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A novel approach combining bootstrapped non-intrusive

reduced order models and unscented transform for the
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Federica Carbonea, Emanuela Maffiaa, Andrea Carpignanoa
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Abstract

The risk assessment for safety-critical, complex systems is a very challenging
computational problem when it is performed with high-fidelity models, e.g.
CFD, like in the case of accidental gas releases in congested systems. Within
this framework, a novel CFD approach, named Source Box Accident Model,
has been recently proposed to efficiently model such phenomena by splitting
the simulation of the gas release and its subsequent dispersion in the system
in two steps. In this view, the present paper proposes a non-intrusive, Proper
Orthogonal Decomposition-Radial Basis Functions reduced order model that
exploits the two-step nature of the SBAM approach, to mimic the behaviour
of the original, long-running CFD model code at a significantly lower com-
putational cost. Moreover, the paper presents a methodology combining the
bootstrap and unscented transform approaches to efficiently assess the ROM
uncertainty in the safety-critical simulation output quantities of interest, e.g.
the flammable volume. The results obtained in a test case involving a high
pressure, accidental gas release in an off-shore Oil & Gas plant are in very
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satisfactory agreement with those produced by CFD, with a relative error
smaller than 10% and a reduction in the computational time of about three
orders of magnitude.

Keywords: reduced order models; radial basis functions; proper orthogonal
decomposition; computational fluid-dynamics; high-pressure gas release;
ANSYS Fluent;

Acronyms

CFD Computational Fluid Dynamics

FOM Full Order Model

LFL Low Flammability Limit

LOOCV Leave-One-Out Cross Validation

NIROM Non-Intrusive Reduced Order Model

POD Proper Orthogonal Decomposition

QRA Quantitative Risk Assessment

RANS Reynolds Averaged Navier-Stokes

RBF Radial Basis Functions

RMSE Root Mean Square Error

ROM Reduced Order Model

SB Source Box

SBAM Source Box Accident Model

UFL Upper Flammability Limit

UT Unscented Transform
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1. Introduction

