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Abstract
Relative localization is a key capability for autonomous robot swarms, and it is a substan-
tial challenge, especially for small flying robots, as they are extremely restricted in terms of 
sensors and processing while other robots may be located anywhere around them in three-
dimensional space. In this article, we generalize wireless ranging-based relative localiza-
tion to three dimensions. In particular, we show that robots can localize others in three 
dimensions by ranging to each other and only exchanging body velocities and yaw rates. 
We perform a nonlinear observability analysis, investigating the observability of relative 
locations for different cases. Furthermore, we show both in simulation and with real-world 
experiments that the proposed method can be used for successfully achieving various 
swarm behaviours. In order to demonstrate the method’s generality, we demonstrate it both 
on tiny quadrotors and lightweight flapping wing robots.

Keywords Relative localization · Swarm robotics · Autonomous flight · Observability 
analysis
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1 Introduction

Following recent technological developments, autonomous micro-air vehicles (MAVs) 
have been getting increasing attention for a wide variety of tasks. These range from moni-
toring crops (Maes & Steppe, 2019) and inspecting power plants (Jordan et al., 2018) to 
acting as communication relays in areas with damaged infrastructure (Kwon & Hailes, 
2014). For many of these tasks, using multiple collaborating agents has advantages in 
terms of performance, robustness and flexibility. These robotic swarms are inspired by 
self-organizing behaviour in animals and have the potential to complete complex tasks by 
exploiting cooperation among team members (Brambilla et  al., 2013; Şahin, 2005). It is 
important here to emphasize that we do not equate ’swarming’ with having thousands of 
robots in a tight space. For example, in exploration tasks, swarm members should spread 
out as much as possible over the area of interest; hence, there may well be only small 
groups in the order of five or ten robots on a floor of a building.

Relative localization of other agents is a key component of MAVs operating in swarms 
(Zhu & Kia, 2019). It is required for a variety of tasks, from avoiding collisions between 
swarm members to enabling complex swarming behaviours such as flocking, and a multi-
tude of options are available when it comes to sensors being used (Coppola et al., 2020). In 
outdoor areas and in adequately equipped indoor environments, agents can communicate 
absolute positioning information, for example, from GNSS (Global Navigation Satellite 
System) (Vásárhelyi et al., 2018), motion-tracking cameras (Preiss et al., 2017) or beacon 
based systems (Ledergerber et  al., 2015; Vedder et  al., 2015). In GNSS-denied environ-
ments that cannot be prepared in advance, cameras (Faigl et al., 2013; Carrio et al., 2018), 
infrared sensors (Roberts et al., 2012) and microphones (Tijs et al., 2010) have been used 
for relative localization with varied success.

Based on knowledge of the distances between all swarm members, the morphology of 
a rigid swarm can be determined with the exception of rotation and translation. If the posi-
tion of 4 nodes (in 3D) is known in a common reference frame, the network localization 
problem can be solved completely, yielding the position of each node in the same reference 
frame (Eren et al., 2004; Shang & Ruml, 2004).

In our work, we are interested in building swarms based on small and lightweight 
agents. This is not only advantageous for monetary and logistic reasons, but it also makes 
the system inherently safe. Simply put, a tiny drone can’t build enough momentum to cause 
serious damage to people, infrastructure or other assets in the operational area. The drones 
we are working with in this research weigh ≤ 100  g (including battery) and do most of 
their processing on a STM32F4 series microcontroller (192 kB memory, 168 MHz proces-
sor). As a result, most of the previously mentioned strategies are difficult to  im plement 
due to the weight of the sensors or the computational requirements of the processing. A 
relative localization approach based on odometry and ranging between agents, while being 
less accurate, can be implemented with lightweight and energy-efficient hardware such as 
Ultra-Wideband (UWB) communication chips.

Some relevant work in this direction has been carried out by Trawny et al. (2010) and 
Trawny et al. (2007), where the authors aim at finding a solution for the 6-degree of free-
dom relative pose estimation problem in 3D based on odometry and inter-agent ranging. In 
their work, they also include a nonlinear local weak observability analysis to find sufficient 
conditions for the 3D relative pose to become locally weakly observable. However, their 
theoretical approach relies on a large set of distance measurements (10), which results in a 
computationally heavy polynomial system of equations.



More recently, several authors have worked on performing relative localization more effi-
ciently, so that it can be used on smaller MAVs. For example, Coppola et al. (2018) imple-
mented a relative localization algorithm for collision avoidance based on signal strength 
measurements with Bluetooth. The use of received signal strength (RSSI) and Bluetooth does, 
however, impose significant limitations on the range and accuracy of the system. Guo et al. 
(2017) present a 2D localization system based on UWB that does not suffer from these limita-
tions, but requires the agents to determine their displacement in a common frame of reference. 
Li et al. (2021) on the other hand, use an Extended Kalman Filter (EKF) and UWB ranging 
to estimate relative position and heading in 2D, removing the need for a common orientation 
reference. While the above-mentioned, real-world studies on flying robots have focused on 2D 
localization, where the robots measured and controlled their height to a flat ground surface, 
some recent efforts have been made to perform relative localization in 3D as well. Cossette 
et al. (2021) present a ranging-based 3D relative localization scheme, which does, however, 
require a common orientation reference. The same goes for Shalaby et al. (2021), which addi-
tionally makes use of multiple UWB tags per agent. Using a common orientation reference 
requires exteroceptive sensors which often require proper initialization and can be subject to 
external disturbances. Specifically, the magnetometers used in the aforementioned papers are 
affected when operating in proximity of hard iron objects or electrical transmission lines. For 
higher robustness in GPS-denied, unprepared environments, the 3D relative localization with-
out common orientation reference has been studied, using multiple consecutive distance meas-
urements and computationally expensive optimization algorithms (Jiang et al., 2020; Ziegler 
et al., 2021; Nguyen & Xie, 2022).

