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Abstract
This paper presents a novel approach to developing 2D structural theories for composite shells. The proposed approach uses
the capabilities of the Carrera Unified Formulation (CUF) in conjunction with the Axiomatic/Asymptotic Method (AAM) to
obtain the best theories for given structural layouts. Different structural cases are considered to analyze the influence of
factors such as boundary conditions, lamination, and thickness on the accuracy of a model. The parameter chosen to evaluate
a model’s performance is based on the Failure Indexes (FI) defined by the Hashin Failure criteria for unidirectional fiber
composites. The outcome of this procedure is the Best Theory Diagram (BTD), containing the graphical representation of the
highest accuracy as a function of the number of adopted unknowns. The results show the importance of higher-order terms to
capture stress fields and the influence of thickness on the definition of the best theories.

Keywords CUF · Shells · BTD · Failure Indexes

1 Introduction

The development of advanced materials and their spreading
adoption introduced new challenges in structural analysis
concerning the accuracy and computational cost. The Finite
Element Method (FEM) proved to be an extremely flexible
and reliable tool for structural design. Different degrees of
approximation can be chosen, opting for 3D elements or
2D/1D descriptions. In the last two cases, less accurate
solutions must be expected, although at a significantly lower
computational cost. Furthermore, reduced models can be
enhanced by including a more complex description of the
mechanical behaviors taking place over cross-section (1D)
and the thickness (2D), albeit remaining efficiently solvable.
This paper will focus on 2D formulations of composite
shells.

Composite laminates are becoming increasingly pre-
dominant and used extensively in the aerospace and auto-
motive areas. Starting from the Classical Lamination

Theory (CLT), built from [1–3], and its later modification
into the First-Order Shear Deformation Theory (FSDT) [4–
6], many models were developed to obtain a more accurate
description of the transversal behavior. This objective was
achieved by increasing the number of generalized unknown
variables, i.e., the nodal degree of freedoms (DOF), through
higher-order polynomial thickness expansions [7–10] or the
inclusion of non-polynomial terms [11–14]. The structural
theories originated from this approach, often referred to as
higher-order theories (HOT), approximate the laminate with
an Equivalent Single Layer (ESL), meaning that the amount
of adopted variables is independent of the number of layers.
Furthermore, additional efforts were made to tackle
numerical issues like the shear locking phenomenon [15–
17] and overcome limitations relative to the interlaminar
continuity of displacement and transverse stresses (C0

z -re-
quirements). Zig-zag [18] and Layer-Wise (LW) [19–22]
models were thus developed, together with the new mixed
finite element formulations [23, 24], like those based on the
Reissner Mixed Variational Theorem (RMVT) [25].
Another class of models stemmed from the Asymptotic
approach [26] with the advantage of the a-priori determi-
nation of the accuracy with respect to 3D solutions.

This paper obtains higher-order theories from the Axio-
matic/Asymptotic Method (AAM) [27–29]. This process
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starts by axiomatically choosing a maximum order of the
polynomial expansions and assuming the full model as the
reference. Terms are then suppressed, and for each expan-
sion, a level of accuracy can be evaluated with respect to the
reference solution. A fundamental aspect of this approach is
the definition of the accuracy parameter. As shown in pre-
vious works [30–32], depending on the choice of the output,
different theories can emerge as the optimal ones for a given
structural problem. This paper considers a new parameter
for selecting the best theories for 2D models of composite
shells. It is based on the failure indexes evaluated according
to the Hashin Criteria [33]. Different structural problems are
considered to highlight the effect of features such as
thickness, boundary conditions, curvature, and stacking
sequence. Implementing the AAM is done in the framework
of the Carrera Unified Formulation [18], an efficient and
generalized approach to obtain the governing equations for
virtually any finite element model.

This paper is organized as follows: Sect. 2 presents CUF
and FEM formulations; Sect. 3 introduces the Hashin
Failure Indexes; Sect. 4 describes the AAM approach;

numerical results are provided and discussed in Sect. 5;
conclusions are drawn in Sect. 6.

