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Summary

The definition of an optimal reservoir management strategy is fundamental for
the primary production of oil and gas, Enhanced Oil Recovery, Underground Gas
Storage, Underground Hydrogen Storage, CO2 storage and geothermal systems.
This definition requires a thorough analysis, characterization, description and un-
derstanding of fluid flow phenomena occurring in underground porous media. This
work proposes a methodology based on geometrical analysis and hydrodynamic
modeling in order to estimate microscopic and textural parameters that influence
the fluid flow behavior in the pore space. Geometrical analyses and hydrodynamic
simulations are run at the pore-scale directly on binary images of rocks. The geo-
metrical analysis is implemented based on the application of the A* algorithm to
find paths connecting inlet and outlet points in 2D and 3D rock images. Hydro-
dynamic simulation is performed using the Lattice Boltzmann Method (LBM) in
2D geometries and the Finite Volume Method (FVM) in 3D geometries. The re-
sults obtained through these analyses and simulations are compared and discussed.
First of all, 2D binary images are analyzed to characterize the pore network geom-
etry and to estimate effective porosity, pore size distribution and tortuosity. The
results show that the path-finding approach can provide reasonable and reliable
estimates of the parameters of interest. Then, the methodology is applied to 3D
binary images of synthetic rock samples generated with the Quartet Structure Gen-
eration Set (QSGS) algorithm. Two different cases, representing an isotropic and
an anisotropic porous media, are presented. In these cases, permeability was also
estimated by the geometrical approach using the Kozeny-Carman equation and by
hydrodynamic simulation inverting the Darcy’s equation. The outcome of this in-
vestigation evidences that the geometrical analysis used in this research can provide
a reliable characterization of 3D porous media.
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Chapter 1

Introduction

Technical applications such as primary production of oil and gas, Enhanced
Oil Recovery, Underground Gas Storage, Underground Hydrogen Storage, CO2
storage and geothermal systems require a thorough analysis, characterization and
description of fluid flow phenomena in underground porous media [1–6].

Porous media can be defined as materials containing voids (pores) and solid
(matrix) [7]. Ceramics, filter papers, textiles, biological tissues and natural porous
media such as soils and rocks are some examples of porous media [7]. In particular,
porous media present in underground reservoirs have pore sizes in the order of
magnitude from νm to µm [8]. These media also present solid grains varying over
a wide range of sizes and shapes, and the pore space is typically filled by one
or more fluids [7]. At least some of the pores should be interconnected (effective
pore space) [7]. Furthermore, underground porous media are subjected to relatively
high pressure and high temperature mainly depending on the depth of the reservoir.
Usually, reservoir rocks are sedimentary rocks of clastic origin, such as sandstone,
and rocks of chemical origin, such as carbonate [9]. Among these rocks, 60% of
the reservoir rocks are sandstone and 40% carbonate [10]. Sandstone rocks are
composed mainly of silicate minerals [11], while carbonate rocks are composed by
calcite (CaCO3) or dolomite (CaMg(CO3)2) minerals, which precipitate from water
[11].

It is essential to account for all the insight that can be gained from geology,
geophysics, log interpretation, laboratory measurements for fluids PVT and rock
properties characterization, well testing and reservoir engineering and to compare,
combine, and properly integrate this knowledge in order to describe and understand
in depth the behavior of reservoir dynamics [12–15]. Due to the complexity of
geological formations, the uncertainty associated to the key parameters must be
estimated and possibly mitigated by the acquisition of further information at all
stages of reservoir life [16, 17]. The characterization and analysis of fluid flow
phenomena in underground porous media are fundamental steps in the process
that can contribute to maximizing the reservoir dynamic behavior by minimizing

1



Introduction

uncertainties in the characterization of fluid-rock interaction parameters.
The accurate characterization of the pore space across several scales in het-

erogeneous porous media is a significant challenge in reservoir engineering [18]. In
general, natural porous systems can be categorized over three different length scales
[19]: (i) the pore-scale (or microscopic scale) at the pore level; (ii) the macroscopic
scale (or macro-scale) at the core level; and (iii) the field-scale at the reservoir
level. Rock properties and fluids dynamic behavior at the macro-scale and field-
scale are strongly affected by the micro-geometrical features of the pore space [20].
In many cases, the flow mechanism can be understood from pore-scale phenomena,
allowing predictions at the macro-scale, which can then be compared with experi-
mental results [7]. Multiscale studies associated with pore network properties are
increasingly used to improve the understanding of macro-scale parameters such as
porosity, absolute and relative permeability and capillary pressure curves [21–24].
Macroscopic properties can be obtained by averaging pore-scale properties over a
Representative Elementary Volume (REV), where the REV-scale is the scale above
which the heterogeneities at smaller scales do not affect these macroscopic proper-
ties [23]. This process of averaging properties to the larger scales is called upscaling
(Fig. 1.1).

Figure 1.1: Multiscale nature of reservoir rocks. On the left image, the pore-scale
(between µm and mm) representation of a sandstone rock is obtained by micro-CT
scanning [25]. On the center image, a rock sample is showed as representative of
the macro-scale (from cm to m), which is the scale at which laboratory experiments
are conducted [26]. On the right image, a portion of a reservoir is represented to
show the field-scale (from m to km), which is considered in reservoir models [27].
At different scales, the same rock is studied using different techniques and different
parameters. Physical phenomena that occur at larger scales depend on physical
phenomena that occur at smaller scales.

In the last twenty years, important advances in imaging techniques and high
performance computing have contributed to the development of pore-scale model-
ing as a reliable technique for predicting averaged macroscopic properties of porous
media [28]. In fact, X-ray micro-computed tomography (micro-CT) [29] or Focused

2



1.1 – Aim and outline

Ion Beam-Scanning Electron Microscopy (FIB-SEM) [30] can reconstruct and vi-
sualize a three-dimensional porous medium with a sufficiently high resolution as to
identify grains and pores [31, 32]. Thanks to these techniques, a realistic repre-
sentation of the reservoir rock is obtained, and it can be used as input for further
analyses of pore space characteristics [33, 34].

1.1 Aim and outline
The aim of this work is to propose a methodology based on geometrical anal-

ysis and hydrodynamic modeling at the pore-scale directly on images of rocks in
order to estimate microscopic and textural parameters that influence the fluid flow
behavior in the pore space. The geometrical analysis is based on the application
of the A* algorithm to find geometrical paths between inlet and outlet points in
2D and 3D rock images. Hydrodynamic simulation is performed using the Lattice
Boltzmann Method (LBM) in 2D geometries and the Finite Volume Method (FVM)
in 3D geometries. The LBM is implemented using the single relaxation time model
for the collision operator. For hydrodynamic simulations in 3D rock images, the
open source code OpenFOAM is used and pressure-velocity coupling algorithms are
adopted to solve the Navier-Stokes equations directly in the pore space. Finally, the
results obtained with the geometrical and hydrodynamic approaches on 2D and 3D
rock images are compared and discussed. 2D rock images are taken from literature,
while 3D rock images are generated by using the Quartet Structure Generation Set
(QSGS) algorithm.

The thesis is articulated as follows. Chapter 2 discusses the image analysis
techniques to extract the porous domain from rock images, the REV concept and
the main parameters for porous media characterization. In Chapter 3, the geomet-
rical analysis of the pore space based on the A* algorithm is presented. Chapter
4 describes the pore-scale hydrodynamic modeling. After a review of the state of
the art, the equations of fluid motion are derived and then two numerical methods
used to solve them are presented: the Lattice Boltzmann Method and the Finite
Volume Method. In Chapter 5, the whole methodology based on the geometrical
analysis and hydrodynamic modeling is applied to 2D images of rocks. In Chapter
6, the methodology is extended to 3D images of rocks generated with the QSGS
algorithm. Chapter 7 summarizes the findings of this investigation and discusses
its main application.

3



4



Chapter 2

Pore-scale characterization

Nowadays, advanced imaging techniques such as micro-CT, Scanning Electron
Microscopy (SEM) and FIB-SEM are widely used to acquire 2D and 3D images of
rock samples with a resolution in the order of micrometers [33–36]. Once the rock
image is obtained, specific algorithms can be used to extract information of the pore
structure and to characterize the internal pore space [37, 38]. Moreover, powerful
computational fluid dynamics (CFD) methods can be employed for solving fluid
flow equations directly in the pore space [24, 39, 40].

2.1 Rock imaging
A complete rock imaging procedure is preformed by two main steps: image

acquisition and processing [34, 41, 42]. In this section, these two steps are addressed.
The first attempt to acquire images of a solid object with a micrometer res-

olution using X-ray computed tomography was in 1982 by Elliott & Dover [43],
who achieved a resolution of 15 µm. Later, in 1987 Flannery et al. [44] obtained
images of porous rocks with a resolution of 1 µm, and since then the technology
to acquire and process images have been extremely improved [8]. The technique
of using X-ray computed tomography for imaging small objects with micrometer
resolution is called X-ray computed-micro tomography or micro-CT (or µCT) [45].
Using micro-CT, it is possible to obtain 3D images of the internal structure of
porous media in a non-destructive way by mapping the X-ray attenuation (or ab-
sorption) through the sample [34]. Most of the geometrical properties of the pore
structure can be determined using micro-CT and the analysis of micro-CT im-
ages has been widely used for studying the pore space in different types of rock
[34]. The amount of attenuation depends on the density, the atomic number of
the material and the energy of X-ray [46]. In X-ray micro-CT, the cross section of
a rock sample is reconstructed from projection data obtained by passing a series
of X-rays through a the rock and measuring the attenuation of these rays using
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Pore-scale characterization

detectors placed downstream the sample [21]. The X-ray attenuation coefficients
of the sample are measured at different angles and their values are represented in
images as pixels (in 2D images) and voxels (in 3D images) [21]. This technique is
suitable for rock samples because there is a clear contrast between the rock matrix,
which attenuates X-rays strongly, and the pore space, which is more transparent to
X-rays; this allows us to distinguish easily between solid rock and pore space [8].
The final output is a set of grey scale images. In Fig. 2.1.a, two examples of rock
images with different resolution obtained with micro-CT are showed.

Figure 2.1: a) Example of micro-CT images of Berea sandstone with resolutions of
0.35 µm (left) and 12.7 µm (right); darker gray sections represent pores; on the left
image, the roman numbers I and II refer to larger and smaller pores respectively
[36]. b) Example of SEM image of a shale sample (left) and FIB-SEM images of
the selected side (right) [30].

Besides micro-CT, SEM techniques can be used to acquire sample images both
in 2D (using standard methods) and in 3D by taking several slides in a sample
(FIB-SEM technique) [8]. However, FIB-SEM is a destructive technique (material
is removed by a beam of ions) and therefore the sample cannot be used for fluid
flow experiments [8, 35]. The advantage of FIB-SEM over micro-CT is the higher
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2.1 – Rock imaging

resolution in the order of nanometers and it can be used for studying micro-porosity,
rocks with nano-pores and organic material [30, 35]. Examples of rock images
obtained with SEM and FIB-SEM techniques are showed in Fig. 2.1.b.

