
30 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Low-Density EEG Correction With Multivariate Decomposition and Subspace Reconstruction / Arpaia, Pasquale;
Esposito, Antonio; Natalizio, Angela; Parvis, Marco; Pesola, Marisa. - In: IEEE SENSORS JOURNAL. - ISSN 1530-
437X. - ELETTRONICO. - 23:19(2023), pp. 23621-23628. [10.1109/JSEN.2023.3307444]

Original

Low-Density EEG Correction With Multivariate Decomposition and Subspace Reconstruction

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/JSEN.2023.3307444

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2982764 since: 2023-10-05T07:14:05Z

IEEE



1

Low-density EEG correction with multivariate
decomposition and subspace reconstruction

Pasquale Arpaia1,2, Antonio Esposito1, Angela Natalizio3, Marco Parvis3, Marisa Pesola1
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Abstract— A hybrid method is proposed for removing artifacts from
electroencephalographic (EEG) signals. This relies on the integration
of artifact subspace reconstruction (ASR) with multivariate empirical
mode decomposition. The method can be applied when few EEG
sensors are available, a condition in which existing techniques are not
effective, and it was tested with two public datasets: (i) semi-synthetic
data, and (ii) experimental data with artifacts. One to four EEG sensors
were taken into account and the proposal was compared to both ASR
and MEMD alone. The proposed method efficiently removed muscular,
ocular, or eye-blink artifacts on both semi-synthetic and experimental
data. Unexpectedly, the ASR alone also showed compatible perfor-
mance on semi-synthetic data. However, ASR did not work properly
when experimental data were considered. Finally, MEMD was found
less effective than both ASR and MEMD-ASR.

Index Terms— electroencephalography, artifact removal, few sensors; empirical mode decomposition, low cost.

I. INTRODUCTION

Electroencephalography (EEG) is a common and consoli-
dated technique for measuring brain activity [1], [2]. The ad-
vantages of EEG are ease of use, non-invasiveness, wearability,
and low cost [3]–[5]. Thanks to its flexibility, EEG has found
application in clinical practice, in research, and in daily life,
where a low number of sensors is desirable [6]–[8].

In out-of-the-lab contexts, however, artifacts of both en-
dogenous and exogenous sources contaminate measured EEG
signals [9], [10]. Among these, muscular and ocular artifacts
are the most common and difficult to face. Artifact removal is
essential to obtain a signal reflecting true brain activity, but the
choice of a proper removal technique is not obvious, especially
with few EEG sensors [11].

A suitable idea is to implement hybrid methods, i.e. combin-
ing different rejection/removal techniques. This has been es-
pecially proposed for the few EEG sensors case, in an attempt
to merge the benefits of different techniques [12]. Several
hybrid approaches involve a first step of data decomposition, to
produce a higher dimensional signal, and a subsequent artifact
removal technique applicable to multi-dimensional signals.

Many approaches rely on empirical mode decomposition
(EMD) [13], [14] and its modification [15]. Although these can
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be employed with simple component selection criteria [16],
[17], the integration with techniques like independent com-
ponent analysis (ICA) [18] or canonical correlation analysis
(CCA) [19] led to improved performance compared to single
methods. However, they considered signals from multiple
sensors decomposed individually.

In recent works, multivariate EMD (i.e., MEMD) was
combined with CCA to remove only muscle artifacts from
few sensors [20], [21]. It was demonstrated that this hybrid
method outperforms multi-channel CCA, but with a higher
computational cost. Next, a faster version was proposed [22]
by relying on fast MEMD [23]. The approach was only
validated on actual EEG with a baseline contaminated by
muscle artifacts and further investigation should be carried on.

MEMD was also combined with ICA in removing only
ocular artifacts from a five-sensors EEG [24]. An increase in
signal-to-noise ratio was shown on both synthetic and experi-
mental data. In [25], wavelet decomposition was applied after
ICA on the components recognized as ocular artifacts, in order
to preserve most of the actual EEG signal. This method was
only tested on experimental data and many sensing channels
were needed for applying the ICA.

