
19 November 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Using STLs for Effective In-field Test of GPUs / Rodriguez Condia, Josie E.; Augusto Da Silva, Felipe; Cagri Bagbaba,
Ahmet; Juan-David, Guerrero-Balaguera; Hamdioui, Said; Sauer, Christian; SONZA REORDA, Matteo. - In: IEEE
DESIGN & TEST. - ISSN 2168-2356. - ELETTRONICO. - 40:2(2023), pp. 109-117. [10.1109/MDAT.2022.3188573]

Original

Using STLs for Effective In-field Test of GPUs

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/MDAT.2022.3188573

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2970184 since: 2022-07-19T13:10:17Z

IEEE / Institute of Electrical and Electronics Engineers Incorporated

Using STLs for Effective In-field Test of GPUs

Josie E. Rodriguez Condia

1
, Felipe Augusto da Silva

2 3
, Ahmet Çağrı Bağbaba

2

4
, Juan-David Guerrero-Balaguera

1

Said Hamdioui
3
, Christian Sauer

2
, and Matteo Sonza Reorda

1

¹Politecnico di Torino,

Turin, Italy

²Cadence Design Systems,

Munich, Germany

³Delft University of Technology,

Delft, The Netherlands

4
Tallinn University of

Technology, Tallinn, Estonia

Abstract—Reliability and functional safety are of primary importance for Graphics Processing Units (GPUs) widely used in safety-critical fields such as
automotive and robotics. Moreover, cutting-edge technologies used in modern GPUs make these even more susceptible to in-field permanent faults due to aging

and degradation; hence, the rising need for effective in-field test solutions to ensure the deployment of appropriate countermeasures. This work demonstrates that

Self-Test Libraries (STLs) can be written and effectively applied for the in-field detection of permanent faults in a GPU. Simulations using an open-source GPU
model (FlexGripPlus) confirm the validity and effectiveness of STLs. The results show that a fault coverage of 92.6% can be achieved, allowing at least ASIL B

level for functional safety inside a GPU core.

Index Terms— Software-based Self-test (SBST), Graphics Processing Units (GPUs), Functional-safety, Reliability.

I. INTRODUCTION

Modern Graphics Processing Units (GPUs) are
manufactured using cutting-edge technologies but are prone to
suffer from in-field errors and reliability issues [1]. The
flexibility and computational power of GPUs push their
adoption in developing Advanced Driver-Assistance Systems
(ADAS) and Sensor Fusion solutions in the automotive and
autonomous systems domains. However, the premature aging
and wear-out features in new transistor technologies promote
the rising of permanent faults during the in-field operation. In
safety-critical applications, unaffordable failures caused by
faults can induce the entire system to fail or even result in
catastrophic consequences if no appropriate measures are taken
promptly. Hence, the development of countermeasures for the
in-field detection of faults is of great importance in GPUs.

Published works, addressing in-field fault detection for
GPUs, can be classified into three classes: 1) Design for
Testability (DfT) methods, which are purely hardware-oriented,
2) hybrid approaches, which combine hardware structures with
reconfigurable capabilities at the software level, and 3)
Software-Based Self-Test (SBST) solutions. DfT schemes are
widely used for the end-of-production test in current devices.
However, they are not always available for in-field operation
and may not satisfy time constraints in many applications.
Furthermore, hybrid solutions, based on the addition or use of
available structures (i.e., performance counters) to extend the
fault observability of a module, must be included in the design
phases by modifying the hardware-software interface to provide
instruction-based control of the included structures. Authors in
[2] proposed an In-System-Test architecture based on the
combination of DfT schemes and hybrid structures to detect
faults and provide diagnosis features during the in-field
operation of System-on-Chips (SoCs) and GPUs. However, a
massive effort is required to develop and integrate a coordinated
ecosystem to design and verify the device. On the other hand,
the SBST strategy is a noninvasive and flexible approach to
perform functional in-field tests of processor-based systems,
which has been widely adopted in processor testing [3].