2 Carrera Unified Formulation and Finite
Elements

The Carrera Unified Formulation (CUF) [34] is used to
efficiently derive all the theories required for the analyses
presented. Using the reference system employed in Fig. 1,
the displacement field can be expressed as

uða; b; zÞ ¼ FsðzÞusða; bÞ s ¼ 1; . . .;M ð1Þ
The Einstein notation acts on s, while Fs are the thickness
expansion functions. us is the vector of the generalized
unknown displacements and M is the number of expansion
terms. The following displacement equations describe a
complete fourth-order model (E4) using Taylor-like poly-
nomial expansion:

ua ¼ ua1 þ z ua2 þ z2 ua3 þ z3 ua4 þ z4 ua5
ub ¼ ub1 þ z ub2 þ z2 ub3 þ z3 ub4 þ z4 ub5
uz ¼ uz1 þ z uz2 þ z2 uz3 þ z3 uz4 þ z4 uz5

ð2Þ

The order and type of expansion are free parameters. This
paper uses Equivalent Single Layer (ESL) formulations,
meaning that a single set of variables is assumed across the
whole thickness of the structure, independently from the
number of actual layers. Throughout the paper, some
comparisons will be performed with models adopting a
Layer-Wise (LW) formulation.

Concerning the geometrical relations, metric coefficients

Hk
a, H

k
b and Hk

z of the kth layer are defined in the case of

multilayered shells,

Hk
a ¼ Akð1þ zk=R

k
aÞ; Hk

b ¼ Bkð1þ zk=R
k
bÞ; Hk

z ¼ 1 ð3Þ

As shown in Fig. 1, Rk
a and Rk

b are the principal radii of the

middle surface of the kth layer, Ak and Bk the coefficients of

Fig. 2 MITC9 tying points

h/2Ωk

α β

z

k-1

hk

k
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Fig. 1 Reference geometry for shell models
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the first fundamental form of Xk . In this paper, only con-

stant radii of curvature were considered, Ak = Bk = 1.
Strains can be written as

�kp ¼ �kaa; �
k
bb; c

k
ab

n oT
¼ ðDk

p þ Ak
pÞuk

�kn ¼ ckaz; c
k
bz; �

k
zz

n oT
¼ ðDk

nX þ Dk
nz � Ak

nÞuk
ð4Þ

where,

Dk
p ¼

oa
Hk

a
0 0

0
ob
Hk

b

0

ob
Hk

b

oa
Hk

a
0

2
666666664

3
777777775

Dk
nX ¼

0 0
oa
Hk

a

0 0
ob
Hk

b

0 0 0

2
666664

3
777775

Dk
nz ¼

oz 0 0

0 oz 0

0 0 oz

2
64

3
75

ð5Þ

Ak
p ¼

0 0
1

Hk
aR

k
a

0 0
1

Hk
bR

k
b

0 0 0

2
666664

3
777775 Ak

n ¼

1

Hk
aR

k
a

0 0

0
1

Hk
bR

k
b

0

0 0 0

2
666664

3
777775 ð6Þ

For the stress–strain relations, it follows that:

rkp ¼ rkaa; r
k
bb; r

k
ab

n oT
¼ Ck

pp�
k
p þ Ck

pn�
k
pn

rkn ¼ rkaz; r
k
bz; r

k
zz

n oT
¼ Ck

np�
k
np þ Ck

nn�
k
n

ð7Þ

where:

Ck
pp ¼

Ck
11 Ck

12 Ck
16

Ck
12 Ck

22 Ck
26

Ck
16 Ck

26 Ck
66

2
664

3
775 Ck

pn ¼
0 0 Ck

13

0 0 Ck
23

0 0 Ck
36

2
664

3
775

Ck
np ¼

0 0 0

0 0 0

Ck
13 Ck

23 Ck
36

2
664

3
775Ck

nn ¼
Ck
55 Ck

45 0

Ck
45 Ck

44 0

0 0 Ck
33

2
664

3
775

ð8Þ

The FE formulation adopted in this paper uses a nine-node
shell element (Q9) based on the Mixed Interpolation of
Tensorial Component (MITC) method [17]. The displace-
ment vector becomes:

dus ¼ Njdusj; us ¼ Niusi i; j ¼ 1; � � � ; 9 ð9Þ
with usi and dusj being the nodal displacement vector and
its virtual variation, respectively. By substituting them in the
geometrical strain expressions described by Eq. 4, one
obtains:

�p ¼ FsðDp þ ApÞNiusi

�n ¼ FsðDnX � AnÞNiusi þ Fs;zNiusi
ð10Þ

MITC contrasts the membrane and shear locking via a
specific interpolation strategy for the strain components on
the nine-node shell element.