In the last decades, the attention to major hazards, especially in the
industrial field, has considerably increased. Some regulations have been in-
troduced to improve the safety of risk-relevant industrial plants, like Oil &
Gas, chemical and nuclear ones, which involve dangerous substances related
to flammability, toxicity and radioactivity, and dangerous equipment like
highly pressurized tanks, pipelines etc. A failure in this kind of systems
could lead to major accidents Casal (2008), which, although very rare, must
be considered in the risk assessment by evaluating the possible consequences
and related damage level. The Quantitative Risk Assessment (QRA) is de-
fined as the appropriate methodology for the safety demonstration of major
accident involving industrial plants by the European Union (EU) Offshore
Safety Directive 2013/30/EU Parliament (2013). The QRA consists of the
analysis of hundreds of plausible accidental scenarios, which consequences
must be evaluated through suitable simulations tools. The state-of-the-art
of QRA methodologies entails the employment of simple integral or semi-
empirical models Vinnem and Røed (2014), due to the necessity to analyze a
large number of events in a time compatible with the design project schedule
of the plant. In fact, the aforementioned models can provide results in a few
minutes and do not require any particular theoretical background or expertise
level by the user. In the past, empirical or integral models were formulated
for several phenomena as turbulent free-jets Chen and Rodi (1980); Becker
et al. (1967), gas dispersions Davidson (1989), jet fires TNO (2005); Zamejc
(2014), explosions TNO (2005), Vapor Cloud Explosion (VCE) Baker et al.
(1996) and were implemented in software like PHAST DNV or ALOHA US,
providing simple comprehensive tools to companies. On the other hand, the
range of validity of these models is constrained by their assumptions and
empirical tests conditions, therefore their application cannot be generalized
to any kind of phenomena. Moreover, their accuracy is so limited that ex-
cessively large over estimation of the threat zones related to the accidental
event often occur Dasgotra et al. (2018); Derudi et al. (2014); Schleder et al.
(2015); Zuliani et al. (2016); Pontiggia et al. (2014). Finally, they completely
neglect the actual geometrical features of the domain, i.e., only free jets and
fires are considered, and the interaction with the surrounding equipment is
not accounted for. This could have a strong impact on the final design of
the safety systems, especially considering high-pressure gas leak scenarios in
congested domains where the gas-objects interaction plays a key role on the
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final gas cloud configuration. For these reasons, and more in general due
to the increase of technology complexity and safety standards, novel QRA
approaches are needed to enhance the accuracy of the risk estimation. Com-
putational Fluid Dynamics (CFD) methods can represent a possible strategy
to overcome this issue, although they require a high computational effort.
Hence, the employment of the CFD in a QRA is still prohibitive, and its
use is limited for the verification of the most critical scenarios. This work
proposes an alternative strategy to reduce the computational effort related to
the high-fidelity simulation of high-pressure gas releases in congested plants.
These kind of scenarios are characterized by a highly compressible flow near
the leak point and a subsonic incompressible flow far from that point, i.e., in
the largest part of the domain, and as a matter of fact, the main issue in sim-
ulating such events is mainly related to the formation of an under-expanded
jet Franquet et al. (2015) near the leak source, which is likely to interact with
an obstacle. The resolution of the steep flow field variables gradient appear-
ing in that region require the generation of a dense mesh, which translates
in an unacceptable computational effort. Several authors proposed innova-
tive strategies to handle this situation. For instance, in Colombini et al.
(2021, 2022a,b) the authors propose an empirical-CFD combined approach
to develop a novel assessment tool to estimate the extent of a high-pressure
methane jet impinging on different shaped obstacles (cylinder, sphere, pipe
rack). Despite this methodology permits a relevant simplification of the sim-
ulation and computational cost reduction since the initial jet expansion is
accounted for by the Birch model Birch et al. (1984), it can be applied only
if the obstacle is placed far enough from the release point to permit a com-
plete expansion of the gas jet. Full CFD approaches are also proposed, as in
Liu et al. (2014) where a CO2 high pressure leakage from a pipeline is studied,
or as in de Souza et al. (2019) where predictions for hazardous area classi-
fication is presented analyzing a set of scenarios. Nevertheless, in all these
cases only free-jets are considered. Within this framework, a computationally
efficient approach, named Source Box Accident Model (SBAM) Moscatello
et al. (2021) has been recently proposed to significantly mitigate the issue of
the computational cost. It consists in splitting the accident evolution in two
steps: i) the release phase, which concerns a small volume around the break,
named Source Box (SB), where the underexpanded jet occur and compress-
ibility effects are relevant and ii) the dispersion phase, where the flow can
be considered incompressible and buoyancy forces are relevant. In this last
step, where the SB flow profiles and gas concentrations are taken as input,
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the analysis is extended to the full spatial scale of the plant (e.g. an offshore
platform, see figure 6 later), in order to evaluate some safety-critical param-
eters, e.g., the flammable volume. This two-step approach allows to fairly
reduce the computational burden with respect to a monolithic CFD simu-
lation, as different numerical settings, e.g., the computational mesh, can be
tailored according to the physical phenomena involved. Decoupling the two
physical stages implies that also the parameter space can be partitioned. For
example, the break size and release pressure are relevant in the gas release,
while the wind direction is not. This means that it is possible to compute the
concentration and flow fields for several SB characterised by different com-
binations of parameters and use them in the dispersion scenarios, whenever
they are needed. The numerical features and performances of SBAM have
been presented in Moscatello et al. (2021) while its performance against ex-
perimental data in Moscatello et al. (2022). This procedure would lend itself
to the generation of a SB library as a ready-to-use input to the dispersion
simulation, which is strongly case-dependent. Relying on data libraries is
a common approach in the framework of the risk analysis, but in this case
it would jeopardise the advantages of using a CFD approach. For example,
the risk analyst would not be free to select the flow field profiles for an ar-
bitrary set of parameters, losing the CFD flexibility. Moreover, a thorough
evaluation of the different SB scenarios would be still quite computationally
expensive. In this paper, which is intended as a follow-up of the work pre-
sented in Moscatello et al. (2021) and in Moscatello et al. (2022), we present
a strategy which relies on machine learning algorithms aiming at further re-
ducing the computational burden associated with the SB simulation and at
the same time providing an high level of flexibility. In fact, machine learn-
ing algorithms, such as neural networks, are increasingly used in the safety
field to predict gas dispersion paths with relatively low computational efforts
Song et al. (2021). In particular, a strategy relying on Reduced order models
(ROMs) Pedroni and Zio (2017); Pedroni (2022) is employed. This kind of
approach reduces both the memory consumption and the calculation time, in-
troducing some controllable approximations Benner et al. (2015) in the model
response with respect to the high-fidelity model, the CFD model in this case.
ROMs can be roughly divided in physics-driven and data-driven methods.
The first ones yield an approximated model by manipulating directly the
high-fidelity model Lorenzi et al. (2016, 2017). However, on top of the man-
ifest difficulty in accessing the high-fidelity model equations in most of the
commercial codes, these modifications would require a new code verification
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and validation (V&V) phase. On the contrary, the second ones consider the
code as a black-box providing the input-output data examples used to ac-
tually train the empirical regression model. The data-driven nature of such
methods makes them non-intrusive and application-independent, hence they
can be employed effectively even with commercial, validated codes Casenave
et al. (2020). However, this aspect also brings some drawbacks. First, the
data selection may bias the model prediction capabilities. Second, since no
information on the full-order model (FOM) is explicitly available except its
responses, the lack of important training data can seriously limit the ROM
prediction capability Lassila et al. (2014). Third, it is very difficult to obtain
an a priori error prediction Rahman et al. (2018). Nevertheless, the advan-
tages of these methods are so attractive with respect to their shortcomings
that they are becoming very popular. Adouze et al. were among the first ones
to present a non-intrusive reduced order model (NIROM) for the solution of
parametrized partial differential equations Audouze et al. (2013), but, to the
best of our knowledge, the first NIROM application to the Navier-Stokes
equations is due to Xiao Xiao et al. (2015), who proposed a method relying
on Taylor expansion and another one based on sparse grid collocation. Since
then, many approaches have been proposed to perform non-intrusive model
reduction, especially for CFD applications Kumar et al. (2016); Demo et al.
(2019). Therefore, the aim of the paper is to assess the NIROM effective-
ness in reducing the computational cost associated with the SB simulations
(i.e., to the generation of the spatial SB flow profiles). A successful model
reduction of the release phase would represent the first step for a computa-
tionally smart strategy for safety-oriented, CFD-based analyses. Thanks to
its non-intrusiveness, this approach could be applied to any validated code
for the QRA of different industrial congested systems, like the forthcoming
nuclear fusion plants and hydrogen installations. In this paper, our case
of study concerns the accidental release of CH4 on an Oil & Gas off-shore
platform, simulated using the ANSYS Fluent code. Since the objective of
our NIROM application is to approximate the behaviour of a Source-Box
(SB) and to provide a set of flow fields for a subsequent (dispersion) simu-
lation, it is of paramount importance to quantify the ROM approximation
error and propagate it on the dispersion simulation output, i.e. risk ori-
ented quantities such as the flammable volume, etc. In the works mentioned
above, except for Xiao (2019), a little effort was devoted to this perspective.
Therefore, in this work we propose a novel combination of the Proper Or-
thogonal Decomposition-Radial Basis Functions (POD-RBF) approach with
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two statistical approaches, namely the bootstrap method Efron (1981); Ko-
havi (1995) and the unscented transform Julier and Uhlmann (1997), for an
estimation of confidence intervals on the final output (i.e. the irreversible
injuries area). The techniques to estimate the error bounds are quite general
and could be applied to other NIROMs. In synthesis, from the methodolog-
ical viewpoint the novel contribution of the present paper is twofold: i) the
bootstrap method is combined for the first time (to the best of the authors’
knowledge) with a (fast-running) POD-based NIROM to obtain an empiri-
cal (bootstrapped) distribution of a functional output, which allows building
confidence in the ROM estimates (i.e., in the gas flow spatial fields); ii)
the unscented transform is employed to propagate - with a relatively small
number of long-running CFD simulation - the uncertainties in the spatial
fields onto the final simulation output (i.e., released pollutant mass). From
the applicative viewpoint, the efficient combination of statistical techniques
mentioned above is employed for the first time in the quantitative analysis
of a congested Oil & Gas off-shore platform. As a final remark, it is worth
acknowledging that we do not aim at carrying out a complete, full-scale QRA
of an energy plant, but rather at developing a versatile tool that can support
it, in an efficient and computationally tractable fashion. The paper is or-
ganised as follows. In Section 2 we first discuss the main features of SBAM,
then we present the POD-RBF method and the methodology to estimate the
confidence interval on the output of the whole calculation chain. Then, in
Section 3 we discuss the main simulation settings and we presents our main
results and the relative discussion, as well. Finally, some concluding remarks
and future perspectives are reported in Section 4.

2. The non-intrusive POD-RBF model

Basically all the physico-mathematical problems that may be posed in the
field of physics and engineering can be compactly represented as the action
of a certain model M on a P -dimensional input vector parameter p⃗,

y⃗ = M(p⃗), (1)

where y⃗ is the m-dimensional output response, named snapshot. The model
M hides both the model variables (e.g., space, time, energy...) and the
different modelling and numerical approximations and complexities. Hence,
it may be though as a black-box taking a certain input from the outside and
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responding with a certain output. Incidentally, this is exactly the way any
computer code aiming at solving any practical problem works. Therefore, in
the following the notions of physico-mathematical model and computer model
are assumed to be interchangeable.

2.1. CFD modeling: Source Box Accident Model

In our case, the computational model is a CFD approach to study the
accidental high-pressure gas releases in industrial, congested plants, named
SBAM. It was firstly introduced in Moscatello et al. (2021) and its perfor-
mances against experimental data were presented in Moscatello et al. (2022).
In order to focus on the peculiarities featuring this approach and the impli-
cations to realise a ROM simulation framework, this method will be briefly
discussed in the following.

High-pressure gas releases, i.e. from 10 bar onward, in large, open en-
vironments (e.g. 30x20x5 m platform deck, see figure 6) always lead to a
complex multi-scale and multi-physics phenomenon. In such cases, an under-
expanded jet is generated near the release point Franquet et al. (2015), i.e. a
supersonic highly compressible flow (Ma >0.3) (Munson et al., 2010, chapter
9), characterised by a strong discontinuity in the flow-field quantities. Such
discontinuities are located at a specific distance from the release point, where
a Mach disk appears: this is a normal shock where a steep variation of veloc-
ity, density, temperature and pressure is expected. In this region, near the
release point, the flow is dominated by inertial effects, and buoyancy forces
are negligible. If the high-pressure release occurs in a large environment,
there is enough space for the gas to slow down from supersonic to subsonic
velocity. Hence, far from the release point, the flow reaches a subsonic flow
regime (Ma <0.3). At this point, the flow can be considered incompressible
and it is no more inertia-dominated, i.e. buoyancy forces can be relevant.

