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Abstract
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solutions are not minimizers of the associated action and energy functionals.
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1. Introduction

In this paper we are interested in existence and multiplicity of positive solutions of nonlinear
Schrödinger equations

−u ′ ′ +λu= u2µ+1 , (1.1)

where µ> 0 and λ ∈ R, on metric graphs.
The class of graphs we will consider is rather general. In what follows, we assume that

G = (V,E) is a connected metric graph such that

• the set of vertices V and that of edges E are at most countable;
• the degree deg(V) of a vertex V, i.e. the number of edges incident at it, is finite for every

V ∈ V;
• the length |e| of the edge e is bounded away from zero uniformly on e ∈ E, that is inf

e∈E
|e|> 0.

Since the degree of vertices will play an important role all along the paper, we specify that
every self-loop attached to a vertex contributes twice to the computation of its degree. For
instance, a vertex with three outgoing edges and a self-loop has degree 5, whereas a vertex
with three outgoing edges and no self-loop has degree 3.

For the sake of brevity, we will say that G belongs to the class G whenever it satisfies
these conditions. As usual, each bounded edge e ∈ E is identified with an interval [0, ℓe] with
ℓe := |e|, whereas each unbounded edge (if any) is identified with (a copy of) the positive half-
lineR+. Graphs inG are noncompact as soon as they have at least one unbounded edge or have
infinitely many edges. Figure 1 shows a typical example of metric graph in G. For standard
definitions of functional spaces on graphs we redirect e.g. to [13].

The interest in metric graphs has been growing through the decades to become today an
active research field with an inter-sectoral popularity within the scientific community. In fact,
major contributions to the development of the topic stem from the fact that it attracted attention
both in applied sciences and in more theoretical ones. In a wide variety of applications, indeed,
metric graphs may serve as simplified models for higher dimensional branched or ramified
domains, i.e. structures where the transverse dimensions are negligible with respect to the
longitudinal one. At the same time, in many cases the mathematical analysis of problems on
graphs proves to be of interest per se, exhibiting elements of novelty compared to standard
Euclidean settings.

In the context of differential models on metric graphs, both linear and nonlinear models
have been largely investigated (see e.g. [12, 29, 30, 34] and references therein for some recent
results in the linear setting, and the reviews [2, 32] for comprehensive overviews on nonlin-
ear problems). Within the nonlinear theory, a significant attention has been focused on non-
linear dispersive equations, such as Schrödinger and Dirac equations, also in view of their
possible application in the innovative high-tech research field of atomtronics (see [11] for a
wide introduction to the subject). In particular, many efforts have been devoted to the search
of bound states, i.e. solutions of the associated stationary equation (e.g. (1.1) for the nonlinear
Schrödinger equation) coupled with various vertex conditions, unraveling a deep dependence
of the problem on both topological and metric properties of graphs (see for instance [1, 3, 5,
6, 8–10, 14–19, 22–28, 31, 36, 38, 40, 41] for Schrödinger equations and [20, 21] for Dirac
equations).
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Figure 1. Example of a (noncompact) metric graph in G with 5 unbounded edges and
13 bounded edges, one of which forms a self-loop.

The present paper fits in the investigation of bound states for nonlinear Schrödinger
equations on metric graphs focusing specifically on the problem{

−u ′ ′ +λu= u2µ+1 on every edge of G∑
e≻V u

′
e (V) = 0 for every V ∈ V ,

(1.2)

that is (1.1) together with homogeneous Kirchhoff conditions at the vertices. Here, u ′
e(V)

denotes the outgoing derivative of u at V along the edge e and e� V means that the sum is
extended to all edges incident at V.

The aim of this work is to prove existence and multiplicity of H1 positive bound states
of (1.2) concentrating at given vertices of G as the parameter λ goes to +∞.

Before stating our main results, we need to recall what is known about positive solutions
of (1.2) on star graphs. Given any integer N⩾ 1, the N-star graph SN is the graph made up of a
single vertex, identified with 0, and N half-lines attached to it. Clearly, S1 = R+ and S2 = R.
A functionΨ ∈ H1(SN) can be seen as an N–tuple (ψ1, . . . ,ψN), where ψi ∈ H1(R+) for every
i and ψi(0) = ψj(0) for every i, j. Note that, by dilation invariance, for every µ> 0 and λ> 0

any solution of (1.2) on SN is given by λ
1
2µΨ

(√
λx
)
, where Ψ = (ψ1, . . . ,ψN) solves{

−ψ ′ ′
i +ψi = |ψi|2µψi on R+, ∀i = 1 . . . ,N∑N
i=1ψ

′
i (0) = 0 ,

(1.3)

namely (1.2) with λ= 1.
On the real line (i.e. N= 2), it is well-known that the set of H1 positive solutions of (1.3) is

the family of solitons

ϕa (x) := ϕ(x− a) , with ϕ(x) := (µ+ 1)
1
2µ sech

1
µ (µx) . (1.4)

Similarly, on the half-line R+ (that is N= 1), problem (1.3) has a unique H1 positive solution
given by the restriction of ϕ to R+, named the half-soliton. For N⩾ 3, the H1 solutions to
problem (1.3) have been completely classified e.g. in [4]. Precisely, if N is odd, (1.3) has a
unique positive solution ΨN = (ψ1, . . . ,ψN) given by

ψi (x) = ϕ(x) ∀i = 1, . . . ,N, (1.5)

whereϕ ∈ H1(R+) is the half-soliton introduced in (1.4).WhenN is even, on the contrary, (1.3)
admits infinitely many positive solutions Ψa

N = (ψa1 , . . . ,ψ
a
N) (with a ∈ R), described (after a

possible permutation of indices) through ϕa in (1.4) as

ψai (x) =

{
ϕa (x) if i = 1, . . . ,N/2

ϕ−a (x) if i = N/2+ 1, . . . ,N .
(1.6)

3
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Let us note incidentally here that, for general metric graphs, a complete description of the set
of solutions of (1.2) is usually out of reach. To the best of our knowledge, besides star graphs
the unique case for which this is available is the T -graph (two half–lines and a bounded edge
glued together at the same vertex), that has been discussed in the recent paper [10], whereas
partial results in this direction have been given e.g. for the tadpole graph (a circle attached to
an half-line) and the double-bridge graph (a circle attached to two half-lines at different points)
in [35, 37].

We are now in position to state the main results of our paper, that are given in the next two
theorems.

Theorem 1.1. Let G ∈G and µ⩾ 1
2 . Let V ∈ V be a vertex of G such that N := deg(V)⩾ 3 is

odd. Then there exists λ0 := λ0(V)> 0 such that, for every λ⩾ λ0, there exists a positive H1

solution uλ of (1.2) with a single peak at V. More precisely, identifying V with 0 along each
edge e� V and setting ℓV :=mine≻V |e|/2, as λ→+∞ there holds

uλ (x) = λ
1
2µχ(x)ΨN

(√
λx
)
+Φ(x) , (1.7)

where χ : G → [0,1] is a smooth function satisfying χ≡ 1 on the neighbourhood of radius ℓV
of V in G and χ≡ 0 outside the neighbourhood of radius 2ℓV of V in G,ΨN is given in (1.5) and
Φ satisfies

‖Φ‖λ :=
√
‖Φ ′‖2L2(G) +λ‖Φ‖2L2(G) = o

(
λ

1
4+

1
2µ

)
.

Theorem 1.2. Let G ∈G and µ⩾ 1
2 . Assume that G has M⩾ 2 vertices V1, . . . , VM ∈ V such

that Ni := deg(Vi)⩾ 3 is odd for every i = 1, . . . ,M. Then there exists λ0 := λ0(V1, . . . , VM) such
that, for every λ⩾ λ0, there exists a positive H1 solution uλ of (1.2) with a single peak at
every vertex V1, . . . , VM. More precisely, identifying Vi with 0 along each edge e� Vi and setting
ℓVi :=mine≻Vi |e|/4 for every i = 1, . . . ,M, as λ→+∞ there holds

uλ (x) = λ
1
2µ

M∑
i=1

χi (x)ΨNi

(√
λx
)
+Φ(x) , (1.8)

where χi : G → [0,1] is a smooth function satisfying χi ≡ 1 on the neighbourhood of radius ℓVi
of Vi in G and χi ≡ 0 outside the neighbourhood of radius 2ℓVi of Vi in G, ΨNi is given in (1.5)
and Φ satisfies

‖Φ‖λ = o
(
λ

1
4+

1
2µ

)
.

The above results prove, for sufficiently large λ, existence of one-peaked (theorem 1.1) and
multi-peaked (theorem 1.2) positive bound states concentrating at vertices with odd degree
and being negligible (as λ→+∞) on the rest of the graph. The proof of both theorems is
based on a Ljapunov–Schmidt procedure using as model function the solution ΨN of (1.2) on
the star graph SN. Note that the notation in theorem 1.2 is consistent with the fact that one can
simultaneously identify all the Vi’s with the origin along all edges incident at each of them.
This is obvious if such vertices have no common edge, whereas if two of them share one edge
this can still be done by considering an additional vertex of degree 2 at the middle point of the
shared edge. Also the slightly different definition of ℓVi

with respect to theorem 1.1 is meant
to allow the presence of shared edges between the Vi’s.

4
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Note that theorems 1.1 and 1.2 do not apply when µ < 1
2 or the vertices have even degree.

The limitation onµ is technical and unavoidablewith our argument, sincewe need to compute a
second order expansion of the function f(s) = s2µ+1 at s=ΨN. However, our theorems cover
the cubic case µ= 1, which is usually considered the most relevant one in many physical
applications. Conversely, it is not clear to us whether one can recover the results of theorems
1.1–1.2 concentrating at vertices with even degree. Heuristically, one may expect that this
should be true, even though the approach could be completely different. Let us focus on the
simplest case of a graph with one edge and two vertices (i.e. an interval). It is clear that there
exists a solution to (1.2) which concentrates at each vertex (i.e. boundary point) whose main
profile is the function Ψ1. On the other hand it is also well known that there exists a solution
to (1.2) which concentrates at a special point inside the edge (i.e. the midpoint of the interval)
whose main profile is the function Ψa

1 (1.6) for a special value of the parameter a (see for
example [39, section 2.2] and the references therein). Now, we observe that each point inside
the edge can be seen as a vertex of degree 2 and the previous result shows that only one of them
is a peak of a concentrating solution. It would be extremely interesting to prove that a similar
result holds true for a more general graph with a vertex of even degree. We believe that the
difference between the odd and the even case arises in the choice of the ansatz: this is merely a
cut-off ofΨN around the vertex itself in the odd case, while in the even case it should possibly
be a global refinement of Ψa

N in order to fit the Kirchhoff conditions on the whole graph (see
[39, remark 2.16]). However, at present the case of even degree is completely open.