�p ¼
�aa

�bb

cab

2
664

3
775 ¼

Nm1 0 0

0 Nm2 0

0 0 Nm3

2
664

3
775

�aam1

�bbm2

cabm3

2
664

3
775

�n ¼
caz

cbz

�zz

2
664

3
775 ¼

Nm1 0 0

0 Nm2 0

0 0 1

2
664

3
775

cazm1

cbzm2

�zzm3

2
664

3
775

ð11Þ

Strains �aam1 , �bbm2 , cabm3 , cazm1 , and cbzm2 stem from 10.

Subscripts m1, m2, and m3 indicate quantities evaluated at
the point groups (A1, B1, C1, D1, E1, F1), (A2, B2, C2,
D2, E2, F2), and (P, Q, R, S), respectively, see Fig. 2. The
interpolating functions are Lagrangian functions grouped in
the following arrays:

Table 2 Example of best theory
representation

DOF ua1 ub1 uz1 ua2 ub2 uz2 ua3 ub3 uz3 ua4 ub4 uz4 ua5 ub5 uz5 %EAVG

8 N N N M N M N M M N N M N M M 1.9822

Table 1 Material properties for
IM7/977-3

XT (MPa) 2275

XC (MPa) 1680

YT (MPa) 64

YC (MPa) 186

S12 (MPa) 121

S23 (MPa) 127
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Nm1 ¼ NA1;NB1;NC1;ND1;NE1;NF1½ �
Nm2 ¼ NA2;NB2;NC2;ND2;NE2;NF2½ �
Nm3 ¼ NP;NQ;NR;NS

� � ð12Þ

Via the Principle of Virtual Displacements (PVD) for the
static analysis, the equilibrium equation reads

kkssiju
k
si ¼ pksj ð13Þ

The 3�3 matrix kkssij is the fundamental mechanical nucleus
whose expression is independent of the expansion order. pksj
is the load vector. For a more detailed description of the FE
derivation process, the reader can refer to [35].

3 Hashin Failure Criteria

For the present study, the Hashin failure criteria [33] is
adopted. This method, developed for unidirectional fiber
composites, is based on a quadratic approximation of the
failure-free envelope in the stress space. Its definition relies
on using the transversely isotropic invariants of the stress
tensor written in the material reference system. Hashin’s
approach identifies two main failure mechanisms, one tied
to fibers and one to the matrix. For each, a tensile and a
compressive mode can be distinguished. The mathematical
formulation thus relies on the following four equations:
Tensile Fiber Mode (r11 [ 0):

r211
X 2
T

þ r212 þ r213
S212

¼ 1 ð14Þ

Compressive Fiber Mode (r11\0):

r211
X 2
C

¼ 1 ð15Þ

Tensile Matrix Mode (r22?r33 [ 0):

Table 5 Best theories, SS, a/
h=100, [0�/90�/0�]

DOF ua1 ub1 uz1 ua2 ub2 uz2 ua3 ub3 uz3 ua4 ub4 uz4 ua5 ub5 uz5 %EAVG

15 N N N N N N N N N N N N N N N 0.0000

14 N N N N N N N N N N M N N N N 0.0005

13 N N N N N N N M N N N N N N M 0.0015

12 N N N N N N N N N N M N N M M 0.0009

11 N N N N N N N M N N M N N M M 0.0031

10 N N N N N N N M N N M N M M M 0.0039

9 N N N N N N M M N N M N M M M 0.0193

8 N N N N N N M M N N M M M M M 0.0253

7 N N N N N N M M N M M M M M M 0.0803

6 N N N N N M M M N M M M M M M 0.1962

5 N N N N N M M M M M M M M M M 0.9102

α

α

α α α α

α α α α

α α α α α

β

β

β β β β

β β β β

β β β β β

Fig. 3 Best theory diagram

Table 4 Non-dimensionalized
stresses, SS, [0�/90�/0�]

a/h Theory �raa

L4 [39] �0.0999

100 E4 [39] �0.0999

E4 �0.0999

L4 [39] �0.5588

10 E4 [39] �0.5543

E4 �0.5543

L4 [39] �0.7092

5 E4 [39] �0.6972

E4 �0.6972

Table 3 Material properties
used for the numerical cases

E11/E22 25

G12/E22=G13/E22 0.5

G23/E22 0.2

m12=m13=m23 0.25
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ðr22 þ r33Þ2
Y 2
T

þ r223 � r22r33
S223

þ r212 þ r213
S212

¼ 1 ð16Þ

Compressive Matrix Mode (r22 þ r33\0):

YC
2S23

� �2

�1

" #
ðr22 þ r33Þ

YC
þ ðr22 þ r33Þ2

4S223

þ r223 � r22r33
S223

þ r212 þ r213
S212

¼ 1

ð17Þ

XT ;C and YT ;C are the tensile and compressive strength for
fibers and matrix, respectively, while S12, and S23 represent
the material shear strengths. Concerning the evaluation of
the failure indexes, all the results presented here refer to the
strength properties of the IM7/977-3 laminate, gathered
from [36] and summarized in Table 1.

