ← i

18: end for

19: N ← N \ I

20: i ← i+ 1

21: end while

Following this logic, Algorithm 4 is divided into two

main loops. The rst iteration (starting at line 3) contains

the initialization of the random values associated with each

node in the graph. The second cycle colors the graph, and

it is divided into two more sections, i.e., the computation

of an independent set (lines 8–15), and the actual coloring

(line 17). The introduction of independent sets allows
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coloring nodes in parallel without risking inconsistencies in

coloring adjacent nodes. However, this procedure quickly

computes each independent set, but then colors each one of

them independently; thus, it may require a large number of

iterations. This situation presents itself when sets of nodes

with increasing random identiers are adjacent and form a

linear sequence. For example, let us suppose that a node with

label 1 is adjacent to a node with label 2, which, in turn,

is adjacent to a node with label 3. As a consequence, only one

node per iteration will be colored, as node 3 will be colored

rst, followed by node 2 during the second iteration, and

node 1 during the last loop.

Figure 3 shows the JPL algorithm applied to an example

graph. Each random number ρ(v) is displayed inside the

corresponding node v that is not colored. For the sake of

simplicity, we use random integer numbers between 0 and 99.

Figures 3b, 3c, 3d, 3e, and 3f show the state of the coloring

after each iteration. In Figure 3a, when all nodes are yet to

be colored, we can notice the linear sequence of nodes with

random numbers 78 → 62 → 57 → 40 → 13, and how

the length of the chain (5) is equal to the number of iterations

required to complete the coloring.

FIGURE 3. Application of the Jones-Plassmann-Luby algorithm on a small
graph of 10 nodes.

D. COHEN-CASTONGUAY

Cohen and Castonguay [10] present a GPU-based algorithm

for graph coloring derived from the JPL algorithm. They

suggest three critical modications to the original algorithm.

The rst suggestion consists in improving the number of

nodes that can be concurrently colored at each iteration.

To maintain the efciency of the original algorithm, they

propose a way to select two independent sets that are

disjointed with little or no extra complexity. In each iteration,

the authors search the set of local maxima IMi , as shown in

Section III-C, and the set of local minima Imi . These two sets

are independent, whichmeans that there are not adjacent node

pairs belonging to the same set. This property holds because

it is not possible for two adjacent nodes to simultaneously

share the property of having the highest (for the set IMi ) and

the lowest weight (for the set Imi ) weight among all their

neighbors. Moreover, except for nodes with no neighbors,

the two sets are also disjoint since it is not possible for

a node with neighbors to possess a weight simultaneously

larger and smaller than the weights of every other adjacent

node. These two properties allow us to color the two sets

in parallel with two distinct colors in a single pass [14].

Furthermore, they prove that a parallel algorithm cannot

select more than two disjoint independent sets per iteration

in the JPL function [14].

The second modication is based on the observation that

the vector of random values resides in memory, and each

access to one of its element is inherently slow. They suggest

that it is possible to disregard the necessity to have the vector

of random values by using the hash function H :V → K ,

where K is a general set where its members can be ordered.

A hash function can compute seemingly random values

if given the node identiers as input. The results can be

maintained in registers for fast access, then discarded, and

recomputed on the y when needed again. Even if each

number must be recomputed several times, the strategy is

faster than accessing the value in the main memory.

The third modication is based on the idea of using k

hash functions H1, . . .Hk , thus nding more than two sets

per iteration. It must be noted that a function Hi generates

two disjoint independent sets, but the two sets, generally,

are not disjoint from the two sets generated by another

function Hj. Thus the hash functions must be sorted, and a

lower-ranking function can consider only nodes not colored

by the higher-ranking functions. By using k hash functions,

it is possible to color 2k sets at a time, signicantly reducing

the number of iterations needed to color the whole graph.

However, the number of hash functions k must be carefully

chosen. Having too many hash functions may reduce the

speed of the algorithm and hinder the quality of the solution as

overlapping independent sets need to be made disjoint before

coloring, adding overhead to the algorithm.

These observations make the algorithm perfect for SIMT

architecture, where the main bottlenecks are often the

memory bandwidth and global synchronization needed to run

an algorithm like JPL. Since the hash functions implemented

in the algorithm do not change, Cohen-Castonguay is a

deterministic algorithm, meaning that given the same input,

the output will always be the same as well. Among the

algorithms that we considered, this is the only one to

have this property intrinsically implemented. The Jones-

Plassmann-Luby algorithm can also be adapted to ensure a

deterministic result by using a seed for the random number
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generation. Similarly, Gunrock and our implementation,

based on JPL, can be modied accordingly. The Cohen-

Castonguay algorithm is made available through the csrColor

routine of the cuSparse library [17].

