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Abstract—Reliability and functional safety are of primary importance for Graphics Processing Units (GPUs) widely used in safety-critical fields such as 
automotive and robotics. Moreover, cutting-edge technologies used in modern GPUs make these even more susceptible to in-field permanent faults due to aging 

and degradation; hence, the rising need for effective in-field test solutions to ensure the deployment of appropriate countermeasures. This work demonstrates that 

Self-Test Libraries (STLs) can be written and effectively applied for the in-field detection of permanent faults in a GPU. Simulations using an open-source GPU 
model (FlexGripPlus) confirm the validity and effectiveness of STLs. The results show that a fault coverage of 92.6% can be achieved, allowing at least ASIL B 

level for functional safety inside a GPU core. 
 

Index Terms— Software-based Self-test (SBST), Graphics Processing Units (GPUs), Functional-safety, Reliability. 

 

I. INTRODUCTION 

Modern Graphics Processing Units (GPUs) are 
manufactured using cutting-edge technologies but are prone to 
suffer from in-field errors and reliability issues [1]. The 
flexibility and computational power of GPUs push their 
adoption in developing Advanced Driver-Assistance Systems 
(ADAS) and Sensor Fusion solutions in the automotive and 
autonomous systems domains. However, the premature aging 
and wear-out features in new transistor technologies promote 
the rising of permanent faults during the in-field operation. In 
safety-critical applications, unaffordable failures caused by 
faults can induce the entire system to fail or even result in 
catastrophic consequences if no appropriate measures are taken 
promptly. Hence, the development of countermeasures for the 
in-field detection of faults is of great importance in GPUs. 

Published works, addressing in-field fault detection for 
GPUs, can be classified into three classes: 1) Design for 
Testability (DfT) methods, which are purely hardware-oriented, 
2) hybrid approaches, which combine hardware structures with 
reconfigurable capabilities at the software level, and 3) 
Software-Based Self-Test (SBST) solutions. DfT schemes are 
widely used for the end-of-production test in current devices. 
However, they are not always available for in-field operation 
and may not satisfy time constraints in many applications. 
Furthermore, hybrid solutions, based on the addition or use of 
available structures (i.e., performance counters) to extend the 
fault observability of a module, must be included in the design 
phases by modifying the hardware-software interface to provide 
instruction-based control of the included structures. Authors in 
[2] proposed an In-System-Test architecture based on the 
combination of DfT schemes and hybrid structures to detect 
faults and provide diagnosis features during the in-field 
operation of System-on-Chips (SoCs) and GPUs. However, a 
massive effort is required to develop and integrate a coordinated 
ecosystem to design and verify the device. On the other hand, 
the SBST strategy is a noninvasive and flexible approach to 
perform functional in-field tests of processor-based systems, 
which has been widely adopted in processor testing [3]. 

Nowadays, semiconductor companies and IP providers give 
SBST support for their safety-critical products (e.g., 
automotive). In detail, the SBST strategy resorts to specially 
written Software-Test Libraries (STLs) composed of suitably 
developed Test Programs (TPs) able to achieve a given 
structural fault coverage when run by the CPU with limited or 
null external support. A TP is a suitable sequence of selected 
instructions applying test patterns to a given unit and 
propagating fault effects up to some observation points. These 
are typically developed starting from high-level abstractions of 
a design (RT-level) and then progressively reaching and refined 
at lower levels (Gate-level). Moreover, TPs can often be split 
into small chunks of code fitting in the idle times of an 
application and thus more easily matching time constraints. In 
the past, numerous works developed effective STLs for CPUs. 
However, only a few works used SBST strategies for in-field 
tests in GPUs. Clearly, some of the techniques used for CPUs 
can be extended to GPUs as well. Nevertheless, GPUs have 
some specific features and characteristics (e.g., implicit 
parallelism, parallel scheduling, and shared memory 
management), which demand special strategies to test the 
corresponding hardware modules. In [4], the authors adopted 
several processor-based techniques into TPs for the execution 
units, register files, and main memories in a GPU. Nevertheless, 
observability issues restricted the assessment of the Fault 
Coverage (FC). Other work [5] addressed the test of control 
units (scheduling controller). However, the development of 
customized approaches was required. In conclusion, prior works 
on in-field tests are unaffordable due to huge complexity and 
intrusiveness (DfT and hybrid cases) or suffer from generality 
(SBST case), making them not fully suitable for GPUs. Hence, 
there is the need of providing a complete solution for in-field 
test. 

