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Abstract
The design of new products is now influenced by shifting consumer demands and technological advancements. Products
must satisfy high-quality standards and have a low environmental impact. New phenomena such as distributed and urban
manufacturing are emerging to cope with this. A newmanufacturing era is coming where methods that prevent waste, support
small workshops and encourage do-it-yourself are crucial. In the early design stage, the process knowledge is minimal, and
the decision taken is vital. For this reason, it is essential to support designers in anticipating the impact of decisions on the final
product. This paper establishes the groundwork for decision-support methodologies for sustainable design in One-of-a-Kind
additive manufacturing prototyping. Our proposed method is applied to a Fused Filament Fabrication case study, wherein
we evaluate the impact of nine variables on factors such as process time, energy and material consumption, environmental
footprint, and product quality. The initial step aims to generate fresh insights through Taguchi experimentation, while the
subsequent step formulates and resolves a multi-objective optimization problem using the NSGA-II algorithm. The resulting
Pareto-optimal solutions serve as the basis for a novel visual-based design support tool. The proposed approach can evaluate
the trade-offs between product quality and environmental impact by offering users a visual heatmap based on quantitative
data. This heatmap can guide the user in the material and production parameter selection. Integrating the decision support
tool into the product design process can empower designers to create environmentally responsible products while fostering
innovation.

Keywords Additive manufacturing ·One-of-a-Kind production · Sustainability · Sustainable manufacturing ·Multi-objective
genetic algorithm · Design support tool

List of symbols

Acronyms

RMS Reconfigurable manufacturing systems
UCD User-centered design
AM Additive manufacturing
OKP One-of-a-Kind production
PLM Product lifecycle management
MES Manufacturing execution system
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PLA Polylactic acid
FFF Fused filament fabrication
DoE Design of experiment
LiDs Lifecycle design strategy
DIY Do it yourself
CAD Computer-aided design
CMM Coordinate measuring machine
AMK Additive manufacturing knowledge
EDK Eco-design knowledge

Variables and parameters

i i ∈ I (|I | � 32) Produced parts
k k ∈ K (|K | � 11) Primitive shapes (or subparts)
j j ∈ J (|J | � 7) Evaluators
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t t ∈ G Generations
PEi Energy Consumption
wi Material Consumption
PT i Processing Time
totCi Carbon Footprint
Aik Accuracy Index
Rik Resolution Index
Qik Qualitative Index
ke CO2eq emitted to produce a kWh of energy
EE Embedded energy
C CO2eq emitted to produce a kg of material
qik j Qualitative evaluation
MREik Maximum relative error
AREik Average relative error
Tik Number of points out of tolerance
Dik Range between the two farthest points
Sik Standard deviation of the point distances
M Material
WT Working temperature
PT Plate temperature
WS Working speed
S Support
BAS Base
LH Layer height
IR Infill rate
SN Shell number
Pt Initial population of the genetic algorithm
Ot Offspring of the genetic algorithm
N Population dimension of the genetic algorithm
X Crossover factor of the genetic algorithm

1 Introduction

The development of the manufacturing industry is a dramatic
sequence of changes in technologies and methodology that
started at the beginning of the twentieth century with the pro-
duction chain and mass production. The advent of numerical
control machines in the 70 s triggered the period of flexible
manufacturing, making it possible to produce several shapes
with the same production line. In the 90 s, thanks to the theo-
rization of reconfigurable manufacturing systems (RMS) [1],
a new brick was added, producing different product shapes
with a variable volume. Nowadays, theWorld is facing a new
revolution in themanufacturing industry, characterizedby the
democratizationof the product that entails several paradigms:
Crowdsource Manufacturing [2], Cloud Manufacturing [3],
Urban Manufacturing [4], and Social Manufacturing [5].
Although they differ in some aspects, it is possible to find
some points in common. These paradigms are characterized
by (i) an open or easy-to-share design approach, (ii) high
personalization: each user/customer designs and produces
his product, creating it himself from scratch, following some

design rules, or being supported by an expert designer or a
crowd of them, and (iii) low production volume [6]. The shift
toward amore democratized and inclusive approach to design
and production in new manufacturing concepts is under-
scored by the pivotal role of User-Centered Design (UCD)
[7]. UCD, places communities at the heart of the design pro-
cess, ensuring that end-users have a meaningful and active
role in shaping the products and systems that impact their
lives. UCD is also crucial in selecting and implementing
solutions that prioritize usability and bring value to all stake-
holders [8]. By actively engaging with the target population,
designers can gain valuable insights and feedback that inform
the design decisions. This user-centered approach fosters a
sense of ownership and empowerment among the commu-
nity, as they become active participants in the design process
enhancing both IP practices and creativity [9]. This work
aims to create a design process that actively involves the user
at every stage and raises their awareness about the environ-
mental impact of their choices. This approach aligns with the
principles of sustainable design and emphasizes the impor-
tance of considering the needs, preferences, and values of the
user in order to develop solutions that are not only effective
but also environmentally responsible [7].

According to the literature, it is clear that additive man-
ufacturing (AM) is the most suited technology for high
complexity, low volume, and high customization [10]. More-
over, the greatmajority of the platform that allows the sharing
of design data and a democratized approach to manufactur-
ing are based on AM, e.g., Makerbot Thingiverse, RepRap,
GrabCAD, etc. [5].

In one-of-a-kind production (OKP), the probability of
defective products is very high [8]; moreover, designers must
test their ideas speedily and inexpensively. On the other side,
a distributed approach to manufacturing can cause much
waste and significantly impact the environment. In the OKP
context, knowledge generation, storage, and reuse play a fun-
damental role. Bruno et al. [11] have proposed a paradigm
that involves the integration of Product Lifecycle Manage-
ment (PLM) system tools with the Manufacturing Execution
Systems (MES), employing a central Knowledge Base Sys-
tem (KBS), allowing the communication between designers
and the production line in both senses. This way, it is possi-
ble tomanage design using data from production tominimize
defects [12]. Figure 1 displays a graphical representation of
the described paradigm.

For all these reasons, as highlighted by Bikas et al. [13],
AM designers need to precognition the optimum process
parameters and get insight from the production. Further-
more, a tool to make designers aware of quality’s impact
on cost and environmental impact is crucial [14]. The main
research question this study want to address is to propose
a simple and effective methodology that can provide ade-
quate user insight into costs, environmental impacts, and
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Fig. 1 Integration of PLM andMES through a central KBS, elaboration
from Bruno et al. [11]

product quality for one-of-a-kind applications. In addition,
the authors decided to emphasize the innovative aspect of
circularity in AM, a topic still little explored by scholars. In
particular, the topic of circularity in the presented approach
sees the application of two fundamental concepts: (i) nar-
rowing the loop of one-of-a-kind products by generating
information in order to decrease waste in defects and test-
ing, and (ii) closing the loop by assessing the impact of using
a recycled material [15]. The study of the materials and their
recyclability is another topic in recent scientific literature.
Acrylonitrile butadiene styrene (ABS) and nylon are two of
the most common materials used in FFF processes. These
materials are derived from crude oil, and their recyclability
is not widely spread [16]. For these reasons, the use of bio-
based and biodegradable plastic in additive manufacturing
is becoming increasingly important. PLA is a widely used
plastic filament for FFF applications. Like the two prece-
dent materials, PLA is not considered recyclable, although
some studies on its recyclability are in progress. Neverthe-
less, it is bio-based since it is produced by corn starch and
is biodegradable in industrial conditions. For this reason, its
environmental impact is lower. In the literature, it is possible
to find several examples of procedures and methodologies to
recycle material for FFF applications [16, 17] and how the
material behaves as a result of several recycling cycles [17].
By designing products with the intention of being recycled
and incorporating recycled materials into the manufacturing
process, waste generation can be minimized, and resources
can be conserved. This not only reduces the environmental
impact of the manufacturing process but also contributes to
the efficient use of resources and the preservation of natural
ecosystems.