E. GUNROCK

Gunrock [18] is an open-source library designed to solve

graph processing problems on CUDA-enabled GPUs. Gun-

rock is distributed with a wide variety of graph primi-

tives, among which there is a graph coloring primitive.

Gunrock’s graph coloring algorithm follows the research

by Osama et al. [15]; the implementation, described in

Algorithm 5, follows a variation of the JPL algorithm.

Similar to the Cohen-Castonguay algorithm presented in

Section III-D, Gunrock searches for two independent sets per

iteration. However, it retains the vector of random values,

called rand in Algorithm 5. Moreover, their algorithm does

not need any form of load balancing that would imply

conspicuous time overheads. Their tests show that their

implementation is the fastest one on GPUs.

Algorithm 5 Gunrock Coloring Procedure.

Gunrock-color (G = (V ,E), rand, colors)

1: i ← 0

2: N ← V

3: while N ̸= ∅ do

4: if i mod 2 = 0 then

5: for v ∈ N in parallel on GPU do

6: rand(v) ← random number

7: end for

8: end if

9: c ← 2 ∗ i+ 1

10: k ← 2 ∗ i+ 2

11: for v ∈ N in parallel on GPU do

12: IM ← IM ∪ {v}

13: Im ← Im ∪ {v}

14: for u ∈ (adj(v) ∩ N ) do

15: if rand(v) ≤ rand(u) then

16: IM ← IM \ {v}

17: end if

18: if rand(v) ≥ rand(u) then

19: Im ← Im \ {v}

20: end if

21: end for

22: end for

23: for v ∈ IM in parallel on GPU do

24: colors(v) ← c

25: end for

26: for v ∈ (Im \ IM ) in parallel on GPU do

27: colors(v) ← k

28: end for

29: N ← N \ IM

30: N ← N \ Im

31: i ← i+ 1

32: end while

In our experiments, we adopted the Gunrock library within

the development branch dated 15 November 2021. This

version of the coloring algorithm has a aw [19], causing

innite loops and preventing the program from nishing with

a correct solution. The problem is caused by the management

of the rand vector. Initially, the vector is populated with

random, single-precision oating point values. In lines 15

and 18 of Algorithm 5, the process compares two values of the

vector to choose the node v to remove from the corresponding

independent set. However, if rand(v) = rand(u), nodes v

and u are both removed from both sets by their respective

threads. As a consequence, both v and u are never part of an

independent set, meaning that they will never be colored, thus

leading to an innite loop as the algorithm terminates when

all nodes are colored.

We propose two different approaches to x this problem.

Our rst approach follows the observation that a simple

tie-breaking condition would solve the issue when comparing

the two values. Thus, we substitute the conditional on line 15

with rand(v) < rand(u) or (rand(v) = rand(u) &

v < u) and the conditional on line 18 with rand(v) >

rand(u) or (rand(v) = rand(u) & v > u). In this

new version, the tie is broken with a comparison of the

two node indexes, which are unique by denition. In other

words, a node v is considered a local maximum if rand(v) ≥

rand(w) & v > u, ∀w ∈ N , ∀u ∈ M , where N =

{w1, . . .wk } is the set of the non-colored nodes adjacent to

v, and M = {u1 . . . ub} ⊆ N is the subset of N where

rand(v) = rand(ui). Similarly, a node v is considered a

local minimum if rand(v) ≤ rand(w) & v < u,

∀w ∈ N , ∀u ∈ M .

Our other approach takes inspiration from previous

versions of the coloring primitives where the rand vector had

its values regenerated every other iteration. This approach

xes the issue because if v and u are assigned the random

values randi(v) = randi(u) at iteration i, it is expected that

at iteration j ≥ i + 2, randj(v) ̸= randj(u). In this way, two

adjacent nodes can share the random maximum or minimum

at some point, but will be colored at a later iteration, when the

random values are eventually different. We get conrmation

from the Gunrock developers that this second approach

enables the intended behavior of their tool [19]. In Section V,

we refer to the Gunrock implementation complete with this

approved x. The regeneration happens in the block on line 4

of Algorithm 5.

In Figure 4, we report an example of a graph colored with

the JPL implementation from Gunrock. The graph used and

the associated random numbers are the same as adopted in

Figure 4, to simplify the comparison of the two algorithms.

Figures 4b, 4c, and 4d show the state of the graph after each

iteration of the algorithm. The chain of nodes with random

numbers 78 → 62 → 57 → 40 → 13 is colored from both

ends simultaneously, thus reducing the number of iterations

needed to complete the coloring. Moreover, after 2 iterations,

the random numbers of the nodes are recomputed. Figure 4c
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FIGURE 4. Application of the Gunrock implementation of the JPL
algorithm on a small graph of 10 nodes.

shows the state of the graph before starting the 3rd iteration,

after the recomputation is nished; however, only one node

remains to be colored. The recomputation is inconsequential

in this small example, but it helps in reducing the number of

colors and iterations on larger graphs. The graph is colored

using the same number of colors as in Figure 3, but using

half the number of iterations rounded up.

