
19 October 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

PAKA: Pseudonymous Authenticated Key Agreement without bilinear cryptography / Schermann, Raphael; Bussa,
Simone; Urian, Rainer; Toegl, Ronald; Steger, Christian. - (2024), pp. 1-10. (Intervento presentato al convegno ARES
2024: The 19th International Conference on Availability, Reliability and Security tenutosi a Vienna (AT) nel 30 July 2024-
2 August 2024) [10.1145/3664476.3669925].

Original

PAKA: Pseudonymous Authenticated Key Agreement without bilinear cryptography

Publisher:

Published
DOI:10.1145/3664476.3669925

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2992493 since: 2024-09-15T21:50:21Z

ACM

PAKA: Pseudonymous Authenticated Key Agreement without
bilinear cryptography

Raphael Schermann

raphael.schermann@student.tugraz.at

Institute of Technical Informatics,

Graz University of Technology

Graz, Austria

Simone Bussa

simone.bussa@polito.it

Department of Control and Computer

Engineering, Politecnico di Torino

Turin, Italy

Rainer Urian

rainer.urian@infineon.com

Infineon Technologies AG

Augsburg, Germany

Ronald Toegl

ronald.toegl@infineon.com

Infineon Technologies Austria AG

Graz, Austria

Christian Steger

steger@tugraz.at

Institute of Technical Informatics,

Graz University of Technology

Graz, Austria

ABSTRACT
Anonymity and pseudonymity are important concepts in the do-

main of the Internet of Things. The existing privacy-preserving

key agreement schemes are only concerned with maintaining the

privacy of the communicated data that appears on the channel

established between two honest entities. However, privacy should

also include anonymity or pseudonymity of the device identity. This

means there should not exist any correlation handle to associate

different communications done by the device.

This paper proposes a privacy-preserving key agreement method

called the Pseudoonymous Authenticated Key Agreement Protocol

(PAKA), which also provides device unlinkability across different

domains. This protocol is based on an Elliptic-Curve Diffie-Hellman

using standard cryptographic primitives and curves, i.e., no pairing-

based cryptography or other computationally intensive cryptog-

raphy is necessary. For the security analysis, we provide a mathe-

matical proof and an automatic cryptographic protocol verification

utilizing Proverif. Last, we show the integration with the Trusted

Platform Module and a Proof-of-Concept implementation.

CCS CONCEPTS
• Security and privacy→ Key management; Privacy-preserving
protocols; Pseudonymity, anonymity and untraceability; Em-
bedded systems security; Hardware-based security protocols.

KEYWORDS
Pseudonymity, Privacy-preserving cryptography, Key management,

TPM, Internet of Things privacy

ACM Reference Format:
Raphael Schermann, Simone Bussa, Rainer Urian, Ronald Toegl, and Chris-

tian Steger. 2024. PAKA: Pseudonymous Authenticated Key Agreement

This work is licensed under a Creative Commons Attribution International

4.0 License.

ARES 2024, July 30–August 02, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1718-5/24/07

https://doi.org/10.1145/3664476.3669925

without bilinear cryptography. In The 19th International Conference on Avail-
ability, Reliability and Security (ARES 2024), July 30–August 02, 2024, Vienna,
Austria.ACM, NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3664476.

3669925

1 INTRODUCTION
Today, an ever-increasing number of Internet of Things (IoT) de-

vices have become an integral part of an individual’s daily routines.

These devices are also linked to Cloud Computing or Fog Comput-

ing platforms [2] for data gathering and further data processing. It

inherently brings challenges like heightened latency, limited power

and bandwidth resources, and potential privacy risks [20]. This

situation provides ample opportunities for the Service Provider to

monitor users who seek to access specific services privately. Pri-

vacy remains a hot topic in the Cloud-, Fog-, and Edge Computing

domains. Also, there is an exchange between two parties when it

comes to key establishment. In a concrete real-world scenario, two

individuals could meet and confidentially exchange keys for their

locks. When it comes to the online world, there is a bit of a tricky

situation that’s like a chicken-and-egg dilemma. While a hybrid

method for setting up and sharing keys among parties strikes a

good balance between speed, security, and user experience, there

still needs to be a level of trust between the parties exchanging

data. Further, a crucial topic here is to preserve the privacy of those

parties.

There exist several privacy-preserving algorithms, most of them

are signature-based. One of the most noticeable is Elliptic Curve

Direct Anonymous Attestation (ECDAA) [10, 11, 21]. This scheme

uses pairing-based cryptography. Besides that, pseudonymous sig-

natures based on standard elliptic curve cryptography exist. The

most prominent approach has been defined by Bender et al. [5]
and is used in Electronic Identification, Authentication and Trust

Services (eIDAS) (see https://www.bsi.bund.de/dok/TR-03110-en).

In 2022 Schermann et al. [18] published a scheme that uses

pairing-friendly cryptography for symmetric encryption. This scheme

is called the Anonymous Authenticated Credential Key Agreement

(AACKA). Nevertheless, pairing-friendly cryptography and the cor-

responding keys are not always supported by IoT devices and se-

cure elements like a Trusted Platform Module. Hence, we assert

the pressing need to furnish authenticated key agreement schemes

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3664476.3669925
https://doi.org/10.1145/3664476.3669925
https://doi.org/10.1145/3664476.3669925
https://www.bsi.bund.de/dok/TR-03110-en
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3664476.3669925&domain=pdf&date_stamp=2024-07-30

ARES 2024, July 30–August 02, 2024, Vienna, Austria Schermann et al.

that uphold privacy without the extensive use of pairing-friendly

cryptography and are particularly designed for devices with limited

resources.

In both approaches, a Barreto-Naehrig curve BN256 is used. This

also implies that, security-wise, the keys that we are using indicate a

higher bit security. As today a NIST_P256 curve reaches 2
128

while

a BN256 curve has a 2
100

bit security [4]. As defined by some regu-

lators, e.g., Bundesamt für Sicherheit in der Informationstechnik

(BSI) [7], the bit-security size of keys should be at least 2
120

. Fur-

thermore, some resource-constrained devices and secured elements

like a Trusted Platform Module are yet not capable of supporting

bigger BN keys, i.e., encryption schemes with, for example, a BN462

cannot be realized with a TPM.

Our contribution
Wepresent another novel cryptographic building block called Pseudony-

mous Authenticated Key Agreement (PAKA) that solves the previ-

ously mentioned capability of devices that do not support pairing-

based cryptography to support device pseudonymity. Our protocol

emphasizes the pseudonymous authentication from a Device to a

Service Provider. This means if it is used as intended, the Device

appears under a chosen pseudonym and does not reveal the real

identity of the Device but can be linked. The authentication process

from the Service Provider to the Device can utilize any standard au-

thentication method, as there are no specific privacy requirements

for the Service Provider.

This building block can be utilized to facilitate the implemen-

tation of Pseudonymous Authenticated Encryption (PAE) across

diverse application scenarios. It can be regarded as an alternative

option to the AACKA protocol in case pairing-friendly cryptog-

raphy is either infeasible or not the favored option for ensuring

unlinkable encrypted data transmission while preserving authen-

ticated privacy. In the end, we also show the integration of the

Trusted Platform Module (TPM) into the protocol. We have decided

to implement the protocol with the TPM due to its widespread

adoption in IoT devices, as well as in fog and cloud computing

environments. Nevertheless, the protocol can also be integrated on

smaller platforms like JavaCard.

We verified the security and the related attributes with a security

analysis done (1) mathematically and (2) with a formal automatic

verification tool, Proverif.

Outline of the paper
The remainder of the paper looks as follows. First, we start with the

necessary information regarding the background of pseudonymous

signatures (section 2). We discuss the related work in section 3.