Nowadays, semiconductor companies and IP providers give
SBST support for their safety-critical products (e.g.,
automotive). In detail, the SBST strategy resorts to specially
written Software-Test Libraries (STLs) composed of suitably
developed Test Programs (TPs) able to achieve a given
structural fault coverage when run by the CPU with limited or
null external support. A TP is a suitable sequence of selected
instructions applying test patterns to a given unit and
propagating fault effects up to some observation points. These
are typically developed starting from high-level abstractions of
a design (RT-level) and then progressively reaching and refined
at lower levels (Gate-level). Moreover, TPs can often be split
into small chunks of code fitting in the idle times of an
application and thus more easily matching time constraints. In
the past, numerous works developed effective STLs for CPUs.
However, only a few works used SBST strategies for in-field
tests in GPUs. Clearly, some of the techniques used for CPUs
can be extended to GPUs as well. Nevertheless, GPUs have
some specific features and characteristics (e.g., implicit
parallelism, parallel scheduling, and shared memory
management), which demand special strategies to test the
corresponding hardware modules. In [4], the authors adopted
several processor-based techniques into TPs for the execution
units, register files, and main memories in a GPU. Nevertheless,
observability issues restricted the assessment of the Fault
Coverage (FC). Other work [5] addressed the test of control
units (scheduling controller). However, the development of
customized approaches was required. In conclusion, prior works
on in-field tests are unaffordable due to huge complexity and
intrusiveness (DfT and hybrid cases) or suffer from generality
(SBST case), making them not fully suitable for GPUs. Hence,
there is the need of providing a complete solution for in-field
test.

This work, for the first time, evaluates the overall
effectiveness of employing the SBST strategy for the in-field
test of all logic modules of a GPU core. Moreover, this work
experimentally quantifies the fault coverage achievable on the
logic modules in a GPU core. Finally, it evaluates how suitable
STLs can support the failure modes and effects analysis

(FMEA) required in all safety-critical domains. The main
contributions of this work can be summarized as:

 A general overview of the characteristics and strategies to

develop STLs for GPUs;

 An evaluation (the first publicly available, to the best of our

knowledge) of the overall fault coverage obtained on a

GPU core with the STL execution;

 A report about the FMEDA process on a GPU core using

STLs as the only fault-tolerance mechanism.

This work resorts to the FlexGripPlus model, describing one

low-level microarchitecture of NVIDIA, to evaluate and
validate the development of STLs for GPUs. The experimental
results show that up to 92.6% of the stuck-at faults in the logic
blocks of a GPU core can be covered using the STLs we
developed. The FMEDA analysis shows that these results
enable to qualify the considered modules inside a GPU core via
STLs at least for the ASIL B level. Higher levels can be
achieved by combining the STLs with other Safety
Mechanisms.

II. ARCHITECTURAL ORGANIZATION OF GPUS

A. General overview

This section employs NVIDIA‟s terminology to describe the

architectural organization of a GPU.

GPUs are special-purpose processors organized as arrays of

parallel cores (Streaming Multiprocessors or SMs). Each SM

adopts the Single-Instruction Multiple-Data (SIMD) paradigm

or variations, such as Single-Instruction Multiple-Thread

(SIMT) by NVIDIA. Internally, each SM comprises several

pipeline stages and uses a specific Instruction Set Architecture

partly resembling RISC ones with extensions to support

parallelism.

A host controller (CPU) submits a parallel program to the

GPU for processing. Then, the program is distributed among

the available SMs by the schedulers. Internally, the scheduler

controllers manage and trace the operation of a group of

threads (warp), which are operated in parallel on individual

execution units (Scalar/Streaming Processors or SPs). Each SP

is composed of an Integer (INT) and a Floating-point core

(FP). Moreover, the SM includes other hardware accelerators

(SFUs).

Each SM has access to several levels of the memory

hierarchy (Register File, Shared, Local, Constant, and Main

Memory). The Register File and the Shared Memory are

organized in banks for parallel access and are store the

individual and shared operands and results for each thread,

respectively. Both resources and the first levels of cache are

located inside the SM. The second-level caches, the constant,

and the main memories are located outside as a shared resource

among the SMs.

Fig. 1. A general scheme of an SM in FlexGripPlus

B. The FlexGripPlus model

FlexGripPlus is an open-source soft-GPU model based on

the NVIDIA G80 microarchitecture and fully described in

VHDL [6]. FlexGripPlus is compatible with the CUDA

programming environment (SM 1.0) and is based on a set of

SMs supporting up to 52 assembly (SASS) instructions.

Each SM is divided into five pipeline stages (Fetch, Decode,

Read, Execute/Control-Flow, and Write), as shown in Fig. 1.