In this work, we perform wireless-ranging-based relative localization for drones in three 
dimensions, without the need for a common orientation reference or extensive computational 
resources. With Lie derivatives (Williams & Sukhatme, 2015; Heintzman & Williams, 2020), 
we study the system observability and find favourable trajectories with high localization 
observability. Our contributions are thus:

• A formulation for a wireless ranging-based 3D relative localization system which does not
require a common orientation reference and can be solved efficiently on computationally
limited devices.

• An observability analysis of the system
• Experimental validation and comparison of open- and closed-loop performance
• The first experimental results of relative localization on flapping wing drones

This paper is structured as follows: In Sect. 2, we introduce the relative localization problem, 
the sensory information available to the drones, the continuous-time model and the EKF that 
performs the estimation. Section 3 presents the observability analysis carried out to evaluate 
the quality of the information provided by the filter and to detect conditions that may cause a 
degradation of the degree of observability of the system. The theoretical analysis from Sect. 3 
is verified by means of simulation in Sect. 4 and by means of real-world robotic experiments 
in Sect. 5 and 6. Finally, we draw conclusions in Sect. 7.



2  Ranging‑based three‑dimensional relative localization

2.1  Notation and conventions

Let us first introduce some notation and conventions. Throughout this paper, we use 
right-handed coordinate systems with the x-axis pointing forward, the z-axis point-
ing up and the y-axis completing the right-handed system as shown in Fig.  1. When 
expressing the orientation of the MAV in Tait-Bryan angles (roll � , pitch � , yaw � ), we 
follow the sequence ZYX from global to body frame, leading to the following expres-
sion for the rotation matrix:

�x(�) , �y(�) and �z(�) are the rotation matrices for the elemental rotations around
the local x, y and z axis, respectively, and we use shorthands for sines and cosines 
( sx = sin x, cx = cos x).

Since there is no common inertial reference frame, each agent i must be able to deter-
mine the relative position of the other robots in a body centred frame. However, instead 
of working in the drone’s body frame Bi , we mainly work in a drone-centred horizontal 
frame Hi . In this horizontal frame, the xy-plane is parallel to the ground and the z-axis 
points upward. Since roll and pitch can be accurately estimated from IMU data thanks 
to the gravitational force (Mahony et  al., 2008), any vector �B expressed in Bi can be 
expressed in Hi by multiplication with the following rotation matrix:

(1)uG =�z(�)�y(�)�x(�)u
B = �gbu

B

(2)�gb =

⎡
⎢⎢⎣

c�c� c�s�s� − s�c� c�s�c� + s�s�

s�c� s�s�s� + c�c� s�s�c� − c�s�

−s� c�s� c�c�

⎤⎥⎥⎦

Fig. 1  Illustration of the coordinate system conventions shown on the drones used in this paper



2.2  System model

The 3D relative localization problem can be described as determining the 3D relative 
position of a tracked drone Dj in the body frame of a tracking drone Di , {j|j ∈ ℕ, j ≠ i} 
where ℕ = {1, 2, ...,N} and N is the number of robots in the flock within sight of Di . 
We define the relative state vector for the tracking drone as �ij =

[
xij, yij, zij,�ij

]T , where
�ij =

[
xij, yij, zij

]T is the relative position along the three axes of the tracking drone’s hor-
izontal frame Hi and �ij is the relative yaw.  The relative localization problem and its 
associated variables are illustrated in Fig. 2.

The continuous-time kinematic model f (�ij) describing the relative motion of the 
drones in the three dimensions can be derived using the Newton formula (Li et  al., 
2021). The full model, including the measurement equation, is then:

The inputs to this model are the horizontal velocities vHi

i
 and vHi

j
 (expressed in Hi ) as well 

as the yaw rates �̇�G
i

 and �̇�G
j

 in the global frame. Each drone can estimate its own horizontal 

(3)�hb =

⎡⎢⎢⎣

c� s�s� s�c�

0 c� − s�

−s� c�s� c�c�

⎤⎥⎥⎦

(4)�̇ij =f (�ij) =

[
�z(𝜓ij)v

Hj

j
− v

Hi

i
− ��̇�G

i
pij

�̇�G
j
− �̇�G

i

]

(5)h(�ij) =‖pij‖ =

�
x2
ij
+ y2

ij
+ z2

ij

(6)� =

⎡⎢⎢⎣

0 − 1 0

1 0 0

0 0 0

⎤⎥⎥⎦

Fig. 2  Relative localization 
problem, seen from above



velocity and yaw rate from on-board measurements and communicates them to the other 
drones by including them in the same UWB messages that are used for ranging. Further-
more, the ranging messages are used to calculate a measurement of the distance between 
the drones, dij . Estimation of the horizontal velocity can vary depending on the drone plat-
form and available on-board sensors. Two examples are presented in Sect. 5.2. The flow of 
data on-board and between the drones is shown in Fig. 3.

Note that the yaw rate �̇� is defined around an intermediate axis of rotation and does 
therefore not directly correspond to the angular velocity around the z axis, �z , measured 
on-board the drone. Specifically, the relation between the angular rates around the body 
frame axes, � , and the Euler angle rates (ZYX sequence) are given by:

This relation can be expressed using a single matrix, which is easily inverted to find the 

expression for the Euler angle rates in terms of the gyro measurements:

(7)
⎡⎢⎢⎣

𝜔x

𝜔y

𝜔z

⎤⎥⎥⎦
=

⎡⎢⎢⎣

�̇�

0

0

⎤⎥⎥⎦
+ �−1

x
(𝜙)

⎡⎢⎢⎣

0

�̇�

0

⎤⎥⎥⎦
+ �−1

x
(𝜙)�−1

y
(𝜃)