Even if the proposed methodology could be used in batch
production, our method is proper in distributed or small one-
of-a-kind production contexts, which cannot rely on overly
onerous tools. Moreover, defects and testing parts are not
acceptable compared to batch production in those contexts. In
particular, the authors decided to focus our analysis on Fused

Filament Fabrication (FFF) since, according to the literature,
it is the most widely diffused AM technology for its cost-
effective ratio [18]. This additive manufacturing technique
is based on a continuous filament of thermoplastic material,
heated, melted, and extruded through a nozzle. The nozzle
deposits each layer, and the semi-liquid material hardens and
adheres to the layers below. According to the literature, this
technique is characterized by low cost and high manufactur-
ing speed compared to other AM technology. However, the
final results lack mechanical properties and surface quality
[19]. Despite these limitations, it is the most promising addi-
tivemanufacturing technology [18]. It is clear that the interest
in studying a methodology to support the AM designer in
decision-making in the early design stages [20]. Neverthe-
less, it is possible to perceived two main gaps: (i) the lack
of a simple, standardized methodology to create and capital-
ize the knowledge in the additive manufacturing process to
allow quicker and wasteless prototyping, and (ii) the lack of
a method to generate knowledge related to the product cost
and its environmental impact as well as the product quality,
in order to foster its sustainability all along the lifecycle with
a particular outlook on circularity.

The article is divided as follows: Sect. 2 details the pro-
posed methodology. Section 3, describe a full case study of
the proposed methodology. Finally, Sect. 4 presents some
conclusions, impacts, and future developments of the study.

2 Methodology

A design optimization tool can be based on different
approaches, in particular: (a) use the computer simulation
to test design aspects’ impact on final product performances,
(b) use an analytical model based on physical law (white box
modeling) to build a full optimization model, and (c) use
an experimental data-driven approach (black box modeling)
to estimate the relationships statistically [21]. Since the pri-
mary purpose of this work is to suggest an easy-to-replicate
approach, the first two approaches (a–b) are not suitable can-
didates. Computer simulation needs previous knowledge and
can be expensive in terms of costs and time. An analytical
approach allows for achieving results in a fast and inex-
pensive manner. Nonetheless, an analytical approach needs
a deep understanding of physical phenomena and complex
mathematics to build deterministic functions. For these rea-
sons, we decided to develop an experimental data-driven
methodology to estimate the relationships between param-
eters and performances.

A possible idea for making an empirical approach work
would be to integrate it with the knowledge of process
experts. The model would optimize qualitative and quantita-
tive performances, i.e., manufacturing cost and environmen-
tal impact (likemanufacturing, use, etc.). Each of the decided
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Fig. 2 Proposed Methodology divided into nine different stages

performances has to be weighted according to design deci-
sions.

The proposed methodology is displayed in Fig. 2. It con-
sists of two main phases: STEP 1—Knowledge Generation,
whose goal is to define an experimental space assisted by
experts to generate new knowledge, and STEP 2—Optimiza-
tion, whose primary purpose is to capitalize on the acquired
knowledge and define an automatized tool to support design-
ers in choosing the best parameters and avoiding defects and
wastes.

According to de Pastre et al. [22], creating a general stan-
dardized benchmark for experimentation is impossible. The
design choice must be made by evaluating the experimental
decisions and the metrological limits and specificity of the
production process. Nevertheless, several guidelines exist,
i.e., ISO 52902:2019 [23]. For all these reasons, the first step
of our proposedmethodology is to generate a newbenchmark
in order to satisfy three distinct aspects: (i) design choice, (ii)
manufacturing constraints, and (iii) metrological limitations.
After that, it is necessary to define some performances to be
analyzed and the relative parameters. Then, according to all
these variables, the authors defined a Design of Experiment
(DoE) to investigate the impact of the selected parameters on

the performances. STEP 1 finishes with the statistical analy-
sis of the obtained dataset in order to generate an empirical
regression model to link the parameters mathematically with
the performances. STEP 2 starts with the compression of the
design space. If some parameter has no impact, they have
to be removed. The same has to be done with performances
that remain constant for all the experiments. Then, a multi-
objective optimization problem is defined, and thanks to the
obtained results, the designer can make his choice with pre-
cognition.

In the literature it is possible to find several decision
support tools aiming to improve product sustainability by
predict or monitor the manufacturing output and that provide
valuable insights into optimizing energy consumption and
surface product quality in traditional machining processes
[24], these approaches can be applied to additivemanufactur-
ing as well. For instance, in [25] the authors propose a model
based on artificial neural networks to predict the effects of
cutting parameters on power, cutting force, surface qual-
ity, and material removal rate to reduce waste and improve
energy efficiency and process sustainability. While in [26]
the authors employ a multi-objective optimization method
that aims to increase the quality of machined products while
minimizing energy consumption.

In [27], the authors proposed a methodology to facil-
itate sustainable design thinking with an outlook on the
product lifecycle. The proposed method is based on a Life-
cycle Design Strategy (LiDS) wheel, two technical cards
containing information on additive manufacturing processes
and materials to support convergent thinking, and a SWOT
(Strength, Weakness, Opportunity, Threat) framework to
evaluate the obtained solutions. Laverne et al. developed
a tool to support eco-additive manufacturing. In particular,
their prototype is intended to guide the designer through a
user interface in the machine choice that satisfies the product
specifications and the machine parameters able to drive the
decided resource minimization strategy [28]. Rocheton et al.
proposed a similar tool to assist designers in making con-
scious environmental choices. The tool inputs the user skills,
the mesh file, the design rules, and the strategy the user wants
to follow (minimize energy or material consumption), and it
gives the ideal machine to produce the prototype, the printing
orientation, and parameters [29].

Agrawal proposes an approach, suggesting a combination
of Design for Additive Manufacturing and Design for Envi-
ronment rules. In particular, he found 26 design guidelines
clustered into four groups, i.e., (i) accuracy, (ii) layer thick-
ness, (iii) Strength, and (iv) environmental and end of life,
and he ranked the 26 guidelines with a TOPSIS-based multi-
criteria decision method to facilitate the designers in their
choice [30]. The proposed approach differs from those found
in the literature since it is a quantitative approach consisting
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of a knowledge generation phase and a multiobjective opti-
mization phase. These two features are particularly suitable
for OKP productions since there is no in-depth knowledge
of the possible output results and it is very important to try
to optimize various trade-offs (e.g., quality cost and sustain-
ability) A similar approach is already used in the literature.
For instance, in [31], the authors apply an empirical method-
ology to evaluate and estimate the optimum drilling rate
and electrode wear ratio in electric discharge machining
drilling, while in [32], a comparable method is used to iden-
tify the best parameters to maximize product performances
(warpage, weld line, and clamp force) in plastic injection
molding processes. However, the integration of this type of
procedure in additive manufacturing has not yet found much
space in the scientific literature. The authors applied the pro-
posed approach to a real case study in the following two
sections of this article.