The interest in peaked solutions of (1.2) on metric graphs is not new. In [6], positive bound
states with amaximum in the interior of a given edge are identified as solutions of a doubly con-
strained minimization problem, for every µ ∈ (0,2) and for sufficiently large masses (i.e. the
L2 norm of the function). In [14, 33] a Dirichlet-to-Neumannmap argument is developed in the
cubic case µ= 1 to construct, again for large masses, solutions with maximum points either
at vertices of degree 1 or in the interior of any edge. The results of these three papers apply
both to compact graphs and to noncompact graphs with finitely many edges. Remarkably, both
approaches are able to handle the mass constrained setting. Conversely, in [26] a Ljapunov–
Schmidt procedure similar to the one discussed here is used to find solutions concentrating
at vertices of degree 1 on compact graphs, for every µ> 0 and λ→+∞. Actually, theorems
1.2–1.3 of [26] are the analogues of theorems 1.1 and 1.2 here in the case of vertices of degree
1 and the strategy of the proof is the same. However, we stress that our results here apply
to any graph in G and not only to compact ones. Furthermore, from the technical point of
view, the Ljapunov–Schmidt argument for vertices with degree greater than 1 is rather dif-
ferent and technically demanding. This is readily seen observing that linearizing (1.2) around
ΨN gives a linear problem that has only the trivial solution when N= 1, whereas it has non-
trivial solutions as soon as N⩾ 2 (see lemma 2.1 below). We note that the approach developed
here clearly adapts to vertices of degree 1 too. On the one hand, this generalizes the results of
[26] to noncompact graphs in G. On the other hand, this generalization holds true only in the

regime µ⩾ 1
2
.

With respect to the available literature on bound states of (1.2), the main novelty of
Theorems 1.1 and 1.2 is that these are the first results exhibiting solutions with maximum
points at vertices of degree greater than or equal to 3. To better understand why this is worth
noting, we recall that almost all the existence results on general metric graphs derived so far are
based on minimization arguments. In particular, major attention has been devoted to minimum
problems both for the action functional Jλ : H1(G)→ R

Jλ (u) :=
1
2
‖u ′‖2L2(G) +

λ

2
‖u‖2L2(G) −

1
2µ+ 2

‖u‖2µ+2
L2µ+2(G)

5
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constrained to the associated Nehari manifold

Nλ (G) :=
{
u ∈ H1 (G) : J ′λ (u)u= 0

}
,

and for the energy functional E : H1(G)→ R

E(u) :=
1
2
‖u ′‖2L2(G) −

1
2µ+ 2

‖u‖2µ+2
L2µ+2(G)

constrained to the space of functions with prescribed mass

H1
ν (G) :=

{
u ∈ H1 (G) : ‖u‖2L2(G) = ν

}
.

Thorough investigations have been developed for ground states, i.e. global minimizers of both
problems (see e.g. [24, 38] for the action and [5, 7–9, 27, 28] and references therein for the
energy), but local minimizers have been investigated too (see e.g. [6, 41]). However, none of
these solutions coincides with those in theorems 1.1 and 1.2.

Corollary 1.3. Let uλ be as in theorems 1.1 and 1.2. Then uλ is neither a ground state of Jλ in
Nλ(G) nor a ground state of E in H1

ν(G) (where ν = ‖uλ‖2L2(G)).

The proof of corollary 1.3, which is given for the sake of completeness in section 7, is
actually a straightforward consequence of the fact that, by (1.7) and (1.8), one can compute
explicitly the action, the energy and the mass of uλ, and a direct comparison with the asymp-
totic behaviour of the ground state levels shows that uλ is always a solution with action/energy
strictly larger than that of ground states.

Hence, theorems 1.1 and 1.2 provide genuinely new existence and multiplicity results. As
for the mass of these solutions, observe that, if uλ is as in (1.7), then

‖uλ‖2L2(G) = λ
1
µ− 1

2

(
N
2
‖ϕ‖2L2(R) + o(1)

)
, (1.9)

whereas if uλ is as (1.8)

‖uλ‖2L2(G) = λ
1
µ− 1

2

(
M∑
i=1

Ni
2
‖ϕ‖2L2(R) + o(1)

)
. (1.10)

In particular, these are bound states with diverging masses in the L2-subcritical regime µ< 2,
with masses strictly greater than ‖ϕ‖2L2(R) at the L

2-critical power µ= 2, and with vanishing

masses in the L2-supercritical regimeµ> 2. This is of particular interest both forµ= 2, since in
the critical regime it is usually difficult to find solutions with masses larger than ‖ϕ‖2L2(R) (see
e.g. [7, 41]), and for µ> 2, as very few results are available at present in the L2-supercritical
case.

To conclude, we further observe that the results of this paper apply to graphs with countably
many edges. As so, theorem 1.2 has evident consequences on the set of bound states of (1.2) on
graphs of this type, such as infinite periodic graphs (figure 2(A)) and infinite trees (figure 2(B)).
In particular, graphs like these admit at least countably many H1 positive solutions of (1.2),
each one with an arbitrary number of peaks located at any given subset of vertices with odd
degree. Furthermore, in view of (1.10), considering a sufficiently large number of vertices one
obtains bound states with arbitrarily large mass, and this is remarkably true independently
of µ⩾ 1

2 .

6
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Figure 2. Examples of infinite periodic graphs (A) and infinite trees (B) with vertices
of odd degree greater than 1.

The remainder of the paper is organized as follows. Section 2 collects some preliminaries.
Sections 3–5 provide the proof of theorem 1.1, with the reduction to a finite dimensional prob-
lem (section 3), its formulation in term of a reduced energy (section 4) and the analysis of the
critical points of such energy (section 5). Finally, section 6 discusses the proof of theorem 1.2
and section 7 that of corollary 1.3.
Notation. In the following we will write f≲ g or f =O(g) in place of |f|⩽ C|g| for some

positive constant C independent of λ and f∼ g in place of f = g+ o(g), whenever possible.
Furthermore, except for section 6, we will always write Ψ in place of ΨN.

2. Preliminaries

We begin by introducing the basic idea to construct the solutions to (1.2) we are looking for
and by collecting some related preliminary results.

Given a vertex V of G with odd degree greater than or equal to 3, our aim is to find, for
suitable values of the parameter λ, solutions uλ to (1.2) in the form

uλ :=Wλ +Φ , (2.1)

where Wλ concentrates at V and Φ is a smaller order term as λ→+∞. To do this, we first
identify a good candidate for the principal partWλ and then derive the correction term Φ with
a Ljapunov–Schmidt procedure.

To define Wλ, we start with the unique symmetric solution Ψ ∈ H1(SN) to (1.3) on the
N–star graph SN, i.e. Ψ = (ϕ, . . . ,ϕ), where ϕ ∈ H1(R+) is the half–soliton on R+, and we
characterize the set of solutions of the linearization of (1.3) at Ψ.

Lemma 2.1. For every N⩾ 2, the set of solutions to

{
−Z ′ ′ +Z= (2µ+ 1)Ψ 2µZ, Z= (z1, . . . ,zN) ∈ H1 (SN)∑N

i=1 z
′
i (0) = 0

(2.2)

7
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is given by the (N− 1)–dimensional space

K := span
{
Z( j) =

(
Z( j)1 , . . . ,Z( j)N

)
: j = 1, . . . ,N− 1

}
,

where, for every j = 1, . . .,N− 1,

Z( j)i (x) = ϕ ′ (x)e j ∀x ∈ R+, i = 1, . . . ,N, (2.3)

and

e j =


e j1
e j2
...
e jN

 , with e j1 + . . .+ e jN = 0 ∀j and e j · ek = 0if j 6= k. (2.4)

Proof. SinceΨ = (ϕ, . . . ,ϕ), we plainly see that on each half-line ofSN, the function ϕ ′ solves
the differential equation in (2.2). Hence, by the standard theory of linear ordinary differential
equations, the general solution of the first line of (2.2) on the ith half-line is of the form

zi (x) = ϕ ′ (x)

(
ci+ di

ˆ x

x0

1

ϕ ′ (s)2
ds

)

with ci,di ∈ R. Since ϕ ′ decays exponentially as x→+∞, it follows that zi ∈ L2(R+) if and
only if di = 0, in which case

zi (x) = ciϕ
′ (x) .

As a consequence, the function Z= (c1ϕ ′, . . . ,cNϕ ′) belongs to H1(SN), as every component
is in H1(R+) and continuity at the vertex is guaranteed for every values of the ci’s because
ϕ ′(0) = 0. Therefore Z solves problem (2.2) if and only if the homogeneous Kirchhoff condi-
tion is satisfied, namely if and only if

0=
N∑
i=1

z ′i (0) =
N∑
i=1

ciϕ
′ ′ (0) .

As ϕ ′ ′(0) 6= 0, this yields c1 + . . .+ cN = 0. Since the equation c1 + · · ·+ cN = 0 identifies an
(N− 1)–dimensional subspace of RN a basis of which is given e.g. by vectors ej as in (2.4),
this concludes the proof.

For the sake of convenience, in the following we will choose the vectors e j, j = 1, . . .,N− 1,
satisfying (2.4) to be

e1 =


1
−1
0
...
0

 , e2 =


1
1
−2
...
0

 , . . . , eN−1 =


1
1
1
...