⎡⎢⎢⎣

0

0

�̇�

⎤⎥⎥⎦

(8)
⎡⎢⎢⎣

𝜔x

𝜔y

𝜔z

⎤⎥⎥⎦
=

⎡⎢⎢⎣

1 0 − s𝜃

0 c𝜙 s𝜙c𝜃

0 − s𝜙 c𝜙c𝜃

⎤⎥⎥⎦

⎡⎢⎢⎣

�̇�

�̇�

�̇�

⎤⎥⎥⎦
↔

⎡⎢⎢⎣

�̇�

�̇�

�̇�

⎤⎥⎥⎦
=

⎡⎢⎢⎣

1
s𝜃s𝜙

c𝜃

s𝜃c𝜙

c𝜃

0 c𝜙 − s𝜙

0
s𝜙

c𝜃

c𝜙

c𝜃

⎤⎥⎥⎦

⎡⎢⎢⎣
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⎤⎥⎥⎦

Relative
Position EKF
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Fig. 3  Data flow on-board and between drones



2.3  EKF for relative localization

To estimate the relative state vector Xij using the system model (4) and the measurement 
Eq. (5), an EKF is used (Simon, 2006). For the prediction step, we discretize (4) using 
the forward Euler method and linearize the system for the covariance update. In what 
follows, Ts is the sampling time, � is the state covariance matrix, and � is the process 
noise covariance matrix. The input vector � is defined as � = [vT

i
, vT

j
, �̇�i, �̇�j]

T . To sim-
plify notation, we drop the indices ij for the state vector X.

with

The UWB measurement of the distance between the drones is the only measurement con-
sidered for the correction step of the EKF. The Jacobian matrix of the corresponding meas-
urement Eq. (5) is given by

(9)
�̂k+1|k = F(�̂k,�k) = �̂k + �̇kTs

�k+1|k = �k�k|k�T
k
+ �k��T

k

(10)� =
𝜕F

𝜕�
=

⎡⎢⎢⎢⎣

1 �̇�iTs 0 Ts(−s𝜓ij v
x
j
− c𝜓ij v

y

j
)

−�̇�iTs 1 0 Ts(c𝜓ij v
x
j
− s𝜓ij v

y

j
)

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎦

(11)� =
�F

��
=

⎡⎢⎢⎢⎣

−Ts 0 0 Tsc�ij − Tss�ij 0 Tsyij 0

0 − Ts 0 Tss�ij Tsc�ij 0 − Tsxij 0

0 0 − Ts 0 0 Ts 0 0

0 0 0 0 0 0 − Ts Ts

⎤⎥⎥⎥⎦

(12)� =
�h

��
=

pT
ij

‖pij‖ =
1�

x2
ij
+ y2

ij
+ z2

ij

⋅ [xij, yij, zij]

Fig. 4  Ultra-wideband communication protocol



Given a noisy distance measurement dij with variance �2
d
 , it is then possible to calculate the 

Kalman gain K and apply the measurement update to the state vector and the state covari-
ance matrix. Note that since we work with a scalar measurement, no matrix inversion is 
necessary to compute the Kalman gain.

To use this approach with multiple drones, a filter bank of several EKFs that run in paral-
lel can be used. This approach was demonstrated successfully for a swarm of five drones 
in 2D (Li et al., 2021). While this approach does not leverage additional information from 
distances between other drones, it is highly flexible and thus suited for dynamic swarms. 
Furthermore, this approach is computationally efficient as there is no need to track covari-
ances between the relative states, preventing large matrix operations.

2.4  Ultra‑wideband communication protocol

In large part, the UWB communication protocol used is the same as described in Li et al. 
(2021) and shown in Fig. 4.

On a high level, every agent has its own ID and ranges to a set of predetermined other 
agents. After ranging and exchanging information with those agents, control of the com-
munication channel is passed on to the next agent, which then performs its own ranging 
and communication. By sharing ranging information with the agent that is being ranged to, 
each link only needs to be initiated from one side and the control can be passed around in 
a circle.

The lower-level ranging protocol is an extension to the standard symmetrical double-
sided two-way ranging (SDS-TWR). The "Report" message now also includes the report-
ing drone’s velocity and yaw rate estimates. Furthermore, an additional "dynamic" message 
is returned by the agent that initiated the ranging which also transmits velocity estimates 
and yaw rate alongside the calculated range. Finally, the "Dynamic" message is also used 
to pass control of the communication channel to the next agent.

3  Observability analysis

It is important to be aware of the potential dangers resulting from rapidly degrading rela-
tive position estimates in a robotic swarm. This can result from a lack of observability of 
the system, that is, when the combination of inputs and measurements is not sufficient to 
infer the full state of the system. To identify these situations, we proceed with an observ-
ability analysis of the system.

Based on Arrichiello et al. (2013) and Hermann and Krener (1977), we study the local 
weak observability of the system described by (4) and (5) in Lie derivatives, by computing 
the observability matrix O. The system is termed observable if O is full rank. To simplify 
the expressions in this chapter, we consider the measurement Eq. (5) in power form, i.e.

(13)�k = �k|k−1�T
k

(
�k�k|k−1�T

k
+ �2

d

)−1

(14)�̂k = �̂k|k−1 +�k

(
dij − h

(
�̂k|k−1

))



 hence,

Without delving into an exhaustive analysis of all the states that would cause matrix [16] 
to lose its rank, some unobservable conditions can be highlighted by observing its struc-
ture and computing its determinant |�| . While more conditions exist, they involve more 
complicated combinations of states and inputs that are unlikely to occur for longer time 
spans anyway. Specifically, the following conditions will result in a full row or column of 
zeros which in turn will result in |�| = 0 . This can easily be seen by performing a cofactor 
expansion following a particular row or column:

• Identical velocities, vi = �zvj
This condition could potentially be problematic for missions that require leader–fol-

lower or flocking behaviour, where the drones are expected to move at identical veloci-
ties.

• Same altitude and no relative motion along z, zij = 0 and vz
i
= vz

j

 Similar to the condition of identical velocities, this situation could occur in multiple 
scenarios.

• Tracked drone not moving, �j = 0

This is a very relevant condition, as it means that the agents should be constantly
moving in order to be able to determine their relative positions.