3 Case study

3.1 Experiment setup

The experimentation is performed in theArts etMetiers Insti-
tute of Technology’s Laboratoire Conception de Produits et
Innovation (LCPI) using a Raise 3D E2, a desktop additive
manufacturing machine for FFF application with two inde-
pendent extruders. This tool is economical and adapted to
do-it-yourself (DIY) or FabLab applications. The benchmark
is designed with FreeCad (v0.19), an open-source paramet-
ric 3D Computer-Aided Design (CAD) modeler. Finally, the
G-code generation is performed using the Raise 3D E2’s pro-
prietary slicer IdeaMaker (v4.2.3). The material used for this
experiment is black PLAwith a 1.75mm diameter and a den-
sity equal to 1.24 g/cm3, bought from the French company
DailyFil.

3.2 Benchmark design

The design choice matches the experimental goals, produc-
tion, and metrological limits, using ISO 52902:2019 as a
reference [23]. The benchmark is defined in collaboration
with additive manufacturing experts, knowing the machine’s
capabilities. On the other side, the authors decided on the
dimension and position of different features to be capable of
measuring themstraightforwardly.Thebenchmark is adapted
for prototyping assessment, and it contains the most fre-
quent elementary shapes. Figure 3 displays the benchmark
orthogonal projection of left, right, frontal, and top views
emphasizing the key quotas.

The benchmark comprises eleven subparts: Bridge, Arc,
Sphere, Holes, Pins, Side, Ribs, Slots, and three different
Slopes (30°, 45°, and 60°). The subparts are intended to

Table 1 Benchmark subparts’ goal definitions

Subparts Goals

Bridge Accuracy and surface texture

Arc Accuracy and surface texture

Sphere Accuracy and surface texture

Holes Accuracy and surface texture

Pins Accuracy, resolution, and surface
texture

Side Accuracy, resolution, and surface
texture

Ribs Accuracy, resolution, and surface
texture

Slots Accuracy and surface texture

60°, 45° and 30° Slopes Accuracy and surface texture

assess various geometrical shapes’ accuracy, resolution, and
surface texture. Accuracy is the capability of the machine to
build an object as close as possible to the reference value.
The resolution is the potential to manufacture small dimen-
sion features, and finally, the surface texture is the capability
to create a smooth surface without irregularities and nasty
overhangs. In Fig. 4 the eleven subparts are defined and high-
lighted using different colors. Table 1 specifies the purpose
of each subpart.

3.3 Definition of performances

It is possible to split the performances into two sepa-
rate classes: (i) environmental-related performances and (ii)
quality-related performances. The first group focused on
energy consumption during manufacturing, material con-
sumption needed to produce the part, and time necessary
to make the part. At the same time, the quality of the object
is evaluated through three different metrics. Each metric is
intended to evaluate one specific goal for any subpart and
uses various means. To assess the surface texture, the authors
decided to analyze the part through a subjective assessment
made by a sample of experts in diverse fields of product
design. To evaluate the resolution of subparts, an analysis
of the different dimensions is performed through a manual
caliper and compute a global metric. Finally, a scanner is
used to generate a product’s cloud of points to compare the
adherence between the produced part and theCAD.This final
process is made to estimate a metric of the accuracy of the
process. In the next sub-paragraphs, it is detailed how all (i)
related environmental performances and (ii) quality-related
performances are computed.

The authors decided to keep the economic aspect out-
side our analysis since all the presented performances can be
cost-related. The direct impact of some of them, like energy
or material consumption, can be effortlessly calculated. On
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Fig. 3 Benchmark orthogonal projection (left, frontal, right, and top view) and 3D representation with the main dimensions

Fig. 4 Benchmark’s subparts’
graphical representation

the other hand, the economic impact of quality is hard to
define. Moreover, each cost depends on the company ecosys-
tem, suppliers, and stakeholders. Therefore, it is preferable
to leave out the pure cost so that our analysis retains its value
while changing the conditions of time and space. However,
this study also has indirect economic aspects: higher mate-
rial and energy consumption will result in higher costs for
the company and a more significant environmental impact.

Table 2 summarises the seven performance indexes used
for our experimentation and the measurement unit, classi-
fied into two groups: (i) environmental-related performances
and (ii) quality-related performances. The following sub-
paragraph illustrates each index’s primary purpose and
computation procedure.
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Table 2 Performance definition

Class Performance Unit

Environmental-related
performance

Energy consumption
(PEi )

VAh

Material consumption
(wi )

g

Processing time (PT i ) s

Carbon footprint (totCi ) kg
CO2eq

Quality-related
performance

Accuracy index (Aik ) %

Resolution index (Rik ) %

Qualitative index (Qik ) %

3.3.1 Energy consumption

In order to measure the energy consumption, we installed
an amperemeter in series and a voltmeter in parallel on the
machine alimentation circuit. The sensors are the AC5712
current sensor and the ZMPT101B voltage sensor. Using an
Arduinoboard,wemeasured theVRMSandARMSeach sec-
ond to compute the apparent power inVA.After that, we used
this value to calculate the whole energy consumption in VAh.
VAh represents the apparent energy absorbed by themachine,
and this value takes into account the active energy used by
the device and the reactive power losses. Reactive power
generates extra load, and the network must be appropri-
ately sized. Furthermore, in industrial applications, reactive
energy consumption can directly impact energy costs; from
an environmental perspective, a VAh-based bill is preferable.
Analyzing the phase shift between system voltage and cur-
rent, when the machine is stopped, the cos ϕ is around 0.89,
while when the device is running, it drops as low as 0.4
(where ϕ is the phase angle between the voltage and the cur-
rent and cos ϕ represents the ratio between the real power
and the apparent power). This significant variation is justi-
fied by the use of induction motors inside the machine that
draw reactive power to operate. According to the literature,
the energy consumption in AM can be computed per piece,
weight, or volume of extruded material [21]. We decided to
use the energy per piece since the produced part is a bench-
mark andhas the samegeometrical characteristics every time.
Moreover, in FFF applications, it is more common to use this
indicator.

3.3.2 Material consumption and processing time

We measured the total processing time needed to produce
any part. After the production, we weight each piece to con-
sider the total amount of PLA used. We compute the total
amount of material used for the model and supports. The
scale used for the analysis is a PCB 1000-2 by KERN &

SOHN GmbH. The scale resolution is equal to 0.01 g. The
slicer also estimates these two values. Nevertheless, an aver-
age error on these valuations of 1337 s (4.06%) and 1.68 g
(3.6%) is detected.