These two phases can be named release (compressible, inertia-dominated)
and dispersion (incompressible, subsonic). In Moscatello et al. (2021) it is
demonstrated that splitting the entire phenomenon in this two pieces has
some advantages from a modelling point of view, especially if the CFD sim-
ulation is QRA-oriented. This is the basis of SBAM, in which the release
phase is simulated in a small domain, the SB, sized in a proper way to con-
tain all the compressibility effects, and the dispersion in the environment
under analysis, e.g., an off-shore Oil & Gas platform. The coupling of the
two simulations is realised imposing the velocity flow field (ṽ(x, y, z)) and
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gas concentration (Cgas(x, y, z)) distributions obtained on the SB faces as
boundary conditions in the dispersion simulation.

This last step, as sketched in figure 1, allows to evaluate the mass and
volume of the gas cloud resulting from the dispersion. Thanks to these re-
sults, some safety related quantities can be evaluated. In the case considered
in this paper, which concerns a CH4 release, the interests safety parameters
are:

• Total dispersed CH4 mass [kg], MCH4

• CH4 mass in the flammable cloud [kg], MCH4,f lam

• Flammable cloud volume [m3], Vflam

• Irreversible Injuries (II) volume [m3], VII

• Irreversible Injuries area at 1.5 m height [m3], AII

Apart from the first parameter, the other ones are related to the flamma-
bility which is defined by the LFL (Low Flammability Limit) and the UFL
(Upper Flammability Limit). For CH4, these quantities are equal to 5 %
and 15 % by volume of air, respectively Scheiner et al. (1985). MCH4,f lam

is a relevant parameter as it is a measure of the potential energy released
in case of explosion. Vflam (which can be defined also as the High Lethality
zone according to Italian regulations Dec) represents the region in which the
gas concentration is between the LFL and UFL and a gas ignition can occur
causing serious damage to the equipment and people death. The VII and AII

are defined according to Italian regulations Dec, and are the one with a gas
concentration above the 0.5·LFL, and in which some damages to equipment
and people are expected. Since these scalar quantities are relevant for the
QRA, they will be considered as the final output of the whole calculation
chain. Nevertheless, in order to avoid any loss of generality, they will be
indicated as z⃗, in order to remark that the methodology presented in the
paper can be applied to spatial and/or dynamic distributions as well. This
computational strategy allows to simplify the simulation of this complex,
multi-physics phenomena, allowing to save considerably computational time
when several scenarios are needed for a QRA. This is possible because each
SB simulation available can be employed for several dispersion scenarios. As
it will be explained later, the SB simulation can be performed by the ROM
model, dramatically reducing the computational cost. In addition, the SB

9



source box
model

gas
dispersion
model

mgas

Vgas

Cgas(x, y, z)

v⃗(x, y, z)

wind
conditions

SB
position/
orientation

deck
geometry

release
pressure

obstacle
size

hole
diameter

1st step 2nd step

Figure 1: Sketch of the SBAM approach.

and the dispersion simulations are affected by different set of parameters.
The first one is affected mainly by the gas properties, its pressure, the re-
lease hole size and the shape and orientation of the obstacles near the break,
while the second depends on the congested plant configuration, the release
position and direction and the wind velocity magnitude and direction. This
suggested the development of a surrogate model to mimic the SB behavior,
thus reducing dramatically the computational cost associated with SBAM.

This paper aims at proving the effectiveness of the NIROM approach
to maximise the computational gain of this decoupled simulation approach,
hence, it stands as a further development of SBAM, a model previously in-
vestigated in Moscatello et al. (2021, 2022). As this is a proof-of-concept,
the pressure will be considered as the only SB varying parameter. It could
be argued that the choice of only one out of all the possible varying param-
eters may jeopardise the considerations drawn throughout the paper about
the accuracy, the robustness and the reliability of the proposed method. The
gas release pressure, however, is the most relevant parameter from both the
physical and the computational point of view, ranging continuously from
10 to 80 bar Vivalda et al. (2018), which is a very large interval from the
fluid-dynamics perspective. On the contrary, the break size and the SB ob-
stacle dimensions usually assume only few discrete values in the QRA frame-
work, thus limiting the interest for such parameters from a ROM perspective.
Moreover, the focus of our analysis is more related to prove the methodol-
ogy proposed to quantify and propagate the NIROM uncertainty rather than
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focusing on the parameter space sampling.

2.2. Reduced order model overview: offline and online phases

The reduced order model presented in this paper aims at approximating
(with a reduced computational burden) the response y⃗ of a general physico-
mathematical model M depending on a certain vector parameter p⃗. As
previously mentioned, this is achieved with a data-driven approach. First,
according to a suitable sampling strategy, the FOM is sampled to gather the
high-fidelity responses, whose dimensionality is reduced via POD. The POD
coefficients, representing the solutions in a reduced order space, are then
used to train the RBF network. Afterwards, the ROM is validated on some
untrained parameter values, in order to verify that the approximation error
of the ROM is acceptable for the intended application. Finally, the bootstrap
method is applied to propagate the ROM approximation error induced by
the training samples choice. This study is performed by constructing a set
of different ROMs, each trained with data sampled with replacement from
the original training set.

Once this computationally expensive phase is completed, the ROM can
be used as a fast-running tool to approximate the FOM responses on new
parameter values. If the ROM response is employed as input for another
model M′, in our case the dispersion simulation, an estimate of the ROM
approximation error can be obtained via the unscented transform (UT). This
method estimates the uncertainty in the response ofM′ by means of a limited
number of model evaluations. These steps are summarised in algorithm 1 and
in figures 2-3.

2.3. Model sampling and reduction

The performances of data-driven models are strongly dependent on the
quality of the training data. Therefore, whatever is the reduced order mod-
elling approach, one of the most important steps is sampling the FOM.

One of the most popular deterministic sampling strategies in this frame-
work is the adoption of sparse grids Smolyak (1963) since, with a proper
choice of the quadrature rule used to map the input parameter space, differ-
ent levels of nested samples can be obtained. The use of nested sets of points
can help to efficiently train the ROM, allowing an a posteriori refinement
of the parameter samples. Since this paper aims to present and test a non-
intrusive reduced order modelling approach, the application presented later
deals only with the most relevant input parameter, i.e. the release pressure.
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Algorithm 1: POD-RBF with uncertainty estimation

Offline procedures
1. define the p-dimensional parameter space Rp;

2. select a parameter space sampling strategy (i.e. sparse grids, random
sampling...);

3. generate full-order model snapshots y⃗i ∈ Rm for each parameter
sample p⃗i;

4. divide the data into the training and the validation sets;

5. reduce dataset dimensionality, using POD (see algorithm 2);

6. train the RBF net with the POD coefficients a⃗i ∈ Rt (see algorithm 3);

7. apply the bootstrap method (see algorithm 5) to generate a set of
ROMs;

8. compute the error distribution of the ROMs on the validation set;

9. validate the ROM on the validation set. If the average error between
validation data and the set of bootstrapped ROMs is not acceptable,
go back to step 3, adding more training points;

Online procedure

1. interpolate with RBF the POD coefficients over a new point (i.e. not
used during training) p⃗j in Rp;

2. back-project the POD coefficients a⃗j ∈ Rt to get the approximated
snapshot in the original space, y⃗j ∈ Rm.

