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1 Introduction

Euclidean wormholes [1–3] are extrema of the action in Euclidean quantum gravity that

connect two distant regions, or even two disconnected asymptotic regions. Despite much

work over many years it remains unclear whether wormholes can provide valid saddle point

contributions to the Euclidean path integral and therefore have physical implications (see

e.g. [4–8]).

The Weak Gravity Conjecture (WGC) [9] adds a new dimension to this question.

This is because its generalization to instantons implies the existence of super-extremal

instantons which, when sourced by axions, correspond to Euclidean axion wormholes. It

has been argued that such instanton contributions can destroy the flatness of the potential

in models of large field inflation based on axions [10], although there is no consensus on

this [11].

It is therefore important to elucidate the physical meaning - if any - of wormholes.

To this end it is clearly of interest to find wormhole solutions in string theory and in

particular in AdS compactifications, where the AdS/CFT dual partition function provides

an alternative description of the gravitational path integral. Axionic wormholes [1] provide

natural candidates for wormhole solutions in string theory. However axions are always

accompanied by dilatons in string theory compactifications, and the existence of regular

wormhole solutions depends delicately on the number of scalars and their couplings [4]. In

a single axion-dilaton system coupled to gravity, for instance, the dilaton coupling must be

sufficiently small in order for wormholes to exist.

In [12] Calabi-Yau compactifications were found which allow for regular axionic worm-

hole solutions in flat space. The situation is more subtle however in compactifications to

AdS. Type IIB on AdS5 × S5 does not admit axionic wormholes [5]. On the other hand,

in [4] it was argued there are approximate wormhole solutions in Type IIB compactified

on AdS3 × S3 ×T4. However no clean derivation was given to determine the exact axion -
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dilaton content of this compactification.1 The validity of those solutions therefore remains

somewhat uncertain. Specifically, their smoothness depends on the specific Wick rotation

that was used in [4], but it remains unclear whether this particular Wick rotation is the

one selected by AdS/CFT.

The goal of this paper is to construct exact, regular axionic wormhole solutions in

an AdS compactification where the Wick rotation to the Euclidean theory can be made

rigorous using AdS/CFT. The wormholes we find are solutions to Euclidean IIB string

theory on AdS5 × S5/Zk, whose field theory duals are certain N = 2 quiver theories [13].

The dual operators that are turned on are exactly marginal operators, which enables us

to identify the Wick rotation selected by AdS/CFT and therefore rigorously determine the

nature of the scalar fields in the theory. Our results further sharpen the paradox with

AdS/CFT and the apparent uniqueness of quantum gravity. One is left wondering what is

pathological about axionic wormholes.

2 Axion wormholes

To discuss wormhole solutions in a string theory setting we consider a Euclidean theory in D

dimensions consisting of gravity coupled to massless scalars φI and a negative cosmological

constant Λ ≡ −(D − 1)(D − 2)/2l2,

S =

∫
√
g

(
R− 1

2
GIJ∂φ

I∂φJ − Λ

)
, (2.1)

where GIJ is a general sigma model metric. Euclidean Lagrangians of this kind describe,

for instance, certain consistent truncations of AdS compactifications of string theory. In

this setup the scalars live in the moduli space of the AdS vacuum and the metric GIJ

corresponds to the Zamolodchikov metric on the conformal manifold of the dual CFT.

In the Euclidean theory this metric does not need to have a definite signature (see the

discussion around equation (3.4). In particular it typically contains dilatonic scalars ϕ

which enter with kinetic terms with the usual sign, as well as axionic scalars χ which have

the ‘wrong’ sign kinetic terms. The presence of axions is crucial indeed for the theory to

admit regular wormhole solutions.

We are interested in wormhole solutions described by the following SO(D) invari-

ant metric,

ds2 = f(r)2dr2 + a(r)2dΩ2 . (2.2)

The equations of motion for the scalars in geometries of this form reduce to geodesic

equations in the metric GIJ . Therefore, in an affine parametrisation, we have

GIJ φ̇
I φ̇J = c . (2.3)

where φ̇ = aD−1dφ/dr. Inserting this in the constraint equation for a yields

f−2(r)

(
d

dr
a

)2

=
c

2(D − 1)(D − 2)
a4−2D +

a2

l2
+ 1 . (2.4)

1In this paper the word axion refers to scalar fields with shift symmetries whose kinetic term has flipped

sign in the Euclidean theory. All other scalars will be referred to as dilatons.
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The nature of the solutions depends on the sign of c. When c = 0 we have a(r) = l sinh(r/l)

and the solution is AdS, for c > 0 the solutions are singular “cored instantons” but when

the geodesic motion on moduli space is timelike, corresponding to c < 0, regular wormhole

solutions are possible.2

Since only the axionic fields give negative contributions to GIJ φ̇
I φ̇J , solutions with

c < 0, and thus wormholes, only exist in theories that have axions. Axions arise naturally

in Euclidean theories with D− 2-form fields B. Consider for instance the following theory