−(N− 1)

 . (2.5)

8
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We are now in position to define Wλ. Here we denote by B(a,r) the ball of radius r in G
centered at the point a. Set N := deg(V), ℓ :=mine≻V |e|/2 and let χ : G → [0,1] be a smooth
cut-off function such that χ≡ 1 on B(V, ℓ) and χ≡ 0 on G \B(V,2ℓ). We then defineWλ : G →
R as

Wλ (x) := χ(x)
(
Ψλ (x)+ b1,λZ

(1)
λ (x)+ . . .+ bN−1,λZ

(N−1)
λ (x)

)
where

Ψλ (x) := λ
1
2µΨ

(√
λx
)

with Ψ the unique symmetric solution to (1.3) as above,

Z( j)λ (x) := λ
1
2µ Z( j)

(√
λx
)

with Z( j) the functions in lemma 2.1, and the real numbers bj,λ given by

bj,λ =
bj
λα

(2.6)

for suitably chosen bj ∈ R and α> 0. Here, even though in principle bj may still depend on λ,
we decide not to denote explicitly such dependence since, as will be clear in the next sections,
the actual value of the bj’s we will consider remains always uniformly bounded in λ.

With this definition, to prove theorem 1.1 we need to findΦ and bj, j = 1, . . . ,N− 1, so that
uλ as in (2.1) solves (1.2). Note that, setting f(u) := (u+)2µ+1 for every u ∈ H1(G), it is clear
that positive solutions of (1.2) coincide with solutions of{

−u ′ ′ +λu= f(u) on G∑
e≻V u

′
e (V) = 0 for every V ∈ V.

(2.7)

Since we will consider the limit λ→+∞, with no loss of generality we can assume from the
beginning λ >−λG , where

λG := inf
v∈H1(G)

‖v ′‖2L2(G)
‖v‖2L2(G)

denotes the bottom of the spectrum of−d2/dx2 (coupled with homogeneous Kirchhoff condi-
tions) on G. Hence, for every such λ we equip the space H1(G) with the following equivalent
scalar product

〈u,v〉λ =

ˆ
G
u ′ (x)v ′ (x)dx+λ

ˆ
G
u(x)v(x)dx

and denote by ‖ · ‖λ the corresponding norm. Note that, considering the immersion

iλ :
(
H1 (G) ,〈 , 〉λ

)
→
(
L2 (G) ,〈 , 〉L2

)
and defining as usual its adjoint map

i∗λ :
(
L2 (G) ,〈 , 〉L2

)
→
(
H1 (G) ,〈 , 〉λ

)
9
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so that

〈i∗λ (g) ,v〉λ = 〈g,v〉L2 ∀v ∈ H1 (G) , g ∈ L2 (G) ,

we obtain that

v= i∗λ (g) ⇐⇒ vsolves

{
−v ′ ′ +λv= g on G∑

e≻V v
′
e (V) = 0 for every V ∈ V .

Therefore, problem (2.7) can be rewritten as

u= i∗λ ( f(u)) , u ∈ H1 (G) (2.8)

and to find uλ as in (2.1) solving (1.2) amounts to find Φ, bj, j = 1, . . . ,N− 1, such that uλ
satisfies (2.8). Actually, we will further rewrite (2.8) as follows. For every λ, we introduce the
linear operator L : H1(G)→ H1(G)

L (v) := v− i∗λ
(
f ′ (Wλ)v

)
, (2.9)

the nonlinear operator N : H1(G)→ H1(G)

N (v) := i∗λ ( f(Wλ + v)− f(Wλ)− f ′ (Wλ)v) , (2.10)

and the error term

E := i∗λ ( f(Wλ))−Wλ . (2.11)

Accordingly, (2.8) is equivalent to

L (Φ) = E +N (Φ) , (2.12)

where of course one still needs to identify both Φ and the coefficients bj’s.

Remark 2.2. Note that, if G is a noncompact graph, i∗λ is not compact. However, since by defin-
itionWλ is compactly supported in a fixed ball centered at V, the operator from

(
L2(G),〈 , 〉L2

)
to
(
H1(G),〈 , 〉λ

)
given by v 7→ i∗λ( f

′(Wλ)v) is compact for every given λ. As a consequence,
the operator L in (2.9) is a compact perturbation of the identity for every λ.

Remark 2.3. Since we will need them in the following, we conclude this section collecting
here the following elementary inequalities

||a+ b|q− |a|q|≲ aq−1|b|+ |b|q ∀q> 1 , (2.13)∣∣|a+ b|p− ap− pap−1|b|
∣∣≲ ap−2|b|2 + |b|p, ∀p> 2 (2.14)

and ∣∣∣∣|a+ b|r− ar− rar−1|b| − 1
2
r(r− 1)ar−2b2

∣∣∣∣≲ ar−3|b|3 + |b|r ∀r> 3 . (2.15)

10
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3. The finite–dimensional reduction

In this and in the next two sections we solve problem (2.12). Here we start by showing that,
once the value of the bi’s is fixed, it is possible to find a unique Φ fulfilling a slightly modified
version of (2.12). This will reduce the problem to identify the bj’s to solve (2.12), a task that
will be accomplished in the following two sections.

To deal with the problem for Φ, we introduce for every λ the following spaces

Kλ :=

v ∈ H1 (G) : v(x) = χ(x)
N−1∑
j=1

cjZ
( j)
λ (x) for some cj ∈ R, j = 1, . . . ,N− 1


K⊥
λ :=

{
v ∈ H1 (G) : 〈v,χZ( j)λ 〉λ = 0, ∀ j = 1, . . . ,N− 1

}
and the corresponding projections Πλ : H1(G)→ Kλ, Π⊥

λ : H1(G)→ K⊥
λ .

We can then state the main result of this section.

Proposition 3.1. For every compact subset C in RN−1, there exists λ0 > 0 (depending on C)
such that, for every (b1, . . . ,bN−1) ∈ C and every λ > λ0, there exist unique Φ ∈ K⊥

λ and coef-
ficients c1, . . . ,cN−1 ∈ R (depending on Φ) for which

L (Φ) = E +N (Φ)+χ
N−1∑
i=1

ciZ
(i)
λ . (3.1)

Moreover,

‖Φ‖λ ≲ λ
1
4+

1
2µ−2α , (3.2)

where α is the exponent introduced in (2.6).

To prove proposition 3.1, we need the following preliminary lemma.

Lemma 3.2. For every compact subset C of RN−1, there exists λ0 > 0 (depending on C) such
that, for every (b1, . . . ,bN−1) ∈ C and every λ > λ0, the linear operator Π⊥

λ L : K⊥
λ → K⊥

λ is
invertible with continuous inverse.

Proof. Note first that to prove the claim it is enough to show that there exist c> 0 and λ0 > 0
such that, for every λ > λ0 and every v ∈ K⊥

λ , there holds

‖Π⊥
λ L (v)‖λ ⩾ c‖v‖λ. (3.3)

Indeed, as v ∈ K⊥
λ ,

Π⊥
λ L (v) = v−Π⊥

λ i
∗
λ

(
f ′ (Wλ)v

)
which is a compact perturbation of the identity as pointed out in remark 2.2.

To prove (3.3), we argue similarly to [26, lemma 3.1]. Suppose for contradiction that (3.3)
is false, namely that there exist sequences λn →+∞ and vn ∈ K⊥

λn
such that, as n→∞,

11
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‖vn‖λn = 1, ‖Π⊥
λn

L (vn)‖λn → 0. (3.4)

We then write

i∗λn

(
f ′ (Wλn)vn

)
= vn−L (vn) = vn−ΠλnL (vn)−Π⊥

λn
L (vn) =: vn+ kn− hn,

with kn ∈ Kλn and ‖hn‖λn → 0 by assumption. By definition of i∗λn
, on every edge of G this

reads

−(vn+ kn− hn)
′ ′
+λn (vn+ kn− hn) = f ′ (Wλn)vn, (3.5)

together with homogeneous Kirchhoff conditions at every vertex of G. The rest of the proof is
divided in two steps.
Step 1.We claim that ‖kn‖λn → 0. Indeed, for some numbers ci,n,

kn (x) = χ(x)
N−1∑
i=1

ci,nZ
(i)
λn
(x) , Z(i)λn

(x) = λ
1
2µ
n Z(i)

(√
λn x
)
.

For fixed j = 1, . . . ,N− 1, we multiply (3.5) by χZ( j)λn
and, recalling that vn− hn ∈ K⊥

λn
, we

obtain

An :=
ˆ
G
f ′ (Wλn)vnχZ

( j)
λn

dx=
N−1∑
i=1

ci,n

ˆ
G

(
χZ(i)λn

) ′(
χZ( j)λn

) ′
+λn

(
χZ(i)λn

)(
χZ( j)λn

)
dx=: Bn .

(3.6)

Now, as Z( j)λn
and Z(i)λn

are pointwise orthogonal by (2.3) and (2.4),

Bn = cj,n

ˆ
G∩B(V,2ℓ)

|χ|2
∣∣(Z( j)λn

) ′ ∣∣2 +λn|χ|2
∣∣Z( j)λn

∣∣2 + 2χχ ′
(
Z( j)λn

) ′
Z( j)λn

+ |χ ′|2
∣∣Z( j)λn

∣∣2 dx.
(3.7)

As n→∞, a direct computation shows that

ˆ
G∩B(V,2ℓ)

|χ|2
∣∣(Z( j)λn

) ′ ∣∣2 dx
= λ

1
µ+1
n

ˆ
G∩B(V,2ℓ)

|χ(x) |2
∣∣(Z( j)) ′(√

λn x
)∣∣2 dx

= λ
1
µ+ 1

2
n

ˆ
SN∩B(0,2ℓ

√
λn)

|χ
(
x/
√
λn

)
|2
∣∣(Z( j)) ′

(x)
∣∣2 dx∼ aλ

1
µ+ 1

2
n (3.8)

for some constant a> 0. Note that in the previous computation we tacitly interpreted the term
χ
(
Z( j)
) ′

as defined both on a compact subset of G and on a compact subset of SN. This is
clearly unambiguous, since the support of the cut-off functionχ is a finite symmetric star graph
with N edges centered at V (recall that here N= deg(V)). The identification of such subsets of
G and SN will be frequently used also in the rest of the proof.