• Identical positions, �ij = �

While this condition will in theory cause the system to become unobservable, it is
not relevant in practical applications, where it is impossible for two agents to be located
in the same position in space.

It is also interesting to evaluate not only if, but how well the system is observable. To this 
end, it is possible to employ the local estimation condition number C, defined as the ratio 
between the largest singular value �max and the smallest singular value �min of � (Krener & 
Ide, 2009). To avoid division by zero if � loses rank, we will actually consider the inverse 
of the local estimation condition number, C−1:

Favourable conditions on the system will result in a small C−1 , while an ill-conditioned 
estimation problem will entail a rather large C−1 . The inverse local estimation condition 
number can be used to understand how the addition of the third dimension affects the 
observability of the system. We do this by varying one parameter of matrix O at a time 
and comparing the values of C−1 when estimating relative position in x and y, as well as the 
relative yaw. Figure 5 shows an example of the study. It can be noticed that the maximum 
value of C−1 is significantly lower for the 3D case compared to the 2D one, which means 

(15)h(�) =
pT
ij
pij

2
=

1

2

(
x2
ij
+ y2

ij
+ z2

ij

)

(16)� =

⎡⎢⎢⎢⎢⎣

∇L0
f
h

∇L1
f
h

∇L2
f
h

∇L3
f
h

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

pij 0

(�zvj − vi)
T �T

ij
�z��j

(�̇�j�z�vj − �̇�i�vi)
T −2vT

i
�z�vj + �̇�jp

T
ij
�z�

2vj

(�̇�2
j
�z�

2vj − �̇�2
i
�2vi)

T −3(�̇�j − �̇�i)v
T
i
�z�

2vj − �̇�2
j
pT
ij
�z�vj

⎤⎥⎥⎥⎥⎦

(17)C−1 =
�min(�)

�max(�)



that adding the third dimension decreases the observability of the system in general. This 
can be explained by the higher ambiguity when determining the true states by relying on 
the same measurement: In 3D, any relative position on a sphere around the agent can result 
in a given measurement, while in 2D, this uncertainty is limited to a circle.

4  Simulation results

In this section, we discuss results obtained by simulating the multi-agent system in Python 
to validate the relative localization method. The EKF performance is assessed in terms of 
quality of estimation and consistency. For comparison, we also implemented the sliding-
window estimator (SWE) presented in Cossette et al. (2021). The parameters for the EKF 
are computed as follows:

where the input noise deviation of velocity and yaw rate are, respectively, �v = 0.15 m/s 
and �w = 0.1 rad/s, the measurement noise deviation is �r = 0.1 m and the sampling time is 
Ts = 0.01 s, which is similar to the values observed in logs of the real systems.

The state vector � is initialized to a random initial relative position ( xij, yij, zij,�ij in the 
vicinity of the true relative position. The covariance matrix � is set according to the ran-
dom noise added to the initial position value. The horizontal velocity of the drones which 
serves as input to the EKF can stem from different sources that can affect the consistency 
of the estimator. The most general approach is to use a velocity that is provided from an 
on-board estimator. While this approach has the advantage of being applicable to almost 
any drone imaginable, it results in a cascaded setup of filters, which is known to lead to 
problems regarding the estimator’s consistency (Shalaby et al., 2021). To avoid this prob-
lem, we compare the performance of the naive (simple) approach with two variations. The 
Sigma Point Covariance Intersection (SPCI) variant uses covariance intersection with a 
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, �2

v
, �2

v
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v
, �2

v
, �2

v
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sigma point approach to avoid having to estimate cross-covariances (Shalaby et al., 2021; 
Zhu & Kia, 2019). Furthermore, a direct approach can be used on platforms where direct 
velocity measurements are available, e.g. in the form of optic flow measurements.

For the first test, the robots are assigned a random trajectory. The test is repeated ten 
times with different seeds for the random number generator that is used to add noise to the 
inputs and measurements. Figure 6 shows the estimated relative positions of both estima-
tors compared to the groundtruth. Furthermore, we compare the absolute relative position 
error eij and the normalized estimation error squared NEESij to assess the performance and 
consistency of the estimators, as well as the inverse of the local estimation condition num-
ber C−1 (Fig. 7). Note that only the error in position is considered to allow a comparison 
between different estimators.

As can be seen, the EKF getting direct velocity measurements performs best, both 
in terms of error and consistency. The simple EKF using estimated velocities is highly 
inconsistent and does not provide the same quality of estimation. Using the SPCI approach 
improves the consistency in a cascaded setup, but does increase the error on this trajectory. 
We therefore conclude that where possible, direct velocities should be used.

It is interesting to verify the link between observability index and the filter performance. 
In the first test, we can already see that all filters perform better in the first half of the 

Fig. 6  Simulated performance 
of simple EKF and SWE for the 
three states xij , yij , zij for 10 runs 
on a random trajectory
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simulation, where the observability is better (larger values of C−1 ). In a second test, the 
system is simulated with trajectories designed to maximize the observability of the system. 
The favourable trajectories are realized by making MAV i fly along a clockwise circular 
trajectory of radius �i at an angular velocity � at a height zi , which oscillates in a sinusoidal 
way. MAV j, on the other hand, follows a circular path concentric to MAV i, counterclock-
wise, with a radius 𝜌j > 𝜌i , an angular velocity 2� and a height zj ≠ zi . With this setup, 
parallel velocities are avoided, as well as possible hits between the MAVs. Moreover, the 
difference in the velocity magnitude allows to excite the system with sufficient dynamics. 
The favourable trajectories are shown in Fig. 8.

The results of the second test are shown in Figs. 9 and 10. As can be seen, avoiding 
unobservable conditions leads to frequent high values of the inverse local estimation condi-
tion number, due to the better conditioning of matrix � . We continue, however, to observe 
worse performance during times of lower observability, especially for the SPCI EKF 

Fig. 8  Trajectories designed to 
maximize observability
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between 40 and 65 s, with a drop around 55 s. In addition to the improved performance, we 
also observe a higher consistency for all EKF variants.

