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Structural topology optimization for plastic-limit behavior of 
I-beams, considering various beam-column connections

P�eter Grubitsa, Raffaele Cucuzzab, Muayad Habashneha, Marco Domaneschib,  
Peyman Aelac, and Majid Movahedi Rada 

aDepartment of Structural and Geotechnical Engineering, Sz�echenyi Istv�an University, Gy}or, Hungary; 
bDepartment of Structural, Building and Geotechnical Engineering, Politecnico Di Torino, Torino, Italy; 
cDepartment of Building and Real Estate, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China 

ABSTRACT 
This work proposes topology optimization for steel I-beams, including consider
ation of bolted beam-column connections with geometric and material nonlin
ear analysis. The aim is to assess and compare the topological configurations 
influenced by different connections, examining their stress distribution and 
rotational stiffness to illustrate the potential of structural optimization. The bi- 
directional evolutionary structural optimization (BESO) approach is imple
mented. Furthermore, several bolted steel beam-column configurations were 
validated based on experimental tests. Subsequently, a series of finite element 
models were developed, contributing to a comprehensive understanding of the 
plastic-limit behavior of I-beams under different loading conditions. The pro
posed method could potentially use a lesser quantity of material while main
taining the same level of structural performance. The results indicate that the 
implementation of structural topology optimization on I-beams while consider
ing various beam-column connections, yields structural performance similar to 
that of solid web configurations, achieved through material reduction.
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1. Introduction

In recent decades, engineers have increasingly directed their attention toward structural optimiza
tion, driven by advancements in technology (Cucuzza et al. 2023), environmental considerations 
(Cucuzza et al. 2024), and economic factors. Structural optimization is presently categorized into 
three distinct classifications: size, shape, and topological optimization (Christensen and Klarbring 
2008; Hsu 1994; Ramm, Maute, and Schwarz 1998). The key aim of this process is to elevate struc
tural performance to the maximum extent possible within predefined constraints, with a specific 
focus on achieving optimal weight-stiffness and weight-to-resistance ratios (Bendsøe and Sigmund 
2004; Rozvany and Lewi�nski 2014). Elevating the performance of mechanical structures through 
topology optimization constitutes a complex task, necessitating the automated determination of the 
optimal material arrangement to ensure efficient utilization (Hao, Liang, and Peigen 2014).

In the last several decades, topology optimization has undergone significant evolution, leading 
to the development of numerous new computational concepts (L�og�o and Ismail 2020). One of 
the key approaches in topology optimization is the Solid Isotropic Material with Penalization 
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(SIMP), in which the material volume serves as the design variable (Bendsøe 1989). Another sig
nificant method employed is Evolutionary Structural Optimization (ESO), involving the gradual 
elimination of inefficient elements to attain an optimal structure (Xie and Steven 1993). In 
response to the limitations of ESO, the Bi-directional Evolutionary Structural Optimization 
(BESO) approach was created, capable of both removing material to eliminate low stress and add
ing material to reduce high stress (Querin, Steven, and Xie 1998). Additionally, other notable 
methods include the topological derivative method, the level set technique, and the phase field 
approach (L�og�o and Ismail 2020).

The topology optimization is primarily employed in the automotive and aerospace industry 
(Pucker and Grabe 2011), but also had a major impact on the structural engineering. As a conse
quence, numerous instances of topology optimization applications have emerged in this field 
(Blachowski, Tauzowski, and L�og�o 2020; Gao, Li, and Ma 2017; Habashneh and Movahedi Rad 
2024a; Luo et al. 2014). One of the most fundamental uses includes discrete optimization of 
truss-like structures, as seen in early applications like transmission tower design through topology 
and shape optimization (Shea and Smith 2006) or truss optimization method (Torii, Lopez, and 
Biondini 2012), where the yielding stress and acting forces are treated as random variables. 
Furthermore, fundamental implementations involve the work of Rozvany, Querin, and L�og�o 
(2004) on the Sequential Element Rejection and Admission (SERA) method to address multicon
straint problems, and Beghini et al.’s research on integrating engineering with architecture 
through topology optimization (Beghini et al. 2014).

A crucial subfield in civil engineering greatly influenced by topology optimization is the design 
of steel sections. Initially applying this method, (Kingman, Tsavdaridis, and Toropov 2015) 
explored two scenarios in which topology optimization proves to be a powerful tool. This study 
encompasses the structural design of a high-rise structure characterized by geometric complexity 
and the optimal design of a perforated steel I-section beam. Additionally, recent investigations, as 
exemplified by the research of Lee, Yang, and Starossek (2012), underscore the efficacy of topo
logical optimization in connection design by systematically assessing the optimal arrangement or 
reinforcement of materials within designated volumes and design spaces, aiming to maximize 
stiffness under predefined boundary conditions and stresses. In a similar manner, (Ribeiro et al. 
2022) demonstrated the effectiveness of the approach in establishing steel connections. Moreover, 
(Movahedi Rad, Habashneh, and L�og�o 2023) introduced an optimization algorithm, taking into 
account geometric and material nonlinear imperfect analysis in the cases of deterministic and 
probabilistic designs.