S =

∫
√
g

(
R− 1

2
(∂ϕ)2 − 1

2(D − 1)!
e−bϕ|dB|2 − Λ

)
, (2.5)

with b a real number, called the dilaton coupling. After Hodge dualising the form field to

a scalar χ the effective action becomes

S =

∫
√
g

(
R− 1

2
(∂ϕ)2 +

1

2
ebϕ(∂χ)2 − Λ

)
. (2.6)

and hence χ is an axion. Thus if it can be argued that the B-form is fundamental in the

Lorentzian theory, then this yields a Euclidean theory with an axion upon Wick rotation.

In the absence of this, however, it has proven difficult to determine unambiguously whether

scalars enter as dilatons or axions in Euclidean supergravity theories arising e.g. in string

theory compactifications.3 One of the advantages of the setup we consider below, is that

we can use AdS/CFT to specify unambiguously the dilaton - axion content of the theory.

A more precise condition on the moduli space metric GIJ in order for the theory to

admit regular wormhole solutions follows from the constraint (2.4). This implies that the

geodesic distance d between the values of the scalars at opposite ends of a regular wormhole

solution is given by [4]

d =

∫ r=+∞

r=−∞

√
|Gijφ̇iφ̇j |dr = 2

∫ a0

−∞
|c|a2(1−D) da

ȧ
≈ π

√
2
D − 1

D − 2
−O (a0/l) (2.7)

where a0 denotes the minimum size of the wormhole neck and the first term is the result

for Λ = 0. The leading correction in a0/l enters with a negative sign but this is small when

the wormholes are small relative to the AdS scale.

Thus, in order for there to be a regular wormhole solution there must be a com-

pact timelike geodesic at least as long as (2.7) in the scalar moduli space. For a single

axion-dilaton system the maximal length dmax of geodesics on the moduli space manifold

SL(2,R/ SO(1, 1) is

dmax =
2π

|b|
. (2.8)

2In terms of BPS bounds c > 0 is sub-extremal, c = 0 is extremal and c < 0 is super-extremal. The role

of mass is played by on-shell action and charge is defined with respect to the scalar fields. For axion fields,

the latter is the charge under a global shift symmetry. In general it is a charge under the isometries of the

scalar manifold.
3Note that supersymmetry does not resolve this, since it does not uniquely determine the signs of the

kinetic terms in the scalar Lagrangian in the Euclidean theory.
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which leads to the following condition for the existence of smooth axion-dilaton wormholes

in flat space,

|b| <
√

2(D − 2)

D − 1
. (2.9)

Eq. (2.7) shows this requirement is slightly weaker in AdS.

It may seem difficult to obtain general conclusions about the length of geodesic curves

on more general moduli spaces. However, the manifolds of the moduli spaces in the ex-

tended supergravity theories of interest here are often symmetric cosets G/H. In these

theories it was shown [16] that many properties of geodesics curves can be deduced from

the study of seed geodesics. Seed geodesics are the minimal set of geodesics that generate

all geodesics by acting with the isometry group. In particular it was found that the longest

timelike seed geodesics live in a direct product of p axion-dilaton pairs [16]:

seed geodesic ∈
[

SL(2,R)

SO(1, 1)

]p
(2.10)

where p depends on the details of the coset and on the Wick rotation. The maximal length

geodesic on the symmetric coset is then given by

dmax =
2π

|beff|
with

1

b2eff

≡
p∑

i=1

1

b2i
. (2.11)

where bi, with i = 1 . . . p, are the coupling constants of the individual axion - dilaton pairs

in the theory. Therefore, even though some of the individual coupling constants may not

satisfy the condition (2.9), as long as there are sufficiently many axion - dilaton pairs the

theory will admit wormhole solutions [4].

3 A remark on Wick rotations

As mentioned earlier, it has proven difficult to specify unambiguously the axion - dilaton

content of Euclidean supergravity theories. This has hindered attempts to provide clean

embeddings of wormhole solutions in AdS compactifications.

We now discuss two rigorous methods to construct Euclidean theories with axionic

scalars. The first approach uses dimensional reduction over time. We explain why this

does not yield theories admitting regular wormholes. The second approach makes use of

AdS/CFT, and we use this to find new wormhole solutions in string theory in section 4.

