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Abstract 

With increasing attention to physical Human-Machine interaction (pHMI), new control methods involving contact 
force regulation in collaborative and coexistence scenarios have spread in recent years. Thanks to its internal 
robustness, high dynamic performance, and capabilities to avoid constraint violations, a Model Predictive Control 
(MPC) action can pose a viable solution to manage the uncertainties involved in those applications. This paper uses 
an MPC-driven control method that aims to apply a well-defined and tunable force impulse on a human subject. 
After describing a general control design suitable to achieve this goal, a practical implementation of such a logic, 
based on an MPC controller, is shown. In particular, the physical interaction considered is the one occurring between 
the body of a patient and an external perturbation device in a dynamic posturography trial. The device prototype is 
presented in both its hardware architecture and software design. The MPC-based main control parameters are thus 
tuned inside Hardware-in-the-loop and Human-in-the-loop environments to get optimal behaviors. Finally, the 
device performance is analyzed to assess the MPC algorithm’s accuracy, repeatability, flexibility, and robustness 
concerning the several uncertainties due to the specific pHMI environment considered. 

1. Introduction 

In recent years, cooperative robotic systems have spread not only in industrialized environments, such 
as in Industry 4.0 [1–4] but in everyday life. Automated machines have become more compact and 
affordable to the general end-user, encouraging a renewed trust towards robotics in business [5], 
automotive [6], home care [7], and healthcare [8, 9]. In addition, more dedicated design choices enable 
efficient yet intuitive physical human-machine interaction (pHMI) [10, 11, 12]. pHMI-based 
technologies should consider additional uncertainties which can result from dissimilar behavioral 
attitudes due to psychological, sociological, or cultural differences or involve different physical-
physiological characteristics [13]. A well-posed pHMI-based technology should adjust to or dampen 
out these uncertainties, assuring safe operational conditions, satisfy appropriate efficiency, and avoid 
possible execution and evaluation errors, providing accurate and intuitive feedback responses [14]. The 
real-time control and monitoring of the contact forces are one of the main design specifications for 
pHMI applications. For this reason, the impact phenomenon can be managed by control logic 
architectures able to dampen out the non-linearities involved [15] and the variability of unknown 
parameters related to human reaction. 

Control strategies are crucial to achieve maximum performance and confidence and improving 
ergonomics [16], flexibility [17], accuracy, and repeatability [18]. pHMI-based technologies often 
focus on force control methods such as admittance control [19, 20], impedance control [9, 21], and 
direct force control [22]. Simpler design choices could be discarded over more complex control 

mailto:carlo.debenedictis@polito.it
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strategies involving adaptiveness [23, 24], robustness [25, 26], and predictiveness. Among the different 
approaches available, MPC can be selected due to its internal robustness, dynamic performance, and 
capabilities to avoid constraint violations dictated by the plant and the actuation system [27–30]. In the 
MPC strategy, the system to be controlled is totally or partially known a priori, not only through a state 
space quadruplet representation but also in possible constraint equations involving both the plant and 
the actuation parts. The MPC can thus compute online the best control action by selecting it through a 
prediction of the grey-box model of the system. The MPC can be tuned through testing procedures such 
as Model-in-the-loop (MIL), Hardware-in-the-loop (HIL), and Human-in-the-loop (HuIL) [31]. MPC-
based techniques have a considerable range of applications. For example, while in dos Santos et al. [27] 
an MPC loop is used to find optimal stiffness parameters for a lower limb-rehabilitation exoskeleton 
impedance controller, Erickson et al. [28] couples the MPC with a learning-based model for pHMI-
assisted dressing. Moreover, Teramae et al. [29] and Okada et al. [30] exploit MPC online calculations 
to adapt the control algorithm, respectively, to assist a patient rehabilitative movement only when 
needed or to comply with various pHMI proficiency levels during limb motion training and 
rehabilitation.  

In previous works from the authors [32, 33], an MPC algorithm is developed to impress on a target 
human body a well-defined and tunable force impulse during posturography trials, in which human 
balance is assessed for clinical purposes. The system consists of an electric actuator and a hybrid 
force/speed control architecture.  Previous MIL and HIL tests highlighted the adequate dynamic 
performance of the perturbation device, with some limitations in the accuracy of impulse and force 
profile tracking [32]. The switching behavior of the proposed control logic led to an undesired delay 
between human-device contact and the actual control of the force signal. A renewed control logic able 
to bypass the issue is preliminarily presented in Paterna et al. [33], of which the present paper represents 
an extended version. The proposed solution's control performance, flexibility, and robustness are 
verified in a wider scenario, including HIL and HuIL trials. 