The number of SPs in the Execute stage is configurable among

8, 16, or 32. Moreover, pipeline registers („PRx‟) are located

between the pipeline‟s stages. Each SM also includes three

register files (Vector Register File „VRF‟), Address Register

File „ARF‟), and Predicate Register File „PRF‟), devoted to

storing operands, addresses, and predicate flags of each thread,

respectively.

Each SM includes one scheduler controller and a

Divergence Management Unit (DMU) for intra-warp

divergence control and execution.

In general, the FlexGripPlus model holds the same basic

functional modules of a commercial GPU, including scheduler

controllers, parallel execution units, file registers, and pipeline

stages. Nevertheless, the current memory hierarchy in

FlexGripPlus differs from the included in commercial devices

by missing the cache memories.

Despite the few structural limitations, the FlexGripPlus

model includes a low-level detailed microarchitectural

description of an NVIDIA GPU and is employed as a tool to

evaluate the effectiveness of STLs for GPUs developed using

the SBST strategy.

III. SBST STRATEGIES FOR GPUS

STLs developed with the SBST strategy can be deployed as
complementary mechanisms to monitor the status of a GPU
during its operative life and contribute to identifying possible
fault effects. In fact, the main advantage of STLs is the ability to
detect faults with zero hardware costs. Moreover, STLs test a
device at the operational speed and normal conditions, thus also
addressing delay faults and avoiding overtesting.

In the functional-safety domain, the identification, and
management of faults in a device are mandatory. Some faults
can be classified as safe, when they are proven not being able to
produce any failure in the considered operational scenario. Safe
faults are not considered when computing the achieved FC.

Fig. 2. A general scheme of the execution flow of TPs for CPUs and GPUs

In this domain, STLs can be used as safety mechanisms and
increase reliability by guaranteeing the in-field detection of a
sufficient percentage of faults, thus matching the requirements
of the functional safety standards, possibly in combination with
other mechanisms (e.g., ECC for memories, and watchdogs).
STLs are widely used for CPUs but they can be adopted for
accelerators, such as GPUs, which demand periodic testing
solutions when used in safety-critical applications. In this case,
we must consider two main features: i) most in-field faults in
GPUs can only be observed by looking at results they produce
in memory (as main observation point), and ii) the development
of TPs requires architectural details from a targeted unit. In
general, any TP is mainly executed following four steps: (1)
Initialization, (2) test pattern‟s injection, (3) fault effect‟s
propagation to any observation point, and (4) identification, see
Figure 2. In the execution of a TP, several loops can apply
different test patterns or propagate their effects. However, TPs
for GPUs must face the addressing of each module exploiting
the implicit parallelism and operational constraints (e.g.,
divergence and thread-synchronization). For this purpose, these
TPs must exploit three main characteristics from the parallel
operation of GPUs:

 Instruction Parallelism;

 Distributed scheduling;

 Management of functional units and memory resources.

The following subsections summarize some specific
strategies and algorithms used in the development of TPs for
STLs targeting GPUs. It should be noted that each GPU module
may require a combination of different approaches. Fortunately,
one TP may target the test of several modules in parallel.

A. Extending functional test techniques from CPUs to GPUs

Two approaches originally developed for CPUs can be
adopted and extended to the GPU domain: automated and
deterministic [3, 7].

On the one hand, the automated approaches comprise
pseudorandom-based and ATPG-based methods. The first
method focuses on TPs based on a group of instructions
randomly selected in combination with pseudo-random operand
values. This method can exploit evolutionary algorithms to
select the most suitable instructions and operands for a TP. The
second method resort to Automatic Test Pattern Generation
(ATPG) tools to analyze and extract test patterns from a
hardware module. Then, these patterns are translated into
equivalent instructions, so composing one or more TPs.
However, it is possible that some test patterns cannot be
translated and must be ignored (possibly resulting in safe
faults). In both cases, several iterations are used in the
development of each TP to improve its correct operation and
reduce unnecessary overhead costs for the in-field operation.

In any case, TPs using either automated or deterministic
approaches must include three strategies: i) Parallel Pattern
Management (PPM), ii) Signatures per Thread (or SpT) [9], and
iii) Parallel Injection.

The first strategy (PPM) organizes and aligns similar test
patterns and expected results as consecutive memory operands,
so optimizing the performance in memory management and
exploiting possible execution loops. Then, each thread in the TP
can address individual or shared test patterns from memory.