Timelike reduction. Consider a general truncation of a Lorentzian (super-)gravity the-

ory in four dimensions containing gravity, coupled to scalars and vectors. Compactifying

one of the space dimensions on a circle yields a theory in three dimensions in which all

vectors can be dualised to scalars. Consider the case in which the scalars then parameterize

a symmetric coset manifold G/H, where H is the maximal compact subgroup of G. This

is the case for all supergravity theories with at least 16 supercharges and many examples

with less supercharges exist as well.
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Now instead compactify the original Lorentzian theory on the time direction. This

yields a Euclidean theory in three dimensions, again with no vectors. The scalars now pa-

rameterize a pseudo-Riemannian coset G/H∗ where H∗ is a specific non-compact subgroup

of G [14, 16]. Thus we obtain a specific Wick rotation of G/H:

G

H
=⇒

Wick rotation

G

H∗
. (3.1)

This Wick rotation can be understood as follows: all vectors that are being dualised to

scalars after time-like reduction, as well as all scalars that come from reducing the vector

(the temporal components of vectors in 4D), enter as axions. All other scalars are dila-

tons. Physically the axionic scalars correspond to the magnetic and electric fields of four

dimensional black holes.

A well-known example of this construction is the reduction of maximal supergravity

to three dimensions where the Wick rotation corresponds to

E8(+8)

SO(16)
=⇒

Wick rotation

E8(+8)

SO∗(16)
, (3.2)

Interestingly, there are no models G/H∗ constructed in [16] for which the condition (2.9)

for wormholes to exist, is satisfied. This can be understood as follows: imagine that regular

wormholes existed in these theories. This would mean, using the oxidation formulae in [14]

(see also [16, 17]), there are smooth, four-dimensional black holes in the original theory

that violate the generalised Reissner-Nordstrom bound. However this was proven to be

impossible [14].

By contrast, if one were to Wick rotate liberally — that is, with mathematical consis-

tency as the only guiding principle but without a corresponding ‘physical’ reduction — it

is easy to construct theories with regular wormholes. An example was given in [16] using

the following Wick rotation,

E8(+8)

SO(16)
=⇒

Wick rotation

E8(+8)

SO(8, 8)
, (3.3)

However it appears plausible that the Wick rotation in string theory compactifications

is further constrained and in particular excludes constructions of this kind. We now turn

to a different approach, based on AdS/CFT, to construct Euclidean theories.

Using holography. AdS/CFT maps the AdS moduli space to the conformal manifold of

the dual field theory. The latter is naturally endowed with the Zamolodchikov metric [18],

defined via the two point functions 〈OiOj〉 between marginal operators Oi. There is a

natural way to Wick rotate this metric: if the marginal operator acquires an i-factor in

the Lagrangian in Euclidean signature, then the metric in that direction must change

signature so that the 2-point function is defined with an extra i2 maintaining consistence

with the dual.

An example to keep in mind is the operator TrF ∧F in Yang-Mills theory that couples

to the θ-angle, where we have

θTrF ∧ F =⇒
Wick rotation

iθTrF ∧ F , (3.4)
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because TrF ∧ F is a pseudo-scalar. For N = 4 SYM the holographic dual to θ is the

boundary value of the RR axion χ. Consistently, the RR axion is Wick rotated in Euclidean

IIB supergravity [19] since the axion can be argued to be a pseudo-scalar.

Hence AdS/CFT leads to the following procedure for Wick rotation: a shift-symmetric

scalar in the AdS moduli-space Wick rotates whenever it couples to a marginal operator

in the dual CFT that is a pseudo-scalar. If one were to adopt a different prescription then

the holographic computation of one-point functions would no longer be consistent with

known field theory results (see for instance [20] in case of N = 4 SYM). We now apply this

procedure to find new axionic wormholes in AdS compactifications.

4 Axion wormholes in Type IIB on AdS5 × S5/Zk

Starting with the moduli space of AdS5 × S5/Zn [21, 22]:

M =
SU(1, n)

S[U(1)×U(n)]
, (4.1)

we now apply the procedure above to derive a Wick rotated theory containing regular

wormhole solutions.

The special Kähler manifold M is described by n complex scalar fields za = (u, vi),

i = 1, . . . , n− 1. Its geometry is characterized by a prepotential of the form

F(u, vi) =
i

4

(
1− u2 −

n−1∑
i=1

v2
i

)
.

The metric features n commuting translational isometries which define a maximal abelian

subalgebra of the isometry algebra su(1, n). To describe these transformations and the

axionic scalars that are shifted under them, it is useful to introduce a solvable Lie algebra

parametrization, in whichM is globally described as isometric to a solvable group manifold

generated by a solvable Lie algebra Solv: M ∼ exp(Solv). The manifold is then spanned

by scalar fields U, a, ζi, ζ̃i which parametrize the generators H0, T•, Ti, T
i of Solv, whose

algebraic structure is defined by the following commutation relations:

[H0, TM ] =
1

2
TM ,

[H0, T•] = T• ,

[TM , TN ] = CMN T• , (4.2)

where we have used the following symplectic notation TM ≡ (Ti, T
i) and CMN is the

Sp(2n− 2)-invariant matrix:

C ≡

(
0 1

−1 0

)
. (4.3)