4 Axiomatic/Asymptotic Method and Best
Theory Diagrams

This section presents a method to select higher-order gen-
eralized variables and build structural theories called the
Axiomatic/Asymptotic Method (AAM). For the sake of
brevity, only polynomial expansion terms are considered
primary variables. The preliminary, axiomatic step of the
AAM is the choice of the maximum order of the expansion
to be reached. This work considered fourth-order models as
they usually provide high accuracy. This choice results in a
total of 215 possible combinations of active terms due to the
fifteen available generalized unknowns that can be used. Of
those fifteen terms, the three zeroth-order ones ua1, ub1, and
uz1 were always kept, reducing the number of possible

Table 6 Best theories, SS, a/
h=10, [0�/90�/0�]

DOF ua1 ub1 uz1 ua2 ub2 uz2 ua3 ub3 uz3 ua4 ub4 uz4 ua5 ub5 uz5 %EAVG

15 N N N N N N N N N N N N N N N 0

14 N N N N N N N N N N N N M N N 0.0095

13 N N N N N N N N N N N N M M N 0.0129

12 N N N N N N M N N N N M M N N 0.0233

11 N N N N N N M N N N N M M M N 0.0357

10 N N N N N N M M N N N M M M N 0.0588

9 N N N N N M M N N N M M M N M 0.0560

8 N N N N N M M N N N M M M M M 0.0664

7 N N N N N M M M N N M M M M M 0.0842

6 N N N N N M M M M N M M M M M 0.3961

5 N N N N N M M M M M M M M M M 17.390

Fig. 4 BTD, SS, a/h=100, [0�/
90�/0�]
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combinations from 215 to 212. This choice was motivated by
the considerable impact of these unknowns on the model’s
accuracy, making them essential for deriving meaningful
results. Moreover, the full fourth-order expansion model
(E4) is the reference to compute errors. The asymptotic
aspect of the procedure requires the evaluation of the per-
formance of each model, and this can be done in different
ways, depending on the outputs of interest. As described in
previous works [30–32, 37], the performance parameter can
be defined as a percentage error over a single displacement
at a specific point, or as an average of the errors relative to a
certain number of modal frequencies obtained through free
vibration analyses. In this paper, the quality of a single
theory is defined by the average error over the two failure
indexes, namely, the Tensile Matrix Mode (fMT ) and the
Compressive Matrix Mode (fMC) indexes, evaluated at the
top and bottom of the central point of the shell. The per-

centage errors relative to the E4 model were evaluated as
follows:

%EMT ¼100� jfMT � f E4MT j
f E4MT

ð18Þ

%EMC ¼100� jfMC � f E4MCj
f E4MC

ð19Þ

The parameter chosen to assess the quality of a model is
then evaluated as:

%EAVG ¼ %EMT þ%EMC

2
ð20Þ

The outcome of this selection procedure is provided using
the Best Theory Diagram, as in Fig. 3.

The BTD provides the errors for different numbers of
active variables obtained via models using specific
sequences of expansion terms. The resulting Best Theories
can be conveniently represented in tabular form for every
set of structural parameters. The adopted graphical

Table 7 Best theories, SS, a/
h=5, [0�/90�/0�]

DOF ua1 ub1 uz1 ua2 ub2 uz2 ua3 ub3 uz3 ua4 ub4 uz4 ua5 ub5 uz5 %EAVG

15 N N N N N N N N N N N N N N N 0.0000

14 N N N N N N N N N N N N N M N 0.0329

13 N N N N N N N N N N N M M N N 0.0325

12 N N N M N N N N M N N N N N M 0.0216

11 N N N M N N M M M N N N N N N 0.0047

10 N N N M N N N N M N N M M N M 0.0107

9 N N N M N N N N M N N M M M M 0.0411

8 N N N M N M M M M N N N N M M 0.0556

7 N N N M N M M M M N N N M M M 0.0751

6 N N N M N M M M M N M N M M M 0.8703

5 N N N M N M M M M N M M M M M 1.6307

Fig. 5 BTD, SS, a/h=10, [0�/
90�/0�]
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Fig. 7 raz and raa evaluated in
(0, a/2) and in (a/2, a/2), SS, a/
h=100, [0�/90�/0�]

Fig. 6 BTD, SS, a/h=5, [0�/90�/
0�]
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convention uses black and white triangles to indicate active
and inactive expansion terms, respectively, as in Table 2.