In Fig. 2.2, the voxel resolutions of images obtained with micro-CT and FIB-
SEM are showed. It is visible that when a resolution in the order of nanometers is
required, FIB-SEM should be used. On the other hand, when a resolution in the
order of micromters is acceptable, images obtained with micro-CT can be used. A
detailed description of micro-CT and FIB-SEM techniques is reported in Wilden-
schild & Sheppard [29] and Kelly et al. [30].

Figure 2.2: Resolutions of modern image acquisition methods are showed as an ap-
proximate range. The range of activity of FIB-SEM is around 10 to 1000 nanome-
ters. The range of activity of micro-CT is from 100 nm to 1 mm [42].

.

The raw images obtained from the CT scanner or FIB-SEM cannot be used
directly for pore-scale analysis and it is necessary to apply some image processing
techniques in order to improve the quality of the images [34]. First of all, the image
contrast can be enhanced by applying a brightness/contrast filter, which stretch
the grey-scale histograms [34]. Then, another important step is to reduce the noise
in the micro-CT images by applying an image filtering algorithm such as gaussian
filter, median filter and non-local means filter [41]; Gong et al. [34] and Vlahinic
et al. [41] suggested to use non-local means filter. In Fig. 2.3, the resulting images
after contrast enhancement and noise filtering are showed.

The resulting image can be segmented based on the grey-scale contrast and
transformed into a binary image with 1 representing the solid matrix and 0 the
pore space [34, 41]. One of the most used segmentation methods is thresholding
[34, 45]. The thresholding method converts a gray-level image into a binary image
based on a threshold value. One threshold value is used for the whole image and
typically the threshold value is selected based on the histogram of the image [21],
as shown in Fig. 2.4. The threshold value is important for the final result of the
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Pore-scale characterization

Figure 2.3: a) Original micro-CT image; b) image after brightness/contrast filtering;
c) image after noise removal by non-local means filter [34].

pore geometry, therefore it should be chosen carefully [34, 36].
For a complete review on image processing techniques from micro-CT and FIB-

SEM images of porous media refer to Kelly et al. [30], Shah et al. [40], Vlahinic
et al. [41], and Hashemi et al. [45].

2.2 REV concept
Macroscopic fluid flow through porous media is described by defining an average

pressure and velocity over a representative elementary volume (REV). Bear [7]
defined the REV through the concept of porosity as the smallest volume of porous
medium at the continuum scale for which the porosity does not change for volumes
larger than the REV. This volume must be enough larger than the size of a single
pore to permit the average required in the continuum concept. As REV concepts
and averaging procedures look like simple and relatively straightforward in theory,
in practice the REV size is not easy to estimate. In fact, its size is dependent on the
property that we wish to average and in most cases is not the same. Macroscopic
properties are distinguished into static properties such as porosity, and transport
properties such as permeability. Transport properties, unlike static properties, are
influenced by the interconnections of pores and a larger REV is necessary for the
average [39, 47, 48] and this becomes even more evident when multiphase flow
occurs [49].

Mostaghimi et al. [39] studied the existence of a REV at the pore-scale and
compared its size for sandstone and carbonate rocks. They showed that the perme-
ability of Berea sandstone measured experimentally on a core was 0.7 D, which was
half of the value computed by numerical simulation. This was due to the influence
of heterogeneity, in fact the size of micro-CT sample is 1.5 mm and the core sample
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2.2 – REV concept

Figure 2.4: a) Grey-scale image; b) threshold value on the histogram; c) segmented
binary image [45].

has a length of 7 cm, which is a large difference. This effect is even more higher
for carbonates. This analysis showed that the size of REV based on permeability
can be up to two times larger than the size of REV based on porosity [39]. Okabe
& Oseto [50] showed through lattice Boltzmann simulation that images larger than
1.2 mm can be considered a REV for Berea sandstone in terms of porosity and
permeability. In multiphase fluid flow, the relationship between the fluid dynamics
within the pores of the rocks and their averaged values still remains an unresolved
question [51]. It is not clear how heterogeneity in multiphase flow properties at the
pore-scale should be accounted for in continuum models. The REV side length for
capillary pressure curves is about 1.25 mm for both heterogeneous and homoge-
neous samples [51]. In contrast, the REV for saturation varies between 1.5 and 5.4
mm [51]. Even if this discussion still remains a fervent research topic, however, in
many practical cases a detailed analysis on the REV size is not possible and only
one REV is defined based on porosity and all properties are averaged over this REV
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Pore-scale characterization

[49]. In general, in order to recover macroscopic quantities it is necessary to have
a sample that is at least 10–20 pores in order to provide a reasonable average [8].

Once the appropriate REV is defined, the average quantity of a generic micro-
scopic property ψ is evaluated by the averaging theorem [52]:

⟨ψ⟩ = 1
V

∫︂
V
ψ dV, (2.1)

where ψ = 0 on the solid grains and ψ /= 0 in the pore space. For example, porosity
is evaluated over a REV as:

ϕ = 1
V

∫︂
V
f dV, (2.2)

where f = 1 in pore space and zero elsewhere. Eq. 2.2 reduces then to ϕ = Vf

V
,

which is the common definition of porosity.

Figure 2.5: Example of porosity variation with respect the length scale. L ≈ 250
µm can be considered as the REV length scale because at larger scales porosity is
approximately constant around 0.5.

2.3 Porous media characterization
At the macro-scale, the fluid flow is modeled by averaging the microscopic con-

tinuity and momentum equations over a REV (Eq. 2.1) and the porous medium
is parameterized mainly by porosity and permeability [7, 53, 54]; the fundamental
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equation of fluid motion in porous media under the assumption of small Reynolds
numbers is the Darcy’s equation [7]:

UD = −k
µ

∇p, (2.3)

where UD is the Darcy’s velocity, k is the permeability tensor, µ the dynamic
viscosity and ∇p the pressure gradient. Darcy’s velocity can be upscaled applying
Eq. 2.1 as:

UD = 1
V

∫︂
V

u dV. (2.4)

where u is the local velocity (i.e. pore-scale fluid velocity inside the pore channels).
Inverting Eq. 2.3, the permeability tensor can be computed. In terms of flow rate
q, the Darcy’s law is written multiplying the Darcy’s velocity by the cross section
A of the porous medium:

q = −Ak
µ

∇p. (2.5)

Natural porous media are extremely complex systems characterized by tortuous
structure and significant variability of grains and pores size [54]. Tortuosity (τ)
was introduced by Carman [55] to address the tortuous fluid paths in the pore
space. Two main types of tortuosity are defined in the literature: geometrical
tortuosity (τg), calculated as the shortest length between inlet and outlet avoiding
the solid obstacles divided by the distance between inlet and outlet Clennell [56],
and hydraulic tortuosity (τh), calculated as the effective fluid path length taken
by the fluid divided by the length of the porous material measured along the flow
direction Carman [55]. Mathematically, geometrical and hydraulic tortuosity are
expressed respectively as:

τg = LshortestP ath

L
(2.6)

and
τh = LfluidP ath

L
, (2.7)

where L is the sample length in the flow direction.
For low porosity materials, a large part of the total pore space may be noncon-

ducting [57]. The effective porosity ϕe is defined as the percentage of interconnected
conductive pore space with respect to the bulk volume [58, 59]:

ϕe = Vflow

Vb

, (2.8)

where Vflow is the conductive pore space and Vb is the bulk volume.
In the literature, some analytic expressions were introduced to link permeability

to the pore structure as a function of porosity, effective porosity, tortuosity and/or
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Pore-scale characterization

pore dimension ([55, 57, 60–62]). One of the most used expressions is the Kozeny-
Carman equation [55, 62]

k = ϕr2
H

ckτ 2 , (2.9)

where ck is the Kozeny’s constant and rH is the hydraulic radius, which gives a
measure of the average pore dimension and is defined as [7, 63]:

rH = ϕ
Vb

Aw

(2.10)

where Aw is the wetted surface.
Furthermore, Berg [64] quantified the reduction in permeability due to the vari-

ation in pore cross-sectional area (A) along the pore channel length (Lp) by intro-
ducing the constriction factor (C):

C = 1
L2

p

∫︂ Lp

0
A (x)2 dx

∫︂ Lp

0

1
A (x)2dx. (2.11)

The parameters described above can be estimated by a direct analysis of the pore
space using binary images obtained from micro-CT, SEM or FIB-SEM techniques,
as described in Section 2.1. In this work, two main approaches are presented
and discussed: 1) a geometrical approach based on the direct analysis of the pore
space image applying a path-finding algorithm called A∗, and 2) an hydrodynamic
approach based on the numerical solution of fluid flow equations (i.e. Navier-Stokes
equations) directly into the pore space.
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Chapter 3

Geometrical analysis of the pore
space

Several authors discussed the geometrical analysis of the pore structure from
2D and 3D images of rocks. A common approach is to construct a network model
of the pore space starting from a rock image. The idea behind this method is to
construct a simplified geometrical representation of the pore space, preserving all
the geometrical information needed to understand the fluid flow [8]. The simpli-
fication stays in representing the pore space as composed by pore bodies, usually
spheres (wider regions), connected by pore throats (narrower regions). In order to
distinguish between pore body and pore throat in a rock image, the maximal ball
algorithm and image analysis techniques have been proposed [8, 65, 66]. In build-
ing network models, three geometrical parameters can be defined [67]: pore throat
ratio, coordination number and shape factor. The pore throat ratio is defined as
the ratio of the pore diameter to the throat diameter and it gives information about
heterogeneity. The absolute permeability decreases with the increase of the pore
throat ratio. The coordination number is the number of pore throats connected to
a single pore body. It is an average number and calculated as the total number
of throats divided by the total number of pore bodies and it usually oscillates be-
tween 2 and 6. Finally, the shape factor is defined as the pore sectional area over
the squared sectional perimeter. Traditionally, pore bodies and pore throats were
assumed to be spherical and cylindrical, but it was not a good approximation of
the geometries of real pores. It was found that pores with a triangular shape have
similar shape factor as measured for real porous systems and were able to reproduce
the roughness and the flow in pore centers [68]. In fact, it is important to point
out that in real systems the center of the pore is occupied by the non-wetting fluid
and boundary layers of the wetting fluid form in the roughness of the pore. This
phenomenon is well represented by the fluid residing in the corners of a triangle
pore section. More information about network models can be found in Blunt [8].

Several computational techniques have been used to characterize the geometry of
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Geometrical analysis of the pore space

the pore space. Comparison of three image processing algorithms (Mean Intercept
Length, Erosion and Dilation, Watershed Segmentation) to estimate the grain-size
distribution of porous rocks from binary 2D images was performed by Rabbani &
Ayatollahi [38]. Lock et al. [69] developed a network model that allowed predictions
of the permeability of consolidated sedimentary rocks, based on image analysis of
sections of a rock core sample.