This is followed by the main part of our new protocol that starts

with the definition in section 4, followed by the protocol itself in

section 5, including the integration in the ECIES protocol and the

merge into the ECIES protocol. We also provided a security proof

in section 6 to prove our protocol is still secure. The paper ends

with an implementation in section 7 and a conclusion and future

work (section 8).

2 BACKGROUND
In this section, we introduce the necessary background to under-

stand the remainder of the paper. Our protocol originated from two

roots: the Anonymous Authenticated Credential Key Agreement

(AACKA) protocol and pseudonymous signatures. In detail, we use

the idea of anonymous authenticated encryption combined with

pseudonymous signatures, i.e., we do not need pairing-based cryp-

tography. In the Background section, we cover the necessary details

related to pseudonymous signatures, while the AACKA protocol

will be discussed in the related work section 3.

2.1 Domain specific pseudonyms
In this subsection, we show the basic principles of domain-specific

pseudonyms. Abstractly, a domain specific pseudonym can be seen

as a function mapping a domain identifier and a user identifier to

a unique number. The methods shown in this paper realize the

mapping as elliptic curve scalar multiplications. Figure 1 shows a

generic schema for pseudonymous authentication. Each user X has

a private key 𝑠𝑘𝑋 and each service provider Y has a public key 𝑝𝑘𝑌 .

Each domain Y has a base name 𝑏𝑠𝑛𝑌 from which the base point

𝐽𝑌 := 𝐻G (𝑏𝑠𝑛𝑌) is calculated.

Figure 1: Basic construction of pseudonymous identifier

The domain, sometimes called in the literature sector, specific

identifier 𝐾 is calculated as scalar multiplication of the secret and

public key, i.e., 𝐾𝑋→𝑌 = 𝑠𝑘𝑋 ∗ 𝐽𝑌 . In the Figure, we see two users

(A,B) and three domains (C,D,E). For each domain, the user chooses

a different basename 𝑏𝑠𝑛 that must be multiplied by the secret

key. Due to the combination of the private and public keys, such a

pseudonymous authentication includes a cross-sector unlinkability.

This means no service knows that, for example, 𝐾𝐴→𝐷 and 𝐾𝐴→𝐸

belong to the same user A. The difference between pseudonymity

and anonymity is that in the case of pseudonymity, a domain can

recognize a recurring user, while in anonymity, this is not possible.

However, pseudonyms belonging to different Domains, i.e., con-

structed by different basenames 𝑏𝑠𝑛, cannot be correlated. In the

PAKA: Pseudonymous Authenticated Key Agreement without bilinear cryptography ARES 2024, July 30–August 02, 2024, Vienna, Austria

following subsection, we focus on eIDAS pseudonymous signatures.

eIDAS pseudonymous signatures can be seen as an extension of

Schnorr [19] and Okomoto signature schemes [17].

2.2 eIDAS pseudonymous signatures
Our proposal is basically the encryption pendant to pseudonymous

signatures. Therefore we briefly show the construction pseudony-

mous signatures from the eIDAS specification (for details, see

[13],ch. 3.7). Please note that we have adapted the variable names

from [13] in order to match the notation used our paper.

Pseudonymous signatures need a group manager GM which

has long term private/public keys 𝑃𝑘D := 𝑠𝑘D ∗𝐺 and 𝑃𝑘GM :=

𝑠𝑘GM ∗𝐺 . For each user in the group, the group manager calculates

a pair of private keys 𝑠𝑘1 and 𝑠𝑘2. The calculation of the keys for

each user is done such that 𝑠𝑘D = 𝑠𝑘1 + 𝑠𝑘GM ∗ 𝑠𝑘2. This ensures
that all users of the group share the same public key 𝑃𝑘D and

are thus indistinguishable. On the other hand, each user has a

different private key pair 𝑠𝑘1, 𝑠𝑘2, which implies that each user will

calculate different pseudonyms. The pseudonymous signature is

then calculated as

Note that the eIDAS protocol generates two pseudonyms 𝐾1 and

𝐾2 for the same base point 𝐽 .

2.3 Trusted Platform Module
A Trusted Platform Module (TPM) is a securely protected and

tamper-resistant cryptographic co-processor [1]. It serves as a se-

cure repository for cryptographic keys and other sensitive data

intimately tied to the physical host device. Specified by the Trusted

Computing Group (TCG) for general-purpose computer systems

[15] The TPM encompasses cryptographic primitives for public-key

cryptography, key generation, cryptographic hashing, and random-

number generation.

It delivers a suite of security services, including secure boot,

remote attestation, and encryption key management. A secure boot

ensures that the system is initiated by a trusted source, the Root of

Trust (RoT), preventing unauthorized software from being executed.

Remote attestation enables a trusted entity to verify the system’s

integrity, ensuring it remains untampered. Key management facili-

tates the generation and secure storage of encryption and signing

keys protected by the TPM.

Within the realm of TPM 2.0, four prevalent implementations ex-

ist: Discrete, integrated, firmware, and software TPM. The discrete

TPM, often referred to as hardware TPM, stands out for providing

an exceptionally high level of security.

The TPM has two types of classifications of keys: restricted and

unrestricted. Restricted keys come with usage restrictions imposed

by the TPM. These restrictions may include limitations on the

cryptographic operations the key can perform or the data it can

access. Restricted keys are often tied to specific purposes or func-

tions. They are used to sign or decrypt TPM states or challenges.

A prominent command that uses restricted keys is, for example,

TPM2_ActivateCredential. Unrestricted keys have fewer usage

restrictions. They are more versatile and can be used for a broader

range of cryptographic operations without as many limitations as

restricted keys, i.e., intended for general use. Here, one prominent

representative, for example, is the TPM2_ECDH_ZGEN.

3 RELATEDWORK
As mentioned in the Background section, one direct related con-

cept is the Anonymous Authenticated Credential Key Agreement

(AACKA) protocol. In this section, we cover the information about

the AACKA protocol. For the sake of completeness, we briefly dis-

cuss other Privacy PreservingAuthenticated Key Exchange (PPAKE)

schemes.

3.1 Anonymous Authenticated Credential Key
Agreement

Schermann et al. [18] developed a new protocol called Anony-

mous Authenticated Credential Key Agreement (AACKA) to enable

Anonymous Authenticated Credential based Encryption (AACE).

This protocol uses pairing-friendly cryptography and can be seen

as a variant of a static Diffie-Hellman protocol, but instead of an

X.509 certificate, Camenish-Lysyanskaya (CL) credentials [8] are

used. This credential has to be negotiated with an Issuer during

the Join phase. After a successful run, the Device received valid CL-

credentials. After the Join phase, the AACKA phase is performed

between the Device D and the Service Provider SP to negotiate a

shared secret and derive a symmetric encryption key. Further, D

has authenticated to SP that the private AACKA key 𝑓 belongs

to a valid CL-credential. The protocol is shown below. Here, they

also included a Privacy Proxy PP . Its task is to randomize the CL-

credential to increase performance. As in the protocol required SP

has to verify the credential with a bilinear mapping function, which

gives an additional overhead in the protocol flow. The AACKA

protocol can also be enhanced with pseudonyms to be linkable as

long as the chosen basename (bsn) remains the same. This protocol

is called Pseudonymous Authenticated Credential Key Agreement

(PACKA). In this protocol D chooses a basename. Out of this bsn

the pseudonyms 𝐽 , 𝐾 are constructed that can be linked by the SP .