IV. OUR COLORING PROCEDURE

Our implementation follows the Jones-Plassmann-Luby

algorithm described in Section III-C. We designed our

code to be compiled in two versions: One nding a single

independent set for each iteration, and the other nding two

independent sets. The two versions enable us to verify the

speedup reported by Osama et al. [15], that can be achieved

nding two independent sets per iteration. We will show in

Section V that our speedup of the Min Max approach against

the Max approach ranges between 1.5x and 2x on average.

We declare the kernel function color_jpl, which takes as

input the entire graph in CSR format, the pre-initialized

array of random values rand , and the array where to store

the colors. The total memory occupancy on the GPU is of


4 × (3n+ m+ 1)


bytes, assuming the architecture uses

32 bit integers. When working with graph instances that do

not t in the limited memory of the GPU, we partition the

nodes of the graph in lexicographical order so that they t in

memory; thus, we perform multiple colorings to color each

partition separately. The pseudo-code for the kernel function

is shown in Algorithm 6.

To solve the problem of two neighboring nodes

being assigned the same random value, as described in

Section III-E, we proceed as follows. In the rst phase,

to obtain the array rand received as a parameter by the

function color_jpl, we pre-generate a random permutation

of a set of unique items such as V . We call this technique

value permutation. Generating permutations is a simple

Algorithm 6 Our Implementation of the Jones-Plassmann-

Luby Algorithm

color_jpl (G = (V ,E), rand, colors)

1: i ← 0

2: N ← V

3: while N ̸= ∅ do

4: c ← 2 ∗ i+ 1

5: k ← 2 ∗ i+ 2

6: for v ∈ N in parallel on GPU do

7: IM ← IM ∪ {v}

8: Im ← Im ∪ {v}

9: rv ← rand(v+ i (mod n))

10: for u ∈ (adj(v) ∩ N ) do

11: ru ← rand(u+ i (mod n))

12: if rv ≤ ru then

13: IM ← IM \ {v}

14: end if

15: if rv ≥ ru then

16: Im ← Im \ {v}

17: end if

18: end for

19: end for

20: for v ∈ IM in parallel on GPU do

21: colors(v) ← c

22: end for

23: for v ∈ (Im \ IM ) in parallel on GPU do

24: colors(v) ← k

25: end for

26: N ← N \ IM

27: N ← N \ Im

28: i ← i+ 1

29: end while

yet powerful way to solve the problem of two neighboring

nodes being assigned the same random value. Thus, our

rand array contains a permutation of V , unlike Gunrock’s

rand array, which includes random oating point numbers.

To perform this task, we initially adopted the randomization

function std::shuffle2 available in the C++ standard

library. Unfortunately, even though this function has linear

complexity in the size of the array (i.e., the number of

nodes in the graph), a close investigation of the entire

execution time (not just the coloring phase), showed us

that the computational overhead on large graphs could

obfuscate the advantage of our approach. Although the array

generation requires only the number of nodes of the graph

to be performed, and its time could be entirely masked

by other algorithmic phases performed in parallel (such as

allocating, building, or loading the graph itself), we decided

to investigate faster solutions. We reduced the generation

time of the rand vector to a fraction of the original time by

randomly generating the array using a custom fast_rand

2https://en.cppreference.com/w/cpp/algorithm/random_shufe
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function. The fast_rand function is a multiply-with-carry

pseudo-random number generator, that allows to produce

sequences of pseudo-random values with very long period,

by using simple integer arithmetic logic. The function

generates a weaker scattering of the generated values but this

feature does not decrease the quality of the solution. This

consideration may raise the question of how much quality

of the randomness we can give away to speed up the vector

generation process while not losing the quality and speed

of the color computation. This area may be interesting for

a future study on the subject. Moreover, inspired by our

x of the Gunrock implementation, we also change the

random values assigned to each node every iteration. As in

the Gunrock approach, regenerating the random values has

a positive impact on the number of colors, since it helps

split long chains of monotonic random values that would

need many iterations to be colored. To avoid the overhead

required by the generation of new arrays, we simulate a new

permutation by accessing the same array circularly. In this

way, the array still contains the same values, but each vertex

v is assigned a new ‘‘random’’ value randk (v) after k shifts,

and the regeneration cost is meager. Shifting a n-element

array in the device’s global memory is an operation that

requires synchronization between the threads of the grid,

and programming a GPU to perform it requires some care.

However, the random value of vertex v after k iterations,

i.e., randk (v), is the random value of vertex


v + k mod n


after 0 iterations, i.e., rand0


v + k mod n


. In other words,

shifting an array by k positions to the left is equivalent to

increment the index of the same amount k and performing

the proper modulo operation to remain within the array’s

bound. We call this technique index shift, as it simulates an

array circular shift by manipulating the index used to access

the array. To simulate subsequent circular left shifts, one

after each iteration, we decide to increase by one the indexes

used by each thread cumulatively to access the rand array.