As a common limitation, the mentioned approaches specif-
ically remove a single artifact type, i.e. either muscular [19]–
[22], [26] or ocular [24], [27]–[29] ones. Nonetheless, the
artifact removal technique should be applicable to a few-sensor
scenario for different types of artifacts, since they can all occur
during actual EEG acquisition. Despite its importance, such
investigations result still scarce in the few-sensors scenario.

It should be noted that the abovementioned methods com-
bine modal decomposition with blind-source separation tech-
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niques. The latter rely on strict assumptions of independence
of components to separate underlying sources [30], which is
not always the case for modal decomposition. Instead, an
adaptive filter such as the artifact subspace reconstruction
(ASR) [31]–[33] has less strict assumptions and it already
proved more effective in comparison with other methods [11].

Therefore, a novel hybrid method for artifact removal in
low-density EEG setups is proposed. For the first time, the
MEMD was combined with ASR to remove artifacts from
few available EEG signals and even in single-sensor settings.
In particular, Section II provides a background on artifact
removal, Section III introduces the proposed method, Section
IV describes public data exploited for validating the method,
and Section V discusses the results.

II. BACKGROUND

When dealing with EEG, artifact removal techniques can be
classified into four main groups [12], [34]: regression-based,
filtering, blind source separation, and source decomposition.
In addition, new learning-based methods are recently receiving
increasing attention [9], but these are beyond the present study.

Regression methods are still considered a gold standard,
though they have been gradually replaced by more sophis-
ticated methods. Meanwhile, filtering methods involve tra-
ditional frequency band-pass filters and adaptive ones. The
former can be used if the bands of artifacts do not overlap
with the signal of interest, while the latter are more flexible.

Simplicity and moderate computational costs are the main
advantages of such techniques, while the need of a-priori
knowledge and/or reference channels are their major draw-
backs. In this context, a recent and promising adaptive filtering
technique is the ASR [31]. ASR computes a covariance matrix
and retrieves statistics to identify and remove short, high-
amplitude artifact components (e.g., muscle artifacts) [35].

Other artifact removal techniques can be classified as blind
source separation methods and source decomposition methods.
They do not require reference channels nor a-priori knowledge
about the artifacts, but they are based on strict assumptions of
linearity, independence, and uncorrelation. In addition, they
typically have high computational costs.

Blind source separation methods estimate a relationship
matrix between the observed signals and the real unknown
sources that generated them. The goal is to distinguish noise
sources from real brain sources. Typical examples are the ICA,
the CCA, or the principal component analysis (PCA). This
category of techniques is often used in high-density biomedical
signal processing [10], [30].

Source decomposition methods are based on the idea that the
signal from each sensor can be decomposed into a series of
fundamental modes in the time-frequency domain. Again, the
noise components should be distinguishable in the transformed
domain and removed before reconstructing the clean signal.
Well-known examples are the wavelet transform [36] and the
EMD [37]. In particular, EMD can only decompose one-
dimensional signals independently. Meanwhile, the MEMD
can decompose all the signals of a multi-dimensional acqui-
sition at the same time by computing the same number of
coherent modes for each sensor [38].

In a preliminary study [11], ICA, PCA, and ASR were com-
pared while diminishing the number of available sensors. In
accordance with literature, ASR appeared as the most effective
and balanced method when exploiting at least four sensors.
Indeed, ASR was able to effectively correct the physiological
artifacts while preserving a large part of the pure EEG signal
it was found to be the fastest technique (even 10 times faster
than ICA). However, its performance was degraded with less
than four sensors. For the above reasons, the following section
deals with the enhancement of ASR by means of MEMD.

III. PROPOSED METHOD

The proposed method aims at enabling the usage of few
EEG sensors. Similarly to literature hybrid approaches, the
few available signals are decomposed before applying a
multi-dimensional artifact removal technique. However, using
MEMD for that purpose is relatively new and the combination
with ASR was unexplored.