3.3.3 Carbon footprint

In order to evaluate the environmental impact of each prod-
uct, we decided to estimate the production carbon footprint
assessed in kg of CO2eq. However, it is hard to consider a
complete LCA in the first stages of product development
since the information is missing. In contrast, the data is
extensive in the advanced stages, but the possibility of sig-
nificant product changes is minimal [33]. We proposed a
semi-quantitative approach by estimating the kg of CO2eq
to give some insights to designers even if the knowledge of
the process is still low. We decided to analyze the impact of
the production in the first two steps of the product lifecycle:
raw material extraction and manufacturing. In our experi-
ment, the environmental impact of the i-th part is mainly
composed of four elements: (i) the embodied energy com-
mitted to creating the needed quantity of plastic material.
(ii) The kg of CO2eq emitted in the atmosphere to produce
that amount of plastic, and (iii) the direct energy consumed
by the AM machine to produce the part. We decided not to
evaluate the impact of the supply chain since we use a single
supplier for raw material, and so the kg of CO2eq emitted
in the atmosphere for transportation, in our experiment, is
a constant. Usually, the energy consumption in LCA anal-
ysis is not directly translated into kg of CO2eq since the
carbon footprint of electricity depends on the energy source
used to make it. For instance, in the United States, energy
is mainly produced from coal, oil, and gas. A considerable
share of Germany’s electric energy is produced from solar
and wind plants, while France is 78% nuclear [34]. Nev-
ertheless, our analysis made some assumptions about the
energy production mix. We used the average French ones
since the experiment was performed in France, and the mate-
rial used was produced in the same country. France’s energy
mix is composed of 10% fossil fuel, 78% nuclear, and 12%
renewable. The emission of such a combination is equal
to 0.06 CO2eq kg/kWh [35]. According to the literature,
polylactic acid has an embedded energy of 15.28 kWh/kg
(55 MJ/kg), producing 2.8 CO2eq kg/kg. In comparison, the
recycled counterpart has embedded energy equal to 5 kWh/kg
(18MJ/kg) and produces 0.95CO2eq kg/kg [35]. All the used
values must be used with extreme caution, and for this rea-
son, we defined our analysis as semi-quantitative. According
to Ashby [35], a standard deviation of 10% on all average
CO2eq values must be considered. Finally, the amount of kg
of CO2eq emitted for any i-th parts (totCi ) is equal to:

totCi � keEEwi + Cwi + kePEi (1)
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where ke is the amount ofCO2eq emitted to produce a kWhof
energy (0.06CO2eq kg/kWh), EE is the embedded energy of
the used material (e.g., for not recycled PLA 15.28 kWh/kg),
wi is the total amount of material used to produce the part
(model + supports), C is the quantity of CO2eq emitted to
produce a kg of material (e.g., for not recycled PLA 2.8
CO2eq kg/kg), and finally, PEi is the total energy consumed
by the machine to produce the i-th part.

3.3.4 Qualitative index

Thefirst quality analysis is a quantitative one.We composed a
panel of 8 design experts. Their domain is various: computer-
aided design (CAD), industrial engineering, and AR and VR
design, and we ask them to evaluate each part qualitatively.
Some tools have been provided to facilitate their task: plates
of the exact size of the slots and four different gaugeswith the
precise diameter of the four holes. Moreover, we ask them
to consider with particular notice the surface texture and the
roughness of each part.We give them an evaluation sheet and
ask them to assess each sub-part using a Likert scale between
1 and7, 1 for the highest quality and7 for theworst.After that,
we composed an Index for each of the 11 subparts by aver-
aging the nine evaluations. E.g., the quantitative index Qik

of the k-th sub-parts present on the i-th part is calculated as:

Qik �
∑N

j�1 qik j

J
(2)

where qik j is the evaluation given by c on the k-th subpart
present on the i-th produced piece, and J is the number of
evaluators. In order to compare each indicator, we normalize
them by dividing each value by the maximum value found
using the formula:

Qik � Qik

max(Qik)
(3)

According to Yu et al. [36], the proposed method is the
best to normalize positive values since it can maintain the
minimum and the maximum value and the relative differ-
ence between series elements. Thus, we ranged all indices
between 0 and 1, where 0 indicates the best quality while 1
is the worst. In this way, both Environmental-Related Perfor-
mances and Quality-Related Performances are concordant:
the best performance is achieved with the minimum value.

3.3.5 Resolution index

The second quality analysis is related to achievable res-
olution. We performed this analysis only for 3 of the 11
sub-parts: Pins, Side, and Ribs. These three elements are
designed to assess the minimum resolution of the machine

in manufacturing specific features. In particular, the first Pin
is designed to determine the resolution of producing vertical
cylinders with a diameter of 8, 6, 5 and 2.3 mm. The second
Pin has a square base 5 mm wide and 35 mm in height. The
Side can assess the manufacturing of an interlock 5, 7.5, 10,
and 12.5 mm. Finally, the Ribs are intended to evaluate the
production of a straight rib of 5 mm between two supports
with a thickness of 1.5, 1, 0.8, 0.6, and 0.5 mm. In order to
evaluate the resolution index, we measure all the presented
dimensions with a manual caliper with 0.01 mm precision.
For the three aforementioned k-th subparts present on the
i-th produced piece, we calculate two different metrics: the
average relative error AREik , and the maximum relative
error MREik .

The resolution Index for the k-th sub-part on the i-th piece
is the average of the metrics normalized using the previously
presented method:

Rik � AREik + MREik

2
(4)

3.3.6 Accuracy index

The experimentation is composed of different steps: (i) CAD
modeling, (ii) 3D model generation, (iii) Slicing, (iv) Pro-
duction Process, (v) Scanning, and (vi) Sampling. Figure 5
displays the six tasks and the associated outputs (digital or
physical).Moreover, the image showswhere Accuracy Index
(Aik) and the Resolution Index (Rik) are measured. The Rik

is calculated between the produced part and CAD quotas. In
contrast, Aik is evaluated between the mesh file (.stl), con-
sidered as a reference, and the final cloud of points (.asc).
In this paragraph, we detail the different steps we followed
in computing this index. Each intermediate step can gener-
ate variability, so it would be impossible to know where the
measured error is generated.

To evaluate the accuracy of the part, we propose an
automated methodology by scanning the produced part and
comparing itwith themesh reference in stl format, in addition
to the qualitative and quantitative methods presented above.
According to the literature, there are no industrial applica-
tions of scanning procedures to evaluate product quality, and
the most used methods are traditional calipers or coordinate
measuring machines (CMM) [37]. However, it is possible to
find some applications in scientific research. E.g., in [12],
the authors proposed integrating a quality scan control sys-
tem at the shop-floor level with theManufacturing Execution
System, while [38] proposed an online quality monitoring
methodology to detect defects in material extrusion AM pro-
cesses. We decided to use an optical scanner, the Einscan-SP,
a 3D desktop scanner with a declared accuracy of 0.05 mm.
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Fig. 5 Experiment Process Steps

Fig. 6 The five different scanning positions used

The produced parts were scanned using an established
procedure: each piece was covered by a layer of mattifying
white spray to allow a clean and more detailed image. Then
the part was scanned five times in different positions to ana-
lyze each side properly (see Fig. 6). The part was positioned
on a turning table, and the scanner took a picture each 10°.
Finally, the five different files were merged to create a single
stl file.

In a second moment, we used the open-source software
CloudCompare to generate a produced part cloud of points,
each of which has approximately 10 M points. The cloud
of points was then aligned to the reference mesh. Finally, we
computed the signed distance between each point and the ref-
erence mesh. We can consider the mesh as a reference since
the average error between the mesh surface, and the CAD
surface is 0.011 μm with a standard deviation of 18.63 μm.

Using these distances between the scanned part and the
reference mesh, we computed three metrics: the number of
points outside the tolerance Tik , the range between the two
farthest points Dik , and the standard deviation Sik . According
to the literature, in FFF applications, a satisfying accuracy
is ± 0.5%, with a lower limit of ± 0.5 mm [39]. For these
reasons Tik was computed as the percentage of points outside
the interval± 0.5 mm.We also calculated the distance distri-
bution’s average, skewness, and kurtosis. These three other
values could be used in further analysis. Finally, we com-
puted the accuracy index Aik for the k-th subpart present
on the i-th piece, by averaging the three metrics normalized

Table 3 Design of experiment levels

Factors Level (−) Level (+)

Material (M) Recycled PLA Not Recycled
PLA

Working temperature (WT) 200° 215 °C

Plate temperature (PT) Ta 50 °C

Working speed (WS) 40 mm/s 80 mm/s

Support (S) No Yes

Base (BAS) No Yes

Layer height (LH) 0.1 mm 0.3 mm

Infill rate (IR) 10% 60%

Shell number (SN) 1 3

using the same methodology presented previously.