This work, for the first time, evaluates the overall 
effectiveness of employing the SBST strategy for the in-field 
test of all logic modules of a GPU core. Moreover, this work 
experimentally quantifies the fault coverage achievable on the 
logic modules in a GPU core. Finally, it evaluates how suitable 
STLs can support the failure modes and effects analysis 



(FMEA) required in all safety-critical domains. The main 
contributions of this work can be summarized as: 

 A general overview of the characteristics and strategies to 

develop STLs for GPUs; 

 An evaluation (the first publicly available, to the best of our 

knowledge) of the overall fault coverage obtained on a 

GPU core with the STL execution; 

 A report about the FMEDA process on a GPU core using 

STLs as the only fault-tolerance mechanism. 

 
This work resorts to the FlexGripPlus model, describing one 

low-level microarchitecture of NVIDIA, to evaluate and 
validate the development of STLs for GPUs. The experimental 
results show that up to 92.6% of the stuck-at faults in the logic 
blocks of a GPU core can be covered using the STLs we 
developed. The FMEDA analysis shows that these results 
enable to qualify the considered modules inside a GPU core via 
STLs at least for the ASIL B level. Higher levels can be 
achieved by combining the STLs with other Safety 
Mechanisms. 

II. ARCHITECTURAL ORGANIZATION OF GPUS 

A. General overview 

This section employs NVIDIA‟s terminology to describe the 

architectural organization of a GPU. 

GPUs are special-purpose processors organized as arrays of 

parallel cores (Streaming Multiprocessors or SMs). Each SM 

adopts the Single-Instruction Multiple-Data (SIMD) paradigm 

or variations, such as Single-Instruction Multiple-Thread 

(SIMT) by NVIDIA. Internally, each SM comprises several 

pipeline stages and uses a specific Instruction Set Architecture 

partly resembling RISC ones with extensions to support 

parallelism. 

A host controller (CPU) submits a parallel program to the 

GPU for processing. Then, the program is distributed among 

the available SMs by the schedulers. Internally, the scheduler 

controllers manage and trace the operation of a group of 

threads (warp), which are operated in parallel on individual 

execution units (Scalar/Streaming Processors or SPs). Each SP 

is composed of an Integer (INT) and a Floating-point core 

(FP). Moreover, the SM includes other hardware accelerators 

(SFUs). 

Each SM has access to several levels of the memory 

hierarchy (Register File, Shared, Local, Constant, and Main 

Memory). The Register File and the Shared Memory are 

organized in banks for parallel access and are store the 

individual and shared operands and results for each thread, 

respectively. Both resources and the first levels of cache are 

located inside the SM. The second-level caches, the constant, 

and the main memories are located outside as a shared resource 

among the SMs.  

 

 

Fig. 1. A general scheme of an SM in FlexGripPlus 

B. The FlexGripPlus model 

FlexGripPlus is an open-source soft-GPU model based on 

the NVIDIA G80 microarchitecture and fully described in 

VHDL [6]. FlexGripPlus is compatible with the CUDA 

programming environment (SM 1.0) and is based on a set of 

SMs supporting up to 52 assembly (SASS) instructions. 

Each SM is divided into five pipeline stages (Fetch, Decode, 

Read, Execute/Control-Flow, and Write), as shown in Fig. 1. 

The number of SPs in the Execute stage is configurable among 

8, 16, or 32. Moreover, pipeline registers („PRx‟) are located 

between the pipeline‟s stages. Each SM also includes three 

register files (Vector Register File „VRF‟), Address Register 

File „ARF‟), and Predicate Register File „PRF‟), devoted to 

storing operands, addresses, and predicate flags of each thread, 

respectively. 

Each SM includes one scheduler controller and a 

Divergence Management Unit (DMU) for intra-warp 

divergence control and execution. 

In general, the FlexGripPlus model holds the same basic 

functional modules of a commercial GPU, including scheduler 

controllers, parallel execution units, file registers, and pipeline 

stages. Nevertheless, the current memory hierarchy in 

FlexGripPlus differs from the included in commercial devices 

by missing the cache memories. 