3. if the ROM response is used as input for another model, apply the
UT (algorithm 6) to estimate the confidence interval.

12



parameter
space Rp

sampling
e.g., pressure

computational
model
M(p⃗i)

e.g., CFD

POD reduction

RBF training

bootstrap

ROM online phase

acceptable
error?

add more samples p⃗

ROM training
completed

ROM offline phase

p⃗1

p⃗2

p⃗3

. . .

p⃗i

. . .
p⃗n

y⃗1

y⃗2

y⃗3

. . .

y⃗i

. . .
y⃗n

training
data

validation
data

no

yes

≈ y⃗i, . . . , y⃗n

p⃗i, . . . , p⃗n

Figure 2: Offline phase procedure workflow.
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to the ROM. The set of weights wi,j is computed in the training phase, see algorithm 3.

Therefore, a simple nested Newton-Cotes quadrature rule is employed for an
adaptive selection of the training points.

After the FOM sampling, the data are reduced by means of the POD.
The core idea of the POD method, described in algorithm 2 (see algorithm
2 in appendix Appendix A) and in fig. B.16, is to express the original data
as an expansion of basis functions, known as POD modes, extracted with
a singular value (eigenvalue) decomposition of the FOM snapshot matrix
(correlation matrix). The main advantage of this technique is that the first
modes retain most of the FOM dataset information. Therefore, truncating
the POD expansion usually implies a limited loss of information Volkwein
(2011).

The usual figure of merit employed to assess the number of POD basis
functions needed to achieve a certain accuracy is the POD energy Ek (see
algorithm 2). The calculation of this quantity is simple and cheap, but
often not enough in order to fully characterise the POD expansion accuracy.
Therefore, in this paper, the root mean squared error between the FOM
output and the ROM estimates will be evaluated as well to have an additional
figure of merit.
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2.4. Model training and tuning

Once the reduction step is completed, the parameter-dependent POD co-
efficients are employed to train a network of RBFs, which can be then adopted
in the online phase to interpolate the FOM solution on new parameter values.

Among the different types of radial basis functions, in this paper we
choose to rely on the inverse multi-quadrics formulated by Hardy Hardy
(1971). The value of these functions depend on two parameters. The first
one is the euclidean distance between the centers, i.e. the training param-
eter values p⃗i, and the collocation points, i.e. the new parameter p⃗j, while
the second one is the so-called hyperparameter σ, which is a free parame-
ter determining the shape of the RBFs. The choice of σ is a very delicate
aspect of the training phase, as it strongly affects both the interpolation ac-
curacy and its numerical stability. Usually, the choice of this parameter is
performed in order to minimise the interpolation error on some test points,
which do not belong to the training set. Due to the large computational
cost associated with the CFD simulations, this approach is too computation-
ally expensive. Therefore, among the various approaches suggested in the
literature, we follow the one which seems the most general, i.e. the Leave-
One-Out-Cross-Validation (LOOCV) technique, which consists of training
the meta-model with each of the N sets obtained taking N-1 samples and us-
ing the left one as a test point. In this framework, the best hyperparameter
is the one minimizing the root-mean square error (RMSE) computed from
the N trained models.

The RBF training phase is summarised in algorithm 3 (see appendix Ap-
pendix A), while the hyperparameter optimisation is presented in algorithm
4 (see appendix Appendix A).

2.5. Model validation and error estimation by a bootstrap-based ensemble of
ROMs

When the training phase is completed, the model needs a validation on
new parameter values to verify its accuracy and consistency with respect
to the FOM solution. An extensive validation would require lots of FOM
evaluations, jeopardising the overall computational efficiency of the meta-
model. A common strategy to overcome this issue consists in being satisfied
with the selection of a few, significant new parameter values not too close
to the training points. This is the most popular approach in the literature
when the NIROMs do not allow an a priori estimation of their confidence
interval Rahman et al. (2018); Xiao et al. (2017).
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Figure 4: Sketch of the generation of the ROM distribution, and, consequently, of the
output spatial fields via bootstrapping.

In this paper we employ the same approach, albeit trying to comple-
ment this limited validation with a statistical sensitivity study concerning
the training set. As a matter of fact, the ROM responses are biased by the
selection of the training points, whatever is the sampling strategy of the pa-
rameter space. Therefore, as a complement of the validation phase, we apply
the bootstrap method for a full exploitation of the available training set, max-
imising the amount of information extracted. The idea of this non-parametric
statistical method, presented in algorithm 5 (see appendix Appendix A) and
sketched in fig. 4, consists in training a large number of ROMs using different
training sets, obtained by resampling with replacement the original training
set. In this way, it is possible to build an ensemble of meta-models, which can
be used to construct a distribution of output responses: in the end, this can
be employed to estimate the error distribution for each validation point Zio
(2006); Secchi et al. (2008); Zio et al. (2010); Pedroni et al. (2010); Marelli
and Sudret (2018).

The training phase of the NIROM is usually much cheaper than the offline
phase, yet it may be still quite time consuming if the number of training
parameters and/or the number of reduced order coefficients are large, because
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of the RBF tuning process. However, since each model reboot is independent,
the boostrap procedure can be massively parallelised. Due to the features
of the POD-RBF ROM approach, some precautions are needed. First of all,
since the RBF kernel becomes singular if the same training data is repeated,
each time that a training case is resampled, it is deliberately ignored, thus
the resampled set is always poorer than the original one. Then, due to the
interpolatory nature of the RBF approach, some care should be devoted
when the meta-model is tested on the validation set, because one or more
validation samples could fall outside the sampled parameter space, i.e. the
convex hull obtained from the sampled points. In these situations, the RBF
net extrapolates rather than interpolating. In order to better understand
the model behaviour in such cases, the bootstrap is applied in two different
ways in our calculations. The first time, each validation point is accepted and
evaluated by the ROM, which thus could extrapolate parameter values falling
outside the training points, while the second time the validation points falling
outside the training range are discarded. In this last case, no extrapolation
occurs for parameter values drawn outside the parameter ”box”.

2.6. Unscented Transform and POD for uncertainty propagation and confi-
dence interval estimation

As mentioned above, bootstrapping the ROM generates an ensemble of
meta-models. If the ROM response is the final goal of its application, confi-
dence intervals can be extracted from the ensemble distributions. However,
when the ROM response y⃗ROM is an input for another model M′, this oper-
ation may not be trivial, especially when y⃗ROM is a spatial field. In this case,
the uncertainty in the ROM responses should be propagated through M′ in
order to obtain a confidence interval for the final output of the calculation
chain. To avoid many queries of the model, it is proposed to approximate
the confidence interval with the so-called Unscented Transform (UT) method
Julier and Uhlmann (1997).

This method, which is an extension of the Kalman filter Kalman (1960)
to non-linear models, approximates the original m-dimensional statistical
distribution with a set of 2m+1 specific samples, identified as sigma points,
that are then transformed using the non-linear model, i.e. M′ in this case.
The transformed sigma points can be used to estimate the mean and the
variance of the non-linear model due to the uncertain input.