Recent studies in topology optimization of steel sections have focused on designing perforated 
I-beams, as seen in (Rocha et al. 2023; Tsavdaridis, Kingman, and Toropov 2015). The findings 
from these investigations have demonstrated that the optimized design holds the potential to 
enhance both the stiffness and load-bearing capacity of beams. Although the utilization of perfo
rated I-beams has become more prevalent, traditional I-beams continue to dominate engineering 
practices (Habashneh et al. 2024; Habashneh and Movahedi Rad 2024b). Moreover, the behavior 
of global structures is substantially influenced by the semi-rigid connections that link the ele
ments, despite the fact that these connections are frequently assumed to be either rigid or semi- 
rigid in design practice (L�og�o, Kaliszky, and Hjiaj 2006). These aspects together raise the question 
of whether topological optimization can achieve equivalent load capacity and stiffness for conven
tional beams under identical conditions, especially when considering the impact of semi-rigid 
connections. This is particularly relevant because one of the main drawbacks of structural opti
mization is its reliance on specific boundary conditions and load scenarios.

To address the aforementioned limitation and respond to the posed question, our research dis
tinguishes itself through an innovative approach that integrates topology optimization specifically 
within the beam-column connection of I-beams. The primary objective is to examine how differ
ent connections influence the topology optimization of I-beams and to explore their impact on 
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the structural behavior of the assemblies, thereby demonstrating the effectiveness and potential of 
structural optimization in achieving significant material savings without compromising structural 
performance. To achieve this goal, the proposed work involves the optimization of I-beams utiliz
ing the bi-directional evolutionary structural optimization (BESO) technique, with a focus on 
various column-beam joints. The finite element models constructed using ABAQUS software 
(Michael 2009), account for elastic-plastic material behavior and geometric non-linearity, ensuring 
a precise simulation of realistic conditions. Following the optimization process, a comparative 
analysis between the results of the optimized beams and conventional I-beams reveals noteworthy 
advancements. Moreover, our work goes beyond conventional approaches to maximize the accur
acy of modeling real-life structural behavior and to provide a more comprehensive understanding 
of the performance of optimized configurations. This is achieved by introducing initial geometric 
imperfections to the idealized beams after the optimization process, in alignment with Eurocode 
standards (European Committee for Standardisation 1993) and building upon previous research 
(Radwan and K€ovesdi 2023; Schillo and Feldmann 2018). As a result, this research makes a note
worthy impact on the field by adopting topology optimization within the domain of beam-col
umn connections. This integration significantly elevates the comprehension and practical 
application of structural optimization principles in the design of I-beams.

2. Theoretical foundation

This chapter provides an in-depth exploration of the theoretical foundations of topological opti
mization. Aligned with the central goal of the study, it is imperative to elucidate the principles 
governing the plastic-limit state. Furthermore, the paper introduces the foundational aspects guid
ing the consideration of geometric nonlinear analysis.

2.1. Concept of the BESO method

This part provides an elucidation of the Bi-directional Evolutionary Structural Optimization 
(BESO) approach. This concept involves a systematic process of adding and removing sections to 
optimize structural performance for a given quantity of material based on the sensitivity levels of 
individual elements, ultimately achieving the most effective state (Huang and Xie 2010; Yang 
et al. 1999).

A wide range of techniques, apart from topology optimization approaches, has been developed 
in the field of structural optimization to achieve highly effective designs, encompassing various 
advanced algorithms, as exemplified by the work of Kaliszky and L�og�o (2003). However, in this 
research, BESO, recognized as a key technique in topology optimization, was employed due to its 
unique strengths (Huang, Xie, and Burry 2007). A notable advantage of the BESO over other 
methods lies in its ability to enhance the precision and convergence of the optimization process 
by incorporating a filter mechanism to address mesh-dependency problems and checkerboard 
patterns. This can potentially reduce simulation time and improve the accuracy of the design. 
Moreover, the BESO also provides freedom in configuring the objective function and adding fur
ther design constraints.

In accordance with earlier research (Querin, Steven, and Xie 1998), the topology optimization 
using the BESO technique is defined as follows:

Minimize : C ¼ uTKu (1) 

Subject to : V� ¼
XN

i¼1
Vixi (2) 

MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES 3



xi 2 0, 1f g (3) 

V�

V0
− Vf � 0 (4) 

where C indicates the structure’s compliance, K provides the global stiffens matrix, and u repre
sents the displacements vector. To further clarify, the structure is divided into N elements, where 
Vi is the volume of a single component, and V� is the volume of the complete structure. The bin
ary design employs xi as a variable to indicate whether an element is present or absent, with two 
possible values: 1 stands for material, and 0 stands for void. Furthermore, the design domain’s 
volume is marked by V0, and the volume fraction is represented by Vf :

The following formula describes the degree of sensitivity of one component, characterized as 
the alteration of elastic strain energy:

ae
i ¼ DCi ¼

1
2

uif g
T Ki½ � uif g (5) 

where ui corresponds to the displacement of the individual element, and Ki symbolizes the 
stiffness matrix, taking into account the sensitivity of void components, which is equal to 
zero.