Despite the few structural limitations, the FlexGripPlus 

model includes a low-level detailed microarchitectural 

description of an NVIDIA GPU and is employed as a tool to 

evaluate the effectiveness of STLs for GPUs developed using 

the SBST strategy. 

III. SBST STRATEGIES FOR GPUS 

STLs developed with the SBST strategy can be deployed as 
complementary mechanisms to monitor the status of a GPU 
during its operative life and contribute to identifying possible 
fault effects. In fact, the main advantage of STLs is the ability to 
detect faults with zero hardware costs. Moreover, STLs test a 
device at the operational speed and normal conditions, thus also 
addressing delay faults and avoiding overtesting. 

In the functional-safety domain, the identification, and 
management of faults in a device are mandatory. Some faults 
can be classified as safe, when they are proven not being able to 
produce any failure in the considered operational scenario. Safe 
faults are not considered when computing the achieved FC. 



 

Fig. 2. A general scheme of the execution flow of TPs for CPUs and GPUs 

In this domain, STLs can be used as safety mechanisms and 
increase reliability by guaranteeing the in-field detection of a 
sufficient percentage of faults, thus matching the requirements 
of the functional safety standards, possibly in combination with 
other mechanisms (e.g., ECC for memories, and watchdogs). 
STLs are widely used for CPUs but they can be adopted for 
accelerators, such as GPUs, which demand periodic testing 
solutions when used in safety-critical applications. In this case, 
we must consider two main features: i) most in-field faults in 
GPUs can only be observed by looking at results they produce 
in memory (as main observation point), and ii) the development 
of TPs requires architectural details from a targeted unit. In 
general, any TP is mainly executed following four steps: (1) 
Initialization, (2) test pattern‟s injection, (3) fault effect‟s 
propagation to any observation point, and (4) identification, see 
Figure 2. In the execution of a TP, several loops can apply 
different test patterns or propagate their effects. However, TPs 
for GPUs must face the addressing of each module exploiting 
the implicit parallelism and operational constraints (e.g., 
divergence and thread-synchronization). For this purpose, these 
TPs must exploit three main characteristics from the parallel 
operation of GPUs: 

 Instruction Parallelism; 

 Distributed scheduling; 

 Management of functional units and memory resources. 

The following subsections summarize some specific 
strategies and algorithms used in the development of TPs for 
STLs targeting GPUs. It should be noted that each GPU module 
may require a combination of different approaches. Fortunately, 
one TP may target the test of several modules in parallel. 

A. Extending functional test techniques from CPUs to GPUs 

Two approaches originally developed for CPUs can be 
adopted and extended to the GPU domain: automated and 
deterministic [3, 7]. 

On the one hand, the automated approaches comprise 
pseudorandom-based and ATPG-based methods. The first 
method focuses on TPs based on a group of instructions 
randomly selected in combination with pseudo-random operand 
values. This method can exploit evolutionary algorithms to 
select the most suitable instructions and operands for a TP. The 
second method resort to Automatic Test Pattern Generation 
(ATPG) tools to analyze and extract test patterns from a 
hardware module. Then, these patterns are translated into 
equivalent instructions, so composing one or more TPs. 
However, it is possible that some test patterns cannot be 
translated and must be ignored (possibly resulting in safe 
faults). In both cases, several iterations are used in the 
development of each TP to improve its correct operation and 
reduce unnecessary overhead costs for the in-field operation. 

In any case, TPs using either automated or deterministic 
approaches must include three strategies: i) Parallel Pattern 
Management (PPM), ii) Signatures per Thread (or SpT) [9], and 
iii) Parallel Injection. 

The first strategy (PPM) organizes and aligns similar test 
patterns and expected results as consecutive memory operands, 
so optimizing the performance in memory management and 
exploiting possible execution loops. Then, each thread in the TP 
can address individual or shared test patterns from memory. 