3.2 Other PPAKE methods
Privacy-preserving authenticated key exchange (PPAKE) authenti-

cates two parties with each other and further protects the privacy

ARES 2024, July 30–August 02, 2024, Vienna, Austria Schermann et al.

of both parties against an MITM adversary. In the following, we

provide a rough overview of three noteworthy protocols within the

PPAKE family [12, 14, 16]. Fan et al. introduced a Privacy-Preserving
Authenticated Key Agreement Protocol aimed at mobile emergency

services, utilizing Smart Cards [12]. This protocol ensures user

anonymity even if an adversary manages to compromise the Smart

Card, protecting against Man-in-the-Middle (MITM) attacks or any

adversary capable of extracting information from the Smart Card.

It also offers forward secrecy and heavily depends on hash func-

tions for security. On the other hand, Ferreira developed a Privacy-

Preserving Authenticated Key Exchange specifically tailored for

Constrained Devices [14], enhancing the privacy features of the

Symmetric-Key Authenticated Key Exchange (SAKE) protocol [3], a

two-party Authenticated Key Exchange (AKE) mechanism. Similar

to Fan et al. protocol, Ferreira’s design also guards against MITM

attacks, ensuring privacy, and offers robust forward secrecy. Those

two mentioned protocols do not provide cross-domain unlinkability

to the communicating party. Last, Liang et al. [16] developed a phys-
ically secure and conditionally private authenticated key agreement

scheme for Vehicular Ad Hoc Networks (VANETs). This protocol is

designed to accomplish mutual authentication and key agreement

between vehicles and Road Side Units (RSUs). In their publication,

they combined the strengths of the Elliptic Curve Cryptosystem

and physically unclonable function (PUF). It provides protection

against physical impersonation, MITM, replay, known session keys,

and ephemeral secret leakage (ESL) attacks. Further, it ensures con-

ditional privacy, i.e., only the Trusted Authority (TA) can determine

the actual identity of a vehicle from its pseudonym. This protocol

implies that each individual pseudonym must be provided by the

Trusted Authority (TA) to the RSU and vehicle. This is a contrast to

our approach where the device itself is capable to compute different

pseudonyms.

4 DEFINITION OF OUR PAKA PROTOCOL
This section begins with an overview of the notation and conven-

tions used in the paper. Subsequently, security definitions, as well

as cryptographic hard problems, are presented.

Our protocol consists of three roles: (1) Device D, (2) Service

Provider SP, and (3) GroupManagerGM. Note that each SP belongs

to a domain, which is also called a sector. In general, each domain

can contain several SP . For simplicity, we consider one SP per

domain in our protocol.

4.1 Notation
This paper uses the following symbols and abbreviations through-

out the paper (see table 1): We describe the operations on elliptic

curves in additive notation.

4.2 Security definitions
Our PAKA protocol is ’secure’ if it fulfills the following properties:

(1) correctness, (2) confidentiality + forward-secrecy, (3) unforge-

ability, and (4) Cross-domain unlinkabilty+forward-privacy. PAKA

protocol ensures privacy in form of cross-domain unlinkabilty of

the device. Cross-domain unlinkabilty means that identities in dif-

ferent domains or contexts cannot be linked together.

Table 1: Symbols and abbreviations

Symbol Description

D Device.

SP Service Provider.

GM Group Manager (Issuer)

H Host

𝑏𝑠𝑛 Basename.

𝑝, 𝑛 Prime numbers.

Z𝑝 ,Z𝑛 prime field of characteristic 𝑝 (resp. 𝑛)

𝐸𝐶 elliptic curve over Z𝑝
G Cyclic subgroup of order 𝑛 of 𝐸𝐶

𝐺 Generator of G

$ Random element.

𝐻G Hash to G.

𝐾1, 𝐾2 Pseudonyms, i.e., point in G for linking.

𝑠𝑘1, 𝑠𝑘2 Device/PAKA private keys.

𝑈1,𝑈2 Ephemeral keys.

𝑠𝑘GM, 𝑃𝑘GM Secret/Public key Group Manager.

𝑠𝑘D, 𝑃𝑘D Pseudonymous Secret/Public key sector

𝑍 Shared secret.

𝑘 Key for encryption and decryption.

𝑘𝑑 𝑓 Key derivation function.

𝐸𝑛𝑐 Encryption function.

𝐷𝑒𝑐 Decryption function.

𝑟, 𝑟1, 𝑟2 Random numbers in Z𝑛 .

Correctness: Correctness means that an honest Device D can suc-

cessfully perform a key agreement with an honest Service Provider

SP, i.e., the ciphertext cannot be decrypted with any other secret

key.

Confidentiality means that an evesdropper cannot decrypt any

session negotiated between the Device D and a honest Service

Provider SP. Confidentiality and forward-secrecy in our definition

are directly related.

Forward-secrecy means in our protocol that the confidentiality is

ensured even if the group manager keys are revealed.

Cross-domain unlinkability is our main privacy-feature and

means the following. Within a sector/domain, the user should con-

sistently appear under the same pseudonym (linkable). However,

across different domains the user has different pseudonyms. It must

be ensured that, for example, Domain A should not recognize the

Devices pseudonyms for Domain B. In other words, an adversary

seeing two pseudonyms belonging to different domains cannot de-

cide if both pseudonyms belong to the same Device or two different

ones.

Forward-privacymeans cross-domain unlinkability is maintained

even if the group manager keys are reveled.

Unforgeability means that one device is not able to impersonate

another device. In particular, this comprises two scenarios:

• Only honest devices shall be able to perform a successful

key-agreement, i.e., the device must know a private key pair

(𝑠𝑘1, 𝑠𝑘2) which fulfill 𝑃𝑘D = 𝑠𝑘1 ∗𝐺 + 𝑠𝑘2 ∗ 𝑃GM
• Any device can only use his own pseudonyms and not use

other pseudonyms to impersonate another device, i.e., the

PAKA: Pseudonymous Authenticated Key Agreement without bilinear cryptography ARES 2024, July 30–August 02, 2024, Vienna, Austria

device is forced to compute his pseudonyms as 𝐾1 = 𝑠𝑘1 ∗ 𝐽1
and 𝐾2 = 𝑠𝑘2 ∗ 𝐽2

Note: if the secret keys of the device are revealed then cross-domain

unlinkabity cannot be assured. Forward-secrecy can be easily achieved

in this case by using an additional ephemeral ECDH before the

PAKA phase starts. This is a standard approach which is therefore

not described in this paper. We would also empathize that is good

practice to use a Secure Element like a TPM for storing the secret

keys 𝑠𝑘1 and 𝑠𝑘2.

4.3 Cryptographic hard problems
In this subsection, we revisit cryptographic hard problems that are

relevant to our proposed protocol. One problem is the well-known

Decisional Diffie-Hellman (DDH) Problem, which was introduced by

[9]: Given 𝐻 ∈ G and 𝑎, 𝑏, 𝑐 are random numbers of Z𝑛 , distinguish
(𝑎 ∗ 𝐻,𝑏 ∗ 𝐻, 𝑐 ∗ 𝐻) from (𝑎 ∗ 𝐻,𝑏 ∗ 𝐻, 𝑎𝑏 ∗ 𝐻). The second one is

the Discrete Logarithm Problem : Given𝐺1,𝐺2 ∈ G, calculate 𝑙 ∈ Z𝑛
which fulfills 𝐺2 = 𝑙 ∗𝐺1.

5 OUR NOVEL PAKA PROTOCOL
In this section, we propose our protocol that enables Pseudonymous

Authenticated Key Agreement without the use of pairing-friendly

cryptography and CL-credentials. This allows anonymous authenti-

cated encryption and introduces anonymity to the device in case of

cross-domain unlinkability. It starts with a setup phase, the PAKA

main phase. Then, we present the integration of a TPM with the

PAKA protocol, followed by the integration of PAKA.