We see that Solv contains a characteristic Heisenberg subalgebra of isometries generated

by TM , T•. The geometry of the manifold can be described by the following coset repre-

sentative in exp(Solv):

L = exp(−aT•) exp(
√

2ZMTM ) exp(2U H0) , (4.4)

– 6 –
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where ZM ≡ (ζi, ζ̃i). The metric on the coset is then defined as

ds2 = −1

2
Tr[dMdM−1] , (4.5)

where M = LL†. This gives:

ds2 = 4dU2 + e−4UN 2 + 2e−2U
n−1∑
i=1

[(dζi)2 + (dζ̃i)
2] , (4.6)

having defined N ≡ da + ZMCMNdZN . Inspired by [24] we found the following relation

between the solvable parameters and the complex coordinates u, vi,

u =
1− E
1 + E

, vi ≡
√

2
ζi − i ζ̃i
1 + E

,

E ≡ e2U +
1

2

n−1∑
i=1

[(ζi)2 + (ζ̃i)
2] + i a . (4.7)

The Heisenberg algebra of isometries acts by means of the following infinitesimal trans-

formations: ZM → ZM + ξM , a → a + β − ξM CMNZN . The isometries T i, T• are com-

muting translations and generate a maximal abelian subalgebra of su(1, n) as well as a

maximal abelian ideal of Solv. Its parameters ζ̃i, a are Peccei-Quinn scalars multiplying

the F ∧ F terms in the Lagrangian. This therefore tells us how to Wick rotate the sigma

model metric.

In order to understand the Wick rotation it is useful to describe the SU(1, n)-generators

in the fundamental representation, in terms of (n + 1) × (n + 1) pseudo-unitary matrices

preserving the metric η = diag(−1,+1, . . . ,+1). The solvable generators have the following

explicit expression:

H0 =
1

2
(e1,n+1 + en+1,1) ,

Ti =
1

2
(ei+1,n+1 − en+1,i+1 − e1,i+1 − ei+1,1) ,

T i =
i

2
(ei+1,1 − e1,i+1 − en+1,i+1 − ei+1,n+1) ,

T• =
i

2
(e1,n+1 − en+1,1 + en+1,n+1 − e1,1) , (4.8)

where eab denotes the matrix with all zero entries except for a 1 in the ath row and bth

column. The Wick rotation ζ̃i → i ζ̃i and a→ i a amounts to rescaling by an i the complex

generators T i, T• making them real. The resulting Wick-rotated solvable Lie algebra now

describes the following symmetric manifold:

ME =
SL(n+ 1)

GL(n)
. (4.9)

In other words the Wick rotation, at the level of the isometry algebra, amounts to rescaling

by an i the imaginary parts of the su(1, n)-generators in the fundamental representation,
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thus rotating the algebra into sl(n+ 1). The metric on ME reads:

ds2 = 4dU2 − e−4UN 2 + 2e−2U
n−1∑
i=1

[(dζi)2 − (dζ̃i)
2] . (4.10)

This manifold is para-Kähler and its coset space has n compact and n non-compact gen-

erators. It has two distinct SL(2)/SO(1, 1) (totally geodesic) submanifolds: one obtained

by truncating the sigma-model to a, U and the other to ψ, U where ψ denotes one of the

ζ̃i axions, say ψ = ζ̃1. The metric of the former submanifold is characterized by a value

b = 2 whereas the latter has b = 1 and thus contains the longest geodesics, with maximum

length dmax = 2π/b = 2π. Therefore regular wormholes exist in this AdS compactification.

Furthermore, the seed geodesics all live in the second SL(2)/SO(1, 1) subcoset that contains

the regular wormholes. For the special case n = 2 the BPS instantons supported by this

manifold were studied in [23] when Λ = 0.

5 Discussion

We have shown that the singular wormholes in AdS5 × S5 can be turned into everywhere

regular wormhole solutions by orbifolding the S5. This is because the orbifolding leads to

additional axions in the twisted sector, which makes possible smooth wormholes. With

AdS5 × S5 boundary conditions, the existence of regular wormhole solutions would not be

consistent with AdS/CFT since the 1-point function, 〈|F−?F |2〉, in N = 4 SYM computed

using holography would be negative [5]. It would be very interesting to understand whether

the wormhole solutions we have found here lead to an inconsistency of this kind, at the

level of the one-point functions in the dual N = 2 CFT’s. This appears plausible because

the fact that extremal (BPS) instantons have lowest action in the field theory most likely

implies that the one-point functions computed in the wormhole background violate the

Cauchy-Schwarz inequality. If so, a possible resolution of this paradox might be that the

wormholes have negative eigenmodes [26, 27],4 which would indicate they don’t contribute

as saddle points in the Euclidean path integral defined by the dual. We will report on an

analysis of this elsewhere [28].
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