The SpT mechanism is based on the computation, within 
each thread in a TP, of a signature providing fine-grain fault-
observability out of the values produced by the target module 
during its operation, thus propagating fault effects as errors on 
the computing signature and allowing fault detection. Each SpT 
is described and computed in software by mimicking a 
Multiple-Input Shift Register or a counter, which reduces the 
number of instructions per TP while providing extended 
observability. In the end, each SpT is stored in memory. The 
GPU itself (or the host) checks for the presence of faults by 
comparing a produced signature with the expected one, which is 
pre-calculated by the TP itself (in the development and 
verification phases) with minimal performance overhead (<5%) 
and finally stored in specific memory regions available during 
the operation of the TPs. Those pre-calculated golden signatures 
avoid latencies at the in-field operation of TPs. 

The Parallel Injection techniques takes advantage of thread 
parallelism in warps or blocks to excite a module with different 
test patterns (one per thread), thus exploiting parallelism to 
increase the operational performance of a TP, which is effective 
in either individual units or regular structures. 

Pseudorandom and ATPG-based approaches are effective in 
regular structures of a GPU, such as the functional units and the 
register file, since these structures are addressed (and tested) in 
parallel. Moreover, the static organization and the 
understanding of distribution policies in the schedulers allow 
the development of embarrassingly parallel TPs, see Figure 2, 
exploiting the multi-thread parallelism to inject patterns and 
also reducing the in-field execution of TPs [8]. On the other 
hand, deterministic approaches exploit the functionality and 
structure in a module to deploy well-defined algorithms, such as 
March algorithms for internal memories (e.g., within the 
controllers) [4].  

It must be noted that, when using a deterministic approach, 
the adaptation of a method may require additional steps (i.e., 
initialization, and propagation patterns) to face the parallel 
operational constraints in a GPU, but additional efforts are 
required to control intra-warp divergences, thread 
synchronizations, and concurrent loops when injecting test 
patterns, as depicted in Figure 2. 

B. Multi-kernel approach 

TPs in this approach utilize a divide-and-conquer strategy to 
target special modules commonly managing configuration 
parameters devoted to controlling and configuring the parallel 
operation in a GPU. These configuration parameters (i.e., 
memory addresses, number of threads, blocks, grids, and 
registers per thread) come from the program and configure 
modules (i.e., the constant memory and the schedulers) for the 
operative interval of the program.  

In this case, multiple TPs (kernels) employ the policies of 
scheduling and the resource‟s management to target a different 
set of faults inside a module. More in detail, each TP uses 
different combinations of configuration parameters, which also 
serve as indirect test patterns, so activating different regions 
(and exciting possible faults) in a module. The multi-kernel 



approach is effective when testing modules managing parallel 
parameters, such as the scheduling controllers and the pipeline 
registers. Further details can be found in [9]. Finally, this 
approach can be extended to other modules with similar fault 
activation and propagation restrictions (i.e., global schedulers 
outside the SM). 

C. Modular kernel approach 

This approach exploits a top-down strategy to develop 
modular routines to build TPs for complex units in a GPU. The 
modular description of a routine starts from a high abstraction 
level and is then customized. In this approach, the most suitable 
instructions to activate and propagate faults inside the target 
unit are selected considering two factors: i) the parallel 
observability and controllability features and ii) the architectural 
description and operational constraints of a target unit. 

Firstly, the controllability and observability features are 
determined for a target unit. In this case, suitable instructions 
(i.e., “Push” and “Pop” in a stack) are used to provide both 
features as initial conditions in a TP. Then, several routines to 
inject test patterns while exploiting parallelism are designed (in 
CUDA or SASS) and linked, considering the operational 
constraints of the unit. These routines are the basic components 
of a TP and describe the operation of any thread. The flexibility 
of the approach allows the development and exploration of 
several parallel routines providing the same functionality. 
Moreover, the execution flow in a TP can be adopted according 
to the selected routines. Finally, the routines are integrated as a 
single TP and refined for performance or fault coverage. 

The modular approach is effectively applied to complex 
units in a GPU, such as the DMU and the embedded memories 
[10]. 

D. Customs approaches 

The custom approaches require the manual development of 
TPs following some specific algorithm which takes into account 
the architecture of the units, their functional operation, the 
expected behavior, their restrictions, and the target fault model. 
These TPs target particular modules in the GPU which do not 
exist in CPUs (such as the scheduler controllers [5] and the 
special-purpose memories [4]). In detail, the TPs are based on 
algorithms causing controlled divergence, the combination of 
sequences of embarrassingly parallel and serial-thread 
executions on a set of threads to excite and propagate fault 
effects. 