The mean NEES after convergence is used as a measure of consistency. For a consist-
ent, approximately linear Gaussian filter, the mean NEES is expected to tend towards the 
number of states of the filter, which in our case is three (Bailey et al., 2006). In our simula-
tion, all estimators turn out to be overconfident to various degrees, with exception for the 
direct EKF on the favourable trajectory. For the simple and SPCI EKF, there is also an 
improved consistency on the favourable trajectory, but the NEES still stays outside of the 
95% confidence interval most of the time. The advantage that the SPCI EKF offers over 
the simple EKF in terms of consistency does unfortunately not lead to an improved perfor-
mance. Combined with the larger computational cost and the need to exchange covariance 
matrices between drones, this means that in its current form, the SPCI EKF is not appropri-
ate for this problem.

Fig. 10  Median absolute position 
error ( eij ) and Normalized-Esti-
mation-Error-Squared ( NEESij ) 
over 10 runs, alongside the 
inverse local estimation condition 
number C−1 for favourable trajec-
tories. Shaded regions indicate 
the lower and upper quartiles
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Fig. 11  Drones used during experimental testing



5  Experimental setup

To test the proposed algorithm, we implemented our 3D relative localization on two dif-
ferent types of MAVs: Quadrotors (Crazyflie 2.11) and flapping wing drones (Flapper 
Drones2), shown in Fig. 11. While flapping wing drones offer many potential advantages 
such as energy efficiency, agility and robustness to collisions, they have so far not received 
the same level of attention (de Croon, 2020). This might be due to additional challenges 
arising from the use of a flapping wing platform. Specifically, the vibrations created from 
the flapping of the wings results in more noise on IMU measurements. Furthermore, a 
large horizontal drag leads to increased pitch and roll angles. By performing tests on these 
vastly different platforms, we want to demonstrate the versatility and robustness of our pro-
posed method.

5.1  Hardware

The Crazyflie is a versatile, lightweight platform with open-source hardware and software, 
whose capabilities can be extended by making use of expansion decks. In addition to the 
STM32F405 MCU which runs the firmware, it also employs a nRF51822 MCU for radio 
and power management. Since the Flapper Drones are based on the same Crazyflie hard-
ware, they run almost the same firmware and are compatible with the Crazyflie expan-
sion decks. Both types of drones are equipped with an Inertial Measurement Unit (IMU), 
containing a three-axis accelerometer and gyroscope (BMI088), and a barometric pressure 
sensor (BMP388). The Loco-Positioning Deck, which is used for UWB ranging between 
the drones, is based on the Decawave DWM1000 module. On the original Crazyflie, the 
Flow Deck V2 is used for optic flow measurements (PMW3901 optical flow sensor) and 
height measurements with a time-of-flight distance sensor (VL53L1x). Unfortunately, due 
to the orientation of the autopilot on the Flapper Drones and the large pitch and roll angles 
present during its flight, the Flow Deck V2 can’t be employed on the Flapper Drones. As a 
result, it is more difficult to estimate the Flapper Drone’s body velocity and altitude. To the 
best of our knowledge, this study is the first attempt to have flapping wing robots perform 
relative localization with onboard means.

5.2  Relative localization algorithm

To estimate the relative position of two drones, the EKF presented in Sect. 2 requires the 
yaw rate and horizontal velocities of both drones as input. Using (8), the yaw rate can be 
easily obtained from gyro measurements. Especially on the flapping wing drones, however, 
these measurements are extremely noisy and cause significant noise on the relative position 
estimates. We therefore filter yaw rate measurements using a second-order Butterworth fil-
ter with a cut-off frequency of 5 Hz (lower than the ∼ 12 Hz flapping frequency).

On the Crazyflie 2.1, we make use of the built-in EKF for on-board state estimation. 
The EKF relies on measurements from the IMU and the Flow Deck to estimate the drones 
attitude and velocity, which can then be used as inputs for the relative localization EKF 
after rotating them into the horizontal frame.

1 https:// www. bitcr aze. io/
2 https:// flapp er- drones. com/ wp/

https://www.bitcraze.io/
https://flapper-drones.com/wp/


On the Flapper Drones on the other hand, using the Flow Deck is not possible due to the 
large vibrations and the drones architecture. Without optic flow and laser altimeter meas-
urements, the on-board EKF cannot be used to calculate the inputs required for relative 
localization. Instead, we use a complementary filter for attitude estimation and predict the 
horizontal velocity as a function of attitude alone. For this model, we consider the drone 
as a rigid body subject to three principal forces acting on its centre of mass: thrust, drag 
and gravity. We further assume small pitch and roll angles and neglect changes in altitude 
to arrive at a rather simple expression for the evolution of the drone’s horizontal velocity.

The drag coefficients bx and by are found empirically by solving a least-squares minimiza-
tion on a data set with ground truth. More details on the derivation of the model are found 
in Appendix A.

Since this model assumes no changes in altitude during horizontal motion, it cannot be 
used to estimate the vertical velocity. Instead, we fuse barometer and accelerometer data 
in a complementary filter following the approach of Wei et al. (2016). The resulting filter 
equation is given by (22), where hacc is the accelerometer and hbaro the barometer measure-
ment. For the implementation on the drone, we discretize the filter using the bilinear trans-
form and a sampling period of Ts = 0.01 s. Note that the accelerometer measurement must 
of course be rotated first to correct for the pitch and roll of the drone.

Since the estimation of vz relies on different sensor inputs, it makes sense to assume a dif-
ferent standard deviation of the error, when compared to vx and vy . Additionally, due to dif-
ferent dynamics of the flapper in x and y direction, it makes sense to use individual process 
noise parameters for the relative localization EKF. Specifically, the process noise covari-
ance matrix (18) is rewritten as (23) and is chosen independently for the quadrotor and for 
the flapping wing drone, respectively.