Lindquist et al. [37] introduced the use of the medial axis algorithm to ana-
lyze structure properties such as pore throat and pore body size distributions and
geometric tortuosity of a 3D digitalized image. The medial axis (or skeleton) is
formed by the series of points that are more distant from the solid surface. Us-
ing this method, the three-dimensional pore space topology is directly extracted.
For porous media, the medial axis provides simple basic information about the ge-
ometry of the void space [21] and it is obtained directly on the binary image by
applying a burn algorithm [37]. A major problem with this method is that it may
contain dead ends, which are not representative of the fluid flow path. Al-Raoush
& Madhoun [70] presented an algorithm for calculating geometric tortuosity from
3D X-ray tomography images of real rocks based on a guided search for connected
paths utilizing the medial surface of the void space of a 3D segmented image.

Furthermore, Keller et al. [71] proposed a 3D graph representation to determine
the spatial distribution of pore space geometrical properties. Ghanbarian et al. [54]
proposed geometric tortuosity models based on concepts from finite-size scaling
analysis and percolation theory.

Besides these methods, path-finding (or shortest-path) algorithms can be used
for geometrical analysis of the pore space and the characterization of the microstruc-
ture. The first authors to introduce this method for porous media applications were
Sun et al. [72], who used a shortest past approach based on the Dijkstra’s algorithm
to calculate the geometric tortuosity and connected porosity. Then, they applied a
multiscale method approach to upscale the permeability. In this Section, we focus
a methodology based on on the A∗ path-finding algorithm, which is more efficient
than the Dijkstra’s algorithm, to describe the pore structure of 2D and 3D binary
images of rock samples. The aim of this research is to compute the parameters
introduced in Section 2.3 using geometrical information of the pore space. The
methodology for the geometrical characterization discussed in this Chapter was
published in Viberti et al. [73], Panini et al. [74], and Salina Borello et al. [75].

3.1 A∗ algorithm
The A∗ algorithm is used to compute the shortest paths between each inlet-

outlet pair [76–78]. The process is achieved by steps. Starting from an inlet location
(n = n0), at each step the algorithm expands the current node n by exploring all
nodes ni, called successors, in the proximity of n. For each successor (ni), n is set
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3.1 – A∗ algorithm

as the parent node and a cost function c(ni) is calculated as:

c(ni) = g(ni) + h(ni), (3.1)

where i indicates the i-th successor of n, g(ni) is the backward cost, i.e. the distance
calculated over the incremental path already identified from the inlet to ni, and
h(ni) is the forward cost, i.e. a heuristic function representing the estimation of the
cost to move from ni to the target (outlet), as shown in Fig. 3.1. The Euclidean
distance was adopted as forward cost h(ni). Then, the algorithm moves from node
n to the node having the lowest cost among all explored and unexpanded nodes (i.e.
nodes where the cost function has already been calculated and successors have not
been explored yet). The calculation is repeated until the target point is reached.
Then, the path is constructed backward from the target point to the inlet point by
connecting the parent nodes.

Figure 3.1: Qualitative representation of the A* cost-driving mechanism: a) cost
function calculation where n represents the current path node. Cost functions c(ni)
are calculated in the adjacent nodes from 1 to 8 (successors). g(n7) and h(n7) are
respectively the backward and forward costs calculation of successor 7. (b) A∗

shortest path [75].

In the implementation, two lists of nodes are created (Fig. 3.2): the Open
List, a structure that holds the explored nodes but not the expanded nodes (their
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Figure 3.2: A∗ algorithm [75].
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3.1 – A∗ algorithm

successors have not been explored yet) and the Closed List, a structure that contains
every expanded node (their successors have been explored already and stored in the
Open List). The presence of obstacles (i.e. grains) might extend or interrupt the
path development between the considered node and the target node. In such cases,
the algorithm can go back to a promising parent node and expand another successor
node to calculate alternative promising paths. In fact, for each explored node ni the
cost value c(ni), and its parent node n are stored. Additional algorithmic details
are contained in Fig. 3.2.

The A∗ algorithm is complete and therefore the convergence is guaranteed on
finite graphs [79]; this means that it will always find a path between inlet and outlet
points if at least one exists, and it is guaranteed to terminate if there are no existing
paths. Also, the solution is optimal if the heuristic function h(n) is admissible
and monotonic [79]. The Euclidean distance is admissible and monotonic because
it never overestimates the cost to the target point and the total cost c(n) of a
successor is always greater than (or equal to) its parent cost.

The weakness of the A∗ search is that all explored nodes are kept in memory.
The space complexity of the A∗ is proportional to the number of explored nodes
O(bd) [79], where d is called depth of the solution and refers to number of nodes
of the shortest path, and b is called branching factor, which refers to the average
number of successors expanded at each state [79]. The branching factor depends on
the effectiveness of the heuristic function because more accurate estimates of h(n)
decrease the number of times that the algorithm should go back to explore another
node. In principle, b should be equal to 1.

The time complexity of the A∗ is also O(bd) [79]. Furthermore, the overall time
complexity of path searching with the A∗ algorithm in a porous medium depends on
the number of inlet/outlet pairs chosen in the three (or two) directions. Considering
the same number of inlet (nin) and outlet (nout) points in each x, y and z direction,
the overall time complexity is O((nin nout)3bd), where d increases when the sample
dimension or the image resolution increase. Also, the parameters d and b depends
on the complexity of the porous geometry and the connecting distance cd, which
determines the number of successors and directions explored, as shown in Fig. 3.3.
In this work, cd = 1 was adopted, which in 2D corresponds to the exploration of
8 successors nodes and in 3D 26 successor nodes. From the point of view of the
overall amount of explored nodes, there is no significant difference between cd = 1
and cd = 3, as shown in Fig. 3.4.a. This can be explained because using cd = 1 an
optimal path with more nodes is found (Fig. 3.4.b), and with cd = 3 more nodes
are explored (Fig. 3.4.c). Finally, cd = 1 is advantageous in porous media because
the path edge never crosses the solid grain but it always lies in the pore space.
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Figure 3.3: Successors construction for the current node n considering three differ-
ent connecting distances: a) cd = 1, b) cd = 2 and c) cd = 3 [75].

3.2 Estimate of geometrical parameters
The aim of this Section is to propose a geometrical approach based on the

application of the A∗ algorithm to estimate pore-scale parameters of rock images.
First of all, the geometrical approach was applied to 2D images of rocks and then
integrated and extended to analyze 3D rock images.

The A∗ algorithm described in Section 3.1 was used to analyze the pore structure
by finding the shortest paths connecting sets of inlet and outlet points, called nin

and nout respectively, in 2D and 3D pore-scale binary images of rocks.
First of all, along the geometrical paths, the local pore size rp is estimated. In

2D geometries, the pore size is calculated as the distance between the pore walls
orthogonal to to the local path direction in each path node, as represented in Fig.
3.5. In 3D cases, the problem is more complicated. Along the paths identified by
the A∗, at the point Pi = (xi, yi, zi), the path direction is calculated as the vector vi

connecting Pi and the adjacent point Pi+1, i.e. vi = (xi+1 − xi, yi+1 − yi, zi+1 − zi).
The corresponding unit vector ˆ︁vi = (a, b, c) is calculated dividing vi by the module
|vi|. In order to reduce the computational cost, a finite number of possible directions
were considered: 1) 3 main directions x, y, z; 2) 6 directions at 45° belonging to
xy, xz and yz planes; 3) 4 directions in the xyz space having equal components.
Then, ˆ︁vi is associated to the closest vector in the discretized set not considering
the sign. Successively, the orthogonal plane at Pi is calculated as:

a (x− xi) + b (y − yi) + c (z − zi) = 0. (3.2)

Two mutual orthogonal directions n1 and n2 belonging to the plane are chosen to
calculate the pore sizes d1 and d2; d1 and d2 are calculated from Pi along n1 and n2
until the pore walls are reached (Fig. 3.6). The pore radius rp is evaluated as the
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Figure 3.4: Example of analysis of the effect of the connectivity distance on: a) the
amount of explored nodes, b) the obtained path depth and c) the branching factor
[75].

radius of an equivalent circle having area equal to the ellipse of diameter d1 and d2:

rp = 1
2

√︂
d1d2. (3.3)

The information obtained by this methodology can be used to characterize the
porous medium in terms of representative pore radius, tortuosity, effective porosity,
constriction factor and permeability. All these parameters can be calculated in all
the principal directions x, y and z. In this way, directional differences in the
parameters can be highlighted.

The geometrical tortuosity τg,i in the i direction was calculated by [54, 80, 81]:

τg,i = ⟨Lsh,i⟩
Li

where i = x, y, z (3.4)

19



Geometrical analysis of the pore space

Figure 3.5: Schematic representation of the pore size and effective porosity esti-
mates in 2D binary images [73].

and where ⟨Lsh,i⟩ is calculated as the average of the shortest path lengths calculated
using the A∗ algorithm and Li is the length of the sample in i direction.

In order to identify the interconnected pore space, a geometrical calculation of
the effective porosity using the geometrical paths is proposed:

ϕe,i = Npp,i

Npx

where i = x, y, z (3.5)

where Npp,i is the number of image pixels belonging to the portion of pore channels
crossed by a geometrical path and Npx the total number of image pixels. To this
end, for each pathway, all pixels comprised in the pore section orthogonal to the
local path direction were considered (see Fig. 3.5). The total effective porosity
ϕeg was then calculated merging the identified cells contributing to the flow in i
direction.

In order to estimate the permeability, the Kozeny-Carman equation (Eq. 2.9)
was used. Starting from the approach proposed by Mauran et al. [82], the modified
expression of the Kozeny-Carman equation based on geometrical information kg,i

and taking into account for geometrical effective porosity and tortuosity is

kg,i = ϕeg,i r
2
i

ck τ 2
g,i

where i = x, y, z (3.6)
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Figure 3.6: Schematic representation of the pore size estimate using the A∗ algo-
rithm in 3D binary images. The shortest path between an inlet and outlet point
found by the A∗ is represented in red [75].

where ck the Kozeny-Carman coefficient; the effective porosity ϕeg,i, geometrical
tortuosity τg,i and representative pore radius ri are calculated by analyzing all the
geometrical paths individuated. The representative radius ri is a sensitive choice
and since the pore radius is often characterized by a multimodal distribution [83,
84], the pore radius data are fitted with a kernel distribution and the mode value
is extracted. Since τg,i (Eq. 3.4), ϕeg,i (Eq. 4.147) and ri are calculated by using
the geometrical approach, the calculation of permeability (Eq. 3.6) is obtained by
a purely geometrical analysis of the porous medium.