Aik � T ik + Dik + Sik
3

(5)

3.4 Definition of parameters

We have considered some parameters related to Product
Material, Manufacturing Parameters, and Product Finesse.
According to Laverne et al. [28], users who have scarce
AdditiveManufacturingKnowledge (AMK) andEco-Design
Knowledge (EDK) prefer to have simple guided parameters
so they can spend the most time on creative design. For this
reason, we decided to focus only on easily accessible param-
eters. We decided to analyze the impact of using a Recycled
PLA instead of a normal one. Then we decided to inves-
tigate the parameter present on the first page of the Slicer
Software used to create theGcode (presence of support, pres-
ence of base, layer height, infill rate, shell number) and all
the parameters suggested by the filament producer (working
temperature, plate temperature, and working speed). Table 3
displays the experiment parameters levels (Factors). The
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parameters WT, PT, and WS levels have been decided using
the material manufacturer’s suggested ranges as a reference.
In contrast, the parameters LH, IR, and SN have been chosen
by defining a wide range to explore as much design space as
possible while avoiding too extreme and unsuitable values.
We agreed not to analyze the infill pattern. According to the
literature, the infill pattern mainly affects part mechanical
properties, weight, and process time [40], but no signifi-
cant impact on product quality is proven. Nevertheless, it
is demonstrated that the gyroid infill pattern confers on the
piece the best mechanical properties [40]. For this reason,
we used this infill pattern for all our experiments. Finally, to
avoid failure, such as completely detaching the piece from
the heating plate, we covered the plate with a thin layer of
solvent-free starch-based glue. Despite being very cheap and
suitable for children’s use, this glue worked very well, and it
can be easily washed without the use of soaps or detergents.

3.5 Design of experiment

Since we have nine parameters on two levels, a full facto-
rial Design of Experiment (DoE) would require 29 (512)
tests. We, therefore, opted for an experimental plan with
the Taguchi method formed by 32 orthogonal vectors (L32).
Table 4 shows the entire experiment through 32 arrays based
on the nine factors on two levels. The Taguchi method allows
us to investigate the impact of different parameters with
a small set of experiments. Moreover, this methodology is
widely used in additive manufacturing scientific research
[41]. In other applications, with higher budgets or fewer fac-
tors, the application of a full factorial is not to be ruled out.

3.6 Statistical analysis

Once all the experiments were performed, we studied the
results in order to find the relations between the parameters
and the measured performance. Since we have 11 qualita-
tive indexes (Qik), 3 resolution indexes (Rik), 11 accuracy
indexes (Aik) and 4 Environmental-Related Performances
(PEi ,wi , PT i , and totCi ) for each i-th part, we have to find
29 different functions. However, since the totCi equation is
a combination of PEi ,wi and constants, it was not necessary
to estimate it by a regression. Therefore, we tried to develop
28 regression models to analyze the relations between the
parameters and the performances.We decided to evaluate the
qualitative, resolution, and accuracy models separately since
these indexes represent different objectives. For instance,
Qik and Aik are correlated. However, these two metrics do
not represent precisely the same thing; geometric analysis
of the cloud of points can detect any deviation from the
reference. On the other hand, the visual-qualitative assess-
ment examines the surface quality, smoothness of structures

and overhangs, and the aesthetic of the parts, features not
detectable through the scanner.

In order to find the best model to predict the impact of
parameters on performances, we used a methodology com-
posed of 3 different steps: (i) outliers analysis, (ii) stepwise
bidirectional regression fitting minimizing the model AIC
[42], (iii) and finally a backward elimination of the less sig-
nificant predictors to avoid overfitting. In order to prevent
multicollinearity, the three binomial variables (S, BAS, and
RE) have been substituted with three binary variables (SY,
BASY, and REY), indicating if supports are used, if a base
is used and if the part is produced with recycled material.
Finally, each model’s normality and homoscedastic residu-
als have been tested using a Shapiro–Wilk test [43] and the
studentized Breusch–Pagan test [44]. The models’ reliabil-
ity varies greatly depending on the sub-part being evaluated.
We decided to place a 40% R2 threshold on the models.
All models that explain less than 40% of the variance are
not reported, so these features cannot be evaluated in our
case study. We unsuccessfully build a satisfactory model for
seven performances: Arc Q, Pin R, Side A, Rib Q, 60° Q,
30°Q, and 45°Q. Although these models cannot be used to
predict, they still have interest, as they can express which
factors among those studied have an impact (albeit minimal)
on performance. Lastly, we managed to compute 21 out of
28 regression models. Table 5 displays models’ significance
with the associated R2 adjusted and the p-value. The models
details are reported in the appendix of this paper.

Table 6 shows a summary of the presented analysis. In
particular, it is represented the occurrence of each factor with
more than a single occurrence with two different percentages
indicating howmany times an increase of the parameter has a
beneficial or detrimental effect on the studied performances.

3.7 Optimization problem definition

In this paragraph, the optimization problem is defined. Equa-
tion 6 represents all 22 objectives to be minimized. As
previously mentioned, all variables presented reach their
optimum in theminimumvalue. Equations 7a–u are precisely
the 21 empirical regression models obtained by the statisti-
cal analysis of the 21 performances presented in the previous
chapter. Equation 7v represents the kg of CO2eq emitted in
the atmosphere to produce the parts. This equation is derived
from the general one presented before. In particular, in this
mathematical function, it is inserted the binary variableREy ,
equal to 1 if recycled PLA is used, 0 otherwise, and the
parameters are specified: ke is the CO2eq emitted to pro-
duce a kg/VAh (in this analysis, we approximate this value as
0.06 CO2eq kg/kWh, considering equal the CO2eq released
to generate a kWh or a kVAh), EENRE is the embedded
energy in non-recycled PLA (15.28 kWh/kg), while EERE

is the embedded energy in recycled PLA (5 kWh/kg). CNRE
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Table 4 L32 Taguchi design of experiment

ID M WT PT WS S BAS LH IR SN

E1 − − − − − − − − −
E2 − − − − + − + + +

E3 − − − + − + − + +

E4 − − − + + + + − −
E5 − − + − − + + − +

E6 − − + − + + − + −
E7 − − + + − − + + −
E8 − − + + + − − − +

E9 − + − − − + + + −
E10 − + − − + + − − +

E11 − + − + − − + − +

E12 − + − + + − − + −
E13 − + + − − − − + +

E14 − + + − + − + − −
E15 − + + + − + − − −
E16 − + + + + + + + +

E17 + − − − − + + + +

E18 + − − − + + − − −
E19 + − − + − − + − −
E20 + − − + + − − + +

E21 + − + − − − − + −
E22 + − + − + − + − +

E23 + − + + − + − − +

E24 + − + + + + + + −
E25 + + − − − − − − +

E26 + + − − + − + + −
E27 + + − + − + − + −
E28 + + − + + + + − +

E29 + + + − − + + − −
E30 + + + − + + − + +

E31 + + + + − − + + +

E32 + + + + + − − − −

is the CO2eq released to produce 1 kg of non-recycled PLA
(2.8 CO2eq kg/kg) and CRE for recycled one (0.95 CO2eq
kg/kg). Finally, Eqs. 8a–i represent the decisional variables’
lower and upper bound. The range is the same as the exper-
imental plan. Since we have studied only this space, we can
infer only inside it.