In this case, the choice of the sigma points is not trivial, since the input
distribution dimension is proportional to the number of volumes defining the
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Figure 5: Sketch of the POD-UT approach for uncertainty quantification.

computational mesh of the CFD calculation. To overcome this issue, the
POD algorithm is applied again to reduce the dimensionality of the ROM
ensemble, similarly to Foad et al. (2020). The UT-POD procedure is pre-
sented in algorithm 6, while a conceptual scheme is presented in Figure 5.

3. Study case: accidental gas release in a congested environment

In this section the results of the NIROM application to the QRA-oriented,
SBAM approach are presented and discussed, with a specific focus on the
peculiarities featuring this case of study.

3.1. Numerical setup of the case study

The considered case study is a high-pressure methane release in an off-
shore platform deck under moderate wind conditions. The domain is visible
in Figure 6 and its dimensions are 30x20x5 m. The gas release position is
indicated by the blue box in Figure 6 which is placed at an height of 2.5 m
from the ground, while, the release direction is described by the blue arrow
near the box (along the x-axis). The possible release pressure (prel) range is
10-80 bar while the release diameter is fixed to 1 cm. These values are taken
from Vivalda et al. (2018), where the plausible values for an high pressure
gas release in an offshore environment are furnished basing on the review
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Figure 6: CAD of the case study domain with the representation of a box where the SB
profiles are imposed, i.e. representing the gas release source

.

of loss of containment accident reports and statistical analyses. A uniform
wind velocity profile is assumed, which intensity is equal to 6 m/s, the most
frequent value in the Adriatic Sea RSE, and which direction is shown in fig-
ure 6 by the cyan arrow. This last is chosen in order to maximize the gas
spreading on the platform, thus considering one of the worst scenarios.

The SB is dimensioned as a cube whose length (LSB) is such that all the
compressibility effects are exhausted in its volume Moscatello et al. (2021).
Inside the cube, an obstacle is present to have an impinging jet. To ensure
a robust coupling with the dispersion model, a fixed reference coordinate
system and a fixed denomination for the SB faces, visible in Figure 7 (left), is
employed. Within this reference frame, the release point is always positioned
at the centre of the back face and the release direction is always parallel
to x-axis in the SB. Moreover, since two symmetry planes can be defined,
the simulation is carried out only on one quarter of the cube, using the
denomination in Figure 7 (right). The obstacle inside the SB is featured by
a diameter equal to 20 cm and a distance of 30 cm.

The SB dimensions, in principle, would change in function of the release
pressure. The different size of the SB, however, can be an issue when the
interesting profiles are extracted and used to train a NIROM. At first, the SB
is dimensioned following the procedure explained in Moscatello et al. (2021),
considering prel=80 bar (the largest possible). The resulting characteristic
length of the SB is LSB=0.6 m. A non-uniform tetrahedral mesh is realized
in ANSYS meshing. The simulation is performed in steady-state using a k-ω
SST formulation of the RANS equations. The mixture CH4-Air is loaded
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Figure 7: Source Box with reference coordinate frame and face names.

in the Fluent setup and the “Species Transport” model without chemical
reaction is used. A CH4 mole fraction equal to 1 is imposed at the domain
inlet and a mass flow inlet is set considering a chock mass flow rate due to
the pressure release condition. A pressure outlet set at atmospheric pressure
is imposed on all the external SB surfaces back, up down, front, lateral to
reproduce the open environment around. A wall with no-slip condition is
imposed on the obstacle surface and a symmetry condition is imposed on the
symmetry planes.

In principle, the SB size scales as the square root of the release pres-
sure. However, in order to have snapshots of the same dimensionality, each
calculation was run using the same SB dimensions, the ones related to the
maximum pressure. Then, the different velocity profile components (along
x, y and z directions) and CH4 mass fraction profiles on the faces delimiting
the SB (back, lateral, front, up-down) were exported from Fluent on a fixed
cartesian grid consisting of 1000 sample points for each direction. These pro-
files are used as boundary conditions in the dispersion simulation, where they
are imposed at the faces of the box (see blue box in figure 6) representing the
gas source in the plant. On this box, a sufficiently refined mesh to maintain
the spatial information of the profiles is realized. Each dispersion simulation
requires about 4 hours on a Precision Dell Tower 7820 with a Intel Xeon
Gold 6136 CPU (3.00GHz) and 64 RAM.

The dispersion simulation is performed in steady-state with a k-ω stan-
dard formulation of the RANS equation. A wind with intensity of 6 m/s and
direction along the x-axis is modelled on the face indicated in figure 6. On
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the other lateral faces of the domain, a pressure outlet with ambient pres-
sure is imposed. The blue box represents the dispersion source: on its faces
the velocity and CH4 mass fraction profiles obtained by the SB simulations
are loaded as boundary conditions. All the other platform surfaces, i.e. the
objects, the floor and the ceiling, are modelled as walls with no slip condition.

3.2. Sampling strategy and CFD dimensionality reduction

Despite in this application the parameter space is one-dimensional, its
variation is remarkable from both the physical and the numerical point of
view. Increasing the pressure requires more computational resources, as the
formation of vortexes is enhanced. Therefore, the sampling strategy should
be carefully selected to adequately cover the release pressure range (10-80
bar), which is expected to induce very large variations in the resulting flow
fields. As mentioned in the previous Section, the parameter values for the
CFD snapshot generation were chosen with the Newton-Cotes rule.

It is important to remark that to carry out SB simulations at high pres-
sure, the mass flow inlet boundary conditions must be used instead of impos-
ing directly the pressure. Hence, mass flows are evaluated consistently with
the needed release pressures considering the chocked flow conditions. Since
the pressure is the reference engineering parameter for QRA, the mass flow
was sampled, but the corresponding value of the pressure, which is unique due
to the sonic flow regime, was considered as the free parameter p⃗, exploiting
the fact that the CFD model is considered as a black-box.

Figure 8: High-fidelity model samples generated with the Newton-Cotes rule. The orange
circles are the first level, the light blue squares are the second level and the dark blue
triangles are the third level.

Figure 8 provides a sketch of the distribution of the inlet mass flow sam-
ples and of the corresponding pressure samples. As a starting point, an
initial level was generated dividing the range to have intervals of about 10
bar each (red dots). Then, the range was partitioned to have intervals of
approximately 5 bar each, so that the previous level was included (light blue
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Figure 9: POD basis energy, computed as in algorithm 2.

squares). Finally, the intervals width was halved again, in order each simu-
lation to span 2.5 bar.

Concerning the dimensionality reduction, a sensitivity study on the ap-
proximation error induced by the POD expansion truncation shows that a
relatively small number of basis functions is sufficient to adequately repre-
sent the original gas concentration and flow field, catching the 99.99 % of
the POD energy E , whose convergence trend is provided in Figure 9. Figure
B.17 shows the Root-Mean-Square Error (RMSE) between the CFD snap-
shots and its POD representation (left) and the RMSE between the CFD
snapshot and its ROM approximation (right) as a function of different trun-
cation orders, for different values of the training pressures. The RMSE on
the left is useful to highlight that the truncation error approaches zero as
the number of basis functions increases, as reasonably expected looking at
the trend in Figure 9. On the contrary, the second one shows that, after
a certain expansion order, the error stabilises on a certain value. This be-
haviour is explained by the fact that, in addition to the vanishing truncation
error, the NIROM snapshot is also affected by the interpolation error due to
the RBF interpolation. This trend has an important implication related to
the NIROM approximation capabilities, i.e. the truncation error is negligible
with respect to the interpolation error, provided that a sufficient number of
basis functions is employed to represent the original dataset.