2. Model Predictive Control to manage human-machine interaction 

2.1. General description of the plant and the control problem 

The objective of control design is the regulation of the contact force in the impact between the 
body of a human subject and an external automatic perturbation device. In the following, a brief 
presentation of the control logic formulation is reported, with additional details included in Pacheco et 
al. [32]. The control input (u) and the output (y) of the plant model, sketched in Figure 1, are the device 
force control signal and the contact force at the pHMI interface, respectively. The plant lumped-
parameter model treats the device and the human target as 1 degree of freedom (dof) point masses 
connected to the environment through springs and dampers. Each connection represents a physical 
constraint to the oscillation of the corresponding mass. Thus, spring and dampers characteristics can be 
appropriately modulated to exhibit the desired behavior. Although this approach greatly simplifies any 
human-machine interaction, which generally is multidimensional (up to 6 dof), it enables the modeling 
of several pHMI scenarios with different dynamics. During the impact, a viscoelastic element connects 
the device and the target, so the contact force is modeled as an internal force, and contact loss is 
unmodelled. 

 

Figure 1. A sketch of the 1 degree of freedom plant model. 

More accurate models of impact phenomena are possible but require information about the 
bodies’ relative penetration, speed, and damping [15]. These parameters are difficult to measure or 
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estimate, so it is necessary to introduce dedicated sensors, which increase the bulkiness and system 
complexity. Although the gap between the model and the reality directly impacts the control 
performance, a simplified model is preferred to find a trade-off between algorithm performance, 
simplicity, and computational cost. 

The MPC bases its action on minimizing a customizable cost function through quadratic program 
optimization [34]. The cost function is a weighted quadratic sum over Hp  (i.e., prediction horizon) time 
steps of the following control parameters: the tracking error ey with respect to the reference signal, 
the control input u, and its rate du. These three parameters are tuned through the weights Q, Ru, and 
Rdu, respectively. Other weights considered for the cost function optimization are the terminal cost Sy 
over the output (i.e., contact force) 𝑦 and slack variable soft constraint violation weight 𝜌𝜖. All weights 
are usually diagonal matrices.  Among different strategies, this cost function structure is selected due 
to its overall composition and software implementation simplicity. 

The higher the tunable weight, the greater the minimization of the respective parameter during 
the optimization process. In other words, increasing Q leads the algorithm to focus on minimizing the 
output tracking error while increasing Ru or Rdu reduces, respectively, the control input value and its 
speed. However, as the cost function is a sum of intercurrent addenda, the optimization of one of the 
three parameters (ey, u, du) occurs at the expense of the other two. Therefore, increasing Q reduces the 
output tracking error but at the same time increases the ringing due to higher control input and control 
input speed [34]. 

The quadratic program optimization is subject to the state space representation quadruplet, 
actuation, and plant parameter constraints, such as the maximum permissible contact force (umax). At 
the beginning of the impact, the control input can be saturated to a predefined value (usat) for a 
predefined time interval (Sdt) to compensate for the impact phase non-linearities unmodelled in the 
plant model due to the reasons mentioned above. usat and 𝑆𝑑𝑡 must be set accordingly to the desired 
contact force magnitude. 

The control input can be further enriched by varying tunable weights during the MPC action, 
i.e., the time interval from the end of the Sdt to the end of the perturbation. As the cost function is 
updated online step-by-step, an interpolating behavior between initial and final generalized weight 
values W0 and Wend is expected. In this solution, weights are time-dependent and made to follow the 
ramp expression, which has been arbitrarily chosen: 

0
0( ) end

strike

W W
W t W t

dt Sdt

−
= +

−
 (1) 

In which, dtstrike is the perturbation onset. 
 

2.2. MPC application to dynamic posturography 

The presented MPC algorithm can be used to control the mechanical disturbances (i.e., perturbations) 
provided to a patient’s body [32, 33, 35] to investigate balance and posture issues. Preliminary studies 
highlighted that the force impulse (force-time integral, FI) resulting from the contact should range 
within 2 − 10 Ns to elicit a detectable postural response and, at the same time, to keep the subject in 
the standing position without any risk of falling [36, 37]. To obtain the desired FI in a brief time, 
comparable with the neuromuscular response time, a rectangular force profile of 250 ms and a 
magnitude between 20 N and 50 N was chosen as the reference force profile. 