min PT , PE , w, totC , AB , QB , AA, ASp, QSp,

AP , QP , QSd , RSd ,

AH , QH , ASl , QSl , AR , RR , AS , AF , AT (6)

PT � kPT − β̂1PT · WS + β̂2PT · Sy + β̂3PT · BASy + β̂4PT · LH
+ β̂5PT · I R + β̂6PT · SN + β̂7PT · LH · SN

+ β̂8PT · LH · I R + β̂9PT · I R · SN (7a)

PE � kPE + β̂1PE · PT + β̂2PE · WS + β̂3PE · Sy + β̂4PE · LH
+ β̂5PE · I R − β̂6PE · LH · I R (7b)

w � kw + β̂1w · Sy + β̂2w · BASy + β̂3w · LH + β̂4w · I R + β̂5w · SN
(7c)

AB � kAB
+ β̂1AB

· Sy + β̂2AB
· LH + β̂3AB

· SN + β̂4AB
· Sy · SN

(7d)

QB � kQB
+ β̂1QB

· REy + β̂2QB
· WS + β̂3QB

· Sy + β̂4QB
· LH

(7e)

AA � kAA
+ β̂1AA

· REy + β̂2AA
· WS + β̂3AA

· Sy + β̂4AA
· I R

+ β̂5AA
· BASy · WS + β̂6AA

· BASy · Sy + β̂7AA
· BASy · REy

(7f)
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Table 5 Regression models significance

Dep. variable Adj-R2 (%) P-value

Bridge AB 78.85 1.45E−09

Bridge QB 70.97 9.64E−08

Arc AA 58.69 1.01E−04

Sphere ASp 62.51 2.36E−04

Sphere QSp 47.52 2.37E−04

Pin AP 59.40 1.20E−05

Pin QP 44.28 1.95E−03

Side QSd 57.50 7.21E−05

Side RSd 63.35 4.97E−07

Hole AH 45.97 2.51E−04

Hole QH 46.75 7.69E−05

Slot ASl 71.26 1.53E−07

Slot QSl 55.78 1.09E−05

Ribs AR 72.39 1.36E−08

Ribs RR 58.81 3.41E−06

60°AS 64.23 8.07E−07

45°AF 39.68 4.14E−04

30°AT 80.33 5.53E−10

PT 98.80 2.20E−16

PE 93.67 6.35E−15

w 95.35 2.20E−16

Table 6 Factors occurrences and their impacts

Factor Occurrences Beneficial
effect (%)

Detrimental
effect (%)

LH 14 64 36

WS 9 33 67

SY 8 63 38

SN 7 57 43

BASY 5 40 60

IR 5 40 60

REY 4 50 50

WT 4 0 100

LH × SN 4 50 50

PT 3 67 33

LH × WS 3 0 100

REY × LH 3 67 33

SY × SN 2 50 50

BASY × LH 2 0 100

REY × WT 2 100 0

LH × PT 2 50 50

LH × IR 2 100 0

ASp � kASp
+ β̂1ASp

· WT + β̂2ASp
· PT + β̂3ASp

· WS − β̂4ASp
· Sy

+ β̂5ASp
·LH+β̂6ASp

·LH ·PT +β̂7ASp
·LH · Sy + β̂8ASp

· PT · Sy
(7g)

QSp � kQSp
+ β̂1QSp

· WT + β̂2QSp
· SN + β̂3QSp

· LH · WS (7h)

AP � kAP
+ β̂1AP

· PT + β̂2AP
· WS + β̂3AP

· LH + β̂4AP
· I R (7i)

QP � kQP
+ β̂1QP

· REy + β̂2QP
· WT + β̂3QP

· WS

+ β̂4QP
· SN + β̂5QP

· REy · WT + β̂6QP
· LH · PT

(7j)

QSd � kQSd
+ β̂1QSd

· WS + β̂2QSd
· LH + β̂3QSd

· SN
+ β̂4QSd

· SN · LH + β̂5QSd
· REy · LH (7k)

RSd � kRSd
+ β̂1RSd

· LH + β̂2RSd
· LH · WS (7l)

(7m)

AH � kAH
+ β̂1AH

·WS+ β̂2AH
· LH ·WT + β̂3AH

·WS ·WT

QH � kQH
+ β̂1QH

· LH + β̂2QH
· SN (7n)

ASl � kASl
+ β̂1ASl

· LH + β̂1ASl
· LH · SN

+ β̂1ASl
· REy · SN + β̂1ASl

· REy · LH (7o)

QSl � kQSl
+ β̂1QSl

· BASy + β̂2QSl
· LH (7p)

AR � kAR
+ β̂1AR

· BASy + β̂2AR
· LH + β̂3AR

· BASy · LH
(7q)

(7r)

RR � kRR
+ β̂1RR

· LH · BASy + β̂2RR

· LH · WS + β̂3RR
· REy · LH

AS � kAS
+ β̂1AS

· REy + β̂2AS
· WT + β̂2AS

· REy · WT

(7s)

AF � kAF
+ β̂1AF

· Sy + β̂2AF
· PT · SN (7t)

AT � kAT
+ β̂1AT

· BASy + β̂2AT
· LH

+ β̂3AT
· Sy · SN + β̂4AT

· SN · LH (7u)

totC � ke · EERE · w · REy + CRE · w · REy

+ ke · EENRE · w · (
1 − REy

)

+ CNRE · w · (
1 − REy

)
+ ke · PE (7v)

s.t .

{REy ∈ N|0 ≤ REy ≤ 1} (8a)
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{WT ∈ R|200 ≤ WT ≤ 215} (8b)

{PT ∈ R|25 ≤ PT ≤ 50} (8c)

{WS ∈ R|40 ≤ WS ≤ 80} (8d)

{BASy ∈ N|0 ≤ BASy ≤ 1} (8e)

{Sy ∈ N|0 ≤ Sy ≤ 1} (8f)

{LH ∈ R|0.1 ≤ LH ≤ 0.3} (8g)

{I R ∈ R|10 ≤ I R ≤ 60} (8h)

{SN ∈ N|1 ≤ SN ≤ 3} (8i)

In order to find the best solution, we implemented the
problem in Python using the pymoo library [45]. In partic-
ular, we used the NSGA-II algorithm [46]. In the literature,
it is possible to find some recent applications of NSGA-II
on additive manufacturing optimization. E.g., in [47], the
authors used the same algorithm to find a frontier of solutions
thatminimize the time andmaterial consumptionwhile keep-
ing a sufficient level of ultimate tensile strength and surface
roughness. Matos et al. [48] studied the best manufacturing
positioning while optimizing the support area, the manufac-
turing time, the surface roughness and the surface quality
using an NSGA-II algorithm.

The algorithm NSGA-II generates an initial population
Pt of solutions with dimension N . Then a mutation opera-
tion is performed to create an offspring Ot of size N . The
two populations, Pt and Ot , are combined to form Zt . Then
the solutions are sorted according to non-domination crite-
ria; each solution front is ranked according to this criterion.
The following population Pt+1 is generated, taking the first-
ranked front. If the first front is less than N , other solutions
are taken from the least crowded region of the second front,
and this procedure continues by the lower-ranked fronts until
a Pt+1 population of size N is obtained [46].