A. Design
MEMD decomposition operates in a multivariate time-

frequency domain and it gives back basic waveforms called
intrinsic mode functions (IMFs) [38]. Differently from EMD,
the MEMD returns the same number of matched scale-aligned
IMFs for each available signal. Artifacts could then be iden-
tified in the new space by applying ASR [31]. Notably, the
ASR still relies on the statistics of a calibration interval, but
retrieving statistics and cleaning must be done on IMFs.

In order to work properly, the MEMD and the ASR cannot
be simply cascaded, but additional steps are necessary. Overall,
the pipeline of the proposed hybrid method consists of five
steps (Fig. 1):

1) preprocessing: the EEG signals are filtered in the fre-
quency bands of interest and, after that, the epochs to analyze
can be selected.

2) decomposition: the MEMD is carried out on all the
available EEG signals simultaneously. The number of direc-
tions of the signal projection should be explicitly fixed. To
extract meaningful IMFs, this number must be greater than
the dimensionality of the original signal. The rule adopted in
the current proposal is

Ndirections = 2× (Nsensors + 1), (1)

with the constraint of having at least six directions. This choice
is consistent with the indications of the developers [39], [40].
At the decomposition end, the IMFs of each signal are matched
among the corresponding sensors.

3) IMF grouping: the resulting IMFs have much different
amplitudes, and this prevents direct application of ASR. There-
fore, IMFs with low amplitudes are identified and summed to
the last IMF with acceptable amplitude. To set an amplitude
boundary, a calibration interval before decomposition is taken
into account and the difference ∆p between the 90th and
10th percentile is calculated for each sensor. Then, the same
quantity is calculated for all the IMFs associated with that
calibration interval. If the inter-quartile range of an IMF is
lower than 10% of ∆p for at least one sensor, all the matched
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Fig. 1. Block diagram of the proposed hybrid method for artifact removal.

IMFs are summed up with the closest matched IMFs above
the boundary. This process is done consistently for all sensors.

4) ASR: it includes a calibration phase and a cleaning
phase. In this hybrid method, the calibration data are the IMFs
obtained from the decomposition of the calibration interval.
A mixing matrix M is obtained as the square root of the
covariance matrix of calibration data. PCA is carried out for
this mixing matrix. Then, a rejection threshold is automatically
selected for each principal component as

Γi = µi + kσi, (2)

where µi and σi are the mean and standard deviation of
the root mean square values obtained with a sliding window
for each component. The threshold depends on the cut-off
parameter k and the time window w on which statistics
are calculated. For each window, the algorithm zeroes the
components exceeding the rejection limit.

5) signal reconstruction: once the data are cleaned with the
ASR, the signals in the original space are reconstructed by
the inverse MEMD, i.e. the cleaned IMFs for each sensor are
coherently summed up.

In the proposed method, calibration and artifacts data should
be ideally recorded in compatible conditions, namely with
the same acquisition hardware, in the same session, and with
the same subject. However, calibration data from a previous
session of the same subject could be re-used.

Moreover, this hybrid method can be also applied to multi-
dimensional signals with any number of sensors. Nonetheless,
it should be noted that the number of IMFs passed to the ASR
grows exponentially as the number of sensors increases.

B. Implementation
The proposed MEMD-ASR method was implemented as a

MATLAB© function, so that it can be easily integrated in
EEG processing pipelines. The inputs of this function were:

• the original signal to be cleaned, expressed as a (S×N)
matrix, where S is the number of samples and N is the
number of sensors;

• the sampling frequency of the original signal, expressed
in samples per second;

• the calibration interval corresponding to a time interval
in which artifacts are assumed as absent;

• the cut-off parameter of ASR, expressed as an integer
greater than one; it determines the aggressiveness of data
rejection: the smaller the k, the more the aggressiveness.

• the length of the statistics window, expressed in seconds.
This value w should be no longer than the time-duration
of the artifacts [31].

The output consists of the cleaned signal, still expressed as a
(S ×N) matrix.