The application of the mechanical disturbances is performed by means of the perturbation 
device, shown in Figure 2a, whose architecture has already been outlined in previous works [32, 33]. 
It includes a tubular electric linear motor (1) (GD160Q, NiLAB GmbH, Klagenfurt am Wörthersee, 
Austria), allowing accurate rod motion control while developing the high acceleration necessary to 
meet the specifications of the contact force profile. The stroke of the actuator (100 mm) has been 
selected to compensate for relative motion between the device and the patient’s body. The actuator is 
controlled by a Simulink® (MathWorks Inc., Natick, MA, USA) operated real-time target machine 
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(Speedgoat Inc., Natick, MA, USA) and a single-axis servo controller (SLVD1N, Parker Hannifin Corp., 
Cleveland, OH, USA), and triggered through a pushbutton (5). The contact force is monitored by a 
calibrated load-cell sensor (2). At the end of the rod, the striking interface is adequately covered by an 
expanded polyethylene layer (4), and its displacement is monitored by the motor’s embedded encoder 
and a laser sensor (3), serving for limit-switch purposes. 

A trained operator must place the device about 10 − 20 mm away from the patient’s body before 
perturbation generation, as shown in Figure 2b. The flexibility introduced by an operator directly 
maneuvering the device enables the customization of several perturbation features, namely, the point 
of application, the direction, and the reference contact force profile through a dedicated interface. 
Although the unknown compliance of the operator represents a challenge to system robustness and 
repeatability, the handheld configuration is advantageous because it reduces the implementation cost, 
the bulkiness and ensures the system’s portability. The control action should produce repeatable contact 
force and dampen out all the uncertainties coming from the non-linearities of the impact and the 
physiological and behavioral changes in both the patient and the operator.  

 

Figure 2. Perturbation device’s rendering (a); perturbation system (b). 

 
2.3. Control logic of the perturbation device  

The control of the perturbation device is based on the finite state machine criterium. The device’s states 
are:  

 

1. Idle: the perturbator’s rod is fully retracted. During this state, the operator may issue sensor 
calibrations or tune the control action;  

2. Operational: issued by a trigger signal from the operator by the hardware pushbutton or via the 
user interface. The operational state includes the following phases:  

a) Approach: in which the motor’s rod is moved forward with a predefined approaching speed (va);  

b) Strike: in which the rod end reaches the target, and the control algorithm manages to impress a 
predefined 𝐹𝐼 stimulus. The strike phase is triggered once the load-cell measurement overcomes 
a threshold value (3 N) over three consecutive time steps (3 ms). Otherwise, upon reaching a 
threshold displacement detected by the optical sensor, the rod automatically moves to the 
retraction phase; 

c) Retraction: in which the motor’s rod is moved backward with a predefined retraction speed (vr) 
and stopped with a limit switch detected by the optical sensor; 

3. Emergency: triggered by pressing again the pushbutton, the motor immediately stops working. 
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2.4. Control logic implementation  

The motor’s driver software is of paramount importance as an intermediary between the Simulink 
environment and the linear electric motor. The driver can work with several operating modes and 
implements a pico-PLC for logical operations. The one selected is the speed control mode. As in Figure 
3, the speed control mode can be divided into the following main blocks: 

• Speed closed-loop control: involving as reference an analog input coming from the real-time 
target machine and the speed measured by the motor’s embedded encoder as feedback. Before 
entering the loop, the driver modulates the reference speed through accelerations and 
deceleration ramps (1). An integrative controller on the speed tracking error performs the control 
action. A first-order low pass filter (2) (cutting frequency fc = 248 Hz) was selected as a trade-
off between the introduced delay ( 4 ms) and noise dampening. 

• Current saturation block (3): limiting the actuation force by saturating the control input. The 
threshold value is the minimum among various inputs, such as peak current, nominal current 
(only when thermal protection is active), and the auxiliary analog input, which is a voltage signal 
(gain equal to 5.79 N/V) meant for possible online operation on force thresholding.  

 

Figure 3. Overall control scheme, with the SLVD1N driver in speed control operating mode. 

 

The approach and retraction phases are performed through the speed closed-loop control by 
imposing proper and constant reference speed values via Simulink. The strike phase is actuated by 
increasing the reference speed (vs = 0.6 m/s), selected high enough to saturate the speed control loop in 
a few milliseconds. With the speed control loop saturated, the force control loop is closed by employing 
the MPC controller, acting through the auxiliary analog input, and having as feedback the contact force 
registered by the load cell, as shown in Figure 3. Acting on the force loop only, all MPC tunable weight 
matrices presented in Section 2.2 are scalar quantities. In addition, the toggling between the speed and 
force control modes, which negatively affected the results presented in Pacheco et al. [32], is avoided. 