The new offspring Ot , depends on two operators: the
crossover probability X and the mutation probability M .
Finally, to find the best solutions, four different factors have
to be set: the population (N ), the crossover (X ) and the muta-
tion (M) and the number of generations to be tested (G). In
the literature, it is possible to find different suggestions and
methods for choosing these parameters. According to Schaf-
fer et Al. [49], a mutation probability higher than 0.05 never
drives good results, andM of 0.005 and a X between 0.95 and
0.65, even with a small population, is suggested. For these
reasons, we decided to set a M � 0.005 and a X equal to

0.95. Finally in order to increase the probability to reach te
convergence we set a number of generation G equal to 1000.

According to the literature, the larger the initial popu-
lation, the more efficiently the algorithm finds the optimal
front [50]. For this reason, we tested the difference between
the optimal frontier obtained with a N equal to 1000, 35, 30
and 20. The difference between the first (N �1000) and the
second (N � 35) is meagre: looking for the best solution in
each performance, these were practical all the same, and only
one deviated by less than 2%. While testing the first with the
third, all values were identical except for one value that dif-
fered by about 10%. Finally, as expected, we got the worst
results with a population of only 20 solutions. The average
deviation from the first runwas 20%,with peaks at 117%. For
this reason, we can assume that the best value for N would be
between 30 and 35. So, for this reason, we fixed N equal to
35, testing 35,000 solutions. The results have been obtained
with a computer HP Elitebook 830 G6 with CPU Intel core
i5-8265U 1.60 GHz and RAM 16 GB. The algorithm evalu-
ates 1000 generations made of a population of 1000 in about
9 min and 2 s. In contrast, it tests 1000 generations of 35
solutions on average in 37 s.

3.8 Multi-criteria decisionmethod

Once the result is obtained, the second problem is deter-
mining the best solution. For this reason, we proposed a
methodology to use this solution and help the designer
decide. We proposed a visual method in order to facilitate
decision-making.

The heatmap presented in Fig. 7 represents the 35 different
solutions obtained through the optimization algorithm. On
the x-axis are present the 22 performances, while the y-axis
shows the solution ID between 1 to 35. In each square, the
value of the performance is represented using a color scale
from red to green. The best performance is represented with
green color, while the worst one is in red. This chart can be
used as a map for the designer to choose the best parameters
and can be made available near the workstation or machine.

For instance, if the designer has to produce a part with a
bridge in the lesser time possible. A possible approach could
be to see the dark green square corresponding to the non-
dominated solutions in the T column. Solution 27 (light blue)
seems to be the faster one. Nevertheless, analyzing the Ab
and Qb columns, we immediately see that the corresponding
quality of the bridge is low. Solution 18 (navy blue) is suf-
ficiently fast and has a satisfactory accuracy index. Finally,
after thoroughly analyzing the results, it is possible to find
solution 19 (magenta), which seems to be an average process
time and a good bridge quality as awhole. The three proposed
solutions are graphically depicted in Figs. 8 and 9 The former
represents the status of the nine parameters in each solution,
and the latter shows the value of the 22 performances. The
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Fig. 7 Solution Heatmap with
solutions 18, 19 and 27
highlighted (the last three
variables, T, E, M and C, stand
for process time, energy
consumption, material
consumption, and CO2eq)

three solutions are presented as a single-colored line (navy
blue for solution 18, magenta for 19, and light blue for 27,
they are also highlighted in Fig. 7 the same colors). The y-axis
of the two images is normalized to represent the top and bot-
tom levels efficiently. While Fig. 9 the y-axis is also inverted
since the objective is to minimize the 22 performances, this
representation can be straightforwardly understood, and the
better value is on top of the graph.

As can be seen from Fig. 9, the three solutions differ sig-
nificantly from each other. None of the three needs a base,
those with better arcs require support and have a lower layer
height. In comparison, the fastest one has all the parameters
set to finish as fast as possible: no base or support, only one
shell number, high working speed, high layer height, and an
infill rate of 10%.
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Fig. 8 Parameter selection of solutions 18, 19 and 27
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Fig. 9 Performance Representation of solutions 18, 19, and 27

The designer should be able to decide which solution is
most suitable for him, looking at Fig. 7. The fastest one (27)
should be enough if it is just a tester or a prototype. If he is
not interested in the externally perceived quality, solution 18
can guarantee good accuracy in a short time. While if a good
arc is needed, the best solution is the 19.

4 Discussion and future developments

Additive manufacturing offers numerous advantages over
traditional manufacturing processes, such as producing low-
volume, customized products with complex geometries and
advancedmaterial properties. However, one of the challenges
additivemanufacturing faces is the lack of repeatability in the
final product, which can result in variations in shape, dimen-
sional accuracy, and mechanical properties. The outcome of
the manufacturing process can vary significantly in shape,
dimensional accuracy, and mechanical properties, leading to
inconsistencies in the final product [51]. Overcoming these
challenges is crucial for the widespread adoption and real-
ization of the full potential of additive manufacturing. For

this reason, the present study aims to propose a methodol-
ogy suitable to help designers in preconizing the results of
the production. In this way, waste can be limited. This issue
can be even more pronounced in one-of-a-kind productions,
where the users do not have much experience with the prod-
uct they are designing and the risk of causing waste is even
more evident. The paper proposes a methodology for gen-
erating knowledge in OKP additive manufacturing contexts.
In such a context, testing and manufacturing various parts to
evaluate the best set of production parameters is not allowed.
Therefore, the designer needs decision support tools.

The method presented aims to study the product both in
terms of production cost (seen as consumption of energy,
time, and matter) and environmental impact (evaluated by a
semi-quantitative method that can estimate the CO2eq emit-
ted) and quality, assessed through three metrics representing
accuracy, resolution, and subjective perceived quality. In this
way the user is involved in this choice and therefore hewill be
more conscious and lead to less waste. Involving end-users
and other stakeholders in the early design stages of additive
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manufacturing can bring several potential benefits. Any nec-
essary changes or improvements can bemade early on, saving
time and resources in the long run. Additionally, involving
stakeholders and end-users at this early stage can create a
sense of commitment and ownership towards the technol-
ogy being developed, leading to increased engagement and
support throughout the rest of the development process and
awareness of intellectual proprietary rights. This can result
in the creation of innovative solutions and the avoidance of
design and construction waste. Furthermore, early involve-
ment allows for a better understanding of end-user processes,
leading to improved construction productivity and the abil-
ity to design constructs or services that are tailored to their
specific requirements.

The proposed methodology aims to model the impacts
of parameters on the described performance through a
statistical-empirical analysis. The regression models are
finally used to find a set of Pareto non-dominated solu-
tions. Ultimately, these solutions are implemented in a
visualization-based decision-making support procedure. The
results obtained are quite satisfactory, and many prediction
models succeed in describing a large part of the variability of
the process. We obtained 21 out of 28 models that describe
at least 45% of the variability. In addition, the models related
to energy consumption, material consumption, and produc-
tion time represented the process very well by describing
more than 90% of the variability. As expected, the prediction
of geometric accuracy output is very difficult especially in
some cases involving curvilinear parts (Arcs, Spheres, Holes,
and Pins), while we get very good results in larger and less
complex parts such asBridges and Slopes.More analysiswill
need to be done in the future to make the results predictable
and repeatable to avoid waste.