To measure the distance between two MAVs and exchange their horizontal velocity and 
yaw rate, we use UWB signals, employing the Crazyflie Loco-Positioning deck. The rang-
ing and communication protocol used is the same as in Li et al. (2021), with the sole addi-
tion of also exchanging vertical velocity estimates.

The complete code used in the experiments is available on github for the crazyflies3 and 
the Flapper Drones.4

(20)vx,k+1 = vx,k + dt
(
tan �k ⋅ |g| − cos2 �k ⋅ bxvx,k

)

(21)vy,k+1 = vy,k + dt

(
−
tan�k

cos �k
|g| − cos2 �k ⋅ byvy,k

)

(22)V̂z(s) =
s2

s2 + k1s + k2
⋅

hacc(s)

s
+

k1s + k2

s2 + k1s + k2
⋅ s ⋅ hbaro(s)

(23)� = diag ([�2
vx
, �2

vy
, �2

vz
, �2

vx
, �2

vy
, �2

vz
, �2

w
, �2

w
])

3 https:// github. com/ tudel ft/ crazy flie- firmw are/ tree/ cf_ swarm 3d
4 https:// github. com/ tudel ft/ crazy flie- firmw are/ tree/ flapp er_ swarm 3d

https://github.com/tudelft/crazyflie-firmware/tree/cf_swarm3d
https://github.com/tudelft/crazyflie-firmware/tree/flapper_swarm3d


5.3  Test environment

The flight tests were performed in the "Cyberzoo" test arena at the TU Delft Faculty of 
Aerospace Engineering. The "Cyberzoo" is a 10 m×10 m×5 m indoor arena equipped with 
an optitrack motion capture system that provides groundtruth with millimetre level accu-
racy. Data were logged from the optitrack system and from the drone using the Crazyflie 
Suite.5

Fig. 12  Offline performance of 
the horizontal velocity model for 
the Flapper Drone when flying 
with varying altitude
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Fig. 13  RMSE of the horizontal 
and vertical velocity estimation 
on the Crazyflie 2.1 and on the 
Flapper Drones aggregated over 
10 trajectories
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6  Results

In this section, we will present the results of our flight tests. The complete data underlying 
the plots and analysis have been published on 4TU Research Data.6 Videos of the experi-
ments can be found on Youtube.7

6.1  Horizontal velocity estimation

Since the horizontal velocity of the drones is an important input to the relative locali-
zation EKF, it makes sense to analyse the performance of the simplified velocity model 
developed for the flapper. The flapper model was tuned offline on a dataset consisting 
of 3 trajectories, flown manually at almost constant altitude, resulting in drag coef-
ficients bx = 4.2 and by = 1.8 . Using these parameters, the root mean squared error 
(RMSE) was 0.13  m/s for vx and 0.22  m/s for vy on the training set. The RMSE for 

Fig. 14  Relative Localization 
during free flight with two 
Crazyflies
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Fig. 15  Relative Localization 
during free flight with two Flap-
per Drones
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6 https:// doi. org/ 10. 4121/ 17372 348
7 https:// www. youtu be. com/ playl ist? list= PL_ KSX9G On2P- dzSwB vYYRZ uKOiY vx0pIS

https://doi.org/10.4121/17372348
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the vertical velocity estimate using the manually tuned complementary filter was 
0.20 m/s on the same dataset. During the derivation of the model, a constant altitude 
was assumed, which is often not the case. We therefore also validated the model on 
more aggressive trajectories that included major variations in altitude. An example for 
the performance in such a flight is shown in Fig. 12. While the performance is slightly 
reduced in x (RMSE=0.18  m/s), y (RMSE=0.31  m/s) and z (RMSE=0.26  m/s), the 
results still look good enough to justify the use of the model on-board the drones.

We can now also compare the on-board performance of the flapper model with the 
EKF of the Crazyflie 2.1. Figure 13 shows the aggregated performance data over 10 
manual flights for the Crazyflie, Flapper Drones flying at almost constant altitude and 
Flapper Drones flying with large changes in altitude. Due to range limitations of the 
Flow Deck, it is not possible to fly large altitude variations with the Crazyflie while 
still estimating its velocities.

The on-board performance of the Flapper Drone’s velocity estimation matches the 
observation from the offline testing. When flying aggressive trajectories with frequent 
altitude changes, the performance of the model degrades particularly along the y and 
z axis. It is, however, striking that, for similar conditions (level flight), the model per-
forms only slightly worse in x and y than the EKF on the Crazyflie, despite having no 
access to optic flow.

Fig. 16  Comparison of relative 
localization on Crazyflie and 
Flapper Drones for free flight 
and leader–follower experi-
ment aggregated over 5 flights. 
RMSE calculation starts 30 s into 
the flight and stops 5 s before 
landing

xrel yrel zrel xrel yrel zrel xrel yrel zrel xrel yrel zrel
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
M
SE

re
la
ti
ve

po
si
ti
on

[m
]

Crazyflie
Free flight

Flapper Drone
Leader-Follower

Velocity PID Attitude PID Motor Control

Relative
Position EKF

Attitude
& Velocity
Estimator

Drone i

Swarm

Relative Position
Setpoint

Velocity

Setpoint
Attitude
Setpoint

IMU, Optic Flow,
etc.

Velocity Estimate

Relative Position
Estimate

Attitude
Estimate

dij , vj

Fig. 17  Leader–follower control layout. Blocks in yellow represent the physical systems



6.2  Relative localization

To test the 3D relative localization, we performed manual flights with two MAVs without 
following any particular patterns. Looking at the results for two individual flights using 
Crazyflies (Fig. 14) and Flapper Drones (Fig. 15), we can observe that the relative position 
estimate stabilizes within several seconds, which is similar to what we saw in simulation.

Looking at the aggregated data over 5 flights in Fig. 16, it can be seen that the perfor-
mance along different axes varies in a pattern similar to what could be observed for the 
velocity estimation (Fig. 13). This makes sense, given that the velocity estimates serve as 
the main input to determine the relative motion between the MAVs.