The SpT mechanism is based on the computation, within
each thread in a TP, of a signature providing fine-grain fault-
observability out of the values produced by the target module
during its operation, thus propagating fault effects as errors on
the computing signature and allowing fault detection. Each SpT
is described and computed in software by mimicking a
Multiple-Input Shift Register or a counter, which reduces the
number of instructions per TP while providing extended
observability. In the end, each SpT is stored in memory. The
GPU itself (or the host) checks for the presence of faults by
comparing a produced signature with the expected one, which is
pre-calculated by the TP itself (in the development and
verification phases) with minimal performance overhead (<5%)
and finally stored in specific memory regions available during
the operation of the TPs. Those pre-calculated golden signatures
avoid latencies at the in-field operation of TPs.

The Parallel Injection techniques takes advantage of thread
parallelism in warps or blocks to excite a module with different
test patterns (one per thread), thus exploiting parallelism to
increase the operational performance of a TP, which is effective
in either individual units or regular structures.

Pseudorandom and ATPG-based approaches are effective in
regular structures of a GPU, such as the functional units and the
register file, since these structures are addressed (and tested) in
parallel. Moreover, the static organization and the
understanding of distribution policies in the schedulers allow
the development of embarrassingly parallel TPs, see Figure 2,
exploiting the multi-thread parallelism to inject patterns and
also reducing the in-field execution of TPs [8]. On the other
hand, deterministic approaches exploit the functionality and
structure in a module to deploy well-defined algorithms, such as
March algorithms for internal memories (e.g., within the
controllers) [4].

It must be noted that, when using a deterministic approach,
the adaptation of a method may require additional steps (i.e.,
initialization, and propagation patterns) to face the parallel
operational constraints in a GPU, but additional efforts are
required to control intra-warp divergences, thread
synchronizations, and concurrent loops when injecting test
patterns, as depicted in Figure 2.

B. Multi-kernel approach

TPs in this approach utilize a divide-and-conquer strategy to
target special modules commonly managing configuration
parameters devoted to controlling and configuring the parallel
operation in a GPU. These configuration parameters (i.e.,
memory addresses, number of threads, blocks, grids, and
registers per thread) come from the program and configure
modules (i.e., the constant memory and the schedulers) for the
operative interval of the program.

In this case, multiple TPs (kernels) employ the policies of
scheduling and the resource‟s management to target a different
set of faults inside a module. More in detail, each TP uses
different combinations of configuration parameters, which also
serve as indirect test patterns, so activating different regions
(and exciting possible faults) in a module. The multi-kernel

approach is effective when testing modules managing parallel
parameters, such as the scheduling controllers and the pipeline
registers. Further details can be found in [9]. Finally, this
approach can be extended to other modules with similar fault
activation and propagation restrictions (i.e., global schedulers
outside the SM).

C. Modular kernel approach

This approach exploits a top-down strategy to develop
modular routines to build TPs for complex units in a GPU. The
modular description of a routine starts from a high abstraction
level and is then customized. In this approach, the most suitable
instructions to activate and propagate faults inside the target
unit are selected considering two factors: i) the parallel
observability and controllability features and ii) the architectural
description and operational constraints of a target unit.

Firstly, the controllability and observability features are
determined for a target unit. In this case, suitable instructions
(i.e., “Push” and “Pop” in a stack) are used to provide both
features as initial conditions in a TP. Then, several routines to
inject test patterns while exploiting parallelism are designed (in
CUDA or SASS) and linked, considering the operational
constraints of the unit. These routines are the basic components
of a TP and describe the operation of any thread. The flexibility
of the approach allows the development and exploration of
several parallel routines providing the same functionality.
Moreover, the execution flow in a TP can be adopted according
to the selected routines. Finally, the routines are integrated as a
single TP and refined for performance or fault coverage.

The modular approach is effectively applied to complex
units in a GPU, such as the DMU and the embedded memories
[10].

D. Customs approaches

The custom approaches require the manual development of
TPs following some specific algorithm which takes into account
the architecture of the units, their functional operation, the
expected behavior, their restrictions, and the target fault model.
These TPs target particular modules in the GPU which do not
exist in CPUs (such as the scheduler controllers [5] and the
special-purpose memories [4]). In detail, the TPs are based on
algorithms causing controlled divergence, the combination of
sequences of embarrassingly parallel and serial-thread
executions on a set of threads to excite and propagate fault
effects.