Achieving the optimal state of the structure becomes more challenging due to the mesh- 
dependency problem and the presence of checkerboard patterns. To address these limitations, the 
BESO method applies a filtering scheme to determine the level of sensitivity of empty compo
nents (Huang and Xie 2007). The identification of nodes tasked with preserving the sensitivity of 
the element is achieved through the utilization of the constant length scale in the filtering scheme, 
denoted as rmin: Derived from the nodes within the sub-domain Xi, the enhanced sensitivity 
number is calculated using the following formula:

ai ¼

Xk

j¼1
w rijð Þa

n
j

Xk

j¼1
w rijð Þ

(6) 

where k corresponds to the node’s number within the sub-domain and wðrijÞ is an expression of 
the linear weight factor, as given by the formula:

w rijð Þ ¼ rmin − rij (7) 

The equation that follows can be used to determine the node’s sensitivity:

an
j ¼

XM

i¼1
wia

e
j (8) 

where M devotes the quantity of elements attached to the relevant node, and wi devotes the ele
ment’s weight parameter, expressed as:

wi ¼
1

M − 1
1 −

rij

XM

i¼1
rij

0

B
@

1

C
A

(9) 

where rij represents the distance in units between the individual element’s center and the node. 
According to the study by Huang et al. (Huang, Xie, and Burry 2007), the optimization process 

4 P. GRUBITS ET AL.



of the evolution can be stabilized by employing an averaging scheme, defined as:

ai ¼
ak

i þ ak−1
i

2
(10) 

where k stands for the number of the currently performed iteration. Additionally in the next iter
ation ak

i will be equel to ai: The following formula dedicated to the target volume for the subse
quent cycle Vkþ1 :

Vkþ1 ¼ Vk 16ERð Þ (11) 

where ER is a representation for the evolutionary ratio. When the volume satisfies the condition, 
it will stay constant throughout the subsequent iterations, which are determined by the following 
equation:

Vkþ1 ¼ V� (12) 

After completing this process, the components are grouped based on their descending hier
archy of individual sensitivity level. Subsequently, specific conditions will prompt the elimination 
of solid elements, defined by:

ai � ath
del (13) 

while empty elements will only be present if:

ai > ath
add (14) 

where the threshold sensitivity values for removing and adding elements are denoted by ath
del and 

ath
add, respectively.

Through the incremental integration and elimination of sections, the BESO approach opti
mizes a system until the convergence condition is met, specified as follows:

error ¼

XN

i¼1
Fk−iþ1 − Fk−N−1ð Þ

�
�
�
�
�

�
�
�
�
�

XN

i¼1
Fk−iþ1

� s (15) 

where F stands for the goal of the function, s represents the tolerance of the convergence, k is 
the number of the latest cycle, and N is a quantity in binary that results in continuous adherence 
for at least ten successful cycles.

2.2. Elasto-plastic BESO analysis

In this study, an elasto-plastic material model for the steel elements was employed in the opti
mization process. According to this model, the plastic limit state is integrated into the BESO 
method. The fundamental principle of this analysis is that the component is subjected to a force 
while assuming this force is continually increasing. In this instance, the expression for the pro
portional load is:

Fi ¼ miF0 (16) 

where F0 represents the external forces applied to the structure, and mi is the load multiplier, a 
monotonically increasing parameter. As mi reaches a certain level, the plastic region of the loaded 
object begins to spread, leading to the development of plastic strains and displacements.

The condition in which an elasto-plastic body undergoes unconstrained plastic deformation 
when subjected to a constant external force, either entirely or in specific sections, is referred to as 
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the plastic limit condition. In this case, the plastic limit load can be expressed as follows:

Fp ¼ mpF0 (17) 

where mp represents the load multiplier, indicating the component undergoing plastic 
deformation.

At this limit condition, equilibrium equations are employed because the internal and external 
forces ensure the static equilibrium of the structure. Additionally, the yield criteria are met by 
considering the stress rij within an object. This involves maintaining quasi-static equilibrium 
under the plastic limit load, as well as taking into account the statistically acceptable level of 
stress rs

ij and the force Fi,s ¼ msF0, defined as:

f rs
ij, k

� �
� 0 (18) 

where k represents the plastic properties associated with a defined material. Taking into consider
ation a deformable component characterized by the volume V and the area of applied load Sq, 
virtual velocities are utilized to compute stress and force distributions, as expressed in the follow
ing formulation:

ð

V

rij _eijdV ¼ mp

ð

Sq

F0vidS (19) 