5.1 Setup
In this phase, a trusted Group Manager, sometimes called an Is-

suer, has to set global domain and user-specific parameters. We

assume that that setup phase is executed in a secured and trusted

environment.

The scheme employs a prime order q group denoted as G, where
ensuring the hardness of the DDH Problem for G is crucial. Addi-

tionally, Gmust be specified to indicate the presence of a generator

g ∈ G. The Group Manager GM is responsible for generating its

system keys during the setup process:

• GM secret keys: 𝑠𝑘D, 𝑠𝑘GM ∈ Z𝑞
• GM public keys: 𝑃𝑘D, 𝑃𝑘GM ∈ G
• user secret keys: 𝑠𝑘1, 𝑠𝑘2 ∈ Z𝑞 in a way that 𝑠𝑘D = 𝑠𝑘1 +
𝑠𝑘2 ∗ 𝑠𝑘GM

Note: 𝑃𝑘D = 𝑠𝑘1 ∗𝐺 + 𝑠𝑘2 ∗ 𝑃𝑘GM = 𝑠𝑘1 ∗𝐺 + 𝑠𝑘2 ∗ (𝑠𝑘GM ∗𝐺)
The user keys are injected in a device by the GM and calculated for

each member:

• user secret keys: 𝑠𝑘1, 𝑠𝑘2 ∈ Z𝑞 in a way that 𝑠𝑘D = 𝑠𝑘1 +
𝑠𝑘2 ∗ 𝑠𝑘GM, i.e.:

– choose 𝑠𝑘2
$−→ Z𝑞

– calculate 𝑠𝑘1 = 𝑠𝑘D − 𝑠𝑘GM ∗ 𝑠𝑘2.
This is a linear equation in two variables (𝑠𝑘1, 𝑠𝑘2). Such an

equation has one degree of freedom.

• issuer public keys: 𝑃𝑘D, 𝑃𝑘GM ∈ G

5.2 Pseudonymous Authenticated Key
Agreement - PAKA

This subsection shows our novel protocol to enable Pseudonymous

Authenticated Encryption (PAE), i.e., exchange a pseudonymous

and authenticated symmetric encryption key. It acts like a fun-

damental building block for an encryption scheme in a similar

way as ECIES protocol is constructed from a standard key agree-

ment. This involves a pseudonymous authentication through an

ephemeral/static Diffie-Hellman key agreement between Device D

and Service Provider SP, i.e., D is pseudonymous to SP.

The protocol uses two pseudonyms,𝐾1 and𝐾2.D is in possession

of the secret keys 𝑠𝑘1 and 𝑠𝑘2, which are calculated by the Group

Manager and personalized to each device. Those keys are used to

compute the pseudonyms with the help of the point 𝐽 , which is

calculated with a hash function and a chosen basename 𝑏𝑠𝑛. The

pseudonyms𝐾1 and𝐾2 and the 𝑏𝑠𝑛 are then sent to SP. The Service

Provider SP chooses three random values 𝑟1, 𝑟2, 𝑟3 and computes

two ephemeral keys𝑈1 and𝑈2 that are sent toD as shown in the

protocol. Now, both can compute the same shared secret and de-

rive a symmetric encryption key. Upon completion of the PACKA

protocol, the ensuing attributes are as follows: (1) D and SP have

calculated the same shared secret 𝑍 . Subsequently, the same sym-

metric encryption key 𝑘 . (2)D has implicitly authenticated to SP by

proving that the keys 𝑠𝑘1 and 𝑠𝑘2 belong to his pseudonym. Note,

as mentioned in subsection 1, the authentication process from SP

to D can utilize any standard authentication method, as there are

no specific privacy requirements for SP. The derived shared key

𝑘 can be employed following the conventions of a typical static-

ephemeral Diffie-Hellman protocol. Our examination of security in

section 6 indicates the presence of a slight privacy concern stem-

ming from the potential for a replay attack (𝑈1,𝑈2). Nevertheless,

addressing this issue is straightforward by implementing a basic

cryptographic mechanism, like applying a nonce. To transform the

pseudonymous approach into an anonymousD can create a new

random 𝑏𝑠𝑛 for each protocol invocation.

ARES 2024, July 30–August 02, 2024, Vienna, Austria Schermann et al.

5.3 Integration of TPM2.0 into PAKA
In this subsection, we show how a Trusted Platform Module can be

used as a secured cryptographic co-processor to perform certain

cryptographic secured functions and to store the secret keys 𝑠𝑘1 and

𝑠𝑘2 securely. For this reason, we split the Device roleD into a Host

H and TPM. Technically, the integration can happenwith two differ-

ent approaches. (1) load an external key - Esys_LoadExternal com-

mand (2) import a key - Esys_import + Esys_load commands. Se-

curity wise it is not recommended to use the Esys_LoadExternal

in this protocol. This is do to the fact that we must load in our

protocol a public and private portion into the TPM 2.0, i.e., such a

key is not allowed to be loaded into a hierarchy, except the NULL.

This also implies that the NULL hierarchy is cleared for each new

power cycle. Therefore, the key has to be also stored in software

to be loaded again into the TPM2.0 and this withdraws the over-

all benefits of the TPM2.0 to make the whole architecture more

secured. Nevertheless, this is not the case with the Esys_import +

Esys_load process. In our protocol, we use the (2) approach.

In the pre-personalize phase (1/2),H must execute the

Tpm2_createprimary command that the TPM2.0 creates an ECC

NISTP256 AES128 CFB mode primary key (𝑠𝑘𝑝). Alternatively, a

RSA 2048 can be used. Under this key, the TPM can import the two

secret keys 𝑠𝑘1 and 𝑠𝑘2, received by the Group Manager. To use

those keys later in the protocol, Tpm2_load for both keys has to

be executed. If there is a need to make the keys permanent and

persistent, the TPM2_EvictControl has to be executed for each

key. After this pre-personalize phase, H computes a point J and

uses the Tpm2_EcdhZgen command with each loaded private key

(𝑠𝑘1, 𝑠𝑘2) to calculate the pseudonyms 𝐾1, 𝐾2. This pseudonyms,

together with the basename (𝑏𝑠𝑛), are sent to SP. SP computes two

ephemeral keys𝑈1,𝑈2 that are transmitted back toH.H calculates

the shared secrets 𝑍1, 𝑍2 with the help of the TPM2.0. The final

step is to add the two points together to compute the final shared

secret 𝑍 that is also the same as in SP . The addition of two points is

not supported by the TPM2.0. 𝑍 can be used to derive a symmetric

shared key 𝑘 between both parties.

5.4 Integration of PAKA into ECIES
Within this subsection, we focus on highlighting PAKA’s integra-

tion into the Elliptic Curve Integrated Encryption Scheme (ECIES)

protocol to enable privacy-preserving encryption. However, it is

worth noting that the PAKA protocol is adaptable to various encryp-

tion schemes, such as ElGamal. ECIES constitutes a unified hybrid

encryption scheme that merges a Key Encapsulation Mechanism

(KEM) with a Data Encapsulation Mechanism (DEM).

In the protocol, the Device D receives in the end an encrypted

package or message 𝑝𝑡 from the Service Provider SP . The protocol

works as follows: First, D sends the pseudonyms 𝐾1 and 𝐾2 and

the corresponding chosen base name 𝑏𝑠𝑛 to SP . SP can calculate

with the help of 𝑏𝑠𝑛 the same point 𝐽 . After, SP computes two

ephemeral keys 𝑈1 and 𝑈2 that have to be sent back to D . Both

sides can now calculate the same shared secret and the derived

key for the verification of the Tag and the encryption/decryption

process.