Throughout the paper all the POD expansions are truncated at least at
the 10th term, unless differently specified, as indicated by the dashed black
line in Figures 9-B.17.
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3.3. Model training

Exploiting the fact that the samples are nested, the NIROM was initially
trained with the first level of points and validated with the points belonging
to the second level.

Figures 10 to B.20 provide an overview of the percentage relative error
between NIROM and CFD evaluations of the output distributions of interest,
namely the CH4 concentration and the x, y and z components of the velocity
field. The relative percentage error, computed for each face of the SB (see
Figure 7), is evaluated as follows

ϵi = 100
||yi,CFD(r⃗)− yi,ROM(r⃗)||

||yi,CFD(r⃗)||
, (2)

where r⃗ indicates the couple of spatial coordinates pertaining to the i-th face.
It should be noticed that, consistently with the notation used in the paper,
”y” indicates the model response, while ”y” is the usual symbol for one of
the three spatial variables of the cartesian reference system.

The black stars visible in figs. 10 to B.20 are the training points belonging
to the first level of sampled points, while the dots represent the validation
points. The size and the colour of these points is proportional to the magni-
tude of the error.

By inspection of these figures, it is possible to notice the presence of
significant errors on the back face, where the profiles are featured by some
oscillations due to the gas entrainment with the air which causes a steep ve-
locity variation near the leak source. Due to the relative error definition given
in eq. (2), it may happen that the error may get very large values, exceeding
100%, when ||yi,CFD(r⃗)|| is very close to 0, as for the y and z components of
the velocity in the back face. Despite their magnitude, these errors do not
affect the overall quality of the NIROM approximations, because the back
plane, which is tangent to the source point, has a negligible contribution to
the overall mass flowing out of the sourcebox. In spite their lower physical
importance for the dispersion phase, the contributions for this face dominates
the overall error behaviour, making the L2 norm on the whole snapshot un-
reliable. To overcome this issue, the face-wise errors are weighted with the
mass fraction flowing from each face,

ε =

faces∑

i=1

||yCFD,i(r⃗)− yROM,i(r⃗)||
||yCFD,i(r⃗)||

wi, (3)
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Figure 10: Face-wise relative L2 error for the CH4 concentration. The black stars represent
the training cases, while the dots represent the validation cases and their color is related
to the relative error.
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Figure 11: Weighted percentage relative error between NIROM and CFD using two differ-
ent sets of training points in the two graphs. The black stars represent the training cases,
while the dots represent the validation cases and their color is related to the relative error.

where the weights are defined as

wi =
ṁi

ṁtot

. (4)

Concerning the CH4 concentration profile, it is important to notice here
that the error on the lateral face cannot be measured since no gas reaches
this face.

Exploiting the estimator given by Equation 3, it is possible to combine
the relative errors for the different profiles on each face to get a more realis-
tic, meaningful and physically reliable overview of the NIROM accuracy with
respect to the reference solution. The values of this estimator is reported in
Figure 11. The graph on the top represents the weighted relative error ob-
tained using the first level of the sampled points as training and the other
levels as validation, while the graph on the bottom provides the same esti-
mator using the first level and some points of the second for training and the
remaining points for validation. As it can be noticed, more training points
were taken above 50 bar, in order to reduce the relative error in this region.
If the parameter space would be high-dimensional, a more rigorous adaptive
selection technique could be employed to spare some computational time, as
in Alsayyari et al. (2021).

An example of the ROM surrogate ability to mimic the response of the
SBAMmodel is visible in Figures 12, B.21 and B.22, where it is possible to see
the CH4 mass fraction on the front face and the normal velocity component on
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Figure 12: CH4 mass fractions for CFD (left) and NIROM (centre) and their difference
(right) on the front face for the validation case with prel=51.237 bar.

the front and up down faces, respectively. Each Figure provides the reference
profile, computed with CFD, the NIROM surrogate profile and the local
difference between the two. By direct inspection, it is possible to conclude
that the NIROM is able to reproduce fairly well the main spatial features
of the flow field, with negligible errors except for a few, small regions on
some faces, where oscillations around zero due to entrainment may occur, as
already discussed for the back one.

In light of these considerations and having in mind that are referred to
the worst case, the orders of magnitude of the errors reported in Figure
11 are judged sufficiently low for the purpose of QRA. In what follows, the
analysis is thus focused on another source of (model) uncertainty in the ROM
estimation, i.e. the error variability due to the training point selection.

3.4. ROM error estimation by bootstrap

The error distribution for each validation case is constructed rebooting
the NIROM 500 times, by sampling with replacement the initial set of 21
training points.

As mentioned in Section 2.5, some care should be used during the evalu-
ation of the bootstrapped error distribution, checking whether the validation
case falls in the training range or not. In the following, only the interpolation
situation is examined, since the NIROMs, due to their data-driven nature,
are usually employed as interpolating tools. It should be remarked here that,
with respect to the deterministic rule used to generate the training and vali-
dation samples for our application, there is no guarantee that the bootstrap
random resampling covers uniformly the parameter space, therefore this ap-
proach should yield, in this particular case, conservative confidence intervals.

Figures B.23 and B.24 show the sample distributions of the weighted
percentage relative error and RMSE for the validation cases featured by
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Figure 13: Weighted relative percentage error (left) and weighted RMSE (right) computed
for the validation case prel=51.237 bar.

the minimum and maximum pressure, respectively, i.e. 10.374 and 79.442
bar. These graphs are quite informative about the method robustness: the
distributions for both the cases are highly skewed towards lower bounds of
the error, suggesting that the NIROM is weakly sensitive to the selection of
the finite-sized set of training points. Figure 13 provides the distributions for
the validation case prel=51.237 bar, which is featured by the largest variance
and mean error. Due to its larger sensitivity to the training sample choice
with respect to the others, this case is identified as the worst one, therefore
it will be used in the following section to propagate the ROM approximation
error through the dispersion calculation chain by means of the UT. It should
be noticed that, despite in fig. 11 the cases featured by the largest weighted
relative error are those falling in the interval 70-80 bar, the bootstrap analysis
shows that the validation case which is the most sensitive to the training
sample selection is the one featured by prel=51.237 bar. This case is thus
addressed as the worst one in the following section.

3.5. Uncertainty propagation to the dispersion simulation

Propagating the bootstrap-evaluated uncertainty characterising the pro-
files computed by the NIROM onto the output of the successive CFD dis-
persion simulation is not trivial. In addition to the large dimensionality of
the uncertain input (each snapshot contains > 6 · 106 elements), the boot-
strapped profiles are not associated with real, physical parameters, but only
to the set of training points. Thus, the empirical nature of this distribution
makes difficult to adopt a smart sampling strategy. A possible option could
be using a brute force technique, evaluating the dispersion model with each
bootstrapped ROM response. However, despite the dispersion simulations
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are faster than the SB calculations (∼5 hours against ∼25), this would not
be practically feasible.