This approach requires a deep knowledge of the GPU's low-
level micro-architectural details, their parallel operations, and
the use of parallelism, distributed scheduling, and available
hardware resources to provide specific test solutions per
module.

IV. SET UP AND PRELIMINARY GPU ANALYSIS

The evaluation of the STLs (developed using all techniques
described in the previous section) resorted to a commercial fault
simulation environment targeting the units in the FlexGripPlus
model. This framework uses the RT-level description of the
GPU and evaluates each TP by injecting stuck-at faults (SAFs)
in the logic every logic module.

In the experiments, we targeted the evaluation of all logic
modules and embedded memories in the GPU core. One fault is
detected when at least one mismatch is found after comparing
results from a golden execution and a faulty one. The flexibility
of the tool allows the selection of the memory buses and the
output control signals as main in-field observation points of
faults. It is worth noting that the main memory and the memory

controllers were not targeted, since these are not part of the
GPU core.

Three preliminary architectural analyses identified safe
faults in the GPU. The first analysis is based on the architectural
propagation analysis, which consists of evaluating the
propagation paths of each fault in the design up to the
observability points. In addition, the fault activation analysis
evaluates the inputs of the GPU and identifies those faults that
cannot be excited. Finally, a barrier analysis provides the
analysis of the structural and operational effects of removing
modules in the GPU [11].

Table 1 reports the number of identified safe faults in the
FlexGripPlus SM. Interestingly, the fault propagation analysis
effectively identified most of the safe faults per module (>90%).
The other two methods effectively identified faults in the GPU's
special structures, such as inside the scheduler. A post-checking
process was required to determine any detectable and dangerous
fault (i.e., faults in locations which remain temporarily fixed by
the effect of the kernel or host configuration, but in other
conditions, these may cause misbehaviors), so removing them
from the list of safe faults.

TABLE 1. UNTESTABLE FAULT IDENTIFICATION

Module Faults
Safe faults

(%)

Remaining

faults

SMP controller 2,508 20.26 2,000

Warp Unit 18,804 23.44 14,396

Pipeline Fetch 737 17.77 606

Pipeline Decode 1,514 21.53 1,188

Pipeline Execute 142,124 23.88 108,185

Address Register File 32,800 0.10 32,768

Vector Register File 131,750 0.51 131,072

Predicate Register File 33,038 0.82 32,768

Divergence Stack

Memory
4,568 7.53 4,224

Overall GPU‟s SM core 367,843 11.05 327,207

V. STL EFFECTIVENESS EVALUATION

In the experiments, FlexGripPlus was configured with one
SM and 32 SPs. A set of 18 TPs were implemented using the
methods outlined in Section III. Each TP is developed
according to the unit‟s features.

 Three automatic TPs targeted the functional units and the
decode unit by exploiting instructions that excite as many
patterns (operands) as threads on them. Moreover, three
deterministic and modular TPs targeted the embedded
memories, using the operational features (writing and reading
methods) to excite the units. Nine TPs used the multi-kernel
approach targeting programmable pipeline registers. Finally,
three custom TPs focus on exciting controllers and dispatchers
in the GPU.

In the end, 15 fault injection campaigns were performed on
the complete GPU model, after generating the full list of SAFs,
safe faults were first removed. Moreover, in the fault
campaigns, the total number of faults (327,207) was reduced by
injecting faults only in one module among the regular modules
in the GPU (i.e., one SP and the associated register file per core,
instead of the 32 execution units). As a result, in each fault
simulation campaign, we injected 141,140 SAFs.

Since the current version of FlexGripPlus does not include
accurate descriptions of the caches, the memory controllers
were not addressed.

TABLE 2. FAULT COVERAGE RESULTS PER MODULE.

Module Detected faults FC (%)

SMP controller 1,156 57.8

Warp Unit 8,416 58.5

Pipeline Fetch 538 88.8

Pipeline Decode 837 70.4

Pipeline Execute 91,429 84.5

Address Register File 32,768 100.0

Vector Register File 131,072 100.0

Predicate Register File 32,768 100.0

Divergence Stack Memory 4,139 98.0

Overall GPU‟s SM core 303,295 92.6

Table 2 reports the obtained fault coverage (FC) figures. As
observed, the developed STLs mainly focused on the largest
modules in the GPU‟s core architecture, such as the execution
units, internal logic, and embedded memories, which account
for more than 90% of faults in a SM. Although some TPs
provide moderate fault detection in some modules of the GPU
(e.g., controllers), the small size of these structures does not
significantly affect the overall FC in the GPU core. Further
efforts could be made to develop suitable TPs specifically
addressing these modules.