Inside the function, the five steps described above were
implemented. During signal preparation, a chunk of signal
had to be added at the end of the original signal. This
typically consists of the last 0.25 s of the original signal
that is flipped and concatenated. The reason is that the ASR
cleaning function introduces a default delay due to a look-
ahead operation. With this option, the ASR can reconstruct
a sample by considering not only its preceding samples, but
also the following ones [31]. Therefore, adding the chunk is
needed whenever the look-ahead is exploited, while this will
be removed in signal reconstruction by cutting the last 0.25 s.

The function implementing the MEMD was taken from
[39], where the output IMFs are given as a cell per each
sensor. These cells were converted into matrices, with rows
corresponding to IMFs. Then, the grouping criterion was
applied to reduce the number of IMFs to be passed to the
ASR. Finally, the resulting IMFs per sensor were concatenated
in a unique matrix.

Overall, reduced IMFs were obtained for either the calibra-
tion interval and the epochs with artifacts. These were given
in input to the ASR, where the calibration function returns a
state for initializing the subsequent cleaning phase. In addition
to the state, the inputs for the cleaning phase are the data
matrix, the sampling rate, the window length, and the look-
ahead value. At the end of cleaning, the signal is reconstructed
by summing the IMFs per sensor.

IV. DATASETS

The proposed method was validated on public semi-
synthetic and experimental datasets. Compared to purely
synthetic data, semi-synthetic data offer more realistic signal
variability and power, ensuring reliability and results signifi-
cance. To generate semi-synthetic data, pure EEG data were
first synthesized and then partially contaminated with artifacts
extracted from real recordings. In doing so, the pure EEG can
be easily compared with the cleaned EEG. This is indeed not
possible with actual EEG data, but the results on them should
be discussed differently.
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TABLE I
CORRELATION COEFFICIENTS TO WEIGHT OCULAR ARTIFACTS AND EYE BLINKING FOR EACH SENSOR.

Channel Fp1 Fp2 F7 F3 Fz F4 F8 C3 Cz C4 P7 Pz P8 O1 O2

Weight 0.87 1.00 0.59 0.25 0.73 0.44 0.47 0.24 0.00 0.12 0.35 0.26 0.27 0.31 0.28

A. Semi-synthetic data
Pure EEG signals were synthesized with the recently de-

veloped SEED-G simulator available online [41]. Per each
sensor, a 150 s-long pure signal was generated with a sampling
frequency of 256 Sa/s. These parameters were chosen in order
to have suitable data for the application of the ASR. In detail,
the first 60 s of the trace were left intact to represent clean
calibration data. The remaining 90 s were contaminated with
three types of artifacts: muscular, ocular, and eye blinking.

The muscular and ocular artifacts were extracted from the
online DenoiseNet database [42]. These artifacts are available
in 2 s-long segments at a sampling rate of 256 Sa/s, consistent
with the choice made to simulate pure EEG. Therefore, 15
segments were randomly extracted for each artifact type to
obtain 30 s of muscular artifacts and 30 s of ocular artifacts.
In addition, eye blinking artifacts were added on the last 30 s
of the signal. In this case, half sinusoidal signals with 0.2 s
duration were added to simulate the typical eye blinking peaks.
The time distance between them was set 1 s apart.

The amplitude of the synthetic artifacts was adjusted with
respect to the pure synthetic signal to achieve a signal-to-
noise ratio (SNR) from −20 dB to 5 dB [43]. Moreover, since
ocular artifacts and eye blinking usually propagate over the
scalp starting from the prefrontal area, their addition was
weighted per channel. The weights were achieved as the
correlation coefficients between real electrooculographic data
and corresponding EEG data [41]. Fifteen channels were thus
chosen from different regions of the scalp, and these are
indicated in Tab. I with the mentioned correlation coefficients.