The Kozeny-Carman coefficient is a dimensionless empirical geometrical param-
eter in the range of 4-40, which depends on the morphology of the porous medium
and on the shape of the pores [85]. For well-structured porous media ck = 5 is an ac-
ceptable value [7]; however, for random porous media, ck is generally determined by
back-calculation of Eq. 2.9 [58, 82]. For isotropic cases, it was assumed ck = 5.8,
as obtained in Koponen et al. [58] for an isotropic porous medium constituted
by randomly distributed freely overlapping squares. Conversely, for anisotropic
cases, a different value should be considered, due to different pore geometry. As
a consequence, for anisotropic or heterogeneous cases, ck should be obtained by
back-calculation. The estimate of ck in anisotropic rocks is discussed in Chapter 6.
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Another parameter that can be estimated with the geometrical approach is the
pore constriction factor C (Eq. 2.11), which represents an average of the variation
of the cross-sectional area along the path. When the pore constriction increases,
the permeability decreases. In 3D, by approximating every single geometrical path
in the i direction with a finite number of steps (np), one for each crossed pixel, and
the local pore cross-section normal to the flow with a circle of equivalent radius re,
Eq. 2.11 becomes:

Ci = 1
n2

p

np∑︂
ip=1

re,ip(x, y, z)4∑︂ 1
re,ip(x, y, z)4 where i = x, y, z. (3.7)

The mode Ci
¯ of constriction distribution is taken as a representative constriction

factor for i direction.
The whole procedure designed and implemented for the geometrical character-

ization of rocks from 2D and 3D binary images is showed in Fig. 3.7.
Finally, the hydraulic radius rH (Eq. 2.10) is calculated both is 2D and 3D

geometries. For the calculation of rH in 3D, the wetted area Aw is computed with
the open-source software ParaView on the 3D mesh of the solid grains by using the
Integrate Variables filter, which computes the area of each mesh polygon and then
sums them. In 2D, Eq. 2.10 becomes:

rH,2D = ϕ2D
Ab

Pw

, (3.8)

where ϕ2D is the porosity of the 2D rock section, Ab is the bulk area of the sample
and Pw is the wetted perimeter, i.e. the interface between grains and void. Pw was
calculated from the binary images using the Image Processing Toolbox of Matlab
[86].
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Figure 3.7: Geometrical characterization procedure [75].
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Chapter 4

Pore-scale hydrodynamic
modeling

In order to compute transport properties in porous media such as hydraulic
tortuosity, absolute permeability, relative permeability, capillary pressure, identify
pore-scale phenomena such as snap-off and water bypass, and visualize displace-
ment patterns such as piston-like and viscous fingering, hydrodynamic numerical
simulation at the pore-scale can be considered as a valid complementary tool to
laboratory tests. Two different approaches can be identified: pore-network model-
ing (PNM), where simplified flow equations are solved in an equivalent geometry
extracted from the real geometry, and direct numerical simulations (DNS), where
the flow equations are directly solved in the pore space. This work focuses on the
DSN.

First of all, a review of the state of the art of fluid flow simulation at the
pore-scale is presented and the lattice Boltzmann method and Eulerian grid-based
methods are introduced in order to solve the fluid flow directly in the pore space.
Then, the fluid flow equations at the pore-scale, i.e. Navier-Stokes equations, are
derived. Finally, the lattice Boltzmann method and the Finite Volume method are
presented.

4.1 Literature review
First introduced in 1956 by Fatt [87], the PNM has earned popularity in the

last thirty years for simulating single-phase and multiphase fluid flow in porous
media ([31, 68, 88, 89]). The main advantage of PNM is its geometrical simplicity
and consequently computational efficiency. Therefore, PNM can be used to analyze
porous media even at the centimeter scale. However, this simplification in the ge-
ometry can cause a lack in physical detail [23, 68]. For this reason, direct numerical
simulation is preferred in many circumstances. More information about PNM can
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be found in Blunt [8].
In hydrodynamic simulation, the fluid flow equations are numerically solved on

a grid created discretizing directly the pore space obtained from binary images
[31]. There are three main families of algorithms used for solving hydrodynamic
equations: 1) the Lattice Boltzmann Method (LBM), which is based on kinetic
theory; 2) smoothed particle hydrodynamics (SPH), which is a Lagrangian mesh
free method; 3) Eulerian grid-based methods such finite difference (FDM), finite
element (FEM) and finite volume (FVM) methods.

In this work, the LBM and Eulerian grid-based methods will be treated in more
detail. More information about the application of SPH to fluid flow simulation in
porous media can be found in Tartakovsky & Meakin [90], Tartakovsky et al. [91],
Bandara et al. [92], and Kunz et al. [93]. An overall review about numerical methods
for fluid flow simulation in porous media can be found in Meakin & Tartakovsky
[94].

Among numerical methods to solve fluid flow equations, the Lattice Boltzmann
Method is well suited to solve single-phase and multiphase fluid flow in complex ge-
ometries such as porous media [95–98]. The LBM belongs to the family of discrete
mesoscopic computational methods and it is based on the simulation of collision
and propagation of groups of particles on a grid. These groups of particles (also
called populations) are mathematically described through a density distribution
function (fi). Populations propagate to the neighbor nodes along fixed directions
and with fixed velocities, called lattice velocity ci. The solution of the Navier-
Stokes equations,i.e. fluid pressure and velocities, can be recovered by taking the
0th and 1st moments of the density distribution function. The rules governing the
collisions are designed such that the time-average motion of the particles is consis-
tent with the macroscopic hydrodynamics. Collision rules constitutes a simplified
mesoscopic kinetic model based on a Boltzmann-type equation that incorporate
only the essential physics of microscopic or mesoscopic processes, avoiding follow-
ing each particle as in molecular dynamics simulations [99]. Details of the LBM
are presented in Section 4.3. Due to its particulate nature and local dynamics, the
LBM has several advantages over other conventional CFD (Computational Fluid
Dynamics) methods, especially in dealing with complex boundaries, incorporating
of microscopic interactions, and parallelization of the algorithm [100]. The simplest
implementation of the LBM adopts the single-relaxation time (SRT) approximation
of the collision operator, called Bhatnagar-Gross-Krook model (BGK) [101]. More
sophisticated models of the collision operator consider two-relaxation-time (TRT)
and multi-relaxation-time (MRT) [98]. Comparison of SRT and MRT in porous
media applications for permeability assessment was performed in 2D and 3D syn-
thetic and real porous media by Pan et al. [102] and Eshghinejadfard et al. [103],
who showed a dependency of permeability to viscosity when using SRT. However,
Prestininzi et al. [104] showed that the SRT is capable of simulating fluid flow in
porous media with adequate accuracy if the Knudsen number (defined as the ratio
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between the molecular mean free path and the characteristic length at which macro-
scopic effects can be appreciated [105], and computed as Kn = ν/(l cs), where ν is
the kinematic viscosity, l a pore characteristic length and cs the sound speed [104])
is smaller than 10−2, which is the proper region where the LBM is guaranteed to
reproduce the hydrodynamics equations. The main drawback of the LBM is that
it is memory demanding, making it difficult to be used in large porous domains.
More details about this method and its implementation in this work are reported
in Section 4.3.

The lattice Boltzmann method can also be used to simulate multiphase flow.
Four main models are available: the color-gradient model proposed by Gunstensen
et al. [106], the Shan-Chen (SC) model (Shan & Chen [107]), the free energy model
proposed by Swift et al. [108] and the interface tracking model (HCZ model) pro-
posed by He et al. [109]. In their primitive forms these methods suffered of numerical
problems and they were incapable to model high density ratios [110]. Therefore, all
these methods are in constant development and improvement. Lee & Lin [111] im-
proved the HCZ model to handle high density ratios. Fakhari et al. [110] developed
a method based on phase-field modeling (Jacqmin [112]) to investigate higher den-
sity ratios. Leclaire et al. [113] proposed a modification to the recoloring operation
in the color-gradient model to reduce spurious currents and improve the stability
for high density and viscosity ratios. In general, among these models, the most
popular is the SC method because it is very efficient and higher density ratio can
be reached, however it is less accurate than the others. HCZ and Lee-Lin models
are accurate and can reach very high density ratio. However, from some recent
works [114, 115], color-gradient and phase-field models were found to be the most
popular for porous media applications. A detailed description of multiphase LBM
is available in Huang et al. [116].

The applications of the LBM to fluid flow in geologic porous systems and mi-
crofluidic devices (also called micromodels) are several. First of all, it was used by
many authors ([57, 58, 117–119]) to estimate permeability, effective porosity and
tortuosity in synthetic porous media and real images of rocks. Ferreol & Rothman
[120] simulated single-phase and two-phase flow through three-dimensional tomo-
graphic reconstructions of Fontainebleau sandstone. Xu & Liu [121] investigated
relative permeability and specific interfacial length by simulating immiscible two-
phase flow in 2D sample of Berea sandstone. Wang et al. [122] presented a general
review of the LBM with a focus on boundary conditions, treatments for relaxation
time in isothermal gas flow simulation in shale gas reservoirs both at the pore-scale
and REV scale. Benamram et al. [123] applied the LBM and adapted the boundary
conditions to describe the fluid flow at the REV scale in hydraulically and natu-
ral fractured reservoirs. Ahkami et al. [124] investigated the pore-scale behavior
of single-species mineral precipitation reactions in fractured porous media using a
phase field LBM. Liang et al. [125] proposed a model to describe three-phase flow
systems and they managed to describe a density ratio up to 100 in presence of
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small velocities. Zacharoudiou & Boek [126] used the free-energy LBM to investi-
gate Haines jumps events (i.e. pore-scale events due to capillary forces occurring
during a drainage process) in simplified and realistic porous media. Venturoli &
Boek [127] and Laleian et al. [128] used the LBM with SRT to calculate the fluid
flow in micromodels taking the third dimension into account by adding a viscous
drag force. Boek & Venturoli [129]) used the same approach to study the fluid flow
in a quasi-two-dimensional micromodel based on the image of a Berea sandstone.
Wu et al. [130] calculated the permeability of micromodels based on Voronoi tessel-
lation and found that it was in good agreement with experimental results. Liu et al.
[131] simulated drainage processes in homogeneous and heterogeneous microfluidic
at different capillary numbers. In Chen et al. [114] and Fakhari et al. [115], the lat-
tice Boltzmann method with a modified color-fluid model and a phase-field model
respectively were used to simulate CO2 invasion in a water saturated micromodel;
they performed 3D simulations, rather than 2D with a drag force, to avoid the ap-
proximations inherent to 2D simulations. Isfahani & Afrand [132] simulated Al2O3
nanofluids flow in etched glass micromodels and compared their predictions with
experimental results, finding good agreement.

Besides the lattice Boltzmann method, traditional Eulerian grid-based tech-
niques can be used to simulate single-phase and multiphase fluid flow in porous
media. In CFD, the Finite Volume Method (FVM) is usually preferred because
it is always locally conservative and it deals with unstructured grids [133]. In the
FVM, the domain is subdivided into a finite number of contiguous control volumes
whereby the integral form of the conservation laws is applied. Solution algorithms
usually rely on predictor-corrector methods to solve for the pressure-velocity cou-
pling. The Pressure-Implicit with Splitting of Operators (PISO) algorithm is one
of the most popular to solve transient flow [134]. Algorithms such as Semi-Implicit
Method for Pressure Linked Equations (SIMPLE) solve directly for steady state
flow [135]. Details about the FVM and predictor-corrector algorithms are showed
in Section 4.4.