For comparisons purposes, a second performance
parameter was also considered, the percentage error over the
maximum transverse displacement [38],

%Euz ¼ 100� juzðz ¼ 0Þ � uzðz ¼ 0ÞE4j
juzðz ¼ 0ÞE4j ð21Þ

5 Numerical Results

Several structural cases of square doubly-curved shells were
considered, all gathered from [38]. A total of seven different
combinations were selected, varying in thickness, stacking
sequence, and boundary conditions. Curvature radii were

always kept equal to R/a=5. The material properties com-
mon to all the cases analyzed in this paper are reported in
Table 3.

The load is a bi-sinusoidal pressure distribution acting on
the upper surface, defined as pz ¼ p̂zsinðpa=aÞsinðpb=aÞ,
with unit amplitude p̂z=1. Unless otherwise specified, a
quarter of the shell was used with a 4�4 mesh of Q9 ele-
ments and symmetry boundary conditions. Similarly to
[38], the results were obtained using an ESL formulation,
and the reference is a full fourth-order E4 Taylor expansion.

5.1 Preliminary Assessment

The verification considered the axial stress and compared it
to [39]. The non-dimensionalized stress �raa was used,

Fig. 8 raz and raa evaluated in
(0, a/2) and in (a/2, a/2), SS, a/
h=10, [0�/90�/0�]

206 M. Petrolo, P. Iannotti
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�raa ¼ raaða=2; a=2;�h=2Þ h2

p̂za2
ð22Þ

The entire geometry discretized with a 9�9 mesh was
adopted for the stress evaluation, following the one used in
[39], together with an ESL formulation and full fourth-order
Taylor expansion. The reference paper contains both the E4
solution and the one obtained with a fourth-order Layer-
Wise description, referred to as L4. Table 4 has the evalu-
ated stresses, and the two reference solutions brought using
the E4 and L4 formulations.

A perfect match was found with the results provided in
[38] for all considered configurations. For thinner shells, the
E4 and L4 models provide identical results. However, the
gap between the two solutions widens with an increase in
the a/h parameter. This phenomenon is related to the

necessity of a much more detailed description of the
transverse behavior typically required for the analysis of
thicker structures, here provided by the L4 formulation.
However, the difference between L4 the E4 remains small,
and E4 was kept as a reference for all the following cases.

5.2 Best Theory Diagrams, [0�/90�/0�]

The first presented case group consists of the simply-sup-
ported (SS) spherical shells with symmetric lamination [0�/
90�/0�]. Figures 4, 5, and 6 are the BTD for shells with
thicknesses a/h=100, 10, and 5, respectively. Tables 5, 6,
and 7 show their corresponding Best Theories, paired with
the achieved average error. From them, different displace-
ment field descriptions can be retrieved; for instance, the

Fig. 9 raz and raa evaluated in
(0, a/2) and in (a/2, a/2), SS, a/
h=5, [0�/90�/0�]
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best model with ten DOF in the case of an SS shell with a/
h=10 is

ua ¼ ua1 þ z ua2 þ z3 ua4
ub ¼ ub1 þ z ub2 þ z3 ub4

uz ¼ uz1 þ z uz2 þ z2 uz3 þ z4 uz5

ð23Þ

Furthermore, the distributions of the raa and raz stresses
along the thickness were analyzed, comparing the best
models with 5, 10, and 15 active DOF. The aim is to assess
the best models obtained via FI computed in a limited
number of points in obtaining the through-the-thickness
distribution of stresses. The non-dimensionalized form for
�raz is

�raz ¼ razð0; a=2Þ h

p̂za
ð24Þ

The results from a third-order Layer-Wise model (L3) were
also added. Figure 7 shows the �raa and �raz for the a/h=100
case, Fig. 8 for a/h=10, and Fig. 9 for a/h=5. Table 8
compares the active terms for some of the Best Theories
obtained for the three symmetric lamination cases, specifi-
cally for seven, nine, and eleven total degrees of freedom.
The expansion terms are presented from lowest to highest
order going from left to right in each sub-table row. The
same graphical convention previously introduced to indicate
an active/inactive term is used. Table 9 compares instead the
Best Theories for the same number of active DOF obtained