B. Experimental data from a public dataset
A public dataset was exploited to extract actual EEG data

[44]. This dataset is meant for testing artifact removal tech-
niques and includes 13 participants with one recording session
each. Brain signals were recorded by using a helmet by Brain
Products [45] with 27 EEG channels and 3 electrooculographic
channels, at a sampling rate of 200 Sa/s. Despite the non-
wearability of the acquisition device, these publicly available
data were chosen for the sake of reproducibility and the pos-
sibility to analyze different numbers of sensors. The subjects
sat in front of a screen to follow instructions for performing
muscular or ocular artifacts.

Each experimental session consisted of two parts. First the
subjects were asked to focus on a fixation cross on the screen
and avoid doing artifacts (baseline). Clean 30 s-long signals
were thus recorded for each subject twice. Secondly, nine
different artifact types were done in random order for 10 times
each. A single trial with artifact lasted from 10 s to 30 s, for
a total length of 40min to 50min for the second part.

In the present work, data from the first subject of the dataset
were chosen to be processed. For computational reasons, the

length of the entire EEG signal was limited to about 8min.
While the two sets of baseline signals were kept unchanged,
only 10 continuous artifact conditions were considered for the
contaminated signal part. Finally, the whole EEG data were
filtered in the 1Hz to 40Hz range and base-normalized to
have zero mean. Note that the last condition was also satisfied
when generating semi-synthetic data.

V. RESULTS AND DISCUSSION

The experimental setup is described in this section along
with the metrics adopted for quantifying the method’s effec-
tiveness. The results presented hereafter can be reproduced by
exploiting the code published at https://github.com/
anthonyesp/low_density_eeg_asr.git.

A. Experimental setup
In accordance with the above discussion, the proposed

hybrid method was tested from four sensors down to a
single sensor. Notably, in the case of a single sensor, the
MEMD is actually an EMD. Per each number of sensors,
the sensors were randomly selected 15 times among available
ones to obtain an average performance independently of their
locations.

Different values for the cut-off parameter k and for the
statistical window w associated with ASR were investigated to
identify the best pair. Notably, k was varied from 5 to 30 with
step 1 and w was varied from 0.2 s to 3.0 s with step 0.1 s.
The selection of the best ASR parameters was based on the
relative root mean square error (RRMSE) [46]. It reflects the
differences between the pure EEG signal and the EEG signal
cleaned by MEMD-ASR. It is defined as:

RRMSE =

√√√√∑N
i=1 [eeg

⋆(i)− eeg(i)]
2∑N

i=1 eeg(i)
2

, (3)

where eeg(i) and eeg⋆(i) are samples of the uncontaminated
signal and cleaned one, respectively. These values should be
zero in the ideal case, i.e. with artifacts perfectly removed.

Therefore, semi-synthetic data were primarily used in these
tests. RRMSE was calculated on different segments: the seg-
ment used as baseline for ASR, the residual pure EEG (not
used as baseline), the segments with muscle artifacts, the one
with ocular artifacts, and the one with blink artifacts.

The point defined by the five RRMSE values (as five were
the EEG segments) was considered in an Euclidean 5D space
and its norm was calculated. The dispersion around these
values was also taken into account and propagated to achieve
the uncertainty of the norm. The optimal w was chosen
to minimize the Euclidean norm and possibly its associated
uncertainty. Then, a k was identified by looking for the
minimum 90th percentile associated with the five values. As an

https://github.com/anthonyesp/low_density_eeg_asr.git
https://github.com/anthonyesp/low_density_eeg_asr.git
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essential check, once w and k were fixed, a visual inspection
of the signals in the time domain was carried on. In particular,
the pure signal and the signal cleaned with MEMD-ASR were
compared for each segment of the EEG signal.

Eventually, the hybrid method was tested on experimental
data by using the best w and k chosen on semi-synthetic
data. Again, sensors were randomly selected 15 times from
the available ones to test the method from four sensors down
to a single sensor. In order to evaluate the effectiveness of the
hybrid method on experimental data, a visual inspection of the
signals in the time domain was carried out. The RRMSE was
calculated too. Nonetheless, as the pure signal is not available
with experimental data, this metric has the same meaning
of the semi-synthetic data case only when considering the
baseline and pure segments. The same metric was calculated
on the remaining segments with artifacts are thus not reported
to avoid misunderstandings.