PAKA: Pseudonymous Authenticated Key Agreement without bilinear cryptography ARES 2024, July 30–August 02, 2024, Vienna, Austria

5.5 Design discussion
In this subsection, we highlight specific design choices that might

raise questions among readers. Before we go into potential question

candidates we want to clarify our design rescission.

The reader may think that the protocol could be simplified by

using a standard static-ephemeral Diffie-Hellman with a group key

and putting the pseudonym into the key derivation function for the

session key generation. This approach has the following disadvan-

tage: Unforgeability is no longer ensured because a dishonest device

can generate an arbitrary pseudonym. Our approach enforces that

the device can only use pseudonyms related to the device’s private

keys. For details, see the unforgability security proof in 6.1.4.

One could ask the question why D needs GM for the creation

of the keys 𝑠𝑘1 and 𝑠𝑘2. It is not possible that D creates the keys

because the keys of D must be calculated by using GM’s private

keys 𝑠𝑘D and 𝑠𝑘GM. This ensures that all Ds get the same public

key and are therefore indistinguishable.

Second, how to deal with a compromised GM , i.e., GM keys

are broken. In case GM private keys are revealed, the system is

no longer secure because new valid pseudonyms can be generated

without involving the group manager. This problem can be miti-

gated by changing the public key after having created a particular

batch of 𝑠𝑘1 and 𝑠𝑘2 keys. If the group key related to a batch is

revealed, then not the whole system is broken; only the part that be-

longs to the batch is broken. The size of the batch must be carefully

chosen. It is a trade-off between the impact of a break and privacy.

A small batch size means that only a few devices are affected by a

break, but privacy is weak because the set of devices having the

same group public key is small. On the other hand, a large batch

size means that many devices are affected in case of a break, but

privacy is maintained due to the large number of devices using the

same public key.

Third, canD appear fully anonymous to a SP. The protocol could

choose a different basename 𝑏𝑠𝑛 every time. However, whether this

is accepted or not is part of SP’s policy. It cannot be solved by

cryptographic means alone. The Service Provider may only accept

pseudonyms related to a specific basename 𝑏𝑠𝑛.

6 SECURITY ANALYSIS
Our security analysis is twofold. We start with a mathematical

handcrafted proof followed by a symbolic verification done using a

formal automatic tool, Proverif [6].

6.1 Mathematical Proof
In this subsection we proof the security definitions in 4.2.

6.1.1 Correctness. For correctness, one must show that if 𝐾1 =

𝑠𝑘1 ∗ 𝐽 ,𝐾2 = 𝑠𝑘2 ∗ 𝐽 and 𝑃D = 𝑠𝑘1 ∗𝐺 +𝑠𝑘2 ∗𝑃𝑘GM, then the shared

secret 𝑍 is the same on both sides.

• D derived (from protocol): 𝑠𝑘1 ∗ 𝑟 ∗𝐺 + 𝑠𝑘1 ∗ 𝑟1 ∗ 𝐽 + 𝑠𝑘2 ∗
𝑟 ∗ 𝑃𝑘GM + 𝑠𝑘2 ∗ 𝑟2 ∗ 𝐽

• SP derived (from protocol): 𝑟 ∗ 𝑠𝑘1 ∗𝐺 + 𝑟 ∗ 𝑃𝑘GM ∗ 𝑠𝑘2 +
𝑟1 ∗ 𝑠𝑘1 ∗ 𝐽 + 𝑟2 ∗ 𝑠𝑘2 ∗ 𝐽

6.1.2 Confidentiality & forward-secrecy. For confidentiality,
we show that the protocol is at least as secure as a static-ephemeral

Diffie-Hellman with 𝑠𝑘1 as a private key. We show that this is even

the case for a partially broken protocol, i.e. when 𝑠𝑘GM and 𝑠𝑘D
have been extracted and are publicly available.

For the private key pair (𝑠𝑘1, 𝑠𝑘2) of the deviceD and the shared

secret𝑍 , 𝑠𝑘2 can be calculated as (𝑠𝑘D−𝑠𝑘1)/𝑠𝑘GM. The calculation

of the Device D can then be written as

𝑠𝑘1 ∗𝑈1 +
𝑠𝑘D − 𝑠𝑘1
𝑠𝑘GM

∗𝑈2 = 𝑠𝑘1 ∗ (𝑈1 −
1

𝑠𝑘GM
∗𝑈2) +

𝑠𝑘D

𝑠𝑘GM
∗𝑈2

Under the assumption that the group manager keys have been re-

vealed, the term
𝑠𝑘D
𝑠𝑘GM

∗𝑈2 is a publicly calculable value. Therefore,

it can be ignored for the security analysis. One can see now that the

Device effectively calculates a static Diffie-Hellman with its private

key 𝑠𝑘1 and the ephemeral point𝑈 := 𝑈1 − 1

𝑠𝑘GM
∗𝑈2.

The Service Provider gets the two pseudonyms 𝐾1 and 𝐾2 from

the Device. However, 𝐾2 can be calculated as

𝐾2 =
𝑠𝑘D − 𝑠𝑘1
𝑠𝑘GM

∗ 𝐽 = 𝑠𝑘D

𝑠𝑘GM
∗ 𝐽 − 1

𝑠𝑘GM
∗ 𝐾1

Thus, 𝐾2 can be calculated by SP from 𝐾1 and therefore contributes

no additional information and can be ignored. It is not difficult to

verify that SP effectively calculates

(𝑟1 −
𝑟2

𝑠𝑘GM
) ∗ 𝐾1 +

𝑠𝑘D

𝑠𝑘GM
∗𝑈2

Ignoring the second publicly calculable term as above, one can see

that the protocol is equivalent to a static-ephemeral Diffie-Hellman

ARES 2024, July 30–August 02, 2024, Vienna, Austria Schermann et al.

over the base point 𝐽 with Device private key 𝑠𝑘1 and the Service

Provider ephemeral key (𝑟1 − 𝑟2
𝑠𝑘GM

).
We emphasize that this security proof shows that the private

key of the Device and all the negotiated session keys remain secure

even in the case that the Group Manager keys have been broken.

6.1.3 Cross-domain unlinkability & forward-privacy. For un-
linkability, we must show that pseudonyms (𝐾1 , 𝐾2) and (𝐾 ′

1
, 𝐾 ′

2
)

stemming from two different base names 𝑏𝑎𝑠𝑒 and 𝑏𝑎𝑠𝑒′ cannot be
related. To also show forward-privacy, we continue with the as-

sumption that the Group Manager private keys have been revealed

and show that unlinkability is nevertheless maintained. As shown

above, it is sufficient to consider 𝐾1 only. Let 𝐽 and 𝐽
′
be two points

belonging to different base names and assume they are related by

the unknown discrete logarithm 𝜄, i.e., 𝐽 ′ = 𝜄 ∗ 𝐽 . In order to decide

if two pseudonyms 𝐽 , 𝐾 and 𝐽 ′, 𝐾 ′
belong to the same private key

𝑠𝑘1 or to a different one, the attacker must be able to distinguish if

in the DH quadruple (𝐽 , 𝑠𝑘1 ∗ 𝐽 , 𝜄 ∗ 𝐽 , 𝐾 ′), the point 𝐾 ′
is calculated

by 𝑠𝑘1 ∗ 𝐽 ′ or by some different (i.e., random) private key 𝑠𝑘′
1
. The

confidentiality proof above has shown that the private key 𝑠𝑘1 is

secure and unknown to the attacker. Also, because 𝐽 and 𝐽 ′ are
calculated by Hashes, the discrete logarithm 𝜄 between those points

is also unknown. However, we are in the exact same situation as the

Decisional Diffie-Hellman assumption. This means that the attacker

cannot distinguish if the pseudonyms belong to the same Device

or to different ones.