 

3. Hardware and Human-in-the-loop testing and discussion  

 

3.1. Testing setup and evaluation criteria  

Two different testing setups have been considered and analyzed: 

• Hardware-in-the-loop (HIL), in which a dedicated test bench, presented in [32] and depicted 
in Figure 4, is employed to assess the performance of the perturbation device in a controlled 
environment. 
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• Human-in-the-loop (HuIL), in which one or more operator handheld the device to hit a rigid 
fixed target or a healthy subject’s back (Figure 2). HuIL tests are needed to evaluate the 
performance of the device in a more realistic scenario. 

 

 

Figure 4. Test-bench configuration for HIL. A detailed description of all elements is reported in [32]. 

 
In both working configurations, experimental tests aim to optimize the device’s performance and 

evaluate its accuracy, robustness, and flexibility. To this end, four trial sessions were held:  

A. Parameters tuning. Firstly, the control action parameters Q, Ru, Rdu, Hp, Sdt, usat, and va are tuned 

in the HIL configuration, (Q, Rdu) additionally varying linearly according to (1). Then some of 

them (Q, Ru, Hp, Sdt) are adjusted through an experimental series carried out by a trained operator 

on a fixed rigid target, with Rdu additionally varying linearly according to (1). HuIL tests are 

needed due to differences between the test bench and the operative condition and to set additional 

parameters, such as modeled operator stiffness ka. In all these tests, a rectangular pulse of 40 N 

and 250 ms is selected as the reference force signal in the strike phase. Five consecutive stimuli 

are performed for each parameter configuration. 

B. Control accuracy. The device performance in HIL configuration is compared to the result 

obtained with the hybrid force/speed control architecture [32] to highlight the force-tracking 

improvement. Rectangular pulses of 50 N lasting [50, 100, 150, 250] ms are selected as force 

reference profiles. Five perturbations are performed for each force profile. 

C. Control robustness test. The control robustness is verified by recruiting ten untrained operators 

(7 males; 3 females; 24 – 52 years) to hit a fixed rigid target. In this series, the perturbations had 

the same duration (250 ms) but different force magnitudes [20, 30, 40, 50] N. Each operator 

provided 22 perturbations, the first two to familiarize with the device and then five perturbations 

for each force level in random order. 

D. Control flexibility test. Finally, the control flexibility is verified by evaluating the device 

performance for different perturbation magnitudes (rectangular pulses of [20, 30, 40, 50] N and 

250 ms) in both HIL and HuIL configurations. The latter involved only one operator using the 

device against a fixed target and on a healthy subject. Five perturbations are performed for each 

profile and working configuration. 

 

In all the tests, the device performance is evaluated by the following two percentual indices: the 
Tracking Accuracy Error (TAE) (2) and the Force Impulse Deviation (FID, calculated when the contact 
force is higher than 3 N) (3). 

TAE 100 %
m r

t

r

f f

FI


−

=
  (2) 

FID 100 %m r

r

FI FI

FI

−
=  (3) 
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In which: Δt is the contact time interval; fr and fm are the reference and measured force values; FIr and FIm 

are the reference and measured impulse values. FID and TAE in the text are expressed as mean ±standard 

deviation values.  
 

3.2. A: Tuning results  

3.2.1. HIL constant parameters optimization  

The results of the HIL tests that consider only constant weights for the MPC algorithm are shown in 
Figure 5 and summarized in Table 1 in Appendix A:  

 

Figure 5. HIL force tracking for different values of the tuning parameters. Reference force signal are 
black, and each colored line is the measured contact force profile averaged over five consecutive 
stimuli. Profiles, tuning parameters and their respective performance indices are reported in Appendix 
A, Table 1.  
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• High Q values minimize the control output error; hence the force signal rapidly reaches the 
reference value. On the other hand, increasing Q reduces du optimization. The resulting quick 
control input variation leads to increased ringing, especially in the second part of the perturbation 
(see Figure 5a). The lower value (Q = 1) is chosen. 

• As Ru increases, the control input decreases to balance the initial overshoot at the expense of 
tracking error minimization. Consequently, the average force magnitude is lower than the 
reference value. On the other hand, decreasing Ru means higher control input values during the 
whole strike time interval, increasing the tracking error in the last steps. Ru has been selected as 
a trade-off value between the two behaviors (Ru = 0.2, see Figure 5b).  

• Increasing Rdu leads to longer settling time due to the control input speed reduction; however, a 
low value of Rdu causes a greater undershoot due to the sharp decrease of the control input. Rdu 
has been selected as a trade-off between the two behaviors (Rdu = 5, see Figure 5c).  

• Compared to the previous parameters, the variation of the power of prediction of the controller 
Hp has less effect on the system output, maybe due to the simplified assumptions of the model. 
Therefore, the lowest Hp value (Hp = 10) has been set to avoid high computational costs (see 
Figure 5d).  