12
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Arguing as in (3.8) one easily sees that the second term in (3.7) has the same asymptotic

behavior, while the last two terms are o

(
λ

1
µ+ 1

2
n

)
. Therefore,

Bn ∼ acj,nλ
1
µ+ 1

2
n as n→+∞ . (3.9)

Let us now focus on An. Since each Z( j) solves (2.2), the functions Z
( j)
λn

solve

−
(
Z( j)λn

) ′ ′
+λnZ

( j)
λn

= f ′ (Ψλn)Z
( j)
λn

on every edge ofSN, coupled with homogenous Kirchhoff conditions at the vertex.Multiplying
by χvn, thinking of the resulting equation as defined on G (due to the cut-off χ) and integrating
on G yields

ˆ
G
f ′ (Ψλn)Z

( j)
λn
χvn dx=

ˆ
G

(
Z( j)λn

) ′
(χvn)

′
+λnZ

( j)
λn
χvn dx

=

ˆ
G

(
χZ( j)λn

) ′
v ′n+λnZ

( j)
λn
χvn dx+

ˆ
G
χ ′
((

Z( j)λn

) ′
vn− v ′nZ

( j)
λn

)
dx.

Notice that the first integral in the right hand side vanishes since vn ∈ K⊥
λn
, while∣∣∣∣ˆ

G
χ ′
((

Z( j)λn

) ′
vn− v ′nZ

( j)
λn

)
dx

∣∣∣∣
⩽ ‖vn‖L2(G)

(ˆ
G
|χ ′|2

∣∣(Z( j)λn

) ′ ∣∣2 dx) 1
2

+ ‖v ′n‖L2(G)
(ˆ

G
|χ ′|2

∣∣Z( j)λn

∣∣2 dx) 1
2

≲ λ
1
2µ+ 1

4
n

(ˆ 2ℓ
√
λn

ℓ
√
λn

|ϕ ′ ′|2 dx

) 1
2

+λ
1
2µ− 1

4
n

(ˆ 2ℓ
√
λn

ℓ
√
λn

|ϕ ′|2 dx

) 1
2

,

where ϕ is the soliton onR as in (1.4). Since ϕ ′ and ϕ ′ ′ decay exponentially as x→+∞, there
exists β > 0 such that as n→+∞∣∣∣∣ˆ

G
f ′ (Ψλn)Z

( j)
λn
χvn dx

∣∣∣∣≲ e−β
√
λn .

Hence, recalling the definition of An and (3.4),

An =
ˆ
G

(
f ′ (Wλn)− f ′ (Ψλn)

)
vnχZ

( j)
λn

dx+
ˆ
G
f ′ (Ψλn)Z

( j)
λn
χvn dx

=

ˆ
G∩B(V,2ℓ)

(
f ′ (Wλn)− f ′ (Ψλn)

)
vnχZ

( j)
λn

dx+O
(
e−β

√
λn

)
⩽ λ−1/2

n

∥∥∥( f ′ (Wλn)− f ′ (Ψλn)
)
χZ( j)λn

∥∥∥
L2(G∩B(V,2ℓ))

+O
(
e−β

√
λn

)
. (3.10)

13
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Neglecting for a while the last term and recalling that f(s) = (s+)2µ+1 we see that
ˆ
G∩B(V,2ℓ)

∣∣∣( f ′ (Wλn)− f ′ (Ψλn)
)
χZ( j)λn

∣∣∣2 dx≲ ˆ
G∩B(V,2ℓ)

∣∣∣W2µ
λn

−Ψ2µ
λn

∣∣∣2 ∣∣∣Z( j)λn

∣∣∣2 dx
= λ

2+ 1
µ

n

ˆ
SN∩B(0,2ℓ)

∣∣∣∣∣∣χ2µ (x)

(
Ψ
(√

λn x
)
+

N−1∑
i=1

bi,λnZ
(i)
(√

λn x
))2µ

−Ψ2µ
(√

λn x
)∣∣∣∣∣∣

2

∣∣∣Z( j)(√λn x
)∣∣∣2 dx

≲ λ
3
2
+ 1

µ
n

ˆ
SN

∣∣∣∣∣∣
(
Ψ(x)+

N−1∑
i=1

bi,λnZ
(i) (x)

)2µ

−Ψ2µ (x)

∣∣∣∣∣∣
2 ∣∣∣Z( j) (x)∣∣∣2 dx . (3.11)

Since Z(i) ∈ L∞(SN) by lemma 2.1, bi,λn = λ−αbi by (2.6), and (b1, . . . ,bN−1) ∈ C which is
compact by assumption, the mean value theorem yields the existence of θn : SN → [0,1] so that
as n→+∞

ˆ
SN

∣∣∣∣∣∣
(
Ψ+

N−1∑
i=1

bi,λnZ
(i)

)2µ

−Ψ2µ

∣∣∣∣∣∣
2 ∣∣∣Z( j)∣∣∣2 dx

≲ λ−2α
n

ˆ
SN

∣∣∣∣∣Ψ+ θn

N−1∑
i=1

bi,λnZ
(i)

∣∣∣∣∣
2(2µ−1) ∣∣∣∣∣

N−1∑
i=1

biZ
(i)

∣∣∣∣∣
2 ∣∣∣Z( j)∣∣∣2 dx

≲ λ−2α
n

ˆ
R+

(|ϕ|+ |ϕ ′|)2(2µ−1) |ϕ ′|4 dx
N−1∑
i=1

b2i ≲ λ−2α
n ,

the last inequality using also µ⩾ 1
2 . Coupling with (3.10) and (3.11) entails

An ≲ λ
1
4+

1
2µ−α

n as n→+∞

and combining with (3.6) and (3.9) we obtain

cj,n ≲ λ−
1
4−

1
2µ−α as n→+∞ .

Finally, with the same argument used to compute Bn,

‖kn‖2λn
=

N−1∑
i=1

c2i,n

ˆ
G

∣∣(χZ(i)λn

) ′ ∣∣2 +λn
∣∣χZ(i)λn

∣∣2 dx∼ λ
1
µ+ 1

2
n

N−1∑
i=1

c2i,n ≲ λ−2α
n → 0 (3.12)

as n→+∞ since α> 0.
Step 2.We now go back to equation (3.5) and we multiply it by vn, obtaining as n→+∞

1= ‖vn‖2λn
=−〈kn,vn〉λn + 〈hn,vn〉λn +

ˆ
G
f ′ (Wλn)v

2
n dx=

ˆ
G
f ′ (Wλn)v

2
n dx+ o(1) ,

since 〈kn,vn〉λn = 0 because kn ∈ Kλn , vn ∈ K⊥
λn
, and 〈hn,vn〉λn → 0 by (3.4). In view of this, if

we prove that
ˆ
G
f ′ (Wλn)v

2
n dx→ 0 (3.13)

14
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a contradiction arises and the proof is completed. To this aim, we set

ṽn (x) = λ1/4n vn
(
x/
√
λn

)
, h̃n (x) = λ1/4n hn

(
x/
√
λn

)
, k̃n (x) = λ1/4n kn

(
x/
√
λn

)
.

Note that ṽn, h̃n, k̃n are defined on the scaled graph Gn :=
√
λnG and direct computations show

that

‖ṽn‖H1(Gn) = ‖vn‖λn = 1
ˆ
G
f ′ (Wλn)v

2
ndx =

ˆ
Gn

χ2µ
(
x/
√
λn

)
f ′
(
Ψ(x)+

N−1∑
i=1

bi,λnZ
(i) (x)

)
ṽ2n (x) dx (3.14)

and

‖h̃n‖H1(Gn) = ‖hn‖λn → 0, ‖k̃n‖H1(Gn) = ‖kn‖λn → 0

as n→+∞ by (3.4) and (3.12). Since, by construction, one can identify Gn ∩B(V,2ℓ
√
λn)

with the compact subset of SN given by SN ∩B(0,2ℓ
√
λn), combining (3.5) with the previous

formulas shows that, for every compactly supported φ ∈ H1(SN), there exists n large enough
so that

ˆ
SN

ṽ ′n (x)φ
′ (x)+ ṽn (x)φ(x)− f ′

(
χ
(
x/
√
λn

)(
Ψ(x)+

N−1∑
i=1

bi,λnZ
(i) (x)

))
ṽn (x)φ(x) dx

=

ˆ
SN

(
h̃n− k̃n

) ′
(x)φ ′ (x)+

(
h̃n− k̃n

)
(x)φ(x) dx= o(1) ,

where with a slight abuse of notation we are thinking of ṽn, h̃n, k̃n as functions on SN ∩
B(0,2ℓ

√
λn). Hence, ṽn convergesweakly inH1 and strongly in Lq, for every q⩾ 2, on compact

subsets of SN to a function v0. Arguing as in [26, lemma 3.1], it is easy to see that v0 ∈ H1(SN)
and, letting n→+∞ in the previous formula, that

ˆ
SN

v ′0φ
′ + v0φ− f ′ (Ψ)v0φ = 0, ∀φ ∈ H1 (SN) ,

namely that v0 ∈ K, whereK is as in lemma 2.1. However, since arguing as above and recalling
that vn ∈ K⊥

λn
one also has

〈v0,Z( j)〉H1(SN) = lim
n→+∞

λ
− 1

4−
1
2µ

n 〈vn,χZ( j)λn
〉λn = 0 ∀j = 1, . . . ,N− 1 ,

i.e. v0 ∈ K⊥, it follows that v0 ≡ 0 on SN. As a consequence, when n→+∞

ˆ
Gn∩B(V,2ℓ

√
λn)

f ′
(
Ψ+

N−1∑
i=1

bi,λnZ
(i)

)
ṽ2n dx→

ˆ
SN

f ′ (Ψ)v20 = 0 ,

which together with the second line of (3.14) implies (3.13) and concludes the proof.
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Proof of proposition 3.1. We prove the claim with a suitable fixed point argument. The proof
is divided in two steps.
Step 1: estimates on E . We begin by showing that as λ→+∞

‖E ‖λ ≲ λ
1
4+

1
2µ−2α. (3.15)

Indeed, by (2.11) and the definition of Wλ and i∗λ
(
f ′(Wλ)