B. Results on semi-synthetic data

To identify the optimal k and w values, Fig. 2 shows the
Euclidean 5D norm associated with median RRMSE values.
Moreover, its colours refer to the dispersion of the norm.

This specific result regards the two-sensors case, but similar
surfaces were obtained in the other cases.

Fig. 2. Surface obtained by calculating the Euclidean norm in 5D space
associated with the RRMSE in the two-sensors case.

As observed by the sharp negative peak, w = 0.5 s remained
unaffected by both the k value and the number of sensors.
This w value corresponds to the default length of the statistics
window [31], [47]. In addition, a value for k in the 5 to 10
range minimizes both the norm and its dispersion. After fixing
w, the optimal value of k was identified as described in V-A
per each number of sensors. In general, for small k values,
the baseline and pure segments differ from the original ones,
but the artifacts are completely removed. On the other hand,
for large k values, the baseline and pure segments match the
original ones but the artifacts are only partially removed.

Tab. II reports the median RRMSE corresponding to the
optimal w and k values. Moreover, the novel hybrid method
was compared to ASR and MEMD alone. Note that the
classical ASR cannot be applied to a single sensor as a method
based on co-variance [48], [49], thus EMD-ASR was only
compared with EMD alone. Furthermore, entropy was used as
a criterion to identify and remove artifactual IMFs, as proposed
in [50]. These results demonstrate that the proposed hybrid
method performs compatibly with the ASR. In contrast, the

TABLE II
MEDIAN RRMSE VALUES FOR SEMI-SYNTHETIC DATA.

#sensors method w (s) k baseline pure muscle ocular blinks
4 MEMD - - 0.00 0.00 8.61 0.99 0.56
4 ASR 0.5 7 0.00 0.00 0.27 0.34 0.40
4 MEMD-ASR 0.5 9 0.00 0.00 0.60 0.30 0.46
3 MEMD - - 0.18 0.20 8.87 0.95 0.59
3 ASR 0.5 8 0.00 0.00 0.38 0.37 0.47
3 MEMD-ASR 0.5 8 0.01 0.00 0.70 0.34 0.45
2 MEMD - - 0.25 0.27 9.08 0.90 0.54
2 ASR 0.5 12 0.00 0.00 0.69 0.58 0.55
2 MEMD-ASR 0.5 9 0.00 0.00 0.70 0.35 0.45
1 EMD - - 0.27 0.31 9.24 0.65 0.62
1 EMD-ASR 0.5 12 0.00 0.00 1.25 0.50 0.59

bold: median RRMSE for MEMD-ASR significantly lower than respective ASR one.
w: length of the statistics window in seconds; k: cut-off parameter of ASR.

only MEMD is not effective in isolating artifacts but, due to
its filter bank-like behaviour [38], it affects clean signals.

The RRMSE values of Tab II are also compatible with
previous studies. Notably, by considering results on semi-
simulated data with an SNR between −20 dB to 5 dB, the
RRMSE values reported in [20]–[22] span in the 0.2 to 0.5
range. Moreover, it should be noted that the minimum number
of considered channels was 3, even when taking into account
other relevant studies [24], [40].

The Mann-Whitney U-test [51] was applied to prove dif-
ferences between MEMD-ASR, ASR, and MEMD with a
5% significance level. The test results confirmed that the
medians of RRMSE for ASR are not significantly different
from MEMD-ASR, except for the case of ocular artifact with
two sensors (reported in bold). Meanwhile, they also confirmed
that MEMD performs worse than both MEMD-ASR and ASR.