6.1.4 Unforgeability. Unforgeability comprises the two scenar-

ios as described in 4.2. To show unforgeability, we can no longer

make the assumption that the Group Manager keys are broken.

It is easy to see that with broken Group Manager keys arbitrary

values 𝑠𝑘1, 𝑠𝑘2 can be calculated by everyone and therefore, the

authenticity of the public key 𝑃𝑘𝐷 and the pseudonyms can no

longer be guaranteed. Therefore, we will assume that the Group

Manager keys 𝑠𝑘D and 𝑠𝑘GM are not revealed.

It is important to emphasize that robust physical protection of

the Device keys is necessary. Indeed, if two sets of Device keys

𝑠𝑘1, 𝑠𝑘2 and 𝑠𝑘
′
1
, 𝑠𝑘′

2
are extracted, then the Group Manager keys

can be calculated by:

𝑠𝑘GM =(𝑠𝑘1 − 𝑠𝑘′1) (𝑠𝑘
′
2
− 𝑠𝑘2)−1

𝑠𝑘D =𝑠𝑘1 + 𝑠𝑘GM𝑠𝑘2

Please note that this extraction attack is the same as the one used

in pseudonymous signatures by Bender et al. [5]. For the remaining

part of this security proof, we assume now that the Group Manager

keys have not been revealed.

First, we show that the difficulty of finding a discrete logarithm

representation 𝑃𝑘𝐷 := 𝑠𝑘1 ∗𝐺 +𝑠𝑘2 ∗𝑃𝑘GM is at least as hard as the

difficulty of calculating a discrete logarithm. To show that, assume

an attacker has access to an oracle that calculates for arbitrary 𝐺 ′

and 𝐺 ′′
values 𝑠𝑘1, 𝑠𝑘2 with 𝐺

′′ = 𝑠𝑘1 ∗ 𝐺 + 𝑠𝑘2 ∗ 𝐺 ′
. Given any

point 𝐻 , we show how this oracle can used to calculate the discrete

logarithm ℎ with ℎ ∗ 𝐺 = 𝐻 . Choose an arbitrary integer𝑚 and

send the oracle 𝐺 ′
:=𝑚 ∗𝐺 and 𝐻 . The oracle return 𝑠𝑘1, 𝑠𝑘2 with

𝐻 = 𝑠𝑘1 ∗𝐺 + 𝑠𝑘2𝐺 ′ = 𝑠𝑘1 ∗𝐺 + 𝑠𝑘2𝑚 ∗𝐺 . The attacker can then

calculate the discrete logarithm ℎ = 𝑠𝑘1 +𝑚 ∗ 𝑠𝑘2.

Second, we show the unforgeability of the pseudonyms. This

means we will show that the DeviceD is enforced to calculate 𝐾1
and 𝐾2 correctly, i.e., by using its private keys 𝐾1 = 𝑠𝑘1 ∗ 𝐽 and
𝐾2 = 𝑠𝑘2 ∗ 𝐽 . We perform calculations in the logarithmic space over

the point𝐺 . To simplify notation, we use the following convention.

If capital 𝑋 denotes a public point, the lower letter 𝑥 stands for its

discrete logarithm over𝐺 , i.e., the value 𝑥 , which fulfills 𝑋 = 𝑥 ∗𝐺 .
In the PAKA protocol of section 5.2, we can then write 𝑢1 = 𝑟 + 𝑟1 𝑗
and 𝑢2 = 𝑟𝑠𝑘GM + 𝑟2 𝑗 . For fixed 𝑢1, 𝑢2 one can rewrite 𝑟1 and 𝑟2 as

a function depending on 𝑟 , i.e.,

𝑟1 (𝑟) :=(𝑢1 − 𝑟)/ 𝑗
𝑟2 (𝑟) :=(𝑢2 − 𝑟𝑠𝑘GM)/ 𝑗

As 𝑢1 and 𝑢2 are independent of the chosen value 𝑟 , this shows that

𝑟 is information-theoretically hidden from the Device D.

We assume that the dishonest DeviceD uses different values 𝑠𝑘′
1

and 𝑠𝑘′
2
for calculating its pseudonyms. The Service Provider SP

calculates the shared secret as

𝑧 = 𝑟𝑠𝑘D + 𝑟1 (𝑟)𝑘1 + 𝑟2 (𝑟)𝑘2

= 𝑟 (𝑠𝑘1 + 𝑠𝑘GM𝑠𝑘2) +
(𝑢1 − 𝑟)

𝑗
𝑗𝑠𝑘′

1
+
(𝑢2 − 𝑟𝑠𝑘GM)

𝑗
𝑗𝑠𝑘′

2

= 𝑟
(
(𝑠𝑘1 + 𝑠𝑘GM𝑠𝑘2 − (𝑠𝑘′

1
+ 𝑠𝑘GM𝑠𝑘′

2
)
)
+ 𝑢1𝑠𝑘′1 + 𝑢2𝑠𝑘

′
2

If (𝑠𝑘1 + 𝑠𝑘GM𝑠𝑘2 − (𝑠𝑘′
1
+ 𝑠𝑘GM𝑠𝑘′

2
) = 0 then the Device D

must have calculated a second correct representation 𝑠𝑘′
1
, 𝑠𝑘′

2
for

𝑃𝑘GM, 𝑃𝑘𝐷 . However, we have shown above that this is infeasible.

Therefore, we assume that this term is non-zero. But this implies

that 𝑧 depends on the information-theoretically hidden value 𝑟 . We

conclude that D is only able to calculate the correct shared secret

𝑧, if it uses 𝑠𝑘′
1
= 𝑠𝑘1 and 𝑠𝑘

′
2
= 𝑠𝑘2.

6.2 Formal verification proof
In this subsection, we describe the formal analysis we carried out

on the proposed protocol. The analysis was performed using an

automated tool, Proverif, which takes as input an abstract model

of the protocol and a set of security properties that must be met

and automatically returns whether the model enforces the security

properties or whether attacks are possible against it. In the latter

case, Proverif returns an attack trace describing a potential attack

that violates the property. Below, we describe the abstract model of

the Paka protocol used for the verification with Proverif.

6.2.1 Channel and Threat model. In our model, we gave the at-

tacker the power to act on all messages exchanged by the honest

entities during the protocol. All channels used for communication

are in fact public and therefore potentially insecure. In particu-

lar, we modeled the attacker following the Dolev-Yao model: the

attacker can read, modify, delete, and replay messages sent over

public channels. Thus, to protect these messages, it is necessary

to use secure cryptographic mechanisms. Both the attacker and

honest entities in our model can perform cryptographic operations,

but only with the keys in their possession. However, the attacker

cannot perform brute force operations such as reversing a hash

function or performing physical attacks.

PAKA: Pseudonymous Authenticated Key Agreement without bilinear cryptography ARES 2024, July 30–August 02, 2024, Vienna, Austria

It is important to highlight that the verification performed with

Proverif is symbolic. A symbolic model assumes perfect cryptogra-

phy. In other words, all cryptographic operations are assumed to be

secure, and verification does not take into account implementation

details or choices that could open up to possible vulnerabilities.

For example, although operations on elliptic curves, such as point

multiplication, are difficult to reverse, their security depends on

factors such as the choice of curve or base points, which are not

taken into account by Proverif in its analysis. We then assume that

all choices made about the cryptographic algorithms used in the

PAKA protocol are optimal.

6.2.2 Security properties. We verified using Proverif all the secu-

rity properties described in Section 4.2 and mathematically proved

above.