In multiphase flow, the main difficulties are in modeling the motion of the fluid-
fluid interface [94]. The isothermal and incompressible fluid motion is described by
the Navier-Stokes equations, consisting of mass and momentum conservation equa-
tions. A first attempt to solve this problem for two different immiscible fluids might
be writing and solve the equations for each phase, considering interface conditions
to couple the fluid flow in space regions and to guarantee mass and momentum
conservation across the interface. However, this approach is very difficult and com-
putationally expensive to solve. A better alternative is to employ the whole-domain
formulation [49], where the two phases are considered as one phase and the interface
condition is replaced by an additional force acting only at the interface. Regardless
of the approach chosen, when the governing equations are solved on a grid, the two
fluids must be identified in some way and the interface location must be updated
in time [49]. Methods to track the evolution of the interface are generally classified
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in three categories [136]: moving mesh, surface tracking and volume tracking (or
interface capturing) methods.

In moving mesh methods, the mesh might be adjusted to fit the interface or
follow the fluids. In this way, a sharp interface is maintained. Surface tracking
methods define a sharp interface whose motion is followed and the interface is
marked and tracked. Volume tracking methods do not define the interface as a
sharp boundary and the different fluids are marked by an indicator function in-
stead. Eulerian algorithms such as level set, phase field and volume of fluid are
used to capture the interface. Moving mesh and surface tracking methods have
the advantage of maintaining a sharp boundary between the phases, which is in-
dependent of the representation of the flow field. This allows different resolutions
of the surface and of the flow field and might improve the accuracy of the surface
tension model. However, mesh or markers have to be relocated, and eventually
re-meshed, when the interface undergoes large deformations increasing complex-
ity and computational costs [136]. Moreover, they do not automatically handle
changes in topology, where fluids regions merge or break up, and therefore they
are not well suited for flow with interfaces undergoing complex deformations [49,
137]. Volume tracking methods are found to be the more appropriate in presence
of complex interface dynamics as occurs in porous media [49].

Among volume tracking methods, the volume of fluid (VOF), first introduced by
Hirt & Nichols [138], is the most popular algorithm used to describe multiphase flow
in porous media and micromodels [137, 139–144]. In the VOF, the two phases are
identified by a color function having values equal to 0 or 1 (arbitrarily assigned to
the wetting or non-wetting phase), while the interface is represented by the region
where the gradient of color function is non-zero. In order to take into account
capillary forces, an interfacial tension model must be defined and it consists in an
additional term in the momentum equation. The two following approaches are the
most common for interfacial tension modeling: 1) Continuum Surface Force (CSF)
method first introduced by Brackbill et al. [145] and 2) Sharp Surface Force (SSF),
introduced by Renardy & Renardy [146] and improved by Raeini et al. [137]. In
order to reduce spurious currents existing in the CSF formulation [145, 147], the
volume fraction can be smoothed with a Laplacian filter, as proposed by Lafaurie et
al. [147]. The SSF approach as proposed by Raeini et al. [137] reduces considerably
the impact of spurious currents. In Pavuluri et al. [148], the authors discussed the
accuracy of CSF and SSF models for spontaneous in a microchannel, comparing the
results with an analytical solution. Moreover, in this paper, the initialization and
boundary conditions to set in multiphase simulations are well discussed. Finally,
wettability and contact angle must be taken into account in the simulations as
described in Raeini et al. [137].
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4.2 Equations of fluid motion
This Section shows the Navier-Stokes equations for single-phase incompressible

fluid flow, the Navier-Stokes equations in dimensionless form, and the analytical
solution of these equations in simple geometries (i.e. Poiseuille’s solution).

4.2.1 Continuity equation
Consider a generic control volume Ω fixed in time and a quantity of fluid mass

passing through it. The infinitesimal portion of mass m inside the control volume is
dmΩ = ρ dV , where ρ is the fluid density, and the total mass in the control volume
is mΩ =

∫︁
VΩ
ρ dV . The balance of all the mass entering and leaving Ω (no source

term) must be equal to the mass flowing through the control volume boundary SΩ:

∂

∂t

∫︂
VΩ
ρ dV = −

∮︂
SΩ
ρu · n̂ dS, (4.1)

where u is the fluid velocity, n̂ the outward unit vector normal to the surface and∮︁
indicates that the integral is taken around a closed surface. By the use of the

divergence theorem, the surface integral on the right hand side of the equation is
transformed into a volume integral. Since the control volume is fixed in time and
this expression is valid for an infinite number of control volumes, the integral must
be zero, leading to the continuity equation in the differential form:

∂ρ

∂t
+ ∇ · (ρu) = 0. (4.2)

In all the cases discussed in this work, the fluid can be considered as incompressible.
In fact, liquids such as oil and water are incompressible and gases with very low
velocity (in the order of 10−4 m/s) can be considered incompressible as well.

For incompressible fluids, the density is a constant value (ρ = const), and the
continuity equation reduces to

∇ · u = 0 (4.3)

4.2.2 Momentum equation
The same procedure can be used to derive the momentum equation. The average

momentum in Ω is defined as:

mΩu =
∫︂

VΩ
ρu dV. (4.4)

The total balance of momentum in the control volume is
∂ (mΩu)

∂t
= ∂

∂t

∫︂
VΩ
ρu dV +

∮︂
SΩ

(ρu ⊗ u) · n̂ dS =
∮︂

SΩ
T · n̂ dS +

∫︂
VΩ
ρa dV, (4.5)
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where T is the stress tensor, a is an acceleration vector and the symbol ⊗ represents
the dyadic product. This equation has the same form of the Newton’s second law
f = ma and ∮︂

SΩ
T · n̂ dS +

∫︂
VΩ
ρa dV = fsurf + fbody, (4.6)

where fsurf is the resultant of the surface forces and fbody a body force. Generally
a = g, where g is the gravity acceleration. Now, the constitutive law for Newtonian
fluids is introduced:

T = −pI + µ
(︂
∇u + (∇u)T

)︂
− 2

3µ∇ (∇ · u) , (4.7)

where µ is the dynamic viscosity of the fluid and I is the identity matrix. Applying
the divergence theorem, Eq. 4.5 becomes

∂ (ρu)
∂t

+ ∇ · (ρu ⊗ u) = −∇p+ µ∇2u + 1
3µ∇ (∇ · u) + ρg, (4.8)

where the convective term can also be rewritten as ∇·(ρu ⊗ u) = u·∇(ρu)+ρu∇·u.
The continuity equation (Eq. 4.2) together with momentum equations (Eq. 4.8)

form a system of equations called Navier-Stokes equations (NSEs).
For incompressible fluids, Eq. 4.8 can be expressed as:

ρ

[︄
∂u
∂t

+ u∇ · u
]︄

= −∇p+ µ∇2u + ρg. (4.9)

Adopting the total derivative D()
Dt

= ∂()
∂t

+ u · ∇(), Eq. 4.9 can also be expressed as:

D(ρu)
Dt

= −∇p+ µ∇2u + ρg. (4.10)

Moreover, for very small velocities the inertial term becomes negligible and Eq.
4.8 can be further simplified to obtain the so-called Stokes equation:

ρ
∂u
∂t

= −∇p+ µ∇2u + ρg. (4.11)

Finally, if the flow is steady-state the equation reduces to:

0 = −∇p+ µ∇2u + ρg. (4.12)

Eq. 4.11 and Eq. 4.12 are significant in the description fluid flow in porous media.
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4.2.3 Dimensionless Navier-Stokes equations
A further step is to write incompressible NSEs (Eqs. 4.3 and 4.9) in a di-

mensionless form. We define a characteristic length scale l0 and time scale t0. A
characteristic fluid velocity is obtained as U0 = l0

t0
. Physical variables present in

the Eqs. 4.3 and 4.9 are substituted by dimensionless variables

t∗ = t

tc
, u∗ = u

Uc

,
∂

∂t∗
= l

Uc

∂

∂t
(4.13)

and
p∗ = p

1
ρUc

, ∇∗ = lc∇, a∗ = a
lc
U2

c

. (4.14)

Substituting Eqs. 4.13 and 4.14 into Eqs. 4.3 and 4.9, we obtain the NSEs in
dimensionless form as

∇∗ · u∗ = 0 (4.15)
and

∂u∗

∂t∗
+ u∗∇∗ · u∗ = −∇∗p∗ + 1

Re∇∗2u∗ + g∗, (4.16)

where
Re = Uc lc

ν
(4.17)

is a dimensionless number called Reynolds number and ν = µ/ρ is the kinematic
viscosity. The advantage of expressing NSEs in a dimensionless form is that fluid
flows with same Re are equivalent, even if they have different velocity, viscosity or
length scale (law of similarity).

4.2.4 Poiseuille’s flow
In this Section, two examples of analytical solutions of the NSEs are reported.

These two cases are used in this work as a benchmark for the solutions obtained
by numerical simulation.

NSEs are complex equations and they are generally solved numerically. How-
ever, analytical solutions of NSEs exist in simple geometries and making some
assumptions. Two examples of typical applications are: fluid flow 1) between two
parallel plates and 2) in a cylinder. In both cases, incompressible fluid, steady-
state flow, negligible gravity effects, and laminar flow are assumed. Finally, no-slip
boundary conditions (i.e. u = 0) are applied at the fluid-solid interface. The two
cases are represented in Fig. 4.1.
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Figure 4.1: Representation of Poiseuille’s flow between two parallel plates and in a
cylinder.