• Finally, Sdt, usat, and va should be appropriately set (Sdt = 10 ms, usat = 45 N, va = 0.25 m/s) and 
adapted to the magnitude of the reference force value to reduce the initial overshoot (equal to 
about 16% of the force reference value) by maintaining a limited rising time (4.4 ± 0.55 ms) (see 
Figure 5e, f, g).  

 

The final configuration of the parameters (Figure 5h, continuous red line) highlights good 
performance: the contact force is almost constant and close to the reference throughout the considered 
time interval. Moreover, FID and TAE are (1.39 ± 0.44) % and (11.6 ± 0.44) %, respectively. 

At this point, the tuning is finished through the time-varying control weights. To rapidly reach the force 

reference value while maintaining a stable force profile in the last part of the strike phase, the effect of 

a decreasing linear pattern of Q is investigated (Q0 = 10; Qend = 1). As expected, the new force profile 

(Figure 6, red dotted lines) oscillates around the reference force value earlier. However, due to the 

increased 𝑅𝑑𝑢 weight, the control input does not decrease fast enough to follow the reference value 

stably, showing worse performance than the optimized constant parameters setup (Figure 5h, Table 1, 

g row). 

The increasing linear pattern of Rdu (Rdu,0 = 5; Rdu,end = 10) is also tested. Increasing Rdu makes 
control input less sensitive to 𝑒𝑦 and reduces ringing at the end of the strike. The control input and force 
profiles are shown in Figure 7. FID and TAE of the force profile obtained with the non-constant Rdu 
value are respectively equal to (0.42 ± 0.34) % and (11.4 ± 0.24) %, showing slightly better performance 
than the optimized constant parameters setup (Figure 5h). 
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Figure 6. Force tracking (left) and control input (right) of the HIL test by imposing Q equal to constant 
1 (blue dash-dot lines), constant 10 (green lines), and a linear function from 10 to 1 (red dotted lines). 
Each colored line represents the experimental result averaged over five consecutive stimuli. The 
reference force signal is black. The bottom plots show details of the two graphs on top. 

 

 

Figure 7. Force tracking (left) and control input (right) of the HIL test by imposing 𝑅𝑑𝑢 equal to 
constant 5 (dash-dot lines), constant 10 (green lines), and a linear function from 5 to 10 (red dotted 
lines). Each colored line represents the experimental result averaged over five consecutive stimuli. The 
black lines are the reference force signals. The bottom plots show details of the two graphs on top. 

 

3.2.2. Human-in-the-loop-optimization result 

A previous work [33] focused on the identification of the best set of parameters for the hand-held 

configuration. The tuning parameters were 𝑅𝑢, 𝑄, 𝐻𝑝, 𝑆𝑑𝑡, and 𝑘𝑎, as the operator stiffness 𝑘𝑎 is not 

known a priori. Rdu, usat, and va were kept constant and equal to 10, 52 N, and 0.3 m/s, respectively. The 

most accurate force profile (Q = 3, Ru = 0.2, ka = 15000 N/m, Hp = 20, Sdt = 15 ms) is shown in Figure 

8a, with FI = 10.4 ± 0.56 Ns, FID = -3.68 ± 5.61%, TAE = 13.6 ± 2.30%. Although increased with 

respect to the best profile presented in the HIL test (Figure 8b-c), the variability of the perturbation 

magnitude is comparable with that observed in previous experimental studies [36-39]. Moreover, FID 

and TAE mean values are, respectively, still less than 5% and 15%. Finally, the initial undershoot is 

due to the dynamics occurring after the impact, involving the rebound between the motor end and the 

target. Indeed, a partial loss of contact occurs, and it is quickly balanced by the controller. 
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Figure 8. HuIL force tracking averaged over 5 consecutive stimuli (a). Five stimuli registered with the 
optimal parameter configuration in HIL (b) and HuIL (c) tests. The reference force signal is black. 

 

For the same reason explained in Section 3.2.1, the non-constant 𝑅𝑑𝑢 trend is tested (𝑅𝑑𝑢,0 = 5; 𝑅𝑑𝑢,𝑒𝑛𝑑 

= 10). However, as shown in Figure 9, introducing the time-varying control weight (red dotted lines) 

does not significantly improve the tracking performance. TAE of the force profile obtained with the 

non-constant Rdu value is equal to 13.05 ± 0.85 %, and does not differ significantly from the TAE value 

obtained with constant Rdu = 10 (Figure 9, green lines). The non-constant weight control is no longer 

successful, perhaps due to the increased data variability due to the operator handling the device. 

 

Figure 9. Force tracking (left) and control input (right) of the HuIL test by imposing Rdu equal to constant 

5 (blue dash-dot lines), constant 10 (green lines), and a linear function from 5 to 10 (red dotted lines). 