Shifting the index does not add any signicant overhead to

the computation, as we do not write nor move data inmemory.

This technique is reported in Algorithm 6 on lines 9 and 11.

Further experiments show that while the shift itself is always

effective in reducing the number of colors; in some situations,

this reduction can be further optimized by a full regeneration

of the vector of random weights. By investigating the nature

of these cases, we discovered that the probability that two

adjacent nodes share an arc is higher than the probability that

any pair of nodes share an arc. Although this proved to be

valid only on some graphs, the non-correlation between nodes

with neighboring indices could not be taken for granted.

Given the nature of the problem, we increase the shift in

the vector, such that the probability that the two nodes

separated by a number of elements equal to the shift have a

relationship is reduced considerably, Precisely as in the case

of shifting a single element, this operation adds almost no

computational cost, since it only changes the memory access

address.

Section V shows that our approach reduces the num-

ber of iterations needed to compute the nal coloring.

Consequently, our code runs faster and solves all our bench-

marks with fewer colors than all previous implementations.

Moreover, our experiments unveil that shifts greater than four

rarely give any benet. Although this value has been evalu-

ated experimentally, its meaning is the following. Shifting the

vector of random numbers changes the relationships between

the nodes possessing the various weights. An extremely

simple analysis, which can be performed at almost no

additional cost when reading the le, is calculating the

highest number of consecutive nodes that form adjacency

chains. A shift of a length greater than this chain would

allow us to avoid having the same random number assigned

to another element of the same chain. However, this would

still be a supercial analysis, since the values don’t need to

leave the chain in which they are located, as it is sufcient to

vary the conguration of the adjacent nodes. Consequently,

the size of the shift can be expressed as a function of the size

of the graph and how dense or sparse it is.

Figure 5 shows how our implementation of the JPL

algorithm colors the same small graph used in all other

examples. The numbers we permute after each iteration,

the ones stored in the array rand , are displayed inside

their corresponding node v. The numbers are unique and

included in the range of integers between 0 and 9.

Figures 5b, 5c, and 5d show the state of the graph after

each iteration of the algorithm. The unique numbers move

according to the technique of index shifting. In the picture,

we assume the nodes are ordered clockwise, outer to inner,

starting from the top-most node. Each permutation moves

those numbers corresponding to the circular left shift of the

array. The nal solution of Figure 5d is congruent with the

one obtained by the original Gunrock implementation (and

represented in Figure 4), but the algorithm runs faster and

uses fewer colors, as we illustrate in the next section.

FIGURE 5. Application of our implementation of the JPL algorithm on a
small graph of 10 nodes.
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TABLE 1. The main characteristics of the benchmark graphs used during
our experimental analysis. The graphs are numbered from 1 to 28 to find
an easy correspondence in the following plots. Column Type indicates the
main characteristics of each graph: Real (r) or generated (g),
undirected (u) or directed (d), following a power-law degree
distribution (p) or not (-). Notice that power-law graphs, which have
distinct characteristics and on which the different approaches behave
differently, have been inserted in the second part of the table.

V. EXPERIMENTAL RESULTS

We perform our experiments on an i9 10900KF CPU running

at 3.7 GHz, with 10 cores, 20 threads, and 64 GB of RAM,

coupled with a GPU NVIDIA RTX 3070 with 5888 CUDA

cores and 8 GB of dedicated memory. The operating system

is Linux Ubuntu 22.04.1 LTS. The code was compiled using

Clang version 16.0.4 for the CPU implementations, and

NVIDIA’s CUDA Compiler (NVCC) version 12.0 for the

GPU programs.

We run the coloring implementations described in Sec-

tions III and IV on the set of graphs reported in Table 1. The

set contains the same graphs used by Osama et al. [15], plus

some extra graphs, namely, email_Enron, twitch_gamers,

qg.order100, hollywood-2009, indochina-2004, and soc-

LiveJournal1 For each graph, the table reports the number

of vertices and edges. Column Type indicates whether

the graphs are real (r) or generated (g), and undirected

(u) or directed (d). Moreover, the last part of the table

includes graphs showing a power-law degree distribution (p).

These ve graphs marked with letter (p) are kept separated

because the coloring algorithms have different behavior (and

performances) on these instances. We gathered the graphs

through the Sparse Matrix Collection website [20], if not

otherwise specied.