Table 1  PID gains for relative 
position control

k
P

k
D

k
I

Crazyflie 2.0 0.01 0.0001
Flapper drone (xy) 3.5 0.06 0
Flapper drone (z) 3.5 0.06 0.001

Fig. 18  Optitrack leader and fol-
lower position during leader–fol-
lower experiment with Crazyflies 
(target: Δx=-2 m, Δy=0 m, Δz
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Fig. 19  Optitrack leader and 
follower position during leader–
follower experiment with Flapper 
Drones (target: Δx=-2 m, Δy
=0 m, Δz=−0.2 m)
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6.3  Leader–follower

Finally, to show the applicability of the proposed relative localization method to real 
swarming scenarios, we performed leader-follower flights with two MAVs. In this sce-
nario, the first MAV is controlled manually while the second MAV tries to keep a constant 
relative position. When the first MAV takes off manually, the second MAV receives a com-
mand to start its flight via UWB. The second MAV then takes off as well and performs 
a 20  s initialization sequence, during which it flies in random patterns based on odom-
etry alone. After the initialization sequence is complete, the second MAV switches to fol-
low mode, where it tries to stay in its desired relative position. This is done by calculating 
velocity commands directly from the relative position error using a simple PID controller 
along each individual axis. These velocity commands are then passed to the inner control 
loop of the drones that control attitude as shown in Fig. 17. Different gains were used for 
the two types of drones as reported in Table 1. Note that for the Flapper drone only a PD 
controller was used along the xy axes.

During the experiments, it was found that large deviations from the target position at the 
end of the initialization sequence could cause unstable behaviour, which is why during the 
initialization sequence, the leader MAV was flown close to the desired relative position. As 
can be seen in Fig. 18, the Crazyflie follower can track the leader very well after initiali-
zation, with errors rarely exceeding 1.0  in y and 0.5 m in x and z directions. The Flapper 
Drone on the other hand performs a bit worse in the sense that while the general shape of 
the trajectory is tracked, the offset from the desired position is larger (Fig. 19). This could 
be due to the differences in relative localization accuracy, but is also likely to result from 
sub-optimal controller tuning for this vehicle with more complex dynamics. The large dif-
ference between the error in x and y direction, also seen in Fig. 16, can be explained by the 
desired position offset of the follower, causing movement in x direction to be more observ-
able than in y (movement perpendicular to the UWB ranging). 

Surprisingly, Fig. 16 shows that the relative localization mostly performs better (lower 
RMSE) in the leader–follower scenario than in free flight. Particularly for the experiments 
on the Crazyflie, improvements of around 0.3 m can be observed along all directions. For 
the flapper drone, the difference is not as clear and is most pronounced along the z axis. 
This improvement is likely due to a self-stabilizing effect in the closed loop system. In 

Fig. 20  Absolute position of the 
leader and the 3 followers. The 
dashed lines represent the target 
trajectory for the followers
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fact, if the relative position along a given axis becomes less observable, its estimate will 
degrade. This results in a control input that excites that particular axis, rendering it observ-
able again. A more detailed look at this behaviour is given by Li et al. (2021). In free flight 
on the other hand, the MAVs might fly in patterns in which an axis remains unobservable 
for longer periods of times.

6.4  Multiple followers

One major concern in the development of algorithms for groups of robots is the scalability. 
For this relative localization method, the communication frequency is considered the main 
bottleneck. Specifically, the more drones are part of the swarm, the more messages need 
to be exchanged. This will result in a reduced frequency of ranging between two given 
drones. A naive, fully connected communication graph will drop below 5 Hz ranging fre-
quency for more than 12 drones (Li et al., 2021). Furthermore, small drones don’t carry a 
lot of computational power, adding another limitation to the number of drones to which 
any single drone is localizing. Advances in communication setup and flexible localization 
in local neighbourhoods will be necessary to scale up the UWB-based relative localiza-
tion to much larger groups of robots. Here, to reduce the load on both communication and 
computation, we tested the implementation of a filter bank with a group of 4 drones. This 
limits the information that has to be exchanged through UWB and keeps the filter matrices 
small, resulting in a better computational efficiency. For our experiments, we let the follow-
ers fly behind the leader in a diamond formation with the following offsets: (−1.0,−1.0) m, 
(0.0,−2.0) m and (−1.0, 1.0) m. As can be seen in Figs. 20 and 21, the group is still capable 
of performing the leader-follower behaviour with a similar accuracy as for the two drone 
case. Note that towards the end of the experiment, Follower 1 is running out of battery. 

7  Conclusion

Relative localization is a key aspect of agents in robotic swarms. On a lower level, it helps 
the robots to avoid collisions with their peers, while on a higher level, it is a prerequisite 
for most complex swarming behaviours. In this paper, we presented a 3D relative locali-
zation algorithm based only on inter-agent ranging and body velocity estimates. Due to 

Fig. 21  Error of the relative posi-
tion estimate on the leader drone
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its computational efficiency and the use of lightweight sensors, this algorithm is particu-
larly promising for swarms of MAVs, where individual agents have a very limited payload 
capacity of only several grams and perform most of their computations on a single core 
microcontroller.

To understand the limitations of the algorithm, we performed an observability analysis 
of the system and determined conditions in which observability is no longer guaranteed. 
We then validated the algorithm in simulation and investigated the effect of choosing tra-
jectories that maximize observability.

Finally, the algorithm was tested on two different types of drones: quadrotors and flap-
ping wing drones. These experiments not only demonstrated the platform independence of 
the proposed algorithm, but also showed that purely IMU based velocity estimation is suffi-
ciently accurate for relative localization on flapping wing drones. It is, however, important 
to note that the reliance on velocity estimates is a limitation of our algorithm. In situations, 
where the body velocities of the drones are difficult to estimate or are very noisy, the per-
formance of the algorithm will start to deteriorate. While an analysis of the consistency 
of our method shows overconfidence of the estimator, its performance in simulation and 
practical experiments is in line with other algorithms developed for relative localization. It 
is, however, an aspect that would profit from additional improvements.