ð

V

rs
ij _eijdV ¼ ms

ð

Sq

F0vidS (20) 

where _eij is standing for strain rate and vi is standing for the velocities. The result of subtracting 
Eqs. (19) and (20) is:

ð

V

rij − rs
ij

� �
_eijdV ¼ mp − msð Þ

ð

Sq

F0vidS (21) 

In consideration of the yield surface’s convexity and the normality rule, which translates to a 
set of conditions governing the material’s yielding behavior:

rij − rs
ij

� �
_eij � 0 (22) 

therefore, as illustrated in Fig. 1, the following formula is obtained:

mp − msð Þ

ð

Sq

F0vidS � 0 (23) 

The Eq. (23) demonstrates that the component’s velocities are influenced by external forces. 
Furthermore, the concept of the plastic limit condition incorporates the material’s inability to perform 
negative work (Movahedi Rad, Habashneh, and L�og�o 2021). Consequently, the following equation 
applies:

ms − mp � 0 (24) 

The plastic limit multiplier mp can be integrated into the optimization process without adding 
significant mathematical complexity. In this context, the topology optimization using BESO 
method is defined as:

Minimize : C ¼ uTKu (25) 
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Subject to : V� ¼
XN

i¼1
Vixi (26) 

xi 2 f0, 1g (27) 

V�

V0
− Vf � 0 (28) 

ms − mp � 0 (29) 

The constraint ms − mp � 0, incorporated into the optimization process, ensures the viability and 
reliability of the solution in scenarios involving plastic strains. Consequently, this method is well-suited 
for optimizing elastic-plastic structures that experience plastic deformation under high load intensity. 
Conversely, the aforementioned constraint is intentionally omitted in situations that exhibit elastic solu
tions, particularly at lower load ratios. Thus, this method also effectively accommodates elastic behavior.

2.3. Geometric nonlinear analysis

In this study, geometric nonlinearity was utilized during the analysis to take into consideration the 
effects of large deformations. This solution allows the precise prediction of the behavior of different 
steel elements incorporated in finite element simulation. The Piola-Kirchhoff matrix and the Green- 
Lagrange matrix were employed to assess the connection between stress and strain during the calcu
lation (Bathe 2014). Consequently, the Green-Lagrange strain is expressed as follows:

gij ¼
1
2

ui,j þ uj,i þ uk,iuk,jð Þ (30) 

where parameter u is representing the point-wise displacement. For subsequent application, the 
following relation is relevant:

dg ¼ B Uð ÞdU (31) 

where B represents the finite element matrix that relates changes in displacement dU to changes 
in strain dg: In this context, U denotes the displacement matrix of the finite element, encompass
ing the displacements of all the nodes within that element.

Figure 1. The von Mises yield surface under plane stress conditions.
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Regarding Piola-Kirchhoff and Green-Lagrange strains, the linear Hooke’s law is expressed as:

sij ¼ De
ijklgkl (32) 

Where De
ijkl indicates the constitutive tensor of the element, denoted by e, and gkl represents 

the Green-Lagrange strains. When modeling elements with intermediate densities using the power 
law approach, Hooke’s law is given by:

sij ¼ peð Þ
pD0

ijklgkl (33) 

where p is the penalization power and D0
ijkl stands for the constitutive matrix for a homogeneous 

isotropic material. The residual, characterized by deviation from the attained equilibrium, is 
expressed through the following exclusion:

R Uð Þ ¼ P −
ð

V
BTsdV (34) 

where P represents the applied external force matrix and s denotes the Piola-Kirchhoff stress 
matrix. Equilibrium can be achieved when the residual matrix equals zero, which can be deter
mined using the Newton-Raphson method through an iterative process, defined as:

KT ¼ −
@R
@U

(35) 

where KT is standing for the stiffness matrix.

3. Finite element simulation

In this study, the ABAQUS software was employed to model the examined specimens (Michael 
2009). A comprehensive investigation was conducted, incorporating both perfect geometrical and 
material nonlinear analyses (GMNA). Additionally, at a later stage, GMNA was extended by 
introducing initial global geometric imperfections (GMNIA). The results of the numerical simula
tion were validated through experimental tests in three cases (web cleat, angle flange cleat, com
bined). Different types of connections were also added to the research to cover a broader range 
of tests.

The optimization algorithm proposed in this study utilizes ABAQUS for finite element analysis 
in each iteration. The results obtained from the FEA form the basis for the code, implementing 
the BESO method. In summary, the code methodically shapes and refines the designated segment 
over iterations, ultimately reaching an ideal configuration. The entire process is depicted in 
Fig. 2.

3.1. Performing finite element analysis

The first phase of the study involves simulating the behavior of regular steel beams with various 
types of column connections. ABAQUS, a commercial general finite element software, was uti
lized for this purpose.