If we consider the larger test graph, i.e., rgg_n_2_24_s0,

withmore than 16million nodes, our implementation requires

a GPU memory of

4× (3n+ m+ 1)

= 4× (3× 16, 777, 216+ 265, 114, 400+ 1)

≈ 1.18 GB

As a consequence, memory is not an issue, as the most

extensive graph occupies less than 15% of the total memory

available in our GPU. To take into consideration runtime

uctuations and provide a better estimate of the number

of colors used by all non-deterministic algorithms, we run

each implementation 20 times on each graph. Thus, our

tables report the average time spent coloring the graph and

the average number of colors used, rounded to the nearest

integer.

Table 2 reports the coloring times (inmilliseconds) for each

graph, and the following algorithms:

• GMs-imp, our improved synchronous version of

Gebremedhin-Manne (Algorithm 3), running on the

CPU.

• GMa-std, our standard asynchronous version of

Gebremedhin-Manne (Algorithm 2), running on the

CPU.

• JPLmin-max, our implementation of the JPL min-max

procedure (Algorithm 4) executing on CPU.

• cuSparse [10], i.e, the csrColor Cohen and Castonguay

procedure (Section III-D), running on the GPU.

• Gunrock [15], Gunrock’s algorithm (Algorithm 5),

running on the GPU,

• Atos [16], a custom implementation of GM on GPU

originally running on Volta architectures.

• JPLmax and JPLmin-max, our index-shift implementa-

tions (Algorithm 6) running on the GPU.

Notice that Table 2 considers only the coloring times and

ignores all pre-processing and post-processing overheads,

as done by the authors of all other approaches. We present

results including pre- and post-processing times (comprising

transfer times) in Table 3.

For the majority of the graphs, our two implementations

of the Gebremedhin-Manne algorithm, running on parallel

CPU, are slower compared to the implementations (both

our own and state-of-the-art) executing on the GPU. The

synchronous implementation is between 1 and 4 orders of

magnitude slower than the best result we obtain on the

GPU, while the asynchronous implementation is between

0 and 2 orders of magnitude slower. However, it is

interesting how these slower implementations, especially

the asynchronous one, perform comparably or even better

on specic graphs, such as, twitch_gamers, email_Enron

and qg.order100, hollywood-2009, indochina-2004, and soc-

LiveJournal1, which for the most part are the ones to show

a power-law degree distribution. The Cohen-Castonguay

implementation, which on the other graphs shows the worst

125236 VOLUME 11, 2023



A. Borione et al.: Experimental Evaluation of Graph Coloring Heuristics

TABLE 2. Average coloring time for each one of our implementations. Columns’ headers have the meaning described in the itemization included in the
main text. On the CPU-side, we indicate with GMs-imp and GMa-std our implementations of the GM synchronous and asynchronous algorithm, and with

JPLmin-max the JPL procedure. On the GPU side, we report the results of cuSparse, Gunrock, and Atos. The last two columns include our implementations

on GPU. Once more, the graphs after the horizontal line (used as a separator) follow a power-law degree distribution.

performance on the GPU, performs the best on these six

graphs out of the GPU algorithms. To better understand this

peculiar behavior, we analyze the topology of these graphs.

All graphs share a large maximum degree: twitch_gamers

has a maximum degree of 35279, email_Enron of 1383,

hollywood-2009 of 11467, indochina-2004 of 256425, soc-

LiveJournal1 of 20333, and all nodes of qg.order100 have

a degree of 198. Furthermore, all graphs, except for

qg.order100, have a power-law degree distribution, which

implies the presence of a minimal number of nodes with

an enormous number of edges. These degrees are very high

when compared to the other benchmark graphs; among the

others, the highest degree is presented byASIC_320ks, which

has a maximum degree of 412, but an average degree of

5.7, meaning that the majority of its nodes have a much

lower degree. On the implementations of the JPL algorithm

for GPU, including the Gunrock implementation, nodes with

these large degrees cause many issues of memory read

instructions inside the loops on line 10 of Algorithm 6 and

on line 14 of Algorithm 5, to fetch the random number

associated with each neighbor. On graphs twitch_gamers and

email_Enron, where node degrees vary, this also causes load

imbalance, as threads assigned to color small-degree nodes

are idle, while threads coloring large-degree nodes take a

longer time to check all the neighbors. As the process of

checking all neighbors is repeated at each iteration until the

node with the most signicant degree is colored, the total

runtime of the algorithm becomes longer.

On the other hand, the Cohen-Castonguay algorithm

does not suffer as much when running on these graphs

because it computes the random values at runtime using hash

functions, and the implementation assigns a larger number

of colors for each iteration, ultimately completing coloring

in fewer iterations. Similarly to the Gebremedhin-Manne

CPU implementation, Atos shows excellent performance

on these graphs. As Atos can assign a color reading the

list of neighbors only once for each node, it potentially

creates many conicts; however, it also severely improves

the overall performance when it converges faster. We can see

this behavior both on the GPU and the CPU, except for the

graph indochina-2004 in which the JPL CPU implementation

outperforms the GM program. However, this is due to the

poor thread scheduling that causes a huge oscillation in

execution time over multiple runs, negatively impacting the

average performances. GM-based methods still outperform

JPL-based ones on this graph in the best case.