Finally, the application of the proposed method leads to
the creation of an easily readable visual-based poster that can
guide the user in OKP or DIY contexts in choosing produc-
tion parameters. This type of poster can find easy application
in FabLabs or small laboratories, moreover 3D printer man-
ufacturers could propose such a tool to guide their users in
facilitating the use of the machine.

The main limitation of the present work is the lack of
validation of the method through the design of a real part.
This validation can undoubtedly be a future work assuming
that the heatmap presented can be used to support the design
work of a new product.

A second limitation of the work is its lack of joints,
threaded parts, and other complex features in the studied
benchmark. It only focuses on analyzing basic geometric
shapes, which limits its ability to evaluate the capabilities
of additive manufacturing systems in fabricating functional
parts with intricate designs. The absence of joints and
threaded parts in the benchmark restricts the assessment of

the assembly and connectivity aspects of additively manu-
factured components. Furthermore, the benchmark does not
include an analysis of themechanical properties of the printed
parts. Mechanical performance is a crucial factor in deter-
mining the functionality and reliability of AM components.
To address these limitations, future work should consider
improving the benchmark to include joints, threaded parts,
and other complex features commonly found in functional
components. This expansion would enable a more realistic
assessment of the additive manufacturing systems’ capa-
bilities in producing parts that require assembly and have
intricate geometries. Additionally, incorporating an anal-
ysis of the mechanical properties of the fabricated parts
would provide valuable insights into their structural integrity,
strength, and durability.

Finally, According to [21], a simple regression model
combined with physic/equation-based modeling can outper-
form machine learning approaches in small dataset applica-
tions. Generating large datasets to test manufacturing could
often prove inconvenient, particularly in OKP productions.
Combining the proposed experimental approachwith physic-
based models can be interesting as a future improvement.
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Table 7 Bridge models
Dep. variable Predictors β Sig Adj-R2 p-value

Bridge AB Constant 0.97379 *** 78.85% 1.45E−09

SY − 0.56082 ***

LH − 0.56170 **

SN − 0.06975 *

SY × SN 0.08170 *

Bridge QB Constant 0.75909 *** 70.97% 9.64E−08

REY − 0.09091 *

WS 0.00278 **

SY − 0.25909 ***

LH − 0.84091 ***

*** < 0.1%, ** < 1%, * < 5%, and † < 10%

Table 8 Arc model
Dep. variable Predictors β Sig Adj-R2 p-value

Arc AA Constant 0.52291 *** 58.69% 1.01E−04

REY − 0.18445 **

WS 0.00473 ***

SY − 0.21279 ***

IR − 0.00166 *

BASY × WS − 0.00476 ***

BASY × SY 0.22654 **

BASY × REY 0.18686 *

*** < 0.1%, ** < 1%, * < 5%, and † < 10%

Table 9 Sphere models
Dep. variable Predictors β Sig Adj-R2 P-value

Sphere ASp Constant − 0.07086 62.51% 2.36E−04

WT 0.00324 †

PT − 0.00652 *

WS 0.00127 *

SY − 0.42845 ***

LH − 1.37713 **

LH × PT 0.03026 **

LH × SY 1.10383 ***

PT × SY 0.00410 *

Sphere QSp Constant − 0.77312 47.52% 2.37E−04

WT 0.00657 *

SN − 0.06777 **

LH × WS 0.00816 **

*** < 0.1%, ** < 1%, * < 5%, and † < 10%
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Table 10 Pins models
Dep. variable Predictors β Sig Adj-R2 P-value

Pin AP Constant 0.43845 *** 59.40% 1.20E−05

PT − 0.00251 **

WS 0.00140 **

LH − 0.34794 **

IR − 0.00157 ***

Pin QP Constant − 1.96121 44.28% 1.95E−03

REY 3.13450

WT 0.01250 *

WS 0.00326 *

SN − 0.05028 *

REY × WT − 0.01486 *

LH × PT − 0.01320 *

*** < 0.1%, ** < 1%, * < 5%, and † < 10%

Table 11 Side models
Dep. variable Predictors β Sig Adj-R2 p-value

Side QSd Constant 0.09507 57.50% 7.21E−05

WS 0.00131 *

LH − 0.69415 *

SN − 0.05635 *

LH × SN 0.47083 ***

REY × LH 0.29911 *

Side RSd Constant 0.30483 *** 63.35% 4.97E−07

LH 0.57648 *

LH × WS 0.00954 *

*** < 0.1%, ** < 1%, * < 5%, and † < 10%

Table 12 Holes models
Dep. variable Predictors β Sig Adj-R2 p-value

Hole AH Constant 0.50310 *** 45.97% 2.51E−04

WS − 0.01003 *

LH × WT − 0.00197 ***

WS × WT 0.00004 *

Hole QH Constant 0.43806 *** 46.75% 7.69E−05

LH 0.85751 ***

SN 0.04167 *

*** < 0.1%, ** < 1%, * < 5%, and † < 10%
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Table 13 Slot models
Dep. variable Predictors β Sig Adj-R2 p-value

Slot ASl Constant 0.16499 *** 71.26% 1.53E−07

LH 2.38415 ***

LH × SN − 0.51907 ***

REY × SN 0.07145 **

REY × LH − 1.14278 ***

Slot QSl Constant 0.27139 *** 55.78% 1.09E−05

BASY 0.16479 ***

LH 0.92009 ***

*** < 0.1%, ** < 1%, * < 5%, and † < 10%

Table 14 Ribs models
Dep. variable Predictors β Sig Adj-R2 p-value

Ribs AR Constant 1.01471 *** 72.39% 1.36E−08

BASY − 0.34764 **

LH − 2.44407 ***

BASY × LH 0.99662 *

Ribs RR Constant 0.01307 58.81% 3.41E−06

BASY × LH 0.74182 **

LH × WS 0.02013 ***

REY × LH − 0.41887 †

*** < 0.1%, ** < 1%, * < 5%, and † < 10%

Table 15 Slope models
Dep. variable Predictors β Sig Adj-R2 p-value

60°AS Constant − 2.82137 *** 64.23% 8.07E−07

REY 2.94402 ***

WT 0.01549 ***

REY × WT − 0.01481 ***

45°AF Constant 0.42493 *** 39.68% 4.14E−04

SY − 0.07680 **

PT × SN 0.00084 **

30°AT Constant 0.59589 *** 80.33% 5.53E−10

BASY − 0.08056 **

LH − 0.88281 ***

SY × SN − 0.09045 ***

LH × SN 0.66164 ***

*** < 0.1%, ** < 1%, * < 5%, and † < 10%
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Table 16 Environmental-related
performances models Dep. variable Predictors β Sig Ad-R2 p-value

PT Constant 26,559.33 *** 98.80% 2.20E−16

WS − 62.36 ***

SY 5016.69 ***

BASY 1196.56 ***

LH − 51,749.37 ***

IR 757.3 ***

SN 4458.51 ***

LH × SN − 7974.69 *

LH × IR − 1785.44 ***

IR × SN − 53.15 *

PE Constant 697.213 *** 93.67% 6.35E−15

PT 11.978 ***

WS − 2.802 *

SY 149.375 **

LH − 2012.881 ***

IR 19.546 ***

LH × IR − 54.093 ***

w Constant 11.34462 *** 95.35% 2.20E−16

SY 9.5 ***

BASY 10.55 ***

LH 42.45 ***

IR 0.26823 ***

SN 3.01313 ***

*** < 0.1%, ** < 1%, * < 5%, and † < 10%
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