Each line is averaged over five consecutive stimuli, black lines being the reference signal. The bottom 

plots show details of the two graphs on top. 

 

3.3. B: Control Accuracy  

The achieved HIL results can be compared to the force profile (rectangular wave of 50 N, 250 ms) 

obtained with the previous version of the control logic based on a hybrid force/speed control 

architecture tested in HIL [32]. As highlighted in Figure 10 (dotted blue line), the toggling between the 

speed and force loops introduces a delay between the initial actuator-target contact and the actual 

stimulus. The toggling, in fact, is operated by the pico-PLC embedded into the driver, which has a finite 

update rate. This introduces unwanted transient dynamics to the contact phenomenon, with losses in 

terms of raising time and overall tracking error. The present control logic, based on the modulation of 

the saturation current, allows to overcome the toggling and significantly improves the device 
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performance (see Figure 10, continuous red line). The HIL’s FID and TAE of the most accurate force 

profile obtained in Pacheco et al. [32] are about [-15; 24] %, compared to this paper in which they are 

about [-0.56; 12] %. In the latter, the apparent high value of TAE is mainly due to the non-instantaneous 

falling edge of the perturbations.  

 

Figure 10. Comparison between the hybrid force/position control logic architecture (dotted blue line) 

in HIL [32] and the current control logic in HIL (continuous red line). The force profiles are averaged 

over five stimuli. The black line is the reference force signal. 

 

Thanks to the elimination of the initial delay, good results are also obtained for less-lasting 
perturbations without changing the optimization parameter, as shown in Figure 11. Short-lasting 
perturbations are generally less accurate than longer ones due to the greater influences of the impact’s 
non-linearities and the initial kickback. Therefore, by reducing the duration, the FID increases from 
0.19% (150 ms) to -1.3% (100 ms) to 5.2% (50 ms), while TAE increases from 15% (150 ms) to 19% 
(100 ms) to 31% (50 ms). However, maintaining the same optimized tuning parameters avoids the large 
overshoot highlighted in the short-lasting force profile in Pacheco et al. [32], which could be unsafe for 
the patient.  

 

Figure 11. Force tracking of 50 ms (a), 100 ms (b), 150 ms (c) perturbation profile in HIL 

configuration. Each line is averaged over five consecutive stimuli, black continuous lines being the 

reference signal. 

 

3.4. C: Control robustness   

Ten different operators are recruited. Each of them handles the prototype to hit a fixed target to assess 

the effect of operator behavior on device performance. Posing the same reference duration of 250 ms, 

reference magnitudes fr and force impulses FIr are, respectively, equal to (20,30,40,50) N and 

(5.0,7.5,10.0,12.5) Ns. The ten averaged contact force profiles, shown in Figure 12 and Table 2, 

reported in Appendix A, show similar behaviors per reference force profile. With a coefficient of 
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variation less than 5% on average per reference profile, the test demonstrates that the device 

performance is not strongly affected by the variability introduced by the operator. This result confirms 

the control system's robustness regardless of the subject's characteristics handling the perturbation 

device. In addition, the results emphasize the feasibility of the hand-held configuration, which 
represents a compact and easy-to-use solution.  

 

Figure 12. Force profiles by ten operators. Each curve is the mean over five consecutive stimuli. 

 

3.5. D: Control flexibility   

The device flexibility is evaluated by testing different magnitudes reference force profiles in both 

testing setups (HIL, HuIL). Only one operator is recruited for HuIL tests. The operator first hit a rigid 

fixed target and then a healthy subject. The reference force profiles are selected equal to Section 3.4. 

The results, shown in Figure 13 and Table 3, reported in Appendix A, highlight that the data variability 

increases in the hand-held condition. Despite this, the performance is still satisfactory, and the FI 

coefficient of variation is equal to 2.51% on average. Although the increasing variability, only slight 

differences are evident among HIL and HuIL average force profiles; hence, the device performance is 

not significantly affected by the subject’s and the operator’s mechanical impedances. 

  

Figure 13. HIL (top row), HuIL with fixed target (middle row), and HuIL with human target (bottom 

row) results for four reference force profiles superimposed on the respective reference profile (in black)  
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4. Discussion and conclusion 

An MPC-based control algorithm and a case study device to manage the force control loop in pHMI 

were presented in Section 2. The results, shown in Section 3, highlight that, with the adequate tuning 

of the control parameters, the proposed architecture can provide sufficiently accurate impulsive contact 

force. The high dynamic behavior shown in HIL results, that is the fast onset of the perturbation 

signaled by a first steep peak, seems to be related to the approach velocity only (Figure 5g). Control 

parameters tuning effects only appear in the force trend shown after the first peak, in which impact 

physics is no longer predominant and the current saturation block, detailed in Section 2.4, gains control. 