Correctness. With this property, we tested in Proverif that the

protocol could reach the end without any attacker intervention and

that, in doing so, the honest entities managed to compute the same

symmetric session key. This property can be checked in Proverif

using events.

𝑞𝑢𝑒𝑟𝑦 𝑒𝑣𝑒𝑛𝑡 ()
Confidentiality.With this property, we verified the secrecy of the

session key shared between the Device and the Service Provider. In

Proverif, the secrecy of a term can be verified using a reachability

property.

𝑞𝑢𝑒𝑟𝑦 𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 ()
Unlinkability. With this property, we tested that two protocol

executions initiated by the same device (i.e., with the same 𝑠𝑘1
and 𝑠𝑘2), but with different base names, 𝑏𝑠𝑛1 and 𝑏𝑠𝑛2, cannot be

linked together. In other words, an attacker listening on the channel

should not be able to understand that the two requests were sent

from the same device. This property is verified in Proverif using

observational equivalence.

𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑐𝑒

𝑟𝑢𝑛_𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙 (𝑠𝑘1, 𝑠𝑘2, 𝑏𝑠𝑛1) | 𝑟𝑢𝑛_𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙 (𝑠𝑘1, 𝑠𝑘2, 𝑏𝑠𝑛2)
𝑟𝑢𝑛_𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙 (𝑠𝑘3, 𝑠𝑘4, 𝑏𝑠𝑛1) | 𝑟𝑢𝑛_𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙 (𝑠𝑘5, 𝑠𝑘6, 𝑏𝑠𝑛3)
The query expressed above verifies whether two runs of the

protocol executed by the same device (i.e., with the same 𝑠𝑘1 and

𝑠𝑘2) but with two different pseudonyms (i.e., 𝑏𝑠𝑛1 and 𝑏𝑠𝑛2) - first

line - are indistinguishable for the attacker from two runs of the

protocol executed by two different devices (i.e., one with 𝑠𝑘3 and

𝑠𝑘4, the other with 𝑠𝑘5 and 𝑠𝑘6) and two different pseudonyms (i.e.,

𝑏𝑠𝑛1 and 𝑏𝑠𝑛3) - second line.

Unforgeability. With this property, we want to verify that the

attacker, which does not know 𝑠𝑘GM andD, cannot forge two valid

keys, 𝑠𝑘1 and 𝑠𝑘2, to participate in the protocol as a legitimate entity.

Moreover, in case the attacker manages to steal one of the keys, e.g.,

𝑠𝑘1, from an honest device, it would still not be able to compute

the corresponding 𝑠𝑘2. This query in Proverif can be verified again

using Events, Reachability, and Correspondence Assertions.

6.2.3 Verification results. Verification with Proverif showed that

Correctness, Unlinkability, and Unforgeability are correctly en-

forced by the protocol. The Confidentiality property, however, may

not be respected if the Service Provider is not properly authen-

ticated to the device. In fact, if the authentication of D to SP is

correctly enforced by the protocol, Proverif found that the vice

versa is not true. In other words, the attacker could launch a MITM

attack and impersonate the SP but can not learn the real identity

(MITM-privacy is provided), and share a symmetric session key

with D . As described above in subsection 5.2, to provide authen-

tication of the SP to D , it is sufficient to simply add a signature

on the 𝑈1 and 𝑈2 messages sent by SP to D. The key to be used

to perform the signature can be an asymmetric private key, whose

corresponding public part can be contained in a digital certificate

to be sent with the message. In this case, Proverif verified that all

properties hold.

All Proverif source files used for the verification are publicly

accessible at the following link, https://github.com/netgroup-polito/
verification-paka.

7 IMPLEMENTATION
We implemented our Proof-of-Concept (PoC) on a Raspberry Pi 4

Model B Rev 1.1 (ARMv7 Processor rev 3) and 4GB RAM together

with a TPM2.0 attached to the Raspberry Pi. On the software side,

we used C++ as a programming language and for the cryptographic

functions in GM and SP we applied the library called cryptocpp.

Further, we implemented i̋n two ways. (1) only in software with

cryptocpp (2) cryptocpp and the TPM2.0 hardware module with

the tpm2-tss stack (esys layer). As shown in Table 2, the most

time-consuming operation is the Esys_createPrimary. The key

type also influences timing. For performance and security reasons,

we suggest using an ECC NIST_P256 key with an AES128CFB

mode. Further, the operation will only be executed once during the

pre-setup phase. To make the key permanently persistent after a

Tpm2_createprimary and a Tpm2_load the TPM2_EvictControl

command must be executed.

8 CONCLUSION AND FUTUREWORK
In this paper, we have constructed a novel building block called

Pseudonymous Authenticated Key Agreement (PAKA). It can be

seen as an alternative to the AACKA protocol but does not need

the computationally complex pairing-based cryptography. We have

shown that our protocol provides cross-domain unlinkability &

forward-privacy, confidentiality & forward-secrecy, and unforge-

ability. We have shown that this protocol is secure and privacy-

preserving by giving a mathematical proof and an symbolic ver-

ification using Proverif. Finally, we proved the practicability by

providing a Proof-of-Concept (PoC) implementation. The PoC is

implemented in two ways. Stand-alone (SW-based)on a Raspber-

ryPi4B+ and in the combination with a discrete Trusted Platform

Module that serves as a secured cryptographic co-processor and

storage of the private keys. In the end we analyzed the performance

of the PoC.

Several points can be considered for future work. One point

is to add a revocation mechanism in the protocol flow. Another

point to consider would be integrating our proposed protocol as

an additional variant of the Chip Authentication protocol 3 of the

eIDAS specification [13]. Last, it would be interesting to study if this

approach can be transferred to a post-quantum key establishment

method.

https://github.com/netgroup-polito/verification-paka
https://github.com/netgroup-polito/verification-paka

ARES 2024, July 30–August 02, 2024, Vienna, Austria Schermann et al.

Table 2: Performance measurements

Function Average value[ms]

Setup keys (GM) 7,96

Setup device keys (GM) 6,37

Create random number (SP) 0,05

Calculate U1 (SP) 10,31

Calculate U2 (SP) 10,37

Calculate Z (SP) 16,71

Calculate J (H) 0,11

Calculate K (H) 2,70

Calculate Z (H) 6,4

Esys_createPrimary 5529,19

(rsa2048:aes128cfb)

Esys_createPrimary 179,69

(eccNistP256:aes128cfb)

Esys_LoadExternal 9,23

Esys_Import 59,12

Esys_Load 14,03

Esys_ECDH_ZGen 79,45

Host curve points addition (H) 0,06

Esys_FlushContext 3,18

Hkdf(SHA256) 0,21

Decryption (AES-128 CBC) 0,16

Encryption (AES-128 CBC) 0,15

MAC calculation (AES-128 CMAC) 0,12

ACKNOWLEDGMENTS
This project has received funding from the European Union’s Hori-

zon 2020 research and innovation programme under the Grant

Agreement No. 871403. Furthermore, this project has partly re-

ceived funding from the ECSEL Joint Undertaking, which funded

the ADACORSA project under the grant agreement number 876019.

ADACORSA is funded by the Austrian Federal Ministry for Climate

Action, Environment, Energy, Mobility, Innovation and Technology

between May 2020 and October 2023 (grant number 877585).

REFERENCES
[1] Will Arthur and David Challener. 2015. A Practical Guide to TPM 2.0: Using the

Trusted Platform Module in the New Age of Security (1st ed.). Apress, USA.