To overcome these issues, the procedure illustrated in algorithm 6 is em-
ployed. The POD technique helps reducing the dimensionality of the SB gas
flow profiles, providing a set of t scalar coefficients for each profile, while
the UT allows to select only the most relevant coefficients for the final un-
certainty estimation. Consistently with the POD reduction for the training
phase, also in this case the POD is truncated at the 10th order, yielding
k = 2t = 20 sigma points. For each of this point, a dispersion calculation
is performed. In particular, the scenario with the largest variance and mean
error (prel=51.237 bar) is investigated. In the following, some safety-critical
output parameters estimated by a dispersion calculation are analysed, com-
paring the results obtained using the high-fidelity, CFD profiles in one case
and the approximate, ROM profiles in the other one. Figure 14 shows the
irreversible injuries volumes obtained using respectively the CFD SB profiles
and the NIROM SB profiles are represented. At a first look, no differences
can be appreciated in the two pictures. In both cases the gas cloud tends
to split in two portions along the vertical direction, and the same platform
components are invested by the gas. Some small discrepancies can be ap-
preciated in one of the two extremity of the upper region and it is difficult
to observe any other difference in the shape of the two clouds. In fact, in
the case of the CFD profile, a VII equal to 22.2 m3 is obtained, while in the
NIROM case is 22.4 m3, confirming that the difference is negligible (∼ 0.9%).

This qualitative comparison can be helpful in verifying if there are some
relevant differences in the dangerous cloud shape: however, a more detailed
analysis needs to be carried out by comparing some safety related quanti-
ties. For the purposes of a QRA, the evaluation of the mass and volumes
involved in the accident is fundamental for the estimation of the energy that
can be released in case of fire or explosion. In addition, a QRA requires to
estimate the dangerous zones extension in terms of volumes and areas. For
these reasons, the parameters introduced in section 2.1 are evaluated. Table
1 provides the main output quantities computed within the dispersion cal-
culation using the original CFD profiles, provided by the SB simulation, and
the surrogate profiles computed with the NIROM. With the aim of providing
a visual representation of these quantities and their uncertainties, the same
quantities are normalised with respect to the CFD case and shown in fig. 15.
The results in the NIROM column, i.e. the mean and the standard deviation
of each response, are obtained from the 20 dispersion calculations, exploiting
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Figure 14: Irreversible Injuries volume obtained using the CFD SB profiles (top) and of
the NIROM SB profiles (bottom).
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Table 1: Dispersion calculation outputs computed with the original CFD profiles and with
the surrogate ones given by the NIROM. The results of the second column are provided
with an uncertainty, put in parentheses, given in terms of 1 standard deviation. The last
column shows the absolute value of the relative difference per each parameter.

CFD profile ROM profile Rel. difference

MCH4 [kg] 5.959 5.6(2) ∼6 %
MCH4,flam [kg] 0.066 0.064(4) ∼3 %
Vflam [m3] 1.925 1.8(1) ∼6.5 %
VII [m3] 22 23(1) ∼4.5 %
AII [m2] 4.20 4.5(3) ∼7 %

MCH4
MCH4,flam Vflam VII AII

0.8

0.9

1.0

1.1

1.2

CFD ROM ROM best

Figure 15: Expected value and standard deviation for some safety-relevant quantities, i.e.,
the total dispersed mass of CH4, the mass of CH4 in the cloud, the flammable volume,
the irreversible injuries volume and the irreversible injuries area at 1.5 m. Each data is
normalised with respect to the CFD case.

the UT. The results obtained using the NIROM SB profiles are surprisingly
similar to the CFD related ones. The relative difference in the mean values is
always below 7%, and this is a remarkable result if we consider the dramatic
computational cost reduction. In fact, to obtain the CFD SB profiles, almost
24 h are employed, while the ROM profiles are obtained in few seconds. This
improvement permits to cut the time necessary for the SB library generation,
since it needs only the simulation of a reduced set of cases for the training of
the ROM. Moreover, since some parameters are slightly underestimated but
from a safety point of view an overestimation of the accident consequences
is preferable, a safety coefficient can be applied to the results to assure a
conservative estimation.
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4. Conclusions and future perspectives

In this paper we presented a POD-RBF framework for the non-intrusive
reduced order modelling of QRA-oriented CFD simulations. This class of
NIROMs has been recently applied in many research fields, yet most of
the applications do not show satisfactory assessment and propagation of the
ROM approximation errors, in particular in the presence of functional (e.g.,
time- and/or space-dependent) outputs.

In this respect, since the final aim is to employ these surrogate models to
reduce the computational burden associated with QRA activities (where it is
of paramount importance to endow the simulation model responses with con-
fidence intervals), we proposed a methodology for the assessment of the ROM
uncertainty in the estimation of functional (in this case, space-dependent)
safety oriented quantities. To test this methodology and prove its effective-
ness, we applied the ROM to the case of a methane high pressure, accidental
gas release in an off-shore Oil & Gas plant, where the output quantities of
interest, from a QRA perspective, are volumes, areas and masses related to
flammability of the gas.

First, the original CFD model was run on a set of nested parameter sam-
ples, which allowed to adaptively refine the training dataset. Afterwards, the
model evaluations were used to train the ROM: first, the dimensionality of
the spatial fields was reduced thanks to the POD algorithm; then, a net of
RBFs was constructed by tuning the RBF hyperparameter with the LOOCV
technique. A first assessment of the model accuracy was conducted compar-
ing the ROM and the CFD evaluations on a set of points not belonging to
the training set. The validation error, computed as a weighted sum of the
SB face-wise errors, was considered sufficiently low (<15%) using the first
level of training cases plus additional cases above 50 bar.

Then, to estimate the model response variability to the training samples,
the bootstrap method was employed to obtain the statistical distributions
from the ensemble of ROM responses. Since, in our application, the ROM
response is used as input for the CFD dispersion simulation, a quantitative
assessment of the impact of the ROM approximation error was considered
mandatory.

The propagation of the uncertainty from the ROM response distribution
to the dispersion model output was carried out coupling the POD and the UT
techniques. The first allowed to reduce the input data dimensionality, while
the second was used to select the input data for the dispersion calculations
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and finally to estimate the dispersion output confidence intervals. The main
quantities of interest in such calculations, pertinent to the QRA analysis,
are in very good agreement with the same results obtained using the SB
profiles computed by CFD, with a relative error between the two approaches
below 7% and a reduction of the computational time of about three orders
of magnitude, suggesting that the POD-RBF NIROM is adequate to obtain
fast yet very accurate results. It should be remarked that a QRA study
has an intrinsically high level of uncertainty, which makes the additional
7% introduced by the ROM model acceptable. Moreover, this error is only
a quantification of the impact of the NIROM integration in the numerical
model SBAM, and it is not representative of the simulation error. In fact,
for this last, the uncertainties related to the spatial discretization, round-off
errors and numerical schemes should be quantified.

In the future, we plan to increase the number of training points consider-
ing also other input parameters affecting the SB, namely the break size and
the obstacle features. Since these parameters have a strong influence on the
SB dimension, a more sophisticated strategy should be devised in order to
handle the snapshots defined on a different spatial domain. Moreover, adap-
tive sparse sampling techniques should be employed in order to progressively
refine the parameter space where the error is not acceptable.