Applying the MPC action to the current saturation block of the driver allows substantial dynamic 

performance improvements compared to the previous version of the control design described in 

Pacheco et al. [32].  

On the other hand, performance does not seem to benefit from a linear variation of the tunable 

weights during the strike. As expected, it brings an interpolated behavior between generalized weights 

W0 and Wend during the HIL test. Nonetheless, performance is not always improved (as for varying Q, 

Figure 6), and slight enhancements (varying Rdu, Figure 7) do not likely justify the added complexity 

of the control logic. Future improvements concerning weight variations could involve different 

interpolating profiles with respect to the linear one presented in (1). Furthermore, as ringing is 

predominant after the first peak, a tuning action on the derivative of the tracking error ey could be 

implemented. 

The difference between the test bench and the hand-held setup of the device made it necessary 

to set a different control parameters configuration during the HuIL test. Despite the refined tuning 

optimization, HuIL results show a performance loss and increased variability compared with HIL 

results (Figure 9, Table 3) due to the added uncertainties introduced in the systems. Nonetheless, the 

HuIL optimization output exhibits acceptable FI variability (i.e., standard deviation) for the application 

considered. Moreover, the results are not affected by the operator’s and the target’s characteristics 

regardless of the force amplitude (Figure 12, Table 2, Figure 13, Table 3). These results support the 

design decision to develop a hand-held prototype that should help reduce the system’s bulkiness, 

complexity, cost, and improve transportability. Finally, the possibility of applying contact forces with 

different magnitudes without performance loss improves the flexibility of the device and extends its 

range of applications. 

In conclusion, the results demonstrated that, with the appropriate tuning of the control 

parameters, accurate and robust tracking of the reference contact force could be obtained despite the 

uncertainties introduced in the system by unpredictable human behavior. 
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Appendix A 

In this section, the parameters used for tuning of the MPC algorithm in the several conditions tested, as 

well as the resulting performance indices obtained, are shown for the sake of clarity.    

 

Table 1. HIL parameters tuning. Letters refer to Figure 5. FI, FID and TAE values are reported in mean    
standard deviation format. Colored cells correspond to the parameters optimized in each optimization 

round, the highlighted one being the best. 

 

 Q Ru Rdu Hp 
Sdt 

(ms) 

usat 

(N) 

va 

(m/s) 
FI (Ns) FID (%) TAE (%) 

a 

1 0.2 10 10 30 52 0.30 10.5  0.04 5.37  0.38 13.3  0.95 

5       10.9  0.05 9.29  0.53 15.7  0.24 

10       10.9  0.04 9.60  0.45 15.6  0.33 

b 

1 0.1 10 10 30 52 0.30 11.2  0.08 11.70  0.80 16.5  1.11 
 0.2      10.5  0.04 5.37  0.38 13.3  0.95 
 0.4      9.2  0.04 -7.97  0.40 20.0  0.37 

c 

1 0.2 1 10 30 52 0.30 10.3  0.04 3.18  0.40 12.5  0.29 
  5     10.3  0.05 2.76  0.51 12.6  0.25 
  10     10.5  0.04 5.37  0.38 13.3  0.95 

d 

1 0.2 5 10 30 52 0.30 10.3  0.05 2.76  0.51 12.6  0.25 
   20    10.5  0.03 4.95  0.34 13.1  0.44 
   100    10.7  0.05 6.71  0.46 14.1  0.39 

e 

1 0.2 5 10 5 52 0.30 10.0  0.03 0.32  0.33 11.0  0.38 
    10   10.0  0.04 0.28  0.36 11.2  0.26 
    30   10.3  0.05 2.76  0.51 12.6  0.25 

f 

1 0.2 5 10 10 40 0.30 10.2  0.04 2.00  0.44 11.4  0.33 
     45  10.2  0.02 1.74  0.25 11.3  0.25 
     52  10.0  0.04 0.28  0.36 11.2  0.26 

g 

1 0.2 5 10 10 45 0.20 10.0  0.02 0.24  0.22 11.9  0.55 

1 0.2 5 10 10 45 0.25 10.1  0.04 1.39  0.44 11.6  0.44 

      0.30 10.0  0.04 0.28  0.36 11.3  0.25 
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Table 2. Device robustness HuIL performance with fixed target for different force amplitudes. FI, FID 

and TAE values are reported in mean    standard deviation format. FICoV is the averaged coefficient of 

variation of the FI per reference profile. Data refer to Figure 12.  