Table 3 compares wall-clock times considering the entire

process, comprised of the pre-processing, coloring, and post-

processing phases. The table illustrates the impact of our

array generation process and the transfer time (to and from
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TABLE 3. Detailed comparison of our JPL min-max approach against Gunrock. Notice that Gunrock pre-processing times are roughly equivalent to the
sum of our times, including the vector randomization, the GPU allocation, and the CPU-to-GPU transfer time. The post-processing phase includes the
GPU-to-CPU transfer time.

the GPU) on the overall execution time. The time required

by our algorithm is divided into ve steps such that the only

time ignored are the ones required to read and write the graph

to disk. The rst three execution steps can be merged in

Gunrock’s pre-process time. Even though the transfer time

is usually more signicant than the execution time, we can

still show that our implementation is able to solve all of our

instances in less time than Gunrock. Speedups vary from

2.17x to 61.07x with a geomean speedup of 7.43x. Moreover,

please notice that, to the best of our knowledge, the transfer

time is rarely considered in literature when comparing CPU

and GPU performances. After all, it is more an architectural

issue than an algorithmic one, and it can currently be reduced

by compression and decompression strategies, the Zero-Copy

memory approach, or by reading the data directly from disk,

which are methodologies available on the newest NVIDIA

cards. Furthermore, in an environment in which CPUs and

GPUs collaborate to solve a set of problems, it is unclear

whether the memory transfer time has to be ‘‘added’’ to the

GPU and not to the CPU performances.

Notice that we show the transfer times for our JPLmin-max
approach, but at the same time, our measurements are also

valid for JPLmax. The only difference between the two is

the coloring time. Moreover, we put effort into optimizing

the transfer times using CUDA Streams. This optimization

allowed us to reduce the memory transfer costs and avoid

useless synchronizations that proved to be small bottlenecks.

However, as we used CUDA streams to gather precise

timings, we performed GPU-CPU synchronizations after

each phase. Furthermore, for this comparison, we add all of

the times together to compute the speedup; operations like the

randomization of the weights vector that is performed on

the GPU using the fast_rand function detailed before can

be performed while reading the graph itself from the disk

since the number of nodes is known from the beginning of

the process.

Figure 6 plots the speedups of all GPU implementations

over the Gunrock implementation. We evaluate the ratio

between the computation time of the Gunrock strategy and all

other methods X, i.e., t(Gunrock)/t(X ), and displayed these

values on a logarithmic scale on the y-axis.

Obtaining the minimum and the maximum speedups

with our JPL implementations on the same graphs is not

coincidental. The two implementations are coded such that

JPLmin-max should color twice as many nodes as JPLmax;

thus, it is not surprising that the processing stage is twice

as fast on the same graph structure. In Figure 7, we display

the speedup obtained by coloring two independent sets

per iteration (JPLmin-max) over the standard approach of

coloring a single one (JPLmax).

To better understand the differences between our

JPLmin-max implementation and the state-of-the-art imple-

mentation from the Gunrock library, we use the Nsight

Compute proler to collect information on their runtimes.
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FIGURE 6. Speedups of our implementations JPLmax and JPLmin-max
against CuSparse, Gunrock, and Atos. The Gunrock procedure (in red
color) is used as a reference and normalized to one.

FIGURE 7. Speedup of our JPLmin-max approach (dealing with two

independent sets for each iteration) over our JPLmax methodology
(dealing with a single independent set). The expected 2x factor is reached
on average as overheads are negligible.

Nsight Compute collects data on every kernel launched

during the execution. Some of the metrics collected include

grid dimensions, execution time, the average number of

threads active per warp (to estimate divergence), cache hit

rate, and many more. From the proles, we know that

both implementations rely on more than one kernel to

perform the coloring. For JPLmin-max, the main kernel

that actively performs the coloring (color_jpl_kernel) is

followed by two auxiliary kernel calls (DeviceReduceKernel

and DeviceReduceSingleTileKernel) used to compute the

number of uncolored nodes after every iteration. For

the Gunrock implementation, the coloring is performed by

the kernel named Kernel, and auxiliary tasks are performed

by the kernels named GetEdgeCounts, launch_box_cta_k,

and gen_sequenced. Among these kernels, gen_sequenced is

FIGURE 8. Elapsed time to complete each kernel launch within our
JPLmin-max strategy and the one delivered by Gunrock.

called once every two calls of Kernel, and it is the kernel that

regenerates the array of random numbers. Since the execution

time of the auxiliary kernels in both algorithms is negligible

compared to the execution time of the main kernels, we do not

consider them, as they have a limited impact on the overall

execution time. In Figure 8, we represent the execution times

of the main kernels (color_jpl_kernel for JPLmin-max and

Kernel for Gunrock/color) during the coloring of the graph

af_shell3.