)
, it follows

−E ′ ′ +λE =χ ′ ′

(
Ψλ +

N−1∑
i=1

bi,λZ
i
λ

)
+ 2χ ′

(
Ψλ +

N−1∑
i=1

bi,λZ
i
λ

) ′

+ f(Wλ)−χ

(
f(Ψλ)+ f ′ (Ψλ)

N−1∑
i=1

bi,λZ
(i)
λ

)
= E1 +E2 (3.16)

where

E1 := χ ′ ′

(
Ψλ +

N−1∑
i=1

bi,λZ
(i)
λ

)
+ 2χ ′

(
Ψλ +

N−1∑
i=1

bi,λZ
(i)
λ

) ′

+
(
χ2µ+1 −χ

)(
Ψλ +

N−1∑
i=1

bi,λZ
(i)
λ

)2µ+1

(3.17)

and

E2 := χ

[
f

(
Ψλ +

N−1∑
i=1

bi,λZ
(i)
λ

)
− f(Ψλ)− f ′ (Ψλ)

N−1∑
i=1

bi,λZ
(i)
λ

]
. (3.18)

Multiplying (3.16) by E , integrating over G and using the Hölder inequality we have

‖E ‖2λ ≲
(
‖E1‖L2(G) + ‖E2‖L2(G)

)
‖E ‖L2(G)

⩽ λ−1/2
(
‖E1‖L2(G) + ‖E2‖L2(G)

)
‖E ‖λ

that is

‖E ‖λ ≲ λ−1/2
(
‖E1‖L2(G) + ‖E2‖L2(G)

)
. (3.19)

Now, adapting the argument in the proof of [26, proposition 3.2] one easily sees that

‖E1‖L2(G) ≲ λ−τ ∀τ > 0 . (3.20)

As for E2, by (2.14) one has

|E2|⩽ |χ|

Ψ2µ−1
λ

∣∣∣∣∣
N−1∑
i=1

bi,λZ
(i)
λ

∣∣∣∣∣
2

+

∣∣∣∣∣
N−1∑
i=1

bi,λZ
(i)
λ

∣∣∣∣∣
2µ+1

 ,
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so that by (2.6)

ˆ
G
E2
2 dx ≲

N−1∑
i=1

|bi,λ|4
ˆ
G
|Ψλ|2(2µ−1)

∣∣∣Z(i)λ ∣∣∣4 dx+ N−1∑
i=1

b2(2µ+1)
i,λ

ˆ
G

∣∣∣Z(i)λ ∣∣∣2(2µ+1)
dx

≲ λ
3
2+

1
µ

N−1∑
i=1

|bi,λ|4
ˆ
R+

|ϕ|2(2µ−1)|ϕ ′|4 dx+λ
3
2+

1
µ

N−1∑
i=1

|bi,λ|2(2µ+1)
ˆ
R+

|ϕ ′|2(2µ+1) dx

≲ λ
3
2+

1
µ−4α +λ

3
2+

1
µ−2(2µ+1)α ≲ λ

3
2+

1
µ−4α as λ→+∞ ,

since (b1, . . . ,bN−1) ∈ C which is compact by assumption and µ⩾ 1
2 . Coupling with (3.19)

and (3.20) yields (3.15).
Step 2: the contraction mapping argument.We consider the operator

T : K⊥
λ → K⊥

λ , T(v) :=
(
Π⊥

λ L
)−1 (

Π⊥
λ E +Π⊥

λ N (v)
)

which is well–defined by lemma 3.2, and the set

Bλ :=
{
v ∈ K⊥

λ : ‖v‖λ ⩽ cλ
1
4+

1
2µ−2α

}
for a suitable constant c> 0 to be chosen later. Note that, if we prove that T has a unique fixed
point Φ in Bλ, then Φ satisfies (3.2) and

LΦ =ΠλL (Φ)+Π⊥
λ L (Φ) =ΠλL (Φ)+Π⊥

λ E +Π⊥
λ N (Φ)

=E +N (Φ)+Πλ (L (Φ)−N (Φ)−E ) ,

namely (3.1) with ci := 〈Πλ (L (Φ)−N (Φ)−E ) ,χZiλ〉λ, for every i = 1, . . . ,N− 1, and the
proof is completed.

To this aim, we chose c so that, for λ large enough, T is a contraction on Bλ. Observe first
that, by lemma 3.2 there exists c1 > 0 such that

‖T(v)‖λ ⩽ c1‖Π⊥
λ E +Π⊥

λ N (v)‖λ
‖T(v1)−T(v2)‖λ ⩽ c1‖Π⊥

λ N (v1)−Π⊥
λ N (v2)‖λ (3.21)

for every v,v1,v2 ∈ Bλ. Recalling (2.10), we have

‖N (v1)−N (v2)‖2λ

=

ˆ
G
( f(Wλ + v1)− f(Wλ + v2)− f ′ (Wλ)(v1 − v2))(N (v1)−N (v2)) dx

so that by Hölder inequality

‖N (v1)−N (v2)‖λ ⩽ λ−1/2 ‖f(Wλ + v1)− f(Wλ + v2)− f ′ (Wλ)(v1 − v2)‖L2(G) . (3.22)

Now, recalling that f(s) = (s+)2µ+1 and µ⩾ 1
2 , the mean value theorem guarantees the exist-

ence of functions θ, θ̃ : G → [0,1] such that
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ˆ
G

∣∣f(Wλ + v1)− f(Wλ + v2)− f ′ (Wλ)(v1 − v2)
∣∣2 dx

= (2µ+ 1)2 (2µ)2
ˆ
G

∣∣Wλ + θ̃ (θv1 +(1− θv2))
∣∣2(2µ−1)∣∣θv1 +(1− θ)v2

∣∣2∣∣v1 − v2
∣∣2 dx .

Since by definition ‖Wλ‖∞ ≲ λ
1
2µ , whereas by the L∞–Gagliardo–Nirenberg inequality of G

(see e.g. [9, section 2]) and vi ∈ Bλ, i = 1,2,

‖vi‖2L∞(G) ≲ ‖vi‖L2(G)‖v ′i ‖L2(G) ⩽ λ−1/2‖vi‖2λ ⩽ c2λ
1
µ−4α i = 1,2 ,

plugging into the previous formula yields

ˆ
G

∣∣f(Wλ + v1) − f(Wλ + v2)− f ′ (Wλ)(v1 − v2)
∣∣2 dx

≲ c2λ2−4α‖v1 − v2‖2L2(G) ⩽ c2λ1−4α‖v1 − v2‖2λ ,

which coupled with (3.22) gives

‖N (v1)−N (v2)‖λ ≲ cλ−2α‖v1 − v2‖λ .

Combining with the second line of (3.21) shows that there exists a constant c2 > 0 such that
for every λ large enough it holds

‖T(v1)−T(v2)‖λ ⩽ c2cλ
−2α‖v1 − v2‖λ ∀v1,v2 ∈ Bλ,

i.e. T is a contraction on Bλ since α> 0 by assumption. Furthermore, by (3.15) and (3.21) and
the previous estimate with v1 = v, v2 = 0 we obtain

‖T(v)‖λ ⩽ c1
(
c3λ

1
4+

1
2µ−2α + c2cλ

−2α‖v‖λ
)
⩽ c1

(
c3 + c2c

2λ−2α
)
λ

1
4+

1
2µ−2α ,

for a suitable constant c3. Hence, for sufficiently large λ it is enough to choose e.g. c= 2c1c3
to obtain that T maps Bλ into itself, thus concluding the proof.

4. The finite-dimensional problem

In view of proposition 3.1, to complete the proof of theorem 1.3 it is enough to solve the
finite-dimensional problem in the coefficients bj, j = 1, . . . ,N− 1. This is done by finding
b1, . . .,bN−1 such that the numbers ci’s in (3.1) are zero and so the functionWλ +Φ is a genu-
ine solution of problem (2.12). In this section we start doing this by proving a result that relates
the bj’s we are looking for with the critical points of a suitable function on RN−1. To this end,
we introduce G : RN−1 → R defined by

G(b1, . . . ,bN−1) :=
N∑
j=1

(
N−1∑
k=1

bke
k
j

)3

, (4.1)

where the vectors eℓ are defined in (2.5). This function, which one usually refers to as the
reduced energy, plays a crucial role in our discussion, as highlighted by the next result.

18
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Proposition 4.1. Let (b1, . . . ,bN−1) ∈ RN−1 be an isolated critical point of G with non-zero
local degree. Then there exists λ0 > 0 (depending on (b1, . . . ,bN−1)) such that, for every λ⩾
λ0, there exists (bλ1 , . . . ,b

λ
N−1) ∈ RN−1, approaching (b1, . . . ,bN−1) as λ→∞, such that the

corresponding real numbers c1, . . . ,cN−1 in (3.1) vanish.

Proof. For every j = 1, . . . ,N− 1, multiplying (3.1) by χZ( j)λ we have

〈L (Φ)−E −N (Φ) ,χZ( j)λ 〉λ =
N−1∑
i=1

ci〈χZ(i)λ ,χZ
( j)
λ 〉λ = cj

(
aλ

1
µ+ 1

2 + o
(
λ

1
µ+ 1

2

))
(4.2)

for every λ large enough and for a suitable constant a> 0, since by the same computations
in (3.7) and (3.8)

〈χZ(i)λ ,χZ
( j)
λ 〉λ = 0 if i 6= j and

∥∥∥χZ( j)λ

∥∥∥2
λ
= aλ

1
2+

1
µ + o

(
λ

1
2+

1
µ

)
as λ→+∞. Hence, system (4.2) is diagonal in the cj’s and, to prove that it admits only the
trivial solution cj = 0 for every j, it is enough to find suitable values of λ and of the bj’s for
which the left hand side of (4.2) is equal to zero.

To this end, we show that, for sufficiently large λ, there exist bλ1 , . . . ,b
λ
N−1 as in the statement

of the proposition and making the left hand side of (4.2) vanish by proving that

〈L (Φ)−E −N (Φ)),χZ( j)λ 〉λ =−λ
1
2+

1
µ−2αA

∂G(b1,b2, . . .,bN−1)

∂bj
(1+ o(1)) , (4.3)

where

A :=
µ(2µ+ 1)

3

ˆ
R+

ϕ2µ−1 (ϕ ′)
3 dx .