Table 8 Comparison between
Best Theories obtained with
average error over maximum
failure indexes, SS, [0�/90�/0�]

7 DOF - a/h=100 9 DOF - a/h=100 11 DOF - a/h=100

ua N N M M M ua N N M N M ua N N N N N
ub N N M M M ub N N M M M ub N N M M M
uz N N N M M uz N N N N M uz N N N N M

7 DOF - a/h=10 9 DOF - a/h=10 11 DOF - a/h=10

ua N N M N M ua N N M N M ua N N M N M
ub N N M M M ub N N N M N ub N N N N M
uz N M N M M uz N M N M M uz N N N M N

7 DOF - a/h=5 9 DOF - a/h=5 11 DOF - a/h=5

ua N M M N M ua N M N N M ua N M M N N
ub N N M N M ub N N N N M ub N N M N N
uz N M M N M uz N N M M M uz N N M N N

Table 9 Comparison between
Best Theories obtained with
average error over transverse
central displacement, SS, [0�/
90�/0�]

7 DOF - a/h=100 9 DOF - a/h=100 11 DOF - a/h=100

ua N N M M M ua N N M N M ua N N M N M
ub N N M M M ub N N N M M ub N N N N N
uz N N N M M uz N N N M M uz N N N M M

7 DOF - a/h=10 9 DOF - a/h=10 11 DOF - a/h=10

ua N N M N M ua N N M N M ua N N M N M
ub N N M M M ub N N M N M ub N N N N N
uz N M N M M uz N M N N M uz N N N M M

7 DOF - a/h=5 9 DOF - a/h=5 11 DOF - a/h=5

ua N M M N M ua N N M N M ua N N M N N
ub N N N M M ub N N N M N ub N N M N M
uz N M M N M uz N M N M M uz N N N N M

208 M. Petrolo, P. Iannotti
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using the error over the central transverse displacement.
These results were gathered from [38].

The following considerations stem from the results
above,

● Generally, the BTD obtained using the average error
over the FI have relatively higher errors than those
stemming from the error over the vertical displacement.
The gap tends to be lower for thinner structures. Best
models with six or fewer DOF have significant errors in
the evaluation of FI due to the influence of higher-order
generalized displacements over the stress distributions.

● The Best Theories found for the thinner configurations
have zeroth- and first-order terms, with in-plane com-
ponents - ua2 and ub2 - being predominant. These are
followed by the second-order uz3 and the first-order uz2.
ub terms above the second-order appear to be the least
influential for this case.

● For the moderately thicker configuration with a/h=10,
first-order ua2 and ub2 remain the most relevant terms. ub
terms of second and third-order are more frequent than
the a/h=100 case, together with the fourth-order uz5.

● Third-order terms are the most frequent for the thicker
shell with a/h=5. More in detail, the linear term ua2 is
almost wholly neglected, being replaced by the third-
order ua4. The effect of the inclusion of a cubic term was
particularly beneficial for the description of the stress
distribution along the thickness of the structure. As
shown in Fig. 9a, this allowed overcoming the limitation
of a constant stress distribution imposed using an FSDT
model.

● On the effect of using a particular selection parameter,
Tables 8 and 9 show that for small numbers of active
DOF, both methodologies produce very similar, if not
identical, best theories. The increase in active terms and
thickness can make some noticeable changes between
the results stemming from the two criteria. For thinner

Table 10 Best theories, SS, a/
h=100, [0�/90�/0�/90�]

DOF ua1 ub1 uz1 ua2 ub2 uz2 ua3 ub3 uz3 ua4 ub4 uz4 ua5 ub5 uz5 %EAVG

15 N N N N N N N N N N N N N N N 0.0000

14 N N N N N N N N N N N N N M N 0.0133

13 N N N N N N N N N N M M N N N 0.0127

12 N N N N N N N N N N M M N M N 0.0136

11 N N N N N N N M N M N N M N M 0.0050

10 N N N N N N N M N M N M N M M 0.0096

9 N N N N N N N M N M M N M M M 0.0067

8 N N N N N N N M N M M M M M M 0.0236

7 N N N N N N M M N M M M M M M 0.0700

6 N N N N N M M M N M M M M M M 0.4388

5 N N N N N M M M M M M M M M M 1.4461

Fig. 10 BTD, SS, a/h=100, [0�/
90�/0�/90�]
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Fig. 12 raz and raa evaluated in
(0, a/2) and in (a/2, a/2), SS, a/
h=100, [0�/90�/0�/90�]