To characterize the behavior of beams based on different column connections, comprehensive 
3D models were developed, incorporating various joint components. In general, these parts use 
hexahedral-dominated solid 3D elements with 8 nodes and reduced integration (C3D8R). 
Additionally, the analysis incorporates both geometric and material nonlinearity to capture the 
complex behavior exhibited by the steel. In addressing the nonlinear challenge posed by signifi
cant deformation, the Newton-Raphson technique is utilized to identify static equilibrium states 
throughout the unstable phase of the response (Michael 2009).
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For the modeling of the contact between bolts angels, and plates “surface-to-surface” interac
tions were utilized. The contact property incorporates tangential behavior with a friction coeffi
cient of 0.3 and normal behavior with the "hard" contact option (Michael 2009).

3.2. Geometric imperfection

In a subsequent phase of the study, the geometric and material nonlinear analysis incorporated 
an initial imperfection. These imperfections help elucidate deviations from perfect geometry 
observed in real structures. Including these aspects in finite element analysis enhances the accur
acy and precision of predictions regarding the structural behavior.

For the analysis, the initial geometric imperfection was determined as the eigenvector of the 
first eigenmode identified through the linear buckling analysis (LBA) conducted in ABAQUS 
(Michael 2009). The buckling mode observed corresponded to lateral torsion in every configur
ation, albeit with varying values of elastic critical loads. It is noteworthy to mention that the 
main objective of this study is not to determine the smallest value of the collapsing load; instead, 
this work focuses on assessing the impact of geometric imperfections on the behavior of the opti
mized beams.

4. Steel beam-column joint configurations

In this research, a total of 5 configurations were tested, of which the first three are validated 
trough the experimental test of Yang and Tan (2013). All these joints exhibit semi-rigid behavior; 

Figure 2. Process of BESO.
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however, based on previous experience (Ivanyi and Baniotopoulos 2000), their stiffness classifica
tion according to the Eurocode (European Committee for Standardisation 2005b) is closer to that 
of flexible category. Furthermore, two different stiffer configurations were investigated to explore 
the effect of the optimized beam on stress distribution and rotational stiffness of the joint. These 
include a fully welded connection and an extended plate connection, where the cross-sections of 
the beam are the same as those used in the experimental test by Yang and Tan (2013).

4.1. Configurations based on experimental tests

In the first part of the study, the maximum load-bearing capacity of three beam-column assem
blies was calculated, with validation referring to the work of Yang and Tan (2013). The examined 
connections include web cleats, flange cleats, and combinations of these two, as illustrated in Fig. 
3, incorporated with components, loads, and boundary conditions. Based on previous experimen
tal tests, all three connections can be classified as semi-rigid (Ivanyi and Baniotopoulos 2000). 
The main characteristics are detailed in Table 1, while the principal material properties, specified 
in accordance with the EN1993-1-1 (European Committee for Standardisation 2005a) and 
EN1993-1-8 (European Committee for Standardisation 2005b) standards, are provided in Table 2. 
The cross-section of the optimized steel I-beams is UB305x165x40, as investigated in the study of 
Yang and Tan (2013). The beam has a flange width of 165 mm and an overall depth of 304 mm. 
In terms of nominal thicknesses, the flange is 10.2 mm, and the web is 6.1 mm thick.

Figure 3. The configurations based on experimental tests.
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As discussed in previous chapters, the models were constructed using hexahedral-dominated 
solid 3D elements with eight nodes and reduced integration (C3D8R). To balance computational 
efficiency with accuracy, varying mesh sizes were applied to the structural elements. Specifically, a 
general mesh size of 5 mm was employed for the angles, plates, the column, and the section of 
the beam near the connection, while a coarser 25 mm mesh was applied to the remaining portion 
of the beam. Additionally, the bolts were modeled with a finer 2 mm mesh. The mesh structure is 
illustrated in Fig. 4, using the configuration V.3 as an example.

It is important to note that the numerical models employed for optimization in this 
study, as detailed in a subsequent chapter, adhere to the same specifications outlined in this 
section. These characteristics include cross-sectional geometry, material properties, and mesh 
structure.

The initial primary objective was to validate the mentioned beam-column connections, which 
subsequently served as various boundary conditions in the optimization process. The results from 
the FE simulation are presented in Table 3 and compared with those from the experimental tests. 
In all three cases, the load capacity associated with the ultimate displacement is within the accept
able 10% error margin according to the work of Yang and Tan (2013). Additionally, the von 
Mises stresses related to the ultimate load are illustrated in Fig. 5.

Table 1. Main characteristics of the validated configurations.

Configuration ID Connection type Beam Column Angle Bolt

V.1 Web cleats UB305x165x40 – S355 UC203x203x71 – S355 L90x8 – S275 M20 − 8.8
V.2 Flange cleats UB305x165x40 – S355 UC203x203x71 – S355 L90x8 – S275 M20 − 8.8
V.3 Combined UB305x165x40 – S355 UC203x203x71 – S355 L90x8 – S275 M20 − 8.8

Table 2. Main material properties of the steel elements.