 

fr (N) FIr (Ns) Operator FI (Ns) FID (%) TAE (%) FICoV (%) 

20 5.0 

1 5.00  0.13 -0.08  2.60 14.20  1.82 

3.60 

2 4.62  0.21 -7.51  4.28 14.96  2.51 

3 5.54  0.15 10.82  3.07 18.54  2.25 

4 4.59  0.08 -8.10  1.65 18.18  0.57 

5 4.75  0.05 -4.94  1.04 12.99  1.20 

6 4.96  0.15 -0.80  3.03 14.83  1.93 

7 5.17  0.17 3.41  3.40 14.10  1.04 

8 5.34  0.38 6.83  7.65 22.12  3.85 

9 4.73  0.24 -5.46  4.84 16.00  1.87 

10 5.18  0.23 3.65  4.65 12.86  1.82 

30 7.5 

1 7.08  0.18 -5.66  2.34 13.52  1.35 

3.75 

2 6.99  0.47 -6.83  6.21 14.37  3.52 

3 7.63  0.44 1.74  5.93 13.94  1.98 

4 6.43  0.14 -14.23  1.80 18.75  1.53 

5 6.59  0.11 -12.15  1.53 17.34  1.46 

6 6.90  0.20 -7.94  2.61 16.03  2.09 

7 7.17  0.22 -4.45  2.87 14.72  1.84 

8 6.97  0.55 -7.09  7.38 19.33  1.51 

9 6.66  0.09 -11.20  1.25 16.30  0.93 

10 7.17  0.25 -4.41  3.37 13.10  1.97 

40 10.0 

1 8.73  0.29 -12.67  2.93 17.54  2.72 

3.50 

2 8.99  0.21 -10.11  2.14 15.15  1.66 

3 9.43  0.53 -5.74  5.32 16.28  1.99 

4 8.80  0.35 -11.95  3.48 16.53  2.64 

5 9.02  0.42 -9.81  4.20 15.89  1.90 

6 8.80  0.09 -11.96  0.89 17.28  0.55 

7 8.53  0.27 -14.74  2.68 20.10  1.94 

8 9.70  0.5 -2.97  4.95 19.12  2.68 

9 8.70  0.15 -12.97  1.55 17.62  1.65 

10 9.40  0.38 -5.99  3.76 14.53  1.14 

50 12.5 

1 10.47  0.65 -16.27  5.16 20.49  3.67 

4.86 

2 11.48  0.18 -8.12  1.44 14.68  1.19 

3 11.39  0.82 -8.85  6.59 18.68  5.53 

4 10.37  0.48 -17.06  3.85 21.06  3.01 

5 10.38  0.90 -16.99  7.23 21.05  5.50 

6 10.39  0.08 -16.88  0.66 21.08  0.63 

7 10.69  0.44 -14.49  3.51 20.13  2.56 

8 10.53  0.59 -15.80  4.75 23.26  0.73 

9 10.21  0.45 -18.33  3.58 22.05  2.45 

10 10.92  0.59 -12.66  4.71 17.59  3.30 
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Table 3. Device performance for different force amplitudes and testing configurations. FI, FID and TAE 

values are reported in mean  standard deviation format. HuIL optimization parameters are the same 

regardless the target. Data refer to Figure 11.  

 

Test 
fr 

(N) 

FIr 

(Ns) 

Sdt 

(ms) 

usat 

(N) 

va 

(m/s) 
FI (Ns) FID (%) TAE (%) 

HIL 

20 5.0 10 20 0.12 5.15  0.03  2.39  0.74 12.0  0.89 

30 7.5 10 30 0.18 7.48  0.04 -0.46  0.79 12.2  0.69 

40 10.0 10 45 0.25 10.10  0.09  0.42  0.34 11.4  0.24 

50 12.5 10 52 0.30 12.40  0.02 -0.56  0.22 11.8  0.29 

HuIL 

(fixed 

target) 

20 5.0 0 52 0.30 5.32  0.21  6.44  4.25 15.4  1.72 

30 7.5 0 52 0.30 7.35  0.35 -2.06  4.67 13.4  2.15 

40 10.0 15 52 0.30 10.40  0.56  3.70  5.59 12.9  2.27 

50 12.5 20 52 0.30 12.80  0.28  2.35  2.27 10.9  1.73 

HuIL 

(human 

target) 

20 5.0 0 52 0.30 4.95  0.19 -1.02  3.79 17.1  1.57 

30 7.5 0 52 0.30 6.91  0.24 -7.90  3.22 17.6  2.21 

40 10.0 15 52 0.30 9.64  0.08 -3.59  0.77 15.0  0.57 

50 12.5 20 52 0.30 12.52  0.15 -0.14  1.20 18.0  2.14 
 