A noteworthy observation is the improved performance of the relative localization in 
a leader–follower scenario. While one would intuitively expect the algorithm to perform 
worse in an unobservable configuration (identical velocities), the closed-loop system exhib-
its a self-stabilizing behaviour that actually improves the localization accuracy. In fact, the 
unobservability of the relative position leads to small excitations along the unobservable 
axes. This in turn quickly makes the axes observable again, while for uncoordinated flights, 
these unobservable configurations might persist for longer.

Since this research mainly focused on relative localization between two agents, it makes 
sense to place this work in the larger swarming context. While our method can be eas-
ily extended to small swarms by running multiple EKFs in parallel on each drone, this 
would quickly strain memory and computation capacity if too many drones are added. Fur-
thermore, this method does not take advantage of additional measurements between other 
drones like rigidity based methods do. However, it does allow drones to continue tracking 
each other’s relative position, even in cases where communication links are interrupted and 
the swarm loses its rigidity. As a result, real-world robotic swarms would benefit from a 
combination of these two methods to improve the robustness of relative localization in a 
wide variety of scenarios.

In addition to investigating mixed relative localization methods, the scalability of these 
methods should further be improved. A critical bottleneck in wireless ranging-based rela-
tive localization is the communication channel which can quickly saturate as more agents 
are added to the swarm. To resolve this issue, a reduction in the number of required com-
munication links within the swarm and in the amount of data exchanged is required.



Appendix A. Derivation of a horizontal velocity model for the flapping 
wing drone

In this derivation, we consider three main forces acting on the flapping wing drone. Since we 
are mainly interested in accelerations, we already divide out the mass in the following equa-
tions, i.e. � = �

m
 . First, the thrust along the drones central axis is given in the drones body 

frame as

Second, we consider a simple drag model with drag forces proportional and opposed to the 
drone’s body velocity:

Finally, the force of gravity is easily expressed directly in the horizontal frame

The sum of acceleration in the horizontal frame experienced by the flapper is then given by 
A4.

We can now put the drag coefficients into a diagonal matrix � = diag(�) and expand the 
equation. Recall that rotation matrices are orthogonal, and therefore, �bh = �−1

hb
= �T

hb
 . To 

simplify notation, we will at this point drop the superscript h for vectors in the horizontal 
frame.

We now write out the equation for each individual axis in the horizontal frame.

Assuming small roll and pitch angles, we can neglect any terms that include the multiplica-
tion of two sines (i.e. s2� ≈ s2� ≈ s�s� ≈ 0)

(A1)�b
T
= |T| ⋅ �3

(A2)�b
d
=

⎡⎢⎢⎣

−bxv
b
x

−byv
b
y

−bzv
b
z

⎤⎥⎥⎦

(A3)�h
g
= −|g| ⋅ �3

(A4)�h =
∑

�h = �hb�
b
T
+ �hb�

b
d
+ �h

g

(A5)� = |T| ⋅ �hb�3 − �hb��
T
hb
⋅ � − |g| ⋅ �3

(A6)
ax = |T|s�c� − (bxc

2� + bys
2�s2� + bzs

2�c2�) vx

− (by − bz)s�s�c� vy + (bx − bys
2� − bzc

2�)s�c� vz

(A7)
ay = − |T|s� − (by − bz)s�s�c�vx

− (byc
2� + bzs

2�)vy − (by − bz)c�s�c�vz

(A8)
az = |T|c�c� + (bx − bys

2� − bzc
2�)s�c� vx − (by − bz)c�s�c� vy

− (bxs
2� + byc

2�s2� + bzc
2�c2�) vz − |g|

(A9)ax =|T|s�c� − bxc
2� vx + (bx − bzc

2�)s�c� vz



Due to the difficulty of estimating the generated thrust of the flapper, we further simplify 
the model by decoupling horizontal and vertical movement of the flapper, i.e. we consider 
the vertical velocity to be negligible during horizontal motion. This allows us to find an 
expression for the thrust in terms of |g| and the horizontal velocities.

This expression for the thrust can now be inserted into A9 and A10, while setting vz = 0 . In 
both cases, the thrust is multiplied with a sine, which again allows us to neglect some terms 
due to our small angle approximation. As a result, only the gravity term remains in the final 
expressions for the acceleration alongside the deceleration caused by drag.

We can now integrate these accelerations using the forward Euler method to estimate our 
horizontal velocities.

The drag coefficients bx and by can be estimated from a data set with ground truth using a 
least squares approach. Specifically, for an overdetermined system of equations � = �� the 
least-squares estimate for the parameters � is given by �̂ = (�T�)−1�T� . To determine the 
drag coefficients in our horizontal velocity model, we solve two independent least-squares 
problems with for bx

and for by

(A10)ay = − |T|s� − byc
2� vy − (by − bz)c�s�c� vz

(A11)
az =|T|c�c� + (bx − bzc

2�)s�c� vx − (by − bz)c�s�c� vy − bzc
2�c2� vz − |g|

(A12)az =|T|c�c� + (bx − bzc
2�)s�c� vx − (by − bz)c�s�c� vy − |g| = 0

(A13)|T| = |g|
c�c�

− (bx − bzc
2�)s� vx + (by − bz)s� vy

(A14)ax =
s�

c�
|g| − bxc

2�vx

(A15)ay = −
s�

c�c�
|g| − byc

2�vy

(A16)vx,k+1 = vx,k + dt

(
s�k

c�k
|g| − bxc

2�kvx,k

)

(A17)vy,k+1 = vy,k + dt

(
−

s�k

c�kc�k

|g| − byc
2�kvy,k

)

(A18)� = bx

(A19)yk = −
vx,k+1 − vx,k

dt
+

s�k

c�k
|g|

(A20)Xk = c2�k vx,k



From our data, we find bx = 4.2 and by = 1.8 for the Flapper Drones.
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