Material grade Modulus of elasticity (N/mm2) Yield strength (N/mm2) Ultimate strength (N/mm2)

S355 210,000 355 510
S275 210,000 275 430
8.8 210,000 640 800

Figure 4. The typical mesh structure of the numerical models.
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4.2. Configurations for structural optimization

In the context of topological optimization, a more realistic set-up, as illustrated in Fig. 6, was uti
lized, where beams were positioned between two columns. The parameter “F” marked on the 
pictures indicates the position of the applied load. In these configurations, the different beam- 
column joints served as various boundary conditions. Two additional setups, extended end plate, 
and fully welded beam-column connections, were added to the three semi-rigid models. These 
setups, based on previous experience (Ivanyi and Baniotopoulos 2000) and the numerical results, 
exhibit much more rigid behavior.

In the configurations devised for the presented optimization process, the parameters intro
duced in the validation procedure were employed. These include the cross-sections of the differ
ent parts, the material properties and the mesh structure. In addition, the FEA settings are 
consistent between the validated model and the models presented here.

In the second phase of the investigation, the model’s initial geometric imperfection was uti
lized. For this purpose, eigenvectors corresponding to the first eigenvalue obtained during the 
linear buckling analysis (LBA) were employed. The amplitude of the imperfection was set to 
L/1000, where L represents the length of the I-beam. The ultimate loads obtained are pre
sented in Table 4, including values for configurations both without imperfections and with 
imperfections.

Figure 5. The Resulting Von Mises stresses in the validated numerical models.

Table 3. Experimental and numerical results of the validated configurations.

Configuration ID Connection type

Experimental test Numerical test

Vertical load F (kN) Displacement (mm) Vertical load F (kN) Displacement (mm)

V.1 Web cleats 119.0 367 110.9 368
V.2 Flange cleats 44.8 243 46.7 236
V.3 Combined 77.5 233 71.3 227
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Figure 6. The configurations used for the optimization process.
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5. Implementation of the proposed optimization approach

This section is dedicated to implementing the proposed optimization methodology, with a par
ticular emphasis on minimizing the quantity of material. During the process, the optimized shape 
of the steel I-beam’s web for the earlier presented configurations was determined, taking into 
account the values of the ultimate loads. In these load scenarios, each setup experienced plastic 
deformation. Subsequently, a comparison was conducted between configurations with regular I- 
beams and optimized I-beams, examining stress distribution and rotational stiffness, which con
stituted the primary objectives of the research. Finally, geometrical imperfections were applied to 
the structural assemblies, and the previously analyzed parameters were reevaluated.

To compare the stress distribution across the configurations, the concept of the plastic load 
multiplier was employed. For clarity, different load intensities were applied to the structures, 
where the load value Fs,i equals the initially applied load F0 multiplied by the elastic load multi
plier ms,i: The three ms,i considered are 25%, 50%, and 75% of the ultimate load multiplier mp for 
each configuration, corresponding to the levels at which the structures reach the plastic limit 
state, where the ultimate load is defined as Fu ¼ mpF0: The parameters are presented in Table 5.

For the optimization process, an IntelVR Core
TM 

i5–11320 CPU, operating at 3.20 GHz with 
16.0 GB of RAM, was utilized within a personal computer system. The computational efficiency 
of the proposed approach is assessed through the CPU times for the simulations, which are pre
sented in Table 6.

5.1. Considering the optimized shape of the beams

In this section, the outcomes of the proposed topology optimization method are contrasted with 
those of beams where the webs form a continuum. During the first phase of the process, BESO 

Table 4. Ultimate loads of the configurations used for optimization process.

Configuration ID Connection type Ultimate load without imperfection Fu (kN) Ultimate load with imperfection Fu (kN)

O.1 Web cleats 245 136
O.2 Flange cleats 272 144
O.3 Combined 287 162
O.4 Extended end-plate 310 220
O.5 Welded 339 282

Table 5. Values of the applied load (F0), the ultimate load multiplier (mp) and elastic load multiplier (ms,i).

Configuration ID F0 (kN)

Without imperfection With imperfection

mp ms,1 ms,2 ms,3 mp ms,1 ms,2 ms,3

O.1 100 2.45 0.61 1.23 1.84 1.36 0.34 0.68 1.02
O.2 2.72 0.68 1.36 2.04 1.44 0.36 0.72 1.08
O.3 2.87 0.72 1.44 2.15 1.62 0.41 0.81 1.22
O.4 3.10 0.78 1.55 2.33 2.20 0.55 1.10 1.65
O.5 3.39 0.85 1.70 2.54 2.82 0.71 1.41 2.12

Table 6. The computational time of the optimization process.

Configuration ID Connection type CPU time required for the optimization process (seconds)

O.1 Web cleats 2172
O.2 Flange cleats 1892
O.3 Combined 3132
O.4 Extended end-plate 1597
O.5 Welded 1390
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was applied, considering the same ultimate load value for different configurations as presented in 
Table 4, without incorporating the initial geometric imperfections of the I-beams. The obtained 
topological shapes are presented in Fig. 7. A volume fraction of 70% was set for the topology 
optimization process.