Fig. 11 BTD, SS, a/h=10, [0�/
90�/0�/90�]
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Table 11 Best theories, SS, a/
h=10, [0�/90�/0�/90�]

DOF ua1 ub1 uz1 ua2 ub2 uz2 ua3 ub3 uz3 ua4 ub4 uz4 ua5 ub5 uz5 %EAVG

15 N N N N N N N N N N N N N N N 0.0000

14 N N N N N N N N N N N N N N M 0.1367

13 N N N N N N N N N N N M N N M 0.1309

12 N N N N N M N N N N N M N N M 0.1408

11 N N N N N M N N M N N M N N M 0.1325

10 N N N N N M M M N N N N M M N 0.4191

9 N N N N N M M M N N N N M M M 0.3885

8 N N N N N M M M M N N N M M M 0.2845

7 N N N N N M M M M N N M M M M 0.5989

6 N N N N N M M M M M N M M M M 5.6427

5 N N N N N M M M M M M M M M M 11.121

Fig. 13 raz and raa evaluated in
(0, a/2) and in (a/2, a/2), SS, a/
h=10, [0�/90�/0�/90�]
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configurations, the best models mainly differ from
second or higher-order terms, while, in the thicker cases,
differences can already be found in active first-order
terms. Some of the most significant variations are the

loss of the second, third, and fourth-order ub terms for
the a/h=100 case compared to the best theories obtained
with the error over the central transverse displacement

Table 12 Best theories, CF, a/
h=100, [0�/90�/0�/90�]

DOF ua1 ub1 uz1 ua2 ub2 uz2 ua3 ub3 uz3 ua4 ub4 uz4 ua5 ub5 uz5 %EAVG

15 N N N N N N N N N N N N N N N 0.0000

14 N N N N N N N N N N N N N M N 0.0056

13 N N N N N N N N N N N N N M M 0.0151

12 N N N N N N N M N N M N N M N 0.0310

11 N N N N N N N M N N M N N M M 0.0429

10 N N N N N N N M M N M M N M N 0.0554

9 N N N N N M N M M N M N N M M 0.0903

8 N N N N N M M M M N N M N M M 0.1442

7 N N N N N M M M M N M M N M M 0.1338

6 N N N N N M M M M N M M M M M 0.2652

5 N N N N N M M M M M M M M M M 0.4798

Table 13 Best theories, CF, a/
h=5, [0�/90�/0�/90�]

DOF ua1 ub1 uz1 ua2 ub2 uz2 ua3 ub3 uz3 ua4 ub4 uz4 ua5 ub5 uz5 %EAVG

15 N N N N N N N N N N N N N N N 0.0000

14 N N N N N N N N N N N M N N N 0.6404

13 N N N N N N N N M N N N N N M 0.3117

12 N N N N N N N M N N N N N M M 0.6342

11 N N N N N N N M M N N N N M M 0.8988

10 N N N N N N N M M N N M N M M 1.4357

9 N N N M N M N M M N N M N M N 0.4212

8 N N N M N M N M M N N M N M M 1.9822

7 N N N M N M M M M N N N M M M 5.3090

6 N N N M N M M M M N N M M M M 10.058

5 N N N M M M M M M N N M M M M 23.221

Fig. 14 BTD, CF, a/h=100, [0�/
90�/0�/90�]
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Fig. 15 BTD, CF, a/h=5, [0�/
90�/0�/90�]

Fig. 16 raz and raa evaluated in
(0, a/2) and in (a/2, a/2), CF, a/
h=100, [0�/90�/0�/90�]
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and the greater relevance of fourth-order terms for the a/
h=5 case in theories evaluated through FI.

● As shown in previous works [30], there may be
oscillations in the error/DOF plot, i.e., an increasing
number of generalized unknown variables does not
necessarily lead to higher accuracy. Adding single terms
may be detrimental if all those with similar influence are
not retained.

● Overall, using ten DOF leads to through-the-thickness
distributions similar to the full E4 case. However, for
transverse shear stress, as known, LW models provide
more accurate results.