Observe that this is enough to conclude, since for large λ we can interpret the right hand side
of (4.3) as−Aλ

1
2+

1
µ−2α times the jth derivative of a small perturbation ofG. Since by assump-

tion G admits a critical point (b1, . . . ,bN−1) with non-zero local degree, such a perturbation
admits a critical point too, say (bλ1 , . . . ,b

λ
N−1), converging to (b1, . . . ,bN−1) as λ→+∞.

We are thus left to prove (4.3). First, we estimate the term

〈E ,χZ( j)λ 〉λ =

ˆ
G
E1χZ

( j)
λ dx+

ˆ
G
E2χZ

( j)
λ dx , (4.4)

where E1,E2 as in (3.17) and (3.18) (the previous identity follows by (3.16)). We have∣∣∣∣ˆ
G
E1χZ

( j)
λ dx

∣∣∣∣=
∣∣∣∣∣
ˆ
G

[
χ ′ ′
(
Ψλ +

N−1∑
i=1

bi,λZ
(i)
λ

)
+ 2χ ′

(
Ψλ +

N−1∑
i=1

bi,λZ
(i)
λ

) ′

+(χ2µ+1 −χ)

(
Ψλ +

N−1∑
i=1

bi,λZ
(i)
λ

)2µ+1]
χZ( j)λ dx

∣∣∣∣∣
≲ λ

1
µ

ˆ
B(V,2ℓ)\B(V,ℓ)

∣∣∣∣∣Ψ(
√
λx)+

N−1∑
i=1

bi,λZ
(i)(

√
λx)

∣∣∣∣∣ ∣∣∣Z( j)(√λx)∣∣∣ dx
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+λ
1
µ+ 1

2

ˆ
B(V,2ℓ)\B(V,ℓ)

∣∣∣∣∣Ψ ′(
√
λx)+

N−1∑
i=1

bi,λ
(
Z(i)
) ′
(
√
λx)

∣∣∣∣∣ ∣∣∣Z( j)(√λx)∣∣∣ dx
+λ

1
µ+1
ˆ
B(V,2ℓ)\B(V,ℓ)

∣∣∣∣∣Ψ(
√
λx)+

N−1∑
i=1

bi,λZ
(i)(

√
λx)

∣∣∣∣∣
2µ+1 ∣∣∣Z( j)(√λx)∣∣∣ dx .

Since bi,λ = λ−αbi with bi’s in a bounded neighbourhood of
(
b1, . . . ,bN−1

)
and Z(i),

(
Z(i)
) ′ ∈

L∞(SN), if λ is large enough the previous estimate becomes

∣∣∣∣ˆ
G
E1Z

( j)
λ dx

∣∣∣∣ ≲ λ
1
µ− 1

2

ˆ 2ℓ
√
λ

ℓ
√
λ

|ϕ||ϕ| ′ dx+λ
1
µ

ˆ 2ℓ
√
λ

ℓ
√
λ

|ϕ ′|2 dx+λ
1
µ+ 1

2

ˆ 2ℓ
√
λ

ℓ
√
λ

|ϕ|2µ+1|ϕ ′|dx ,

whereϕ is the soliton in (1.4), and since bothϕ,ϕ ′ decay exponentially as x→+∞ this implies
that ∣∣∣∣ˆ

G
E1Z

( j)
λ dx

∣∣∣∣≲ e−σ
√
λ as λ→+∞ (4.5)

for some σ> 0. As for the second integral on the right hand side of (4.4), by (3.18) we write

ˆ
G
E2χZ

( j)
λ dx=

1
2

ˆ
G
χ2f ′ ′ (Ψλ)

(
N−1∑
i=1

bi,λZ
(i)
λ

)2

Z( j)λ dx+Θ(λ) (4.6)

with

Θ(λ) :=

ˆ
G
χ2

[
f

(
Ψλ +

N−1∑
i=1

bi,λZ
(i)
λ

)
− f(Ψλ)− f ′ (Ψλ)

N−1∑
i=1

bi,λZ
(i)
λ

−1
2
f ′ ′ (Ψλ)

(
N−1∑
i=1

bi,λZ
(i)
λ

)2
Z( j)λ dx .

Since f(s) = (s+)2µ+1, by (2.15) and the definition of bi we obtain

|Θ(λ)|≲
ˆ
SN

Ψ2µ−2
λ

∣∣∣∣∣
N−1∑
i=1

bi,λZ
(i)
λ

∣∣∣∣∣
3 ∣∣∣Z( j)λ

∣∣∣ dx+ˆ
SN

∣∣∣∣∣
N−1∑
i=1

bi,λZ
(i)
λ

∣∣∣∣∣
2µ+1 ∣∣∣Z( j)λ

∣∣∣ dx
≲ λ1+

1
µ−3α

N−1∑
i=1

ˆ
SN

Ψ2µ−2
(√

λx
)∣∣∣Z(i)(√λx)∣∣∣3 ∣∣∣Z( j)(√λx)

∣∣∣ dx
+λ1+

1
µ−(2µ+1)α

N−1∑
i=1

ˆ
SN

∣∣∣Z(i)(√λx)∣∣∣2µ+1 ∣∣∣Z( j)(√λx)∣∣∣ dx
≲ λ

1
2+

1
µ−3α

ˆ
R+

ϕ2µ−2 |ϕ ′|4 dx+λ
1
2+

1
µ−(2µ+1)α

ˆ
R+

|ϕ ′|2µ+1 dx

= o
(
λ

1
2+

1
µ−2α

)
as λ→+∞ ,
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where the finiteness of the integrals appearing in the last line is guaranteed by the properties
of ϕ and the last equality makes use of 2µ+ 1⩾ 2. Combining with (4.6) then yields

ˆ
G
E2χZ

( j)
λ dx

=
1
2

ˆ
G
χ2f ′ ′ (Ψλ)

(
N−1∑
i=1

bi,λZ
(i)
λ

)2

Z( j)λ dx+ o
(
λ

1
2+

1
µ−2α

)

= µ(2µ+ 1)λ
1
2+

1
µ

ˆ
SN

Ψ2µ−1

(
N−1∑
i=1

bi,λZ
(i)

)2

Z( j)dx+ o
(
λ

1
2+

1
µ−2α

)

= µ(2µ+ 1)λ
1
2+

1
µ−2α

ˆ
R+

ϕ2µ−1 (ϕ ′)
3 dx

N−1∑
k=1

(
N−1∑
i=1

bi e
(i)
k

)2

e( j)k︸ ︷︷ ︸
= 1

3

∂G(b1,...,bN−1)
∂bj

+o
(
λ

1
2+

1
µ−2α

)
,

which coupled with (4.4) and (4.5) entails

〈E ,χZ( j)λ 〉λ =−λ
1
2+

1
µ−2αA

∂G(b1, . . . ,bN−1)

∂bj
(1+ o(1)) (4.7)

for every λ large enough.
As for the term 〈N (Φ),χZ( j)λ 〉λ, by (2.10) and (2.14), the fact that bi,λ = λ−αbi → 0 as

λ→+∞, and the standard L∞ Gagliardo–Nirenberg inequality on G [9, section 2] we have∣∣∣〈N (Φ) ,χZ( j)λ 〉λ
∣∣∣

=

∣∣∣∣ˆ
G
( f(Wλ +Φ)− f(Wλ)− f ′ (Wλ)Φ)χZ

( j)
λ dx

∣∣∣∣
≲
ˆ
G
χ
(
|Wλ|2µ−1|Φ|2 + |Φ|2µ+1

)∣∣∣Z( j)λ

∣∣∣dx≲ (λ+λ
1
2µ ‖Φ‖2µ−1

L∞(G)

)
‖Φ‖2L2(G)

≲
(
1+λ

1
2µ−1

(
λ−

1
4 ‖Φ‖λ

)2µ−1
)
‖Φ‖2λ ≲ λ

1
2+

1
µ−4α = o

(
1
2
+

1
µ
− 2α

)
(4.8)

since α> 0, the last inequality making use of (3.2).
Finally, since Φ ∈ K⊥

λ , by (2.9) we have

〈L (Φ) ,χZ( j)λ 〉λ =−
ˆ
G
f ′ (Wλ)ΦχZ

( j)
λ dx

=−
ˆ
G

(
f ′ (Wλ)− f ′ (χΨλ)

)
ΦχZ( j)λ dx

−
ˆ
G
f ′ (χΨλ)ΦχZ

( j)
λ dx= o

(
λ

1
2+

1
µ−2α

)
. (4.9)
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Indeed, by (2.13), the definition of bi,λ, (3.2) and α> 0

ˆ
G
|f ′ (Wλ)− f ′ (χΨλ)|

∣∣∣ΦχZ( j)λ

∣∣∣ dx
≲
ˆ
G
χΨ2µ−1

λ

∣∣∣∑bi,λZ
(i)
λ

∣∣∣ ∣∣∣ΦZ( j)λ

∣∣∣ dx+ˆ
G
χ
∣∣∣∑bi,λZ

(i)
λ

∣∣∣2µ ∣∣∣ΦZ( j)λ

∣∣∣ dx
≲

∥∥∥∥∥Ψ2µ−1
λ

(
N−1∑
i=1

bi,λZ
(i)
λ

)
Z( j)λ

∥∥∥∥∥
L2(SN)

+

∥∥∥∥∥∥
(
N−1∑
i=1

bi,λZ
(i)
λ

)2µ

Z( j)λ

∥∥∥∥∥∥
L2(SN)

‖Φ‖L2(G)

≲
(
λ

3
4+

1
2µ−α +λ

3
4+

1
2µ−2µα

)
‖Φ‖L2(G) ≲

(
λ

1
4+

1
2µ−α +λ

1
4+

1
2µ−2µα

)
‖Φ‖λ

= o
(
λ

1
2+

1
µ−2α

)
.