The gain in signal-to-artifact ratio (γ) [46] was then investi-
gated as a further metric. Notably, this could be only exploited
on semi-synthetic data as it requires the availability of the true
EEG. The γ is defined as

γ = 10 log

∑N
n=1 |eeg⋄(i)− eeg(i)|2∑N
n=1 |eeg⋆(i)− eeg(i)|2

, (4)

where eeg⋄(i) are the samples of the contaminated EEG
signal. Positive values of gamma indicate a better signal-to-
noise ratio, negative values indicate a decrease, while zero
represents no improvement. Tab. III reports the median γ,
corresponding to the optimal w and k values, in comparing
the novel hybrid method with ASR and MEMD alone.

TABLE III
MEDIAN γ VALUES FOR SEMI-SYNTHETIC DATA.

#sensors method w (s) k muscle ocular blinks
4 MEMD - - 0.00 0.00 0.00
4 ASR 0.5 7 29.70 12.66 6.33
4 MEMD-ASR 0.5 9 23.85 13.63 5.37
3 MEMD - - 0.50 1.64 0.76
3 ASR 0.5 8 27.12 12.41 4.84
3 MEMD-ASR 0.5 8 22.64 12.88 5.40
2 MEMD - - 0.95 0.63 0.54
2 ASR 0.5 12 22.47 5.37 0.00
2 MEMD-ASR 0.5 9 21.01 9.58 1.85
1 EMD - - 1.07 5.03 2.19
1 EMD-ASR 0.5 12 16.31 6.50 0.00

bold: median γ for MEMD-ASR significantly higher than respective ASR one.
w: length of the statistics window in seconds; k: cut-off parameter of ASR.
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Since the contaminated signal eeg⋄(i) and the uncontam-
inated signal eeg(i) coincide within the baseline and pure
segments, γ was computed only for the three artifact condi-
tions. Also in this case, statistical testing proved the superior
performance of MEMD-ASR over ASR for eye blinks, but also
for ocular artifacts, in the two sensors case. In all other cases,
MEMD-ASR and ASR demonstrated compatible performance
and both were better than only MEMD.
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Fig. 3. Visual inspection of the sensor Fz with two sensors involved
in artifact removal by MEMD-ASR. Quantitative metrics associated with
these semi-synthetic data are reported in Tab. II and Tab. III.

Visual inspection confirmed that MEMD-ASR and ASR
have compatible performance on these data. Meanwhile,
EMD-ASR is effective in removing ocular and eye-blink
artifacts on single-channel EEG. Fig. 3 shows a representative
example of visual inspection. The two-sensors case was con-
sidered and the sensor Fz is here represented with respect to
the five EEG segments. As expected, the green (pure signal)
and the blue (signal cleaned with MEMD-ASR) curves are
mostly overlapped. Hence, artifacts are removed with respect
to the red curves representing contaminated signals.

C. Results on experimental data from the public dataset
As anticipated, the optimal w and k values derived with the

semi-synthetic data were adopted on experimental data too.
Tab. IV reports, for the only baseline and pure data segments,
the median RRMSE corresponding to the same w and k values
of Tab. II. The novel method was again compared to MEMD
and ASR. The proposed hybrid method affects the baseline
and the pure signal segment less than both MEMD and ASR
alone, with a significant difference for all cases from 4 to 2
sensors.

An example of the effectiveness of MEMD-ASR in remov-
ing artifacts is reported in Fig. 4. The two-sensors case was

TABLE IV
MEDIAN RRMSE FOR EXPERIMENTAL DATA

#sensors method w (s) k baseline pure
4 MEMD - - 0.94 0.94
4 ASR 0.5 7 0.90 0.90
4 MEMD-ASR 0.5 9 0.32 0.28
3 MEMD - - 1.01 1.01
3 ASR 0.5 8 1.14 1.14
3 MEMD-ASR 0.5 8 0.34 0.40
2 MEMD - - 0.80 0.75
2 ASR 0.5 12 0.94 0.98
2 MEMD-ASR 0.5 9 0.19 0.28
1 EMD - - 0.72 0.67
1 EMD-ASR 0.5 12 0.18 0.15

bold: median RRMSE for MEMD-ASR significantly lower than respective ASR.
w: length of the statistics window in seconds; k: cut-off parameter of ASR.
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Fig. 4. Visual inspection of the sensor Fz with two sensors involved
in artifact removal by MEMD-ASR. Quantitative metrics associated with
these experimental data are reported in Tab. IV.

considered and the sensor Fz is here represented with respect
to the five EEG segments. The signals cleaned with MEMD-
ASR (blue) are here compared to the experimental data signals
(red). It can be seen that these signals are mostly overlapped in
the baseline and pure conditions, while artifacts are removed
in the other three conditions.