From the result presented in Fig. 7, it can be observed that the optimization process consist
ently resulted in a truss-type structural design in each case. However, the geometry of the opti
mized shapes varies based on the connections between the beams and columns, with variations 
expected in configurations O.4 and O.5. The similarity in behavior and stiffness of the two joints 
in question is the reason for this, serving as nearly identical boundary conditions for the beam 
during the optimization process. Additionally, it can be observed that, in the case of O.1, O.2, 
and O.3, due to the less rigid behaviors of the joints, the moment at the end of the beams is rela
tively low, resulting in a concentration of material distribution more in the middle of the beams. 
Moreover, it’s significant to mention that the topology pattern of configuration O.3 also combines 
the shape of O.1 and O.3.

It is important to emphasize that while this research primarily focuses on the topology optimiza
tion of I-beams from a design perspective, ensuring the manufacturability of the optimized 

Figure 7. The resulted topology shapes of the different configurations.
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structural elements is also a critical objective. Advances in additive manufacturing technologies have 
enabled the production of metal structures with large and complex topologies (Fern�andez et al. 
2021; Ibhadode et al. 2023). Among the various techniques, wire-and-arc additive manufacturing 
(Laghi et al. 2023) is particularly suited for fabricating the optimized beams proposed in this study.

After the optimization process, additional simulations were conducted using the load parame
ters defined in Table 5 as the external load for the different configurations. Tables 7–9 display 

Figure 8. Moment-rotation relations of the configurations without considering geometric imperfections.

Table 7. Comparison between the stress distribution without initial geometric imperfection by considering F1 ¼ ms,1: F0

Configuration ID Solid web I-beam Topology optimization

O.1

O.2

O.3

O.4

O.5
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the von Mises stresses obtained by employing plastic-limit analysis for various configurations. 
The plot of stress distributions provides insights into the behavior of the structural elements.

After examining the results presented in Tables 7–9, it is noticeable that the stress distributions 
in the case of the optimized configurations are generally more evenly distributed along the I- 
beam web. This observation aligns with the principles of the BESO method employed. Similar 
quantities of material exceeding yielding are detected in all scenarios, localized in the load area of 
each assembly.

Finally, a comparison of the rotational stiffness of the configurations was conducted, evaluating 
both solid web beam assemblies and their optimized counterparts. These results are depicted in 
Fig. 8, where the classification boundaries according to EN1993-1-8 can be observed. Evidently, 
the optimization process had a slight impact on the rotational stiffness of the connections. 
However, upon closer examination, the deviation in the maximum moments that can be absorbed 
by the joints, corresponding to the moment resistance of the connection, was found to be less 
than 10% in each case, as shown in Table 10. Remarkably, the initial rotational stiffness for the 
flexible section is assumed to be consistent, whether it’s beams with a solid web or beams with 
an optimized web. Therefore, within the elastic range, the structural behavior and performance of 
conventional and idealized setups are nearly identical, with the maximum deviation remaining 
below 4%, as illustrated in Table 11. Moreover, the behavior of the configurations aligns with the 
outcomes of previous experiments.

Table 8. Comparison between the stress distribution without initial geometric imperfection by considering F2 ¼ ms,2 � F0

Configuration ID Solid web I-beam Topology optimization

O.1

O.2

O.3

O.4

O.5
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5.2. Considering the geometric imperfection

In the final part of the study, initial geometric imperfections were introduced to the beams in the 
previously described configurations to enhance the accuracy of simulating real-life structural 
behavior and to provide a greater understanding of the performance of the optimized setups. 
Additional research was conducted on the stress distribution of the I-beams and on the rotation- 
moment relations of the joints, and a comparison was drawn between the standard I-beams and 
the topology-optimized I-beams. In this section, identical topology shapes, as depicted in Fig. 7, 
were employed.

The von Mises stresses, obtained through simulations considering initial geometric imperfec
tions, are illustrated in Tables 12–14, following the concept of the plastic limit state. After con
ducting the linear buckling analysis (LBA), the amplitude of the eigenmode corresponding to the 
first eigenvalue was set to L=1000 as the initial imperfection for the beam, where L represents the 
length of the I-beam.

During the simulations, lateral buckling of the I-beam due to geometric imperfections occurred 
in each configuration. Consequently, both types of assemblies, with solid-web I-beams and opti
mized-shape I-beams, exhibited lower load capacity and stress intensity when imperfections were 
considered. Generally, the stress distribution, as shown in Tables 12–14, closely resembled the 
results obtained without imperfections, illustrated in Tables 7–9. In this case as well, stress along 

Table 9. Comparison between the stress distribution without initial geometric imperfection by considering F3 ¼ ms,3: F0

Configuration ID Solid web I-beam Topology optimization

O.1

O.2

O.3

O.4

O.5
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Table 10. Deviation in the maximum moment of the connections without geometric imperfection.