Moreover, since Φ ∈ K⊥
λ ,

−
ˆ
G
f ′(χΨλ)ΦχZ

( j)
λ dx

=

ˆ
G
Φ ′
(
χZ( j)λ

) ′
+λΦχZ( j) dx︸ ︷︷ ︸

=0

−
ˆ
G
f ′(χΨλ)ΦχZ

( j)
λ dx

=

ˆ
SN

(
−
(
Z( j)λ

) ′ ′
+λZ( j)λ − f ′(Ψλ)Z

( j)
λ

)
χΦdx+

∑
e≻V

Φ(V)
(
χZ( j)λ

) ′

e
(V)

+

ˆ
G

(
f ′(Ψλ)− f ′(χΨλ)

)
ΦχZ( j)λ dx−

ˆ
G

(
χ ′ ′Z( j)λ + 2χ ′

(
Z( j)λ

) ′
)
Φdx .

By lemma 2.1, the definition of Z( j)λ and the properties of χ, one has

ˆ
SN

(
−
(
Z( j)λ

) ′ ′
+λZ( j)λ − f ′ (Ψλ)Z

( j)
λ

)
χΦdx= 0

and

∑
e≻V

Φ(V)
(
χZ( j)λ

) ′

e
(V) =

∑
e≻V

Φ(V)
(
Z( j)λ

) ′

e
(V) = 0 ,

whereas arguing as above one easily see that as λ→+∞∣∣∣∣ˆ
G

(
f ′ (Ψλ)− f ′ (χΨλ)

)
ΦχZ( j)λ dx−

ˆ
G

(
χ ′ ′Z( j)λ + 2χ ′

(
Z( j)λ

) ′
)
Φdx

∣∣∣∣≲ e−γ
√
λ

for some γ > 0 (note that both integrals on the left hand side are nonzero only on B(V,2ℓ) \
B(V, ℓ)). Coupling all together proves (4.9), which combined with (4.7) and (4.8) yields (4.3)
and completes the proof.

22



Nonlinearity 37 (2024) 075022 H Chen et al

5. The reduced energy and the end of the proof of theorem 1.1

This section characterizes the critical points of the reduced energy G introduced in (4.1). We
observe that the whole analysis developed so far is insensitive of the degree N of the vertex
V, which for the results of sections 3 and 4 to hold needs to be just greater than or equal to 2.
Conversely, the result of this section is the only point in our work where we need to impose N
odd, as the next lemma clearly shows.

Lemma 5.1. For every odd N⩾ 3, the unique critical point of G is 0 and its local degree
satisfies

deg(∇G,0) = (−1)
N−1
2

(
N−1
N−1
2

)
.

Proof. We first note, for future reference, that from the definition 2.5 of the vectors ei we have

N−1∑
j=1

eij =−eiN =

{
0 if i ⩽ N− 2

N− 1 if i = N− 1.
(5.1)

In view of this, we can write G as

G(b1, . . . ,bN−1) :=
N−1∑
j=1

(
N−1∑
i=1

eijbi

)3

+

(
N−1∑
i=1

eiN bi

)3

=
N−1∑
j=1

(
N−1∑
i=1

eijbi

)3

− ((N− 1)bN−1)
3
.

Now we take the matrix A := (eij)ji, with j, i = 1, . . . ,N− 1 and we change variables by setting
x := Ab, namely

xj :=
N−1∑
i=1

eijbi, j = 1, . . . ,N− 1.

Notice (from the definition of the vectors ei) that the matrix A satisfies detA 6= 0, and that,
by (5.1),

N−1∑
j=1

xj =
N−1∑
j=1

N−1∑
i=1

eijbi =
N−1∑
i=1

bi

N−1∑
j=1

eij

=−
N−1∑
i=1

eiN bi = (N− 1)bN−1.

DefiningG : RN−1 → R byG(x) = G(A−1x), so thatG(x) = G(b)whenever x= Ab, there res-
ults

G(x1, . . . ,xN−1) =
N−1∑
j=1

x3j −

N−1∑
j=1

xj

3

,

and since A is invertile, the local degree of 0 is the same for ∇G and ∇G.
To find the critical points of G we observe that

∂G
∂xk

(x1, . . . ,xN−1) = 0 if and only if x2k =

N−1∑
j=1

xj

2

∀k= 1, . . . ,N− 1. (5.2)
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Since the right hand sides do not depend on k, this entails that x2i = x2k for every i,k, so that all
critical points have the form

(x1, . . . ,xN−1) = (σ1t, . . . ,σN−1t) , with σj ∈ {+1,−1} for every j = 1, . . . ,N− 1,

for some t ∈ R. Now, if n denotes the number of negative σj’s in (σ1t, . . . ,σN−1t), then by (5.2)

t2 =

N−1∑
j=1

xj

2

=
(
(N− 1− n)t− nt)

)2
= (N− 1− 2n)2t2,

or (
(N− 1− 2n)2 − 1

)
t2 = 0. (5.3)

As N is odd, the coefficient of t2 never vanishes, so that ∇G(x) = 0 if and only if x= 0, and
the same holds of course for∇G. However, x= 0 is degenerate, since the Hessian matrix of G
at 0 is the null matrix. To compute the local degree of 0 we therefore perturb G by defining,
for fixed small ε> 0,

Gε (x1, . . . ,xN−1) = G(x1, . . . ,xN−1)− ε2
N−1∑
j=1

xj.

Now, as above, we see that if x is a critical point for Gε, then

x2k =

N−1∑
j=1

xj

2

+ ε2 ∀k= 1, . . . ,N− 1. (5.4)

Since, again, the right hand sides do not depend on k, we find once more that if x is critical for
Gε, then

(x1, . . . ,xN−1) = (σ1t, . . . ,σN−1t) , with σj ∈ {+1,−1} for every j = 1, . . . ,N− 1,

for some t ∈ R. Denoting again by n the number of negative σj’s, we see from (5.4) that

t2 =

N−1∑
j=1

xj

2

+ ε2 =
(
(N− 1− n)t− nt)

)2
+ ε2 = (N− 1− 2n)2t2 + ε2,

namely (
(N− 1− 2n)2 − 1

)
t2 =−ε2.

Now it is immediate to check that the coefficient of t2 is negative if and only if n= N−1
2 , in

which case the preceding equation reduces to t2 = ε2, yielding t=±ε.
Therefore the critical points of Gε are of the form

x= (σ1ε, . . . ,σN−1ε)
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where N−1
2 of the σj’s are negative and N−1

2 positive. For this reason, there are exactly

(
N− 1
N−1
2

)
such critical points.

Finally, to compute the degree, we notice that the entries hij(x) of theHessianmatrixHGε(x)
have the form

hii (x) = 6xi − 6
N−1∑
j=1

xj, hij (x) =−6
N−1∑
j=1

xj if i 6= j.

But at a critical point x we have

N−1∑
j=1

xj =
N−1∑
j=1

σjε=
N− 1
2

ε− N− 1
2

ε= 0,

and therefore

HGε (x) = diag{6σ1ε, . . . ,6σN−1ε} ,

from which we obtain

detHGε (x) = (−1)
N−1
2 (6ε)N−1

for every critical point of Gε. Thus, if ε< 1,

deg(∇G,0) = deg
(
∇G,B1,0

)
= deg

(
∇Gε,B1,0

)
=

∑
x∈G−1

ε (0)

sgndetHGε (x) = (−1)
N−1
2

(
N−1
N−1
2

)
,

as there are exactly

(
N− 1
N−1
2

)
critical points.

Remark 5.2. If N is even, by (5.3) one can easily characterize the critical points of G. To this
end, consider the sets

I :=

{
I⊂ {1, . . . ,N− 1} : #I=

N
2

or #I=
N
2
− 1

}
and, for every I ∈ I,

ΣI :=
{
σ = (σ1, . . . ,σN−1) ∈ {−1,1}N−1

: σi =−1 ⇐⇒ i ∈ I
}
.

Then the set of all critical points of G is given by⋃
I∈I

⋃
σ∈ΣI

{σt : t ∈ R} ,

namely the union of 2

(
N− 1

N
2

)
straight lines passing through the origin inRN−1. In particular,

G has no isolated critical point and proposition 4.1 does not apply anymore.

Proof of theorem 1.1. Its is a direct consequence of propositions 3.1 and 4.1 and lemma 5.1.
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6. Proof of theorem 1.2

This section is devoted to our main result about multi peaked solutions of (1.2) concentrating
at finitely many vertices with odd degree. Since the argument of the proof is analogous to that
developed so far for theorem 1.1, here we limit to sketch it highlighting the main differences.

Let M⩾ 2 be a fixed natural number and V1, . . . ,VM ∈ V be distinct vertices of G such that
Ni := deg(Vi)⩾ 3 is odd for every i. As pointed out in the Introduction, with no loss of general-
ity we identify each Vi with 0 along every edge e� Vi. Furthermore, we set ℓVi

:=mine≻Vi
|e|/4.

To prove theorem 1.2, for every λ large enough we set

Wλ :=
M∑
i=1

χi

ΨNi,λ +

Ni−1∑
j=1

bij,λZ
( j)
λ

 (6.1)

where, for every i = 1, . . . ,M, we take

• χi : G → [0,1] to be a smooth cut-off function such that χi ≡ 1 on B(Vi, ℓVi
) and χi ≡ 0 on

G \B(Vi,2ℓVi
);

• ΨNi,λ := λ
1
2µΨNi

(√
λx
)
for every x ∈ SNi , with ΨNi as in (1.5);

• Z( j)λ (x) := λ
1
2µ Z( j)

(√
λx
)
for every x ∈ SNi and j = 1, . . . ,Ni− 1, with Z( j) as in lemma 2.1;

• bij,λ = λ−αbij, with α> 0 and bij ∈ R to de determined, for every j = 1, . . . ,Ni− 1.