In case 1, the Navier-Stokes system of equations reduces to

− ∂p

∂x
+ µ

∂

∂y

(︄
∂ux

∂y

)︄
= 0,

− ∂p

∂y
= 0

. (4.18)

No-slip boundary conditions are ux = 0 at y = 0 and ux = 0 at y = H. Solving Eq.
4.18, the velocity profile on the cross section is parabolic and equal to

ux(y) = 1
2µy (y −H) ∆p

L
, (4.19)

where H is the distance between the plates and L is the length of the channel.
From Eq. 4.19, equations for maximum velocity (umax), average velocity (uavg) and
flow rate (Q) can be obtained as:

umax = −H2

8µ
∆p
L
, (4.20)

uavg = − H2

12µ
∆p
L

(4.21)

and
Q = − H3

12µ
∆p
L
. (4.22)

In case 2, radial symmetry is assumed and NSEs becomes

− ∂p

∂x
+ µ

1
r

∂

∂r

(︄
r
∂ux

∂r

)︄
= 0,

− ∂p

∂r
= 0

. (4.23)
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In this case the no-slip boundary condition is ux = 0 at r = 0 and the solution is

ux(r) = (r2 −R2)
4µ

∆p
L
. (4.24)

From here, the maximum velocity (at r = 0), average velocity and flow rate are
respectively

umax = −R4

4µ
∆p
L
, (4.25)

uavg = −R2

8µ
∆p
L

(4.26)

and
Q = −πR4

8µ
∆p
L
. (4.27)

4.3 The Lattice Boltzmann Method: theory and
implementation

The Lattice Boltzmann Method (LBM) is a relatively new CFD method, first
introduced in the late 1980s by McNamara & Zanetti [149], successively developed
by several authors [105–107, 109, 150–152] and still subject of research activity
[98, 110, 124]. Historically, the lattice Boltzmann method has its origin in cellular
automata (CA), which were developed considering that different microscopic inter-
actions can lead to the same form of macroscopic equations. In general, CA consist
of a discretization of space in which individual nodes may be empty (m = 0) or
occupied by one particle having unit mass (m = 1). A velocity can be assigned
to each particle by the vector connecting the node to its next neighbor node along
the link where the particle is located. The microscopic interaction is strictly local
and at each time step, each particle moves forward to the next node in the direc-
tion of the velocity vector. When two or more particles meet at the same node,
collision occurs: particles exchange momentum and each node updates its state.
Conservation of mass and momentum is kept summing up mass over the each node
and verifying that the number of particles and the total velocity of the particles is
the same before and after the collision. The repetition of collision and propagation
constitutes the microdynamics. Macroscopic properties are calculated averaging
mass and momentum over a large number of nodes.

The first authors to study CA were Ulam [153], Neumann & Burks [154] and
Zuse [155]. Later, Hardy et al. [156] proposed a model (called HPP from the names
of the authors), where the grid was square and the particles had only four possible
velocities. In this model, each collision had only one possible result. However, the
main disadvantage of the HPP model is that it was not able to the recover the
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macroscopic NSEs solutions and for this reason it was not usable in fluid dynamics.
Later, Frisch et al. [157] discovered that CA over a lattice with hexagon symmetry
were able to recover the NSEs in the macroscopic limit. This was the first example
of lattice gas cellular automata (LGCA) and their model is called FHP. However,
their model suffered of statistical noise, which is a general problem when trying to
recover macroscopic quantities from a microscopic model. A few years later, Mc-
Namara & Zanetti [149] fixed the noise problem in LGCA replacing the individual
particles with an averaged directional discrete distribution function. This was the
first example of the LBM. A major simplification was introduced by Qian et al.
[150], who introduced the single relaxation time model based on the BGK collision
model proposed by Bhatnagar et al. [101].

In this Section, the kinetic theory, which is at the base of the Lattice Boltzmann
Method, is briefly discussed, then the numerical method and its implementation
are explained and finally three examples are reported.

4.3.1 Elements of gas kinetic theory
The kinetic theory is a description of fluids at the mesoscopic scale, which lies

between the microscopic scale where the motion of individual molecules is tracked
and the macroscopic scale based on continuum theory [98]. The kinetic theory
is based on the evolution of particle distributions in a gas on time scales around
the mean collision time. Most of the physical quantities such as fluid velocity,
pressure and temperature originate from a statistical average over a large number
of particles. The cornerstone of the kinetic theory is the Boltzmann equation [105].

The fundamental variable in kinetic theory is the particle distribution function
f (x, c, t). The particle distribution function represents the density of particles with
velocity c (called microscopic velocity) at position x and time t [98]. f (x, c, t) is a
probability density function and f (x, c, t) dxdc is the probability to find a particle
at time t positioned between x and x + dx with a microscopic velocity between c
and c + dc [158].

The Boltzmann equation describes the evolution in time of f (x, c, t) in terms of
collisions which redistribute the distribution function at the considered time [98].
Collisions are elementary binary interactions between couples of particle distribu-
tions and are treated as they occur instantly [105, 158]. The Boltzmann equation
is expressed as:

∂f

∂t
+ c · ∇f + F · ∇cf = Ω (f, f) , (4.28)

where F is the external force contribution and Ω (f, f) is called collision operator.
Macroscopic hydrodynamic quantities can be calculated from moments of f .

These moments are integrals of f , weighted with c over the entire velocity space
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[98]. Macroscopic fluid density, momentum and energy are calculated as:

ρ (x, t) =
∫︂
f (x, c, t) dc, (4.29)

ρ (x, t) u (x, t) =
∫︂

cf (x, c, t) dc (4.30)

and
ρ (x, t)E (x, t) = 1

2

∫︂
|c|2 f (x, c, t) dc (4.31)

where u is the average velocity of the particles, which corresponds to the macro-
scopic fluid velocity. By integrating over the velocity space in this way, particles of
all possible velocities at position x and time t are contributing to the calculation
of macroscopic density, momentum and energy. The random thermal velocity ξ is
defined as the velocity of the particles with respect the fluid ξ = c − u and the
magnitude value |ξ| is called peculiar speed [105]. The energy associated to ξ is
called internal energy e, which is defined as

ρ (x, t) e (x, t) = 1
2

∫︂
|ξ|2 f (x, c, t) dc. (4.32)

The internal energy is only related to translational kinetic energy because in kinetic
theory we deal only with monoatomic perfect gases with no rotational or vibrational
degrees of freedom [98].

An expression of the macroscopic fluid pressure can be found through the ideal
gas law [98]:

p (x, t) = ρ (x, t)RT, (4.33)
where R is the gas constant and T the temperature. The ideal equation of state
can be also expressed based on the speed of sound cs. The speed of sound in a fluid
is the velocity at which a weak pressure wave propagates isoentropically (i.e. the
entropy S is constant) in the medium and it is defined as [159]

cs =
(︄
∂p

∂ρ

)︄
S

. (4.34)

In isothermal conditions cs is a constant and Eq. 4.33 can be written as

p (x, t) = c2
sρ (x, t) , (4.35)

where cs =
√
RT . Eq. 4.35 is widely used in the isothermal LBM.

Any solution of the Boltzmann equation requires an expression of the collision
operator. Under the condition of binary collisions, the collision term can be split
into gain and loss components, corresponding to direct/inverse collisions taking
molecules in/out a volume element [105].
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In order to simplify the expression of the collision operator, the concept of
equilibrium distribution function f eq must be introduced. f eq is a particular particle
distribution such that Ω (f eq, f eq) = 0. This condition is called local equilibrium.
In other words, a distribution function f eq is defined such that gain and losses
are in exact balance so that the collision term is annihilated [105]. In D spatial
dimensions it is expressed as [152]:

f eq = ρ

(2πRT )D/2 exp
[︄
−(c − u)2

2RT

]︄
, (4.36)

where R is the ideal gas constant and T is the temperature. The distribution
function reported in Eq. 4.36 is also called Maxwellian distribution function and it
represented in Fig. 4.2.

Figure 4.2: Maxwellian distribution function for air as a function of the peculiar
speed |c − u|. Here, D = 3 in Eq. 4.36 because a three dimensional space is
considered. Increasing the temperature, the peculiar velocity increases because the
particles are at a higher state of internal energy.

Originally, the collision operator was expressed as a complicated nonlinear inte-
gral over the velocity space. However, in order to facilitate numerical solutions of
the Boltzmann equation through the LBM, the collision operator can be expressed
in a simpler way without loosing the basic physics [105]. This collision operator is
called BGK (Bhatnagar-Gross-Krook) and it is expressed as [101]

CBGK(f) = −f − f eq

τ
, (4.37)

where τ in this context is called relaxation time. τ is a typical time-scale associated
with collisional relaxation to the local equilibrium. Physically, Eq. 4.37 can be seen
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as the tendency of f to approach its equilibrium state f eq after a time τ . In principle,
the relaxation time τ is a complicated functional of the distribution function f . The
drastic simplification associated with BGK is the assumption of a constant value
for this relaxation scale, which is equivalent to lumping the whole spectrum of
relaxation scales into a single value [105]. Introducing the BGK collision operator
into the Boltzmann equation, Eq. 4.28 becomes

∂f

∂t
+ c · ∇f + F · ∇cf = −f − f eq

τ
. (4.38)

Eq. 4.38 is the starting point to derive the lattice Boltzmann equation in Section
4.3.2.

Collisions conserve the quantities of mass and momentum and they can be
expressed by the statistical moments of the collision operator as∫︂

Ω (f, f) dc = 0, (4.39)

and ∫︂
c Ω (f, f) dc = 0. (4.40)

Phenomena of viscous dissipation are connected to the non-equilibrium, i.e. the
deviation of f from f eq. The non-equilibrium distribution function fneq is calculated
as

fneq = f − f eq. (4.41)
The Chapman-Enskog analysis [160] is the method used to connect the mesoscopic
and macroscopic scales through fneq.

4.3.2 The Lattice Boltzmann Equation
As shown Section 4.3.1, solutions of the Boltzmann equation (Eq. 4.28) are

able to recover macroscopic hydrodynamic properties. The idea behind the lattice
Boltzmann method is to solve the equation numerically and recover macroscopic
fluid flow information [98]. In fact, the numerical scheme to solve the Boltzmann
equation turns out to be simpler to implement than traditional methods used to
solve numerically the Navier-Stokes equations.

In single-phase fluid flow in porous media at the pore-scale, the force term
appearing in Eq. 4.38 is not present. Then, Eq. 4.38 simplifies to

∂f

∂t
+ c · ∇f = −f − f eq

τ
. (4.42)

Using the definition of total derivative (Section 4.2.2), Eq. 4.42 can be rewritten
as

Df

Dt
= −1

τ
(f − f eq) , (4.43)
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where
Df

Dt
= f (x + c∆t, c, t+ ∆t) − f (x, c, t)

∆t +O
(︂
∆t2

)︂
. (4.44)

Neglecting terms of order higher than ∆t, Eq. 4.43 is rewritten using Eq. 4.44 and
becomes

f (x + c∆t, c, t+ ∆t) − f (x, c, t)
∆t = −1

τ
(f − f eq) , (4.45)

or, rearranging,

f (x + c∆t, c, t+ ∆t) − f (x, c, t) = −∆t
τ

(f − f eq) . (4.46)

In order to evaluate numerically the hydrodynamic moments reported in Eq.
4.29 and 4.30, the microscopic velocity c must be discretized. A set of discrete
microscopic velocities ci are defined and the distribution function will be evaluated
only for the selected velocities. This set of microscopic velocities is called lattice.

Space and time are discretized on the lattice obtaining the lattice Boltzmann
equation (LBE):

fi (x + ci∆t, t+ ∆t) − fi (x, t) = −∆t
τ

[fi (x, t) − f eq
i (x, t)] , (4.47)

where fi (x, t) is the density distribution function related to the discrete velocity
direction i. fi (x, t) is called discrete velocity distribution function or population.
This equation expresses that the discrete particle distribution fi (x, t) moves with
velocity ci to a neighbor point x +ci∆t at the next time step t+∆t. At time t, the
particles are affected by collision, modeled using the BGK collision operator. This
operator models particle collisions by redistributing particles among the populations
fi at each site and it relaxes the populations towards an equilibrium f eq

i at a rate
determined by the relaxation time τ . Since the BGK collision operator is used,
sometimes Eq. 4.47 is also called LBGK (lattice BGK) equation. The lattice
Boltzmann method refers to the numerical procedure used to solve Eq. 4.47.