Figure 8 shows that each new kernel launched by

the JPLmin-max implementation terminates its execution

slightly faster than the previous kernel. The rst kernel

achieves the maximum execution time, taking 647 µs, while

the faster kernel is the last one, terminating its execution

in 16 µs. The execution times of the kernels run by

the Gunrock/color implementation can be divided into two

phases. In the rst phase, encompassing the rst 14 kernel

launches, the execution times oscillate around the value

of 1669 µs, with a maximum of 1790 µs for the 6th kernel,

and a minimum of 1470 µs for the 14th kernel. The second

phase, spanning from the 15th kernel launch up to the last one,

approximately follows a negative exponential trend, going

from amaximum of 1080µs for the 15th kernel to a minimum

of 43 µs for the 23rd and last kernel launch. Some caching

issue likely causes the discrepancy in the two phases of the

Gunrock implementation. Indeed, the kernel is written such

that the random value associated with the current node is

not cached, and needs to be read multiple times inside the

loop on lines 15 and 18 of Algorithm 5. Multiple reading

operations cause extremely high execution times for the rst

iterations, which rapidly drop in the second phase, after the

majority of the nodes have been colored. On the other hand,

our JPLmin-max implementation does not suffer from this

problem, as the random values are cached in registers on

lines 9 and 11 of Algorithm 6. Our analysis of kernel running

times also includes the version of our JPLmin-max that does
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not implement index shifting.We do not report those runtimes

in Figure 8 as they are very similar and follow the same

trend as the ones reported for strategy JPLmin-max. The

version without index shifting is on average 13% faster on the

rst 16 kernels, and around 175% slower on the remaining 7

kernel calls. However, the version without index shifting

terminates only after 32 kernel runs, meaning that more colors

are used in the solution.

Table 4 reports the average number of colors (over 20 runs

and rounded to the nearest integer) used by our implemen-

tations over all our test graphs. The data shows how the two

CPU implementations of the Gebremedhin-Manne algorithm

(namely, GMs-imp and GMa-std) consistently generate

solutions using fewer colors than the GPU implementations.

As the Atos approach is based on GM, this is also true for

Atos. Between the two GM implementations, the improved

version uses fewer colors in all graphs other than apache2

and ecology2. This behavior is expected as the improved

algorithm is formulated to reduce the number of colors gener-

ated during the rst coloring step of the algorithm. However,

since the coloring is performed non-deterministically, the

nal improved solution is not guaranteed to use fewer colors

than the standard solution. Figure 9 uses the synchronous

improved GM implementation as a baseline to compare the

number of colors of all other methods. The gure reports

the data of Table 4 as a percentage increase, computed as
 

c(X )− c(GMs−imp



/c(X )


.

FIGURE 9. Percentage variations in the number of colors used by the
different GPU-based methods with respect to GMs-imp used as a

reference and CPU-based.

On all graphs other than qg.order100, the state-of-the-art

implementation of the Cohen-Castonguay algorithm is the

one to generate the most colors, with an average percentage

over GMs-imp of 55.5%. The three other implementations

manage to use fewer colors. Our JPLmin-max implemen-

tation uses 7% fewer colors on average than the state-of-

the-art implementation of the same algorithm on Gunrock.

FIGURE 10. The y-axis represents a percentage of the nodes, whereas the
x-axis represents the execution progress.

Our JPLmax implementation shows mixed results, using

more colors than the Gunrock implementation in some graphs

and matching the colors of JPLmin-max on other graphs,

including the rgg graph family. JPLmax reports an average

percentage over GMs-imp of 46.17%, Gunrock of 39.24%,

and 36.39% for JPLmin-max.

A. PERFORMANCE ANALYSIS

To study how our algorithms face load imbalance and

variable-size frontier sets, we present the following

analysis.

Figure 10a represents the percentage of the nodes colored

at each iteration, and the ones which remain uncolored, as a

function of the number of main coloring iterations. We report

these values for the graph rgg_n_2_24_s0, but this behavior

is typical to all graphs on which our algorithm performs
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TABLE 4. The average number of colors for each one of our implementations. On the CPU side, we present our implementations of the GM synchronous
and asynchronous algorithm (GMs-imp and GMa-std, respectively), and the JPL procedure (JPLmin-max). On the GPU side, we report the results of

cuSparse, i.e., the csrColor Cohen and Castonguay implementation, Gunrock, i.e., the Gunrock’s algorithm, and Atos from Chen et at. The last two columns
include our implementations on GPU.

optimally. The number of nodes colored during each step

remains practically constant, and it drops only when the

execution is ending, as the remaining uncolored nodes are

only a tiny fraction of the originals but they still require

multiple passes to be colored. This behavior is characteristic

of an efcient solution and indicates that our algorithm works

at its best and is usually much faster than all competitors.