In parallel to these activities, a surrogate model for the dispersion phase
should be trained as well. Such a model could be efficiently coupled with
the first NIROM, allowing to realise a real-time simulation framework (fea-
tured by the capability of providing confidence intervals on the main results
thanks to the combination of bootstrapping and UT), setting the basis for
an effective CFD-QRA integration.
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Appendix A. POD-RBF algorithms

The appendix reports the detailed algorithms adopted throughout the paper.
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Algorithm 2: Proper Orthogonal Decomposition algorithm

Input
1. snapshot matrix Ŷ = [y⃗1, y⃗2, . . . , y⃗n], with y⃗i ∈ Rm;

2. snapshot matrix rank r;

3. truncation error ε;

Output

1. POD basis B̂k = [⃗b1, b⃗2, . . . , b⃗k], with b⃗i ∈ Rm;

2. POD eigenvalues λi,∀i = 1, . . . , k;

3. POD energy Ek;
4. POD coefficients Âk = [⃗a1, a⃗2, . . . , a⃗k], with a⃗i ∈ Rt;

try:

[Ψ̂, Σ̂, Φ̂] = svd(Ŷ ) # Singular Value Decomposition
for i = 1, . . . , r do

b⃗i = ψ⃗i # ψ⃗i is the Ψ̂ i-th column
λi = σ2

i # σi is the i-th diagonal entry of Σ̂
end

except Memory Error :
if n > m then

[Ψ̂, Λ̂] = eig(Ŷ Ŷ T) # Eigenvalue Decomposition
for i = 1, . . . , r do

b⃗i = ψ⃗i # ψ⃗i is the i-th column of Ψ̂
λi = Λ̂i,i # Λ̂i,i is the i-th diagonal entry of Λ̂

end

else

[Φ̂, Λ̂] = eig(Ŷ TŶ ) # Eigenvalue Decomposition
for i = 1, . . . , r do

b⃗i =
Ŷ ϕ⃗i√
λi

# ψ⃗i is the i-th column of Ψ̂

λi = Λ̂i,i # Λ̂i,i is the i-th diagonal entry of Λ̂
end

end

end
choose k such that 1− Ek < ε
Âk = Ŷ TB̂k # compute reduced order coefficients
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Algorithm 3: Radial Basis Function training algorithm.

Input
1. data reduced via POD, Âk ∈ Rn×k;

2. parameter matrix P̂ = [p⃗1, p⃗2, . . . , p⃗n], with p⃗i ∈ Rp;

3. RBF type f (e.g. f = 1/
√

||p⃗1 − p⃗j||2 + σ2);

4. hyperparameter σ via algorithm 4 or Hardy’s formula Hardy (1971);

Output
training matrix Ŵ ∈ Rn×k

# loop over each column of Âk, a⃗i ∈ Rn

for i = 1, . . . , k do
choose hyperparameter σi (optimal selection with algorithm 4)

# compute distance matrix D̂ = [d⃗1, . . . , d⃗n] ∈ Rn×n

for j = 1, . . . , n do

d⃗j = [f(||p⃗1 − p⃗j||2, σi), . . . , f(||p⃗n − p⃗j||2, σi)]
end

w⃗i = D̂−1a⃗i # w⃗i is the i-th column of Ŵ
end
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Algorithm 4: Optimal hyperparameter selection.

Input
1. data reduced via POD, Âk ∈ Rn×k;

2. parameter matrix P̂ = [p⃗1, p⃗2, . . . , p⃗n], with p⃗i ∈ Rp;

3. RBF type f (e.g. f = 1/
√

||p⃗1 − p⃗j||2 + σ2);

4. initial hyperparameter guess σ0 =
0.815

n

n∑

i=1

||p⃗i − p⃗ℓ||2, where ℓ is the

closest point to i in the parameter space Hardy (1971).

Output

1. Optimal hyperparameter σopt

Optimise σ minimising RMSE
Select σ # e.g. via conjugate gradient method
Compute D̂ and w⃗i as in algorithm 3
# use Rippa’s algorithm Rippa (2011) and LOOCV
[L̂, Û ] = lu(D̂) # Compute LU decomposition
for j=1, . . ., n do

x⃗ = Û−1L̂−1e⃗j # e⃗j is the j-th column of the identity matrix

δj =

∥∥∥∥
wi,j

xj

∥∥∥∥ # compute interpolation error with j-th

components of x⃗ and w⃗i

end

RMSE =

√√√√ 1

n

n∑

j=1

δ2j

end
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Algorithm 5: Bootstrap method

Input
1. number of reboots Nr;

2. training parameter values P̂ = [p⃗1, p⃗2, . . . , p⃗n];

3. training snapshots Ŷ = [y⃗1, y⃗2, . . . , y⃗n];

Output
Ensemble of ROMs, R1, . . . ,RNr

# this can be done in parallel
for i=1, . . ., Nr do

for j=1, . . ., N do
Sample one parameter point p⃗j from [p⃗1, p⃗2, . . . , p⃗n] with
replacement;
if p⃗j exists then

Discard p⃗j to avoid singular RBF kernel;
end
Reduce dataset with algorithm 2;
Train and tune the RBF network with algorithms 3, 4;

end
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Algorithm 6: Unscented Transform and POD for uncertainty prop-
agation

Input
ensemble of ROM responses ŶR = [y⃗R,1, . . . , y⃗R,Nr ] (spatial fields) for
a certain parameter value p⃗new;
Output
mean E[z⃗] and covariance cov[z⃗] estimates for the response z of the
model M′;
# choose sigma points
Compute reduced order coefficients a⃗ ∈ Rk via POD (algorithm 2) of
ŶR;
Compute mean µ⃗ = E[⃗a] and covariance Ĉ = cov[⃗a];
Compute Cholesky or SVD decomposition to obtain L̂L̂⊺ = kĈ;

Apply the scaling factor s = k + λ, Ŝ =
√
s
√
Ĉ; # λ is a free

parameter (here λ=0)
Determine weights as wi = 1/2s, i = 1, . . . , k and w0 = λ/s
(associated with µ⃗);
# this can be performed in parallel
for i=1, . . ., k do

σ⃗UT,i = µ⃗− Ŝi # Ŝi is the i-th column of the Ŝ matrix
z⃗i = M′(σ⃗UT,i) # apply non-linear model

σ⃗UT,i+k = µ⃗+ Ŝi

z⃗i+k = M′(σ⃗UT,i+k) # apply non-linear model
end

compute Ew[z⃗] =
2k+1∑

i=0

wiz⃗i and

covw[z⃗] =
2k+1∑

i=0

wi(z⃗i − Ew[z⃗])(z⃗i − Ew[z⃗])
T;
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Appendix B. Additional figures
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Figure B.16: POD-driven dimensionality reduction for the snapshot matrix containing the
training CFD solutions.
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Figure B.17: Root-Mean Squared-Error between the original snapshot and its truncated
POD representation (left) and Root-Mean-Squared Error between the original snapshot
and the ROM reconstruction (right) for some training pressures.

Figure B.18: Face-wise relative L2 error for the x-component of the velocity. The black
stars represent the training cases, while the dots represent the validation cases and their
color is related to the relative error.
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Figure B.19: Face-wise relative L2 error for the y-component of the velocity. The black
stars represent the training cases, while the dots represent the validation cases and their
color is related to the relative error.

48



Figure B.20: Face-wise relative L2 error for the z-component of the velocity. The black
stars represent the training cases, while the dots represent the validation cases and their
color is related to the relative error.

Figure B.21: x-component of the velocity field for CFD (left) and NIROM (centre) and
their difference (right) on the front face for the validation case with prel=51.237 bar.

Figure B.22: y-component of the velocity field for CFD (left) and NIROM (centre) and
their difference (right) on the up-down face for the validation case with prel=51.237 bar.
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Figure B.23: Weighted relative percentage error (left) and weighted RMSE (right) com-
puted for the validation case prel=10.739 bar.

Figure B.24: Weighted relative percentage error (left) and weighted RMSE (right) com-
puted for the validation case prel=79.442 bar.
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