The BGK is not the only possible collision operator. For example, two-relaxation-
times (TRT) and multi-relaxation-times (MRT) collision operators exist and they
use more than one relaxation time [98, 158]. TRT and MRT collision operators can
reduce some limitations of the BGK model, such as problems related to the appli-
cation of some boundary conditions or accuracy or stability problems [98], however
they will not be discussed in this work.

Usually in the LBM, physical space, time and velocity are replaced with non-
dimensional quantities called lattice units such that |ci| = ∆x

∆t
= 1 and ∆t = 1,

where |ci| is called lattice speed. More details about the non-dimensionalization
process and lattice units are given in the Section 4.3.3. In lattice units, Eq. 4.47
can be rewritten as

fi (x + ci, t+ 1) =
(︃

1 − 1
τ

)︃
fi (x, t) + 1

τ
f eq

i (x, t) . (4.48)
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For small Mach numbers (Ma = u/cs), the exponential function in Eq. 4.36 can
be approximated with a polynomial function (ex ≈ 1 + x + x2

2 ), and the discrete
equilibrium distribution function f eq

i becomes [150, 152]

f eq
i = wiρ

[︄
1 + ci · u

c2
s

+ (ci · u)2

2c4
s

− u2

2c2
s

]︄
, (4.49)

where and wi are weights depending on the lattice velocity direction, ρ is the
macroscopic density, u the macroscopic velocity vector and cs the sound speed.

Velocity sets are usually named by the number of spatial dimensions (d) and
the number of discrete velocities (q), using the notation DdQq. The two most
common lattice velocity sets are D2Q9 in two-dimensional cases and D3Q19 in
three-dimensional problems; they are illustrated in Fig. 4.3. Most velocity sets
have one rest velocity with zero magnitude that represents stationary populations
(i.e. these populations do not propagate to neighbor lattice sites) and it is often
assigned the index i = 0 (i.e. c0 = 0). In this work, this convention counting from
0 to q − 1 was adopted. For example, D2Q9 means 9 discrete velocities in 2D and
velocities are numbered from 0 to 8.

Figure 4.3: Discrete velocity models D2Q9 and D3Q19

As briefly mentioned at the beginning of this Chapter, a lattice cell has to have
sufficient symmetry to be able to recover macroscopic density and momentum [157].
For this reason, constraints on the velocity sets must be fulfilled [98]:∑︂

i

wi = 1, (4.50)
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∑︂
i

wiciα = 0, (4.51)

∑︂
i

wiciαciβ = c2
sδαβ, (4.52)

∑︂
i

wiciαciβeiγ = 0, (4.53)

∑︂
i

wiciαciβciγciδ = c4
s (δαβδγδ + δαγδβδ + δαδδβγ) , (4.54)

∑︂
i

wiciαeiβciγciδciϵ = 0, (4.55)

where ciα, ciβ, ciγ, eiδ, ciϵ are lattice velocity vectors written using the Einstein no-
tation and δαβ, δγδ, δαγ, δβδ, δαδ, δβγ are the Kronecker deltas. For example, δαβ = 1
if α = β and δαβ = 0 otherwise.

Since there is symmetry, in D2Q9 we can set w1 = w2 = w3 = w4 = wm and
w5 = w6 = w7 = w8 = ws. For isothermal LBM, using the D2Q9, the speed of
sound is expressed in lattice units as cs = 1/

√
3 [98] and using Eqs. 4.50, 4.51 and

4.54, the following equations can be written:∑︂
i

wi = w0 + 4wm + 4ws = 1, (4.56)

∑︂
i

wicixcix = 2wm + 4ws = 1
3 , (4.57)

∑︂
i

wicixcixciyciy = 4ws = 1
9 . (4.58)

Then, the following system of equations has to be solved in order to obtain the
weights wi comparing in Eq. 4.49:⎧⎪⎪⎨⎪⎪⎩

w0 + 4wm + 4ws = 1
2wm + 4ws = 1

3
4ws = 1

9

. (4.59)

From the system of equations 4.59, the weights are

wi =

⎧⎪⎪⎨⎪⎪⎩
4/9 i = 0
1/9 i = 1,2,3,4
1/36 i = 5,6,7,8

. (4.60)

In Tables 4.1 and 4.2 are summarized the properties of D2Q9 and D3Q19 velocity
sets respectively.
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Table 4.1: Weights (wi) and lattice velocities (ci) for the D2Q9 model

i 0 1 2 3 4 5 6 7 8
wi

4
9

1
9

1
9

1
9

1
9

1
36

1
36

1
36

1
36

ci,x 0 1 0 -1 0 1 -1 -1 1
ci,y 0 0 1 0 -1 1 1 -1 -1

Table 4.2: Weights (wi) and lattice velocities (ci) for the D3Q19 model

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
wi

1
3

1
18

1
18

1
18

1
18

1
18

1
18

1
18

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

ci,x 0 1 -1 0 0 0 0 1 -1 1 -1 0 0 1 -1 1 -1 0 0
ci,y 0 0 0 1 -1 0 0 1 -1 0 0 1 -1 -1 1 0 0 1 -1
ci,z 0 0 0 0 0 1 -1 0 0 1 -1 1 -1 0 0 -1 1 -1 1

After the LBE is solved and f eq
i are calculated, macroscopic fluid density ρ and

momentum ρu can be calculated respectively as

ρ (x, t) =
∑︂

i

fi (4.61)

and
ρ (x, t) u (x, t) =

∑︂
i

fici. (4.62)

Fluid pressure can be computed from Eq. 4.61 through an equation of state. In
isothermal conditions, the fluid pressure can be computed from Eq. 4.61 through
the speed of sound as

p = c2
sρ. (4.63)

In the LBM, Eq. 4.47 is decomposed into two distinct parts and is solved in two
consecutive steps: 1) collision (or relaxation) and 2) streaming (or propagation).
This two steps are represented in Fig. 4.4. The two operations can be respectively
expressed mathematically as

fpost
i (x, t) = fi(x, t) − 1

τ
(fi(x, t) − f eq

i (x, t)) (4.64)

and
fi(x + ci, t+ 1) = fpost

i (x, t), (4.65)
where fpost

i is the distribution function after collision.
The collision is a local operation and post-collision populations fpost

i are evalu-
ated applying Eq. 4.64. Then, the results are streamed to the neighbor locations
as in Eq. 4.65. When these two operations are complete, one time step has elapsed
and the procedure moves to the next time.

42



4.3 – The Lattice Boltzmann Method: theory and implementation

Figure 4.4: Representation of collision and streaming steps. On this grid, the
attention is focused on the central node. After collision, populations are in a
state called post-collision (fpost

i ), represented as solid arrows on the left picture.
Each population has a different value and this is represented by the length of
the arrow. After collision, the streaming step occurs and fpost

i propagate to their
neighbor nodes where they collide with the populations incoming from the other
nodes. The streamed populations are represented as dashed arrows. On the right
picture, populations incoming from the neighbor nodes to the considered node are
represented in orange.

4.3.3 Lattice units
Lattice Boltzmann simulations are usually performed using dimensionless units,

that are related to physical units through units conversions or dimensionless num-
bers [98]. In the LBM, dimensionless units are called lattice units (l.u.).

In general, non-dimensionalization is achieved by dividing a physical quantity by
a reference quantity, which must be properly chosen and have the same dimensions
of the physical quantity. The reference quantity is also called conversion factor. In
the following, we refer to physical quantities using the subscript p and to quantities
in lattice units withe subscript lb. Even if basic conversion factors are arbitrary,
it is important that all the physical quantities involved in the problem are non-
dimensionalized in a consistent way. In the conversion from physical units to lattice
units, an important role is played by the Reynolds number, which is identical in
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both units systems, i.e.
Re = Up lp

νp

= Ulb llb
νlb

. (4.66)

This is related to the law of similarity (paragraph 4.2.3), which states that two
incompressible flow systems are similar if they have the same Reynolds number
and geometry [98]. In the following part of the paragraph, conversions used in our
simulations are showed and an example based on the fluid flow between two parallel
plates is given.

In order to set the simulation parameters, space, time and density in physical
units are related each other through the cell and time steps:

xp = xlb ∆x, (4.67)

tp = tlb ∆t, (4.68)
and

ρp = ρlb ∆ρ, (4.69)
where ∆x, ∆t and ∆ρ are the conversion factors and their units are respectively
m, s and kg/m3. As already mentioned in the previous paragraph, it is common in
the LBM to set the cell size and the time step in lattice units are equal to unity, i.e.
∆xlb = 1 and ∆tlb = 1. The non-dimensionalization process starts obtaining ∆x.
A physical system having a characteristic space length lp discretized by N cells is
considered; in this case, the cell size is

∆x = lp
N
. (4.70)

For density, the calculation is straightforward as well because in the LBM ρlb = 1
and therefore ∆ρ = ρp. For calculating ∆t there are two ways, depending on the
problem and the data available, using either the velocity or the kinematic viscosity.
The velocity (m/s) can be converted to lattice units by

up = ulb
∆x
∆t , (4.71)

and the kinematic viscosity (m2/s) by

νp = νlb
∆x2

∆t . (4.72)

Since in our application it is not easy to know the characteristic fluid velocity a
priori, the kinematic viscosity is used for the conversion and therefore

∆t = νlb

νp

∆x2. (4.73)
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Now the problem is reduced to the calculation of νlb, which is related to the relax-
ation time (τ) through

νlb = c2
s(τ − 0.5)∆tlb, (4.74)

where c2
s = 1/3 and τ must be imposed. In this way, the kinematic viscosity and

the relaxation time must be given as inputs to the simulation. From Eq. 4.74
originates the condition τ > 1

2 to have positive viscosity.
It should be recalled from paragraph 4.3.2 that the equilibrium distribution

function can be approximated to Eq. 4.49 for small Mach numbers (i.e. if ulb << cs)
and typically it is set ulb < 0.1. For this reason, in order to avoid the simulation
diverging, this requirement must be satisfied and ulb is calculated through the
Reynolds number:

ulb = Re νlb

llb
. (4.75)

Note that in this way the Reynolds number must be calculated using physical units
or imposed, as it usually happens.

Finally, the pressure must be converted to lattice units. To facilitate the cal-
culations, the kinematic pressure (i.e. pressure/density), which has units m2/s2, is
used:

plb = pp(︂
∆x
∆t

)︂2 . (4.76)

Also, pressure and density are related though the sound speed:

plb = c2
s ρlb. (4.77)

When the simulation ends, the same expressions inverted can be used to convert
the resulting quantities from lattice units to physical units. In the next paragraph,
an example is proposed to facilitate the understanding of lattice units and how the
conversion was performed in this work.