Previous results demonstrate that STLs can be effectively
developed and provide a high FC. Although the obtained results
were focused on one GPU core, the implemented TPs are
scalable and results can be extended to multi-SM GPUs.
Furthermore, the development of STLs can be applied to other
GPU architectures.

VI. FUNCTIONAL-SAFETY EVALUATION

The calculation of the Fault Coverage is an indication of the
design safety based on the efficiency of a given Safety
Mechanism (SMech). However, it is not sufficient to assure
compliance with Functional Safety standards, like ISO26262;
for such a purpose, we need to determine the reduction in the
probability of system failures, also known as the Failure in
Time (FIT) rate. The Single Point Faults Metric (SPFM), which
represents permanent faults' potential to violate safety-related
functionalities, is defined by ISO26262 as evidence of Safety
Integrity [12]. The SPFM considers the total FIT rate (λ), and
the contribution of the fault classes:

 Single-Point Faults (λSPF): not covered by SMechs

 Residual faults (λR): undetected by SMechs.

The SPFM can be calculated according to the equation:

∑()

∑
 ()

The primary methodology for determining the Safety
Metrics parameters is the Failure Modes Effects and Diagnostic
Analysis (FMEDA), which correlates IC components (Gates,
Flip-flops, and Memory cells) to Failure Modes (FMs). Then, by
computing the λ of individual IC components, the FC, and the
Safe faults, we can determine the total λ of each FM.

First, the FMs are defined and the design components
mapped. For FlexGripPlus, we considered 28 subparts
(components inside the GPU core, including local controllers,
functional units, embedded memories, and registers). Each
subpart was analyzed to determine function-specific FMs. After
mapping each FM to the appropriate design component(s), we
evaluate the percentage of Safe faults and the FC. The
FlexGripPlus‟ FMEDA comprises 92 Failure Modes mapped to
2,751,088 Gates, 1,507,085 Flops, and 784,224 Memory cells.

The analysis of FlexGripPlus, considering the 15nm
FinFET-based Open Cell Library, resulted in a total λ of 10.08
FIT (based on IEC 62380 Electronic Reliability Prediction
Standard), which defines a base FIT Rate for the components of
a given tape-out technology. In this case, the unit‟s base FIT
considers digital (NAND2 gate‟s area) and memory (cell‟s area)
components. Then, we multiple the number of gates and cells,
mapped to each FM, by the digital and memory FITs,
respectively; from these, the implemented safety strategies
provides the following results:

 Detected by the STL: 9.17 FIT

 Undetected (λR): 0.57 FIT

 Safe faults (λS): 0.33 FIT.

Finally, reducing λR by increasing λS and FC, directly
impacts the SPFM. The proposed Safety technique based on
only STLs for FlexGripPlus resulted in an SPFM of 94.27%,
allowing ASIL B assessment without hardware modifications to
the logic units of an SM and without any other SMech.

VII. CONCLUSIONS

This work is the first to provide a quantitative evaluation of
the effectiveness of STLs for the in-field testing of GPU cores.
The reported results showed that a stuck-at fault coverage of
more than 92% could be obtained on the logic modules and
embedded memories. The functional-safety results (SPFM of
94.27%) show the effectiveness of STLs as a safety mechanism
for SMs in GPUs.

The results allow us to state that the SBST strategy can be
used as an effective solution, possibly combined with other
strategies, to guarantee the reliability and functional safety of
GPU-based applications for safety-critical domains.

VIII. ACKNOWLEDGMENTS

 The European Commission supported this work through the
Horizon 2020 RESCUE-ETN project under grant 722325.

REFERENCES

[1] D. Tiwari, et al, "Reliability lessons learned from GPU experience with

the Titan supercomputer at Oak Ridge leadership computing facility," in
International Conference for High Performance Computing,

Networking, Storage and Analysis, 2015, pp. 1-12.

[2] P. K. D. Jagannadha, et al., "Special Session: In-System-Test (IST)
Architecture for NVIDIA Drive-AGX Platforms," in IEEE 37th VLSI

Test Symposium (VTS), 2019, pp. 1-8.

[3] M. Psarakis, et al., "Microprocessor software-based self-testing," IEEE
Design & Test of Computers, vol. 27, pp. 4-19, 2010.