This approach requires a deep knowledge of the GPU's low-
level micro-architectural details, their parallel operations, and 
the use of parallelism, distributed scheduling, and available 
hardware resources to provide specific test solutions per 
module. 

IV. SET UP AND PRELIMINARY GPU ANALYSIS 

The evaluation of the STLs (developed using all techniques 
described in the previous section) resorted to a commercial fault 
simulation environment targeting the units in the FlexGripPlus 
model. This framework uses the RT-level description of the 
GPU and evaluates each TP by injecting stuck-at faults (SAFs) 
in the logic every logic module.  

In the experiments, we targeted the evaluation of all logic 
modules and embedded memories in the GPU core. One fault is 
detected when at least one mismatch is found after comparing 
results from a golden execution and a faulty one. The flexibility 
of the tool allows the selection of the memory buses and the 
output control signals as main in-field observation points of 
faults. It is worth noting that the main memory and the memory 

controllers were not targeted, since these are not part of the 
GPU core.  

Three preliminary architectural analyses identified safe 
faults in the GPU. The first analysis is based on the architectural 
propagation analysis, which consists of evaluating the 
propagation paths of each fault in the design up to the 
observability points. In addition, the fault activation analysis 
evaluates the inputs of the GPU and identifies those faults that 
cannot be excited. Finally, a barrier analysis provides the 
analysis of the structural and operational effects of removing 
modules in the GPU [11]. 

Table 1 reports the number of identified safe faults in the 
FlexGripPlus SM. Interestingly, the fault propagation analysis 
effectively identified most of the safe faults per module (>90%). 
The other two methods effectively identified faults in the GPU's 
special structures, such as inside the scheduler. A post-checking 
process was required to determine any detectable and dangerous 
fault (i.e., faults in locations which remain temporarily fixed by 
the effect of the kernel or host configuration, but in other 
conditions, these may cause misbehaviors), so removing them 
from the list of safe faults. 

TABLE 1. UNTESTABLE FAULT IDENTIFICATION  

Module Faults  
Safe faults 

(%) 

Remaining 

faults 

SMP controller 2,508 20.26 2,000 

Warp Unit 18,804 23.44 14,396 

Pipeline Fetch 737 17.77 606 

Pipeline Decode 1,514 21.53 1,188 

Pipeline Execute 142,124 23.88 108,185 

Address Register File 32,800 0.10 32,768 

Vector Register File 131,750 0.51 131,072 

Predicate Register File 33,038 0.82 32,768 

Divergence Stack 

Memory 
4,568 7.53 4,224 

Overall GPU‟s SM core 367,843 11.05 327,207 

 

V. STL EFFECTIVENESS EVALUATION  

In the experiments, FlexGripPlus was configured with one 
SM and 32 SPs. A set of 18 TPs were implemented using the 
methods outlined in Section III. Each TP is developed 
according to the unit‟s features. 

 Three automatic TPs targeted the functional units and the 
decode unit by exploiting instructions that excite as many 
patterns (operands) as threads on them. Moreover, three 
deterministic and modular TPs targeted the embedded 
memories, using the operational features (writing and reading 
methods) to excite the units. Nine TPs used the multi-kernel 
approach targeting programmable pipeline registers. Finally, 
three custom TPs focus on exciting controllers and dispatchers 
in the GPU. 

In the end, 15 fault injection campaigns were performed on 
the complete GPU model, after generating the full list of SAFs, 
safe faults were first removed. Moreover, in the fault 
campaigns, the total number of faults (327,207) was reduced by 
injecting faults only in one module among the regular modules 
in the GPU (i.e., one SP and the associated register file per core, 
instead of the 32 execution units). As a result, in each fault 
simulation campaign, we injected 141,140 SAFs. 

Since the current version of FlexGripPlus does not include 
accurate descriptions of the caches, the memory controllers 
were not addressed. 

 



TABLE 2. FAULT COVERAGE RESULTS PER MODULE. 