Configuration ID

Maximum moment (kNm)

DeviationSolid web BESO

O.1 524 519 0.95%
O.2 593 546 7.93%
O.3 605 577 4.63%
O.4 773 726 6.08%
O.5 996 933 6.33%

Table 11. Deviation in the initial rotational stiffness of the connection without geometric imperfection.

Configuration ID

Initial rotational stiffness (kNm/rad)

DeviationSolid web BESO

O.1 39,564 38,642 2.33%
O.2 74,302 72,433 2.52%
O.3 80,462 77,527 3.65%
O.4 169,938 164,001 3.49%
O.5 355,200 351,238 1.12%

Table 12. Comparison between the stress distribution with initial geometric imperfection by considering F1 ¼ ms,1: F0

Configuration ID Solid web I-beam Topology optimization

O.1

O.2

O.3

O.4

O.5
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the topology-optimized web of the beams was more evenly balanced, achieving consistent struc
tural behavior and fulfilling the main objective of the BESO method.

As one of the primary goals of the study, the rotational stiffness of the configurations, consid
ering initial geometric imperfections of the I-beams, was compared to each other. The obtained 
results are depicted in Fig. 9, where, once again, the classification boundaries according to 
EN1993-1-8 (European Committee for Standardisation 2005b) standard are visible. Due to their 
initial buckling shape, the I-beams underwent lateral buckling deformations early in the loading 
history within the elastic range. This phenomenon significantly compromised the structural stabil
ity of the assemblies. The influence of these assumed buckling modes extends throughout the 
entire configuration, resulting in changes to its structural behavior, specifically contributing to a 
decrease in the connection’s load-bearing capacity. Consequently, the maximum moment absorp
tion capability of the joints is lower than the values presented in Table 10 from the preceding sec
tion. Despite topology optimization influencing the rotation-moment relations to some extent, 
the deviation in moment resistance of the connections across configurations remains below 10%, 
as illustrated in Table 15. Furthermore, there is no significant disparity in the initial rotational 
stiffness values between the optimized beams and the solid web beam assemblies, with the max
imum deviation remaining below 5%, as shown in Table 16.

Table 13. Comparison between the stress distribution with initial geometric imperfection by considering F2 ¼ ms,2: F0

Configuration ID Solid web I-beam Topology optimization

O.1

O.2

O.3

O.4

O.5
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Table 14. Comparison between the stress distribution with initial geometric imperfection by considering F3 ¼ ms,3: F0

Configuration ID Solid web I-beam Topology optimization

O.1

O.2

O.3

O.4

O.5

Figure 9. Moment-rotation relations of the configurations considering geometric imperfections.

Table 15. Deviation in the maximum moment of the connections with geometric imperfection.

Configuration ID

Maximum moment (kNm)

DeviationSolid web BESO

O.1 300 274 8.67%
O.2 322 291 9.63%
O.3 358 334 6.70%
O.4 487 455 6.57%
O.5 625 582 6.88%

MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES 21



6. Conclusion

In this paper, a comprehensive geometric and material nonlinear analysis of five different beam-col
umn configurations incorporating topology optimization of the designated section of the inspected 
beams was conducted. One of the biggest disadvantages of structural topology optimization is that 
the structure is optimized for a specific boundary condition and load. Consequently, in this paper, 
the optimized shape of the same I-beam was produced considering different types of connections, 
serving as various boundary conditions. As a result, we obtained different layouts, with the exception 
of one case, due to the similar behavior of the affected assemblies.

The primary objective of this investigation was to compare the structural behavior of conven
tional beams and optimized beams. To achieve this goal, in the first part of the paper, three different 
joints were validated based on previous experimental tests. After this procedure, a more realistic 
configuration was introduced proceeding from the results of the validation, and additionally, two 
more connection types were added to the simulations to broaden the investigation spectrum. Using 
the powerful BESO algorithm presented in this study, the optimized shapes of the I-beams associ
ated with various connections were created. Finally, the behavior of the optimized setups was com
pared to the regular ones through stress distribution and rotational stiffness.

The suggested method aimed to optimize the stress intensities and guarantee, with acceptable 
deviation, the same structural performance with a smaller quantity of material by taking the plas
tic load multiplier into consideration. This application demonstrated the efficacy and rationality 
of the method, resulting in encouraging findings that are reported in this study. The optimized 
configurations showed nearly the same rotation-moment relations with no relevant deviation in 
the peak moment that the joints can absorb, both with and without incorporating initial geomet
ric imperfections of the I-beams. In every instance, this margin was less than the permissible 
10%. Remarkably, there was a negligible difference in the initial rotational stiffness of the joints 
between the ordinary and optimized assemblies, with a maximum deviation of 4.85%.

In conclusion, this paper represents a relevant improvement in the design methodologies for 
beams considering different types of column-beam connections. The results obtained from the 
simulations verify that the proposed optimization method has great potential to provide an eco
nomical design with savings in the quantity of material using the concept of the plastic limit 
state.
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