We then look for positive solutions of (1.2) in the form uλ =Wλ +Φ, withWλ as in (6.1) and
Φ a smaller order term to be find. According to section 2, to solve this problem we look for
Φ ∈ H1(G) and bij ∈ R, j = 1, . . . ,Ni− 1, i = 1, . . . ,M, such that

L (Φ) = E +N (Φ)

with L ,N ,E as in (2.9), (2.10) and (2.11) respectively.
To this end, we introduce the sets

KM,λ :=

v ∈ H1 (G) : v=
M∑
i=1

χi

Ni−1∑
j=1

cijZ
( j)
λ for some cij ∈ R, j = 1, . . . ,Ni− 1, i = 1, . . . ,M


K⊥
M,λ :=

{
v ∈ H1 (G) : ⟨v,χiZ( j)λ ⟩λ = 0, ∀j = 1, . . . ,Ni− 1, i = 1, . . . ,M

}
and the corresponding projectionsΠM,λ : H1(G)→ KM,λ,Π⊥

M,λ : H1(G)→ K⊥
M,λ. Analogously

to section 3, we have the following.

Proposition 6.1. For every compact subset C in R(N1−1)×···×(NM−1), there exists λ0 > 0
(depending on C) such that, for every (bij)1⩽j⩽Ni−1

i=1,...,M
∈ C and every λ > λ0, there exist unique

Φ ∈ K⊥
M,λ and coefficients (cij)1⩽j⩽Ni−1

i=1,...,M
∈ R(N1−1)×···×(NM−1) (depending on Φ) for which it

holds

L (Φ) = E +N (Φ)+
M∑
i=1

χi

Ni−1∑
j=1

cijZ
( j)
λ . (6.2)

Moreover,

‖Φ‖λ ≲ λ
1
4+

1
2µ−2α .
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Proof. The argument is the same as that in the proof of proposition 3.1.
We first need to show that, for sufficiently large λ, the operator Π⊥

λ L is invertible with
continuous inverse on K⊥

M,λ. Since whenWλ is as in (6.1) the operator i∗( f ′(Wλ)) is compact,
this can be done with a simple adaptation of the proof of lemma 3.2: we assume the existence of
λn →+∞, vn ∈ K⊥

M,λn
such that ‖vn‖λn = 1 for every n and ‖Π⊥

M,λn
L (vn)‖λn → 0 as n→+∞

and we seek a contradiction. Step 1 of the proof of lemma 3.2 works exactly the same here,
simply with χiZ

( j)
λn

in place of χZ( j)λn
. To recover Step 2 we proceed as follows. On the one

hand, we have again
ˆ
G
f ′ (Wλn)v

2
n dx= 1+ o(1) as n→+∞ .

On the other hand, we define again ṽn := λn
1
4 vn
(
x/
√
λn
)
on the scaled graph Gn :=

√
λnG.

Then, for every i = 1 . . . ,M, we denote by ṽn,i the restriction of ṽn to B(Vi,2ℓVi

√
λn) in Gn.

Arguing as in Step 2 of the proof of lemma 3.2 it is easy to show that ṽi,n converges weakly in
H1 and strongly in Lq on compact subsets of SNi to 0 as n→+∞ for every i, thus yielding
ˆ
G
f ′ (Wλn)v

2
n dx

=
M∑
i=1

ˆ
B(Vi,2ℓVi

√
λn)

χ2µ
i

(
x/
√
λn

)
f ′

ΨNi (x)+
N−i−1∑
j=1

bij,λnZ
( j) (x)

 ṽ2n,i dx= o(1)

and providing the desired contradiction.
To conclude, we then need to recover the estimates of the error term E and the contraction

mapping argument. As for E , the computations are the same as in Step 1 of the proof of
proposition 3.1 with the terms E1,E2 that now read

E1 :=
M∑
i=1

χ ′ ′
i

ΨNi,λ +

Ni−1∑
j=1

bij,λZ
( j)
λ

+ 2
M∑
i=1

χ ′
i

ΨNi,λ +

Ni−1∑
j=1

bij,λZ
( j)
λ

 ′

+
M∑
i=1

(
χ2µ+1
i −χi

)ΨNi,λ +

Ni−1∑
j=1

bij,λZ
( j)
λ

2µ+1

and

E2 :=
M∑
i=1

χi

f
ΨNi,λ +

Ni−1∑
j=1

bij,λZ
( j)
λ

− f(ΨNi,λ)− f ′ (ΨNi,λ)

Ni−1∑
j=1

bij,λZ
( j)
λ

 .
As for the contraction mapping argument, it is enough to repeat verbatim Step 2 of the proof
of proposition 3.1.

Theorem 1.2 is then a direct consequence of proposition 6.1 and of the next one.

Proposition 6.2. There exists λ0 > 0 such that, for every λ⩾ λ0, there exists (bλij )1⩽j⩽Ni−1
i=1,...,M

∈

R(N1−1)×···×(NM−1), with bλij → 0 as λ→∞ for every j = 1, . . . ,Ni− 1, i = 1, . . . ,M, such that
the corresponding real numbers (cij)1⩽j⩽Ni−1

i=1,...,M
in proposition 6.1 vanish.
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Proof. For every i, j, multiplying (6.2) by χiZ
( j)
λ we obtain

〈L (Φ)−E −N (Φ) ,χiZ
( j)
λ 〉λ = cij〈χiZ( j)λ ,χiZ

( j)
λ 〉λ ,

which with the same computations of the proof of proposition 4.1 can be rewritten as

cij
(
aλ

1
2+

1
µ + o

(
λ

1
2+

1
µ

))
=−λ

1
2+

1
µ−2αA

∂Gi (bi1, . . . ,bi,Ni−1)

∂bij
(1+ o(1))

where, for every i = 1, . . . ,M,

Gi (bi1, . . . ,bi,Ni−1) :=

Ni−1∑
j=1

(
Ni−1∑
k=1

bike
k
j

)3

.

Since Ni is odd for every i, by lemma 5.1 the origin in RNi−1 is a critical point of Gi with
non-zero local degree. Hence, the small perturbation of Gi appearing in the above equations
for cij, j = 1, . . . ,Ni− 1, admits a critical point (bλi1, . . . ,b

λ
i,Ni−1)→ (0, . . . ,0) as λ→+∞, and

we conclude.

7. Proof of corollary 1.3

We end the paper with the proof of corollary 1.3, which in fact requires nomore than combining
a few simple estimates. On the one hand, if uλ is a one-peaked solution as in theorem 1.1, then
by (1.7) direct computations yield formula (1.9) for ‖uλ‖2L2(G) and

Jλ (uλ) = λ
1
µ+ 1

2

(
N
2
J1 (ϕ)+ o(1)

)
, E(uλ) = λ

1
µ+ 1

2

(
N
2
E(ϕ)+ o(1)

)
,

whereas if uλ is a multi-peaked solution of theorem 1.2, by (1.8) we have (1.10) and

Jλ (uλ) = λ
1
µ+ 1

2

(
M∑
i=1

Ni
2
J1 (ϕ)+ o(1)

)
, E(uλ) = λ

1
µ+ 1

2

(
M∑
i=1

Ni
2
E(ϕ)+ o(1)

)
.

Here, as usual ϕ is the soliton (1.4) and J1(ϕ), E(ϕ) are its action and energy onR, respectively.
Conversely, for every ω> 0 set ϕω(x) := ω

1
2µϕ(

√
ω x), so that ϕω ∈Nω(R) is the unique

solution of (1.2) on R with ω = λ. Since, for every λ large enough, there exists vλ ∈Nλ(R)
with compact support on an interval of length 2

λ and such that Jλ(vλ)− Jλ(ϕλ) = o(1) as
λ→+∞, thinking of vλ as a function supported on any given edge of G yields

inf
u∈Nλ(G)

Jλ (u)⩽ Jλ (vλ) = Jλ (ϕλ)+ o(1) = λ
1
µ+ 1

2 J1 (ϕ)+ o(1) .

In particular, since J1(ϕ)> 0 and N,Ni ≥ 3 by assumption, comparing with the previous for-
mula implies

Jλ (uλ)> inf
u∈Nλ(G)

Jλ (u)

for every uλ as in Theorems 1.1 and 1.2. Hence, uλ is not a ground state of the action inNλ(G).
As for the energy, let us distinguish the cases µ< 2, µ= 2, µ> 2.

28



Nonlinearity 37 (2024) 075022 H Chen et al

If µ> 2 there is nothing to prove, since it is well-known that inf
u∈H1

ν(G)
E(u) =−∞ for every

G ∈G and ν > 0 (see e.g. [9]).
If µ= 2, the discussion in [7] shows that inf

u∈H1
ν(G)

E(u) =−∞ for every G ∈G and ν >

‖ϕ‖2L2(R). SinceN,Ni ⩾ 3 by assumption, (1.9) and (1.10) yield ‖uλ‖L2(G) > ‖ϕ‖L2(R) for every
uλ in theorems 1.1 and 1.2, thus proving again that it cannot be a ground state of the energy in
the mass-constrained space.

If µ< 2, note that for every ν > 0 one has

‖ϕω‖2L2(R) = ν ⇐⇒ ω =

(
ν

‖ϕ‖2L2(R)

) 2µ
2−µ

.

Hence, considering as above suitable compactly supported functions, it follows that

inf
u∈H1

ν(G)
E(u)⩽ E

(
ϕ(

ν/∥ϕ∥2
L2(R)

) 2µ
2−µ

)
+ o(1) =

(
ν

‖ϕ‖2L2(R)

) 2+µ
2−µ

E(ϕ)+ o(1)

as ν→+∞. In particular,

ν = λ
1
µ− 1

2
N
2
‖ϕ‖2L2(R) =⇒ inf

u∈H1
ν(G)

E(u)⩽
(
N
2

) 2+µ
2−µ

λ
1
µ+ 1

2E(ϕ)+ o(1)

ν = λ
1
µ− 1

2

M∑
i=1

Ni
2
‖ϕ‖2L2(R) =⇒ inf

u∈H1
ν(G)

E(u)⩽
(

M∑
i=1

Ni
2

) 2+µ
2−µ

λ
1
µ+ 1

2E(ϕ)+ o(1) .

Since E(ϕ)< 0 and N,Ni ⩾ 3, by (1.9) and (1.10), comparing with the explicit formulas above
for E(uλ) proves again that uλ is not a ground state of the energy among the functions with
the same mass and concludes the proof of corollary 1.3.
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