Module Detected faults FC (%) 

SMP controller 1,156 57.8 

Warp Unit 8,416 58.5 

Pipeline Fetch 538 88.8 

Pipeline Decode 837 70.4 

Pipeline Execute 91,429 84.5 

Address Register File 32,768 100.0 

Vector Register File 131,072 100.0 

Predicate Register File 32,768 100.0 

Divergence Stack Memory 4,139 98.0 

Overall GPU‟s SM core 303,295 92.6 

 

Table 2 reports the obtained fault coverage (FC) figures. As 
observed, the developed STLs mainly focused on the largest 
modules in the GPU‟s core architecture, such as the execution 
units, internal logic, and embedded memories, which account 
for more than 90% of faults in a SM. Although some TPs 
provide moderate fault detection in some modules of the GPU 
(e.g., controllers), the small size of these structures does not 
significantly affect the overall FC in the GPU core. Further 
efforts could be made to develop suitable TPs specifically 
addressing these modules. 

Previous results demonstrate that STLs can be effectively 
developed and provide a high FC. Although the obtained results 
were focused on one GPU core, the implemented TPs are 
scalable and results can be extended to multi-SM GPUs. 
Furthermore, the development of STLs can be applied to other 
GPU architectures. 

VI. FUNCTIONAL-SAFETY EVALUATION  

The calculation of the Fault Coverage is an indication of the 
design safety based on the efficiency of a given Safety 
Mechanism (SMech). However, it is not sufficient to assure 
compliance with Functional Safety standards, like ISO26262; 
for such a purpose, we need to determine the reduction in the 
probability of system failures, also known as the Failure in 
Time (FIT) rate. The Single Point Faults Metric (SPFM), which 
represents permanent faults' potential to violate safety-related 
functionalities, is defined by ISO26262 as evidence of Safety 
Integrity [12]. The SPFM considers the total FIT rate (λ), and 
the contribution of the fault classes: 

 Single-Point Faults (λSPF): not covered by SMechs 

 Residual faults (λR): undetected by SMechs. 

The SPFM can be calculated according to the equation: 

       
∑(        )

∑ 
                          ( ) 

The primary methodology for determining the Safety 
Metrics parameters is the Failure Modes Effects and Diagnostic 
Analysis (FMEDA), which correlates IC components (Gates, 
Flip-flops, and Memory cells) to Failure Modes (FMs). Then, by 
computing the λ of individual IC components, the FC, and the 
Safe faults, we can determine the total λ of each FM. 

First, the FMs are defined and the design components 
mapped. For FlexGripPlus, we considered 28 subparts 
(components inside the GPU core, including local controllers, 
functional units, embedded memories, and registers). Each 
subpart was analyzed to determine function-specific FMs. After 
mapping each FM to the appropriate design component(s), we 
evaluate the percentage of Safe faults and the FC. The 
FlexGripPlus‟ FMEDA comprises 92 Failure Modes mapped to 
2,751,088 Gates, 1,507,085 Flops, and 784,224 Memory cells. 

The analysis of FlexGripPlus, considering the 15nm 
FinFET-based Open Cell Library, resulted in a total λ of 10.08 
FIT (based on IEC 62380 Electronic Reliability Prediction 
Standard), which defines a base FIT Rate for the components of 
a given tape-out technology. In this case, the unit‟s base FIT 
considers digital (NAND2 gate‟s area) and memory (cell‟s area) 
components. Then, we multiple the number of gates and cells, 
mapped to each FM, by the digital and memory FITs, 
respectively; from these, the implemented safety strategies 
provides the following results: 

 Detected by the STL: 9.17 FIT  

 Undetected (λR): 0.57 FIT 

 Safe faults (λS): 0.33 FIT.  

Finally, reducing λR by increasing λS and FC, directly 
impacts the SPFM. The proposed Safety technique based on 
only STLs for FlexGripPlus resulted in an SPFM of 94.27%, 
allowing ASIL B assessment without hardware modifications to 
the logic units of an SM and without any other SMech. 

VII. CONCLUSIONS 

This work is the first to provide a quantitative evaluation of 
the effectiveness of STLs for the in-field testing of GPU cores. 
The reported results showed that a stuck-at fault coverage of 
more than 92% could be obtained on the logic modules and 
embedded memories. The functional-safety results (SPFM of 
94.27%) show the effectiveness of STLs as a safety mechanism 
for SMs in GPUs. 

The results allow us to state that the SBST strategy can be 
used as an effective solution, possibly combined with other 
strategies, to guarantee the reliability and functional safety of 
GPU-based applications for safety-critical domains. 
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