Example of lattice units conversion

Consider a 2D microchannel having length L = 6 × 10−4 m and height H =
1.5 × 10−4 m. The characteristic length of the system is l = H/2 = 7.5 × 10−5 m.
The fluid has a density ρ = 1050 kg/m3 and viscosity µ = 1 × 10−3 Pa s, therefore
the kinematic viscosity is ν = 9.52 × 10−7 m2/s. The pressure gradient across the
channel is ∆p/L = 80 Pa/m, which results in a pressure difference between inlet
and outlet of ∆p = 4.8 × 10−2 Pa and a kinematic pressure of ∆pkin = 4.57 × 10−5

m2/s2. In this case the maximum velocity is known analytically from Eq. 4.20 and
it is umax = 2.25×10−3 m/s. Using the maximum velocity as characteristic velocity,
the Reynolds number can be calculated and Re = 1.77 × 10−2. In porous media
application, Re ≤ 2 is a condition to satisfy in order to apply the Darcy’s law. For
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the space discretization, 240 cells are placed in the x direction (i.e. Nx = 240) and
60 cells in the y direction (i.e. Ny = 60). The relaxation time is τ = 0.75.

The non-dimensionalization starts applying Eq. 4.70, obtaining ∆x = 2.5×10−6

m and the characteristic length llb = 30 l.u. The kinematic viscosity is calculated
from Eq. 4.74 and it is equal to νlb = 0.083 l.u. The time step is calculated using
Eq. 4.73 and it is equal to ∆t = 5.47 × 10−7 s. The maximum velocity calculated
by Eq. 4.75 is ulb = 4.92 × 10−5 < 0.1 l.u. (the condition for the incompressibility
limit is satisfied). Finally, the pressure difference is converted to ∆plb = 2.19×10−6

l.u., using Eq. 4.76.

4.3.4 Boundary conditions
Boundary conditions in the LBM are more complicated than in traditional CFD

methods where usually velocity or pressure values are fixed in order to close the
system. In fact, in the LBM there are higher degrees of freedom related to the
populations fi that must be determined. At boundaries such as fluid-solid bound-
aries or inlets and outlets, after the streaming step populations belonging to fluid
nodes propagate to neighbor nodes. On the contrary, this behavior is not possible
for populations on boundary sites pointing to the inner domain. These incoming
populations are not specified by the LBE and they must be evaluated in a different
way [161]. The role of LB boundary conditions is to prescribe adequate values for
the incoming populations, i.e. those propagating from the solid object into fluid
region [98, 161].

The next two paragraphs discuss the bounce-back method [98] to treat fluid-
solid boundaries and the Zou-He method [162] for inlet and outlet flow boundaries.
These two boundary conditions are used to model fluid-solid grains interactions and
pressure difference between inlet and outlet as in laboratory flow experiments. At
the end of the paragraph, periodic boundary conditions, which are useful in simple
cases and numerical tests, are briefly discussed.

Bounce-back boundary condition at solid boundaries

In pore-scale fluid flow simulation, the most common fluid-solid boundary con-
dition is the no-slip velocity boundary condition. The most popular way to include
this boundary condition in the LB framework is through the bounce-back method,
due to its simplicity of implementation. Basically, populations hitting a rigid wall
during the streaming step are reflected back to where they came from.

The bounce-back method can be realized in two different ways: fullway bounce-
back and halfway bounce-back. In fullway bounce-back, populations travel the
complete link path to the solid node and then they are inverted during the collision
step in the next time step. In halfway bounce-back, populations travel only half of
the link distance and the inversion occurs during the streaming step in the current
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time step. In this work, the halfway bounce-back is implemented because it is more
accurate [98]. Quantitatively, in the halfway bounce-back method, populations
leaving the boundary node xb at time t meet the solid surface at time t+ ∆t

2 where
they are reflected back with a velocity ci = −ci, going back to the node xb at
time t + ∆t at the node xb. For these populations, the standard streaming step is
replaced by

fi (xb, t+ ∆t) = fpost
i (xb, t) . (4.78)

The bounce-back boundary condition can be applied in the same way to 2D and
3D cases. In order to explain in a clearer way this boundary condition, an example is
proposed. Consider the case of a resting wall in 2D with the D2Q9 velocity scheme,
as illustrated in Fig. 4.5. Populations f2, f5 and f6 (in red) are unknown after
the streaming step because they should come from the solid, while the remaining
populations (in green) are known because they income from a neighbor lattice node.
Unknown populations can be calculated via half bounce-back as:

f2 (xb, t+ ∆t) = fpost
4 (xb, t) , (4.79)

f5 (xb, t+ ∆t) = fpost
7 (xb, t) , (4.80)

f6 (xb, t+ ∆t) = fpost
8 (xb, t) , (4.81)

Zou-He boundary condition at open boundaries

Zou & He [162] proposed a method to specify density (pressure) or velocity on
flow boundaries such as inlet and outlet, based on the idea of bounce-back of the
non-equilibrium distribution function. For this reason, the Zou-He method is also
called non-equilibrium bounce-back (NEBB) method.

Let us consider a Poiseuille’s flow in a 2D channel. The situation at the inlet
is depicted in Fig. 4.6. After streaming, f0, f2, f3, f4, f6, f7 (in green) are known.
The objective is to determine f1, f5, f8 populations (in red), supposing that ux,in

or ρin are specified at the inlet boundary, through Eqs. 4.61 and 4.62 in a reverse
way (i.e. density and velocity are known and the populations has to be recovered).

As a first case, we consider that a constant density ρin is imposed at the inlet.
Populations f1, f5 and f8 and ux,in has to be calculated. Using Eqs. 4.61 and 4.62,
the equations are:

ρin = f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8, (4.82)

ρinux,in = f1 − f3 + f5 − f6 − f7 + f8 (4.83)
and, considering that the y-direction velocity component is zero,

ρinuy,in = 0 = f2 − f4 + f5 + f6 − f7 − f8. (4.84)
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Figure 4.5: Bounce-back boundary condition on fluid-solid boundaries. The solid
arrows represent the post-collision populations, while the dashed ones are the pop-
ulations after streaming. After streaming, f1, f3, f4, f7, f8 (in green) income from
the neighbor fluid nodes, while f2, f5, f8 (in red) are unknown because they should
propagate from outside the computational domain. The unknown populations are
computed by Eq. 4.78.

Since one equation is missing to close the system, it is assumed that the bounce-
back rule is still correct for the non-equilibrium part of the populations normal
to the boundary [162]. For example, the non-equilibrium bounce-back method is
applied to population f1. In order to compute the non equilibrium function fneq

1 ,
the equilibrium function f eq

1 must be known. For this reason, using Eqs. 4.82 and
4.83 the inlet velocity ux,in is calculated as

ux,in = 1 − f0 + f2 + f4 + 2 (f3 + f6 + f7)
ρin

. (4.85)

Now, the non-equilibrium bounce-back equation can be written at the inlet as

f1 − f eq
1 = f3 − f eq

3 . (4.86)

The equilibrium distribution functions f eq
1 and f eq

3 are

f eq
1 = ρin

(︄
1
9 + ux,in

3 −
u2

x,in

6

)︄
(4.87)
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and
f eq

3 = ρin

(︄
1
9 − ux,in

3 −
u2

x,in

6

)︄
. (4.88)

From Eqs. 4.86, 4.87 and 4.88 f1 results

f1 = f3 + 2
3ρinux,in (4.89)

and from Eqs. 4.83 and 4.84

f5 = f7 − 1
2 (f2 − f4) + 1

6ρinux,in, (4.90)

f8 = f8 − 1
2 (f2 − f4) + 1

6ρinux,in. (4.91)

A similar procedure can be applied if a constant velocity ux,in is imposed at the
inlet boundary. However, in Eqs. 4.82 and 4.83 ρin (instead of ux,in) is unknown
and it can be calculated in the same way of Eq. 4.85 and becomes

ρin = f0 + f2 + f4 + 2 (f3 + f6 + f7)
1 − ux,in

. (4.92)

Then the non-equilibrium bounce-back method is applied in the same way as re-
ported above and results of f1, f5 and f8 reported in Eqs. 4.89 - 4.91 are still
valid.

Periodic boundary condition

Periodic boundary conditions apply only to situations where the flow solution
is periodic. Applying this boundary condition, the fluid leaving the domain on
one side will, instantaneously, reenter at the opposite side. Consequently, periodic
boundary conditions conserve mass and momentum at all times.

For the NSEs, periodic boundary conditions are:

ρ (x, t) = ρ (x + L, t) (4.93)

and
ρu (x, t) = ρu (x + L, t) , (4.94)

where L describes the periodicity direction and length of the flow pattern. The
periodic condition is straightforward in the LBM. During propagation, the unknown
incoming populations fpost

i on one side are given by those leaving the domain at
the opposite side:

fpost
i (x, t) = fpost

i (x + L, t) . (4.95)
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Figure 4.6: Zou-He boundary condition on a inlet boundary. In this case, the
first column of cells are the inlet cells and on these cells the boundary condition is
applied. After streaming f2, f3, f4, f6, f7 (in green) income from the neighbor fluid
nodes, while f1, f5, f8 (in red) are unknown. Unknown populations are computed
by Eqs. 4.89-4.91. The same approach can be applied to outlet boundaries.

4.3.5 LBM procedure for single-phase fluid flow simulation
In this paragraph it is shown how the LBM was implemented with application to

2D single-phase fluid flow simulation in porous media. We are interested in reaching
steady state flow conditions, which are needed for the calculation of tortuosity,
effective porosity and permeability (Section 2.3). All the procedure, formed by pre-
processing, processing and post-processing, is reported in Fig. 4.8 and discussed in
more detail in the following paragraphs.

Pre-processing

In the pre-processing step, the computational grid is generated and the fluid
properties such as density, viscosity and relaxation time are assigned. Usually, as
represented in Fig. 4.9 for fluid flow simulation in porous media, the geometry is a
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Figure 4.7: Periodic boundary conditions. Unknown populations are computed by
Eq. 4.95

Figure 4.8: Algorithm for single-phase incompressible fluid flow simulation based
on the LBM.
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binary matrix where 0 is represents the pore space and 1 the solid grains. Further-
more, additional cells are inserted at the inlet and outlet boundaries to facilitate
inlet/outlet boundary conditions (Fig. 4.10). At the end of the pre-processing step,
all the physical quantities are converted into dimensionless quantities as described
in the Section 4.3.3.

In all simulations, the grid is structured and the lattice is squared, as shown
in Fig. 4.4, because during the streaming each population has to reach the same
position in the neighbor lattice. At each lattice, the D2Q9 velocity scheme (Table
4.1) is used (Fig. 4.9).

Figure 4.9: LBM grid generated from a binary image. Solid grains (in black) are
not considered as computational domain for the calculations. The D2Q9 scheme