[2] Hany Atlam, Robert Walters, and Gary Wills. 2018. Fog Computing and the

Internet of Things: A Review. Big Data and Cognitive Computing 2 (04 2018).

https://doi.org/10.3390/bdcc2020010

[3] Gildas Avoine, Sébastien Canard, and Loïc Ferreira. 2020. Symmetric-Key Au-

thenticated Key Exchange (SAKE) with Perfect Forward Secrecy. In Topics in
Cryptology – CT-RSA 2020, Stanislaw Jarecki (Ed.). Springer International Pub-

lishing, Cham, 199–224.

[4] Razvan Barbulescu and Sylvain Duquesne. 2018. Updating Key Size Estimations

for Pairings. Journal of Cryptology 32, 4 (Jan. 2018), 1298–1336. https://doi.org/

10.1007/s00145-018-9280-5

[5] Jens Bender, Özgür Dagdelen, Marc Fischlin, and Dennis Kügler. 2012. Domain-

Specific Pseudonymous Signatures for the German Identity Card. In Information
Security - 15th International Conference, ISC 2012, Passau, Germany, September
19-21, 2012. Proceedings (Lecture Notes in Computer Science, Vol. 7483), Dieter
Gollmann and Felix C. Freiling (Eds.). Springer, 104–119. https://doi.org/10.1007/

978-3-642-33383-5_7

[6] Bruno Blanchet, Ben Smyth, Vincent Cheval, and Marc Sylvestre. 2018. ProVerif

2.00: automatic cryptographic protocol verifier, user manual and tutorial. Version
from (2018), 05–16.

[7] Bundesamt für Sicherheit in der Informationstechnik(BSI). 2023. Kryp-

tographische Verfahren: Empfehlungen und Schlüssellängen (BSI TR-02102-1).

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/

TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf?__blob=publicationFile&v=

9. [Online; accessed 29-January-2023].

[8] Jan Camenisch and Anna Lysyanskaya. 2003. A Signature Scheme with Efficient

Protocols. In Security in Communication Networks, Stelvio Cimato, Giuseppe Per-

siano, and Clemente Galdi (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

268–289.

[9] Ran Canetti and Mayank Varia. 2011. Decisional Diffie–Hellman Problem. Springer

US, Boston, MA, 316–319. https://doi.org/10.1007/978-1-4419-5906-5_443

[10] Liqun Chen and Jiangtao Li. 2013. Flexible and Scalable Digital Signatures

in TPM 2.0. In Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security (Berlin, Germany) (CCS ’13). Association for Computing

Machinery, New York, NY, USA, 37–48. https://doi.org/10.1145/2508859.2516729

[11] Liqun Chen, Dan Page, and Nigel P. Smart. 2010. On the Design and Imple-

mentation of an Efficient DAA Scheme. In Smart Card Research and Advanced
Application, Dieter Gollmann, Jean-Louis Lanet, and Julien Iguchi-Cartigny (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 223–237.

[12] Ya-Jun Fan, Xue-Song Qiu, and Qiao-YanWen. 2017. A privacy-preserving authen-

ticated key agreement protocol with smart cards for mobile emergency services.

In 2017 IEEE 21st International Conference on Computer Supported Cooperative
Work in Design (CSCWD). 227–232. https://doi.org/10.1109/CSCWD.2017.8066699

[13] Federal Office for Information Security. 2016. Advanced Security Mechanisms
for Machine Readable Travel Documents and eIDAS Token – Part 2: Protocols for
electronic IDentification, Authentication and trust Services (eIDAS). Technical

Guideline TR-03110 Part 2. Federal Office for Information Security.

[14] Loïc Ferreira. 2022. Privacy-Preserving Authenticated Key Exchange for Con-

strained Devices. In Applied Cryptography and Network Security, Giuseppe Ate-
niese and Daniele Venturi (Eds.). Springer International Publishing, Cham, 293–

312.

[15] Trusted Computing Group. 2019. Trusted Platform Module (TPM). https://

trustedcomputinggroup.org/work-groups/trusted-platform-module. Accessed:

2023-03-15.

[16] Yangfan Liang, Entao Luo, and Yining Liu. 2023. Physically Secure and

Conditional-Privacy Authenticated Key Agreement for VANETs. IEEE Transac-
tions on Vehicular Technology 72, 6 (2023), 7914–7925. https://doi.org/10.1109/

TVT.2023.3241882

[17] Tatsuaki Okamoto. 1993. Provably Secure and Practical Identification Schemes

and Corresponding Signature Schemes. In Advances in Cryptology — CRYPTO’ 92,
Ernest F. Brickell (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 31–53.

[18] R. Schermann, R. Urian, R. Toegl, H. Bock, and C. Steger. 2022. Enabling Anony-

mous Authenticated Encryption with a Novel Anonymous Authenticated Creden-

tial Key Agreement (AACKA). In 2022 IEEE 21st International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom). IEEE Com-

puter Society, Wuhan, China, 646–655. https://doi.org/10.1109/TrustCom56396.

2022.00093

[19] C. P. Schnorr. 1990. Efficient Identification and Signatures for Smart Cards. In

Advances in Cryptology — CRYPTO’ 89 Proceedings, Gilles Brassard (Ed.). Springer
New York, New York, NY, 239–252.

[20] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge

Computing: Vision and Challenges. IEEE Internet of Things Journal 3, 5 (oct 2016),
637–646. https://doi.org/10.1109/jiot.2016.2579198

[21] Stephan Wesemeyer, Christopher J.P. Newton, Helen Treharne, Liqun Chen, Ralf

Sasse, and Jorden Whitefield. 2020. Formal Analysis and Implementation of a

TPM 2.0-Based Direct Anonymous Attestation Scheme. In Proceedings of the
15th ACM Asia Conference on Computer and Communications Security (Taipei,

Taiwan) (ASIA CCS ’20). Association for Computing Machinery, New York, NY,

USA, 784–798. https://doi.org/10.1145/3320269.3372197

https://doi.org/10.3390/bdcc2020010
https://doi.org/10.1007/s00145-018-9280-5
https://doi.org/10.1007/s00145-018-9280-5
https://doi.org/10.1007/978-3-642-33383-5_7
https://doi.org/10.1007/978-3-642-33383-5_7
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf?__blob=publicationFile&v=9
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf?__blob=publicationFile&v=9
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf?__blob=publicationFile&v=9
https://doi.org/10.1007/978-1-4419-5906-5_443
https://doi.org/10.1145/2508859.2516729
https://doi.org/10.1109/CSCWD.2017.8066699
https://trustedcomputinggroup.org/work-groups/trusted-platform-module
https://trustedcomputinggroup.org/work-groups/trusted-platform-module
https://doi.org/10.1109/TVT.2023.3241882
https://doi.org/10.1109/TVT.2023.3241882
https://doi.org/10.1109/TrustCom56396.2022.00093
https://doi.org/10.1109/TrustCom56396.2022.00093
https://doi.org/10.1109/jiot.2016.2579198
https://doi.org/10.1145/3320269.3372197

	Abstract
	1 Introduction
	2 Background
	2.1 Domain specific pseudonyms
	2.2 eIDAS pseudonymous signatures
	2.3 Trusted Platform Module

	3 Related Work
	3.1 Anonymous Authenticated Credential Key Agreement
	3.2 Other PPAKE methods

	4 Definition of our PAKA protocol
	4.1 Notation
	4.2 Security definitions
	4.3 Cryptographic hard problems

	5 Our novel PAKA protocol
	5.1 Setup
	5.2 Pseudonymous Authenticated Key Agreement - PAKA
	5.3 Integration of TPM2.0 into PAKA
	5.4 Integration of PAKA into ECIES
	5.5 Design discussion

	6 Security Analysis
	6.1 Mathematical Proof
	6.2 Formal verification proof

	7 Implementation
	8 Conclusion and future work
	Acknowledgments
	References