The effectiveness of the proposed methods is furtherly
supported by the visual inspection of baseline and ocular
artifacts for comparing the artifact removal methods (Fig. 5).
In there, the two-sensors case was again involved. In the
calibration segment neither MEMD nor MEMD-ASR affects
the signal, while the ASR already disrupts it. Regarding the
noisy segment, the MEMD-ASR is the only to effectively re-
move ocular artifacts. Conversely, the MEMD fails to mitigate
artifacts and the ASR overcorrects them. Indeed, the ASR fails
to remove artifacts and cancels out the signal on experimental
data, in contrast to its performance on semi-synthetic data.

In concluding, it should be noted that a drawback of the
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Fig. 5. Visual inspection of the sensor C3 with two sensors involved
in comparing artifact removal methods. Quantitative metrics associated
with these experimental data are reported in Tab. IV.

proposed technique is execution time. ASR alone takes about
0.2 s to 0.4 s to remove artifacts, where the more the sensor
the higher the time. Meanwhile, MEMD-ASR execution takes
from about 32 s (two sensors) to about 72 s (four sensors).
Instead, EMD-ASR for a single sensor takes about 0.7 s.
The multivariate EMD thus creates a bottleneck in terms of
processing time, but the EMD-ASR discloses the possibility to
implement a soft EEG sensor with integrated artifact removal
features.

D. From semi-synthetic to experimental data
Results on semi-synthetic data suggest that ASR is equally

or more effective than MEMD-ASR down to two sensors.
Meanwhile, a significant improvement with MEMD-ASR
holds for the removal of ocular artifacts in two sensors case.
This was confirmed with statistical testing on both RRMSE
and γ metrics. In contrast, MEMD alone was always found to
be less effective than ASR and MEMD-ASR. Compared with
ASR alone, the proposed method discloses the possibility to
work on a single sensor. However, EMD-ASR does not seem
effective in removing blinks.

Conversely, when experimental data were used, the MEMD-
ASR appeared more effective than ASR and MEMD in not
affecting the baseline and pure EEG signal. Furthermore, the
visual inspection in Fig. 4 proves that the hybrid approach ex-
hibits a balanced corrective action. Meanwhile, in accordance
with literature [38], MEMD fails to remove artifacts in the
same frequency bands of the signal.

Finally, Fig. 5 supports the importance of testing artifact
removal techniques on experimental data despite the unknown
pure EEG. Notably, the only RRMSE would not highlight the
issue, thus confirming the importance of visual inspection in
the current scenario.

VI. CONCLUSION

This work has proposed a hybrid artifact removal method
addressed to low-density EEG. Differently from existing lit-
erature, this was designed to remove various types of EEG
artifacts and to jointly consider all the available channels for
maximizing the available information. The method relies on
the multivariate version of EMD and on ASR.

Both semi-synthetic and experimental data were exploited to
validate the method. In the former case, the hybrid method has

performance compatible with the classical ASR.In the latter
case, visual inspection demonstrated that ASR is not effective
on experimental data, while only MEMD-ASR works properly.
This also suggested that semi-synthetic data are not always
appropriate to test artifact removal techniques. Finally, MEMD
was found to be less effective than MEMD-ASR and ASR.

Future works should furtherly explore the applicability of
the proposed methods in different settings. Moreover, execu-
tion time should also be reduced if willing to realize soft
sensors for online applications. Finally, a standardization in
terms of metric is still required, especially when experimental
data are used. These speculations will be eased by the material
shared for the present paper to replicate and extend the results.
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