5.3 Best Theory Diagrams, [0�/90�/0�/90�]

Four shell configurations with asymmetric lamination [0�/
90�/0�/90�] are presented in this section. These consist of
two SS cases with a/h=100 and 10, followed by two
clamped-free (CF) ones with a/h=100 and 5; the clamped
edges are those parallel to the b-direction. Tables 10 and 11
show the Best Theories obtained for the SS shells. Tables 12
and 13 are those for the CF cases. For instance, the best
model with ten DOF for a CF shell with a/h=5 is

ua ¼ ua1 þ z ua2 þ z2 ua3 þ z3 ua4 þ z4 ua5
ub ¼ ub1 þ z ub2 þ z3 ub4

uz ¼ uz1 þ z uz2

ð25Þ

Fig. 17 raz and raa evaluated in
(0, a/2) and in (a/2, a/2), CF, a/
h=5, [0�/90�/0�/90�]
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The BTD for the SS cases are presented in Figs. 10 and 11,
and their stress distributions shown in Figs. 12 and 13. Fig-
ures 14 and 15 report the BTD for the CF shells. For these two
latter cases, the plots of �raa and �raz along the thickness are
presented in Figs. 16 and 17. The comparison between several
best theories with the same number of active DOF across the
four considered configurations is shown in Table 14, while
Table 15 presents the best models obtained in [38] through the
transverse central displacement.

From the second set of results, it can be observed that

● Starting from the SS cases, linear terms ua2 and ub2 are still

the most relevant. For the thinner configuration with a/
h=100, second-order terms are more frequent than third-
order ones,while the opposite is true for the thicker casewith
a/h=10. By comparing the results for the asymmetric
lamination with their symmetric counterparts, it can be
noted that there is a slight reduction in the relevance of third-
order terms for the thinner shell in favor of some fourth-order
ones. Fourth-order in-plane terms gain more weight for the
thicker case, together with the third-order ub4 one.

● For the CF configurations, third- and fourth-order terms
become more dominant, especially for the in-plane terms
ua4 and ua5. For the a/h=5 case, linear terms barely
present up to nine active DOF, replaced by third-order
in-plane ones. These expansion terms allow even simpler
models to provide solutions much closer to the reference
one, as evident from the transverse stress distribution
presented in Fig. 17a.

● The comparison provided in Table 14 summarizes the
highlighted behaviors: high-order expansion terms are
mandatory in the case of thicker structures.

● The best theories derived using FI present some
differences from those obtained through the transverse
displacement. Starting from a small number of active
DOF, those relative to SS cases are identical. At the same
time, more significant variations can be found for the
clamped-free cases. By increasing the number of
expansion terms, the deviations are few and mainly
pertain to third- or fourth-order terms.

6 Conclusions

This paper presented a novel approach to building shell
models for the static analysis of composite structures. Failure
indexes were used to evaluate the accuracy of reduced models
and investigate the influence of higher-order generalized dis-
placement variables via the Axiomatic/Asymptotic approach.
Equivalent Single Layer models were considered with up to
fourth-order terms. The Carrera Unified Formulation was used

to obtain the governing equations and related finite element
arrays. Different combinations of boundary conditions, stack-
ing sequences, and thickness values were considered. Best
Theory Diagrams were obtained in which, for a given number
of nodal DOF, the set of generalized displacement variables to
use to maximize the accuracy can be read. The following
conclusions can be drawn:

● Higher-order terms are essential to determine Failure
Indexes and mandatory for thicker shells, where the role
of third-order terms is decisive.

● The proper choice of higher-order terms can lead to
models requiring very few DOF, e.g., for thicker shells
the distributions of shear along the thickness do not
present significant variations as soon as third-order terms
are considered. However, the sole use of Equivalent
Single Layer higher-order models is insufficient for
high-fidelity prediction of transverse stresses.

● The effect of boundary conditions and stacking sequence
was negligible compared to the thickness, mainly
affecting the activation of different expansion terms of
the same order. For shells with thickness a/h=100 and
10, the first-order terms ua2 and ub2 are always present,
with third and fourth-order ones being slightly less
beneficial for the thinner cases.

The development of structural models is problem-depen-
dent, and BTD may provide guidelines on those variables
with more significant influence or indicate the accuracy of a
given structural theory. However, the construction of BTD
may be computationally expensive due to the strong
dependence on input parameters. The computational burden
may be avoided, and future works will explore the simul-
taneous use of multiple performance parameters to improve
the robustness of the reduced models and use machine
learning techniques to substitute FEM analyses and obtain
the best models by trained networks.
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