[4] S. Di Carlo, et al., "A software-based self test of CUDA Fermi GPUs,"

in 18th IEEE European Test Symposium (ETS), 2013, pp. 1-6.
[5] S. Di Carlo, et al., "An On-Line Testing Technique for the Scheduler

Memory of a GPGPU," IEEE Access, vol. 8, pp. 16893-16912, 2020.

[6] J. E. R. Condia, et al., "FlexGripPlus: An improved GPGPU model to
support reliability analysis," Microelectronics Reliability, vol. 109, p.

113660, 2020.

[7] P. Bernardi, et al., "Development Flow for On-Line Core Self-Test of
Automotive Microcontrollers," IEEE Transactions on Computers, vol.

65, pp. 744-754, 2016.

[8] J. D. Guerrero-Balaguera, et al., "On the Functional Test of Special
Function Units in GPUs," in 24th International Symposium on Design

and Diagnostics of Electronic Circuits & Systems (DDECS), 2021, pp.
81-86.

[9] J. E. R. Condia and M. Sonza Reorda, "Testing permanent faults in

pipeline registers of GPGPUs: A multi-kernel approach," in IEEE 25th
International Symposium on On-Line Testing and Robust System

Design (IOLTS), 2019, pp. 97-102.

[10] J. E. R. Condia and M. Sonza Reorda, "Modular Functional Testing:
Targeting the Small Embedded Memories in GPUs," Chapter 10, VLSI-

SoC: Design trends series, ISBN: 978-3-030-81640-7, 2021.

[11] F. A. d. Silva, et al., "Determined-Safe Faults Identification: A step
towards ISO26262 hardware compliant designs," in 2020 IEEE

European Test Symposium (ETS), 2020, pp. 1-6.

[12] Y. Chang, et al., "Assessing automotive functional safety
microprocessor with ISO 26262 hardware requirements," in Technical

Papers of 2014 International Symposium on VLSI Design, Automation

and Test, 2014, pp. 1-4.

Josie E. Rodriguez Condia received the Ph.D. degree in Computer

Engineering from Politecnico di Torino, Italy in 2021, and the M.Sc.

degree in electronic from Universidad Pedagógica y Tecnológica de

Colombia (UPTC), Colombia in 2017. His research interests include

functional testing, parallel architectures, and embedded system design.

Felipe Augusto da Silva is a Ph.D. Candidate on Functional Safety in

Cadence and at Delft University of Technology. He holds a Computer

Engineering degree from Pontifical Catholic University of Rio Grande

do Sul (PUCRS) and a M.Sc. degree in Electrical and Electronics

Engineering from Federal University of Santa Catarina (UFSC),

Brazil. During his career as Safety-Critical Embedded Systems

Engineer, he contributed to Functional Safety projects for the

Automotive, Aerospace, and Defense industries.

Ahmet Cagri Bagbaba received the Ph.D degree in Computer and

Systems Engineering from Tallinn University of Technology, Estonia

in 2022, and the M.Sc. degrees in electronics and telecommunication

engineering from the Istanbul Technical University, Turkey. He is

currently working at Cadence, Germany. His research interests include

Hardware Functional Safety Verification in the context of ISO26262,

digital and embedded system design.

Juan-David Guerrero-Balaguera is pursuing a Ph.D. in the

Department of Control and Computer Engineering of Politecnico di

Torino, Italy. He received the M.Sc. degree in electronic from

Universidad Pedagógica y Tecnológica de Colombia (UPTC). His

research interests include functional testing, Artificial Intelligence,

Parallel architectures.

Said Hamdioui is chair professor and head of the Department of

Quantum and Computer Engineering at Delft University of

Technology, The Netherlands. His research interests include hardware

dependability and emerging computing paradigms. He is a Senior

Member of the IEEE and serves on the editorial board of IEEE Design

& Test.

Christian Sauer heads the European System Design Enablement

team for Cadence in Munich. He works in customer-specific projects

developing tailored solutions for cutting edge SoCs and systems

across automotive and 5G domains. His research interests include the

development of application-specific multi-processor platforms, tools

and methodologies for their applications.

Matteo Sonza Reorda is a full professor in the Department of

Control and Computer Engineering of Politecnico di Torino, Italy. He

received the PhD degree in computer engineering in 1990 from the

same institution. His research interests include design and test of

reliable electronic circuits and systems. He is a Fellow of the IEEE.