On the contrary, Figure 10b represents a graph

with power-law degree distribution, more specically,

indochina-2004. However, as for the previous analysis, this

behavior is ubiquitous for all graphs of this type. This

graph has a conformation for which most nodes can be

colored in very few passes, as they have very few neighbors

and are located toward the graph’s edges. The remaining

nodes are those in the most populated areas and require

numerous iterations to be successfully colored. Although it

is possible to imagine a parallelism between the number of

uncolored nodes and the size of the search frontier, this is not

appropriate for the JPL approach, which, at each iteration,

checks all nodes by skipping those that have already been

colored. This factor implies that the size of the frontier

is constant throughout the execution. As a consequence,

the number of threads that need to operate after a node is

received decreases as the number of iterations advances.

This consideration, in turn, increases the load imbalance

and the divergence. In particular, this is true for graphs that

follow the power law. The NVIDIA Nsight Compute shows

20 active threads per warp on average for rgg_n_2_24_s0

but only 12 for indochina-2004 (and with a smaller number

of instructions issued per cycle). Even the warp occupancy

shows an imbalanced workload, as it is equal to 90% in the

rst case and 24% in the second one. These values show that

the higher the number of steps required by the JPL procedure,

the more expensive the operation becomes. On the other

hand, Atos is more efcient for this graph structure, as it has

over a 72% warp occupancy on average on indochina-2004,

showing better use of the threads on the GPU.

VI. CONCLUSION

This paper describes, studies, and implements the most

efcient state-of-the-art graph coloring algorithms running

either on multi-core CPUs or many-core GPUs. We put

particular attention to the algorithm by Luby, Jones, and

Plassmann, which improves the algorithm efciency by

coloring independent sets of vertices.

We present two GPU implementations of this algorithm,

which differ in the number of independent sets colored at each

iteration. We enhanced these implementations with ‘‘value

permutation’’, a method to generate a random permutation

of a set of unique items, and ‘‘index shifting’’, a technique to

simulate a circular array shift with a meager cost compared to

the original strategies. These techniques improve the runtime

of the algorithms, and they also reduce the number of colors

used for coloring a graph.

We compared our implementations with three state-of-the-

art implementations of graph coloring, namely, NVIDIA’s
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cuSparse, Gunrock, and Atos. As far as the pure coloring

procedure is concerned (without pre- and post-processing),

we show that our fastest implementation presents geomean

(harmean) speedups of 3.16x (3.05x) against Gunrock, 4.09x

(3.06x) against cuSparse, and 4.45x (2.21x) against Atos

on mesh-like graphs. When we concentrate on the entire

process (pre-processing, processing, and post-processing

phases, including transfer times) our implementation has

geomean (peak) speedups of 7.43x (61.07x) against Gunrock

(the fastest of the competitors). At the contrary, the algorithm

performs signicantly worse when applied to scale-free

graphs, where it is competitive only against Gunrock,

the other implementation of the JPL algorithm. It shows

a geometric mean (harmonic mean) of 2.76x (2.71x)

against Gunrock, 0.13x (0.11x) against cuSparse, and 0.03x

(0.01x) against Atos. At the same time, our approach can

generate solutions using less colors than the other JPL-

based procedures. With graphs that contain vertices with a

huge number of arcs, our procedure (as all other JP-based

algorithms) is slower than GM-based procedures and Atos.

Since computing the characteristics of a given graph is a

task that can be performed while reading or storing it, it is

consequently possible to use a multi-engine approach and

select the best algorithm to solve each instance as quickly as

possible.

Further research is needed to study how our implemen-

tation can be further improved. Indeed, it is interesting to

notice how our index shift technique stemmed from our

initial decision to use the value permutation strategy to obtain

unique numbers. Gathering random numbers from a uniform

distribution would ultimately incur in a too high overhead

to be recomputed. For this reason, we encourage further

research to change the variables at play in an algorithm.

Moreover, it would also be benecial to implement other

algorithms on many-core GPU architectures, as the speedup

provided by those devices is substantial but graph algorithms

rely on a lot on memory operations and researchers have been

unable to exploit their power completely with graphs.

Our work shares many of the limitations common to other

GPU algorithms. In particular, some time is required to

load all the data needed for the program execution on the

GPU itself. Moreover, tiny frontiers and unbalanced load

problems can still be found. Similarly to Gunrock, we must

synchronize all threads on the device after each coloring

phase, introducing signicant delays as the number of colors

increases. Moreover, we show that our implementation of

the GPU JPL algorithm shares the same weaknesses with

the CPU algorithm over the coloring quality. Performance-

wise, the duration of the computation strongly depends on

thread divergence, which tends to increase with the number

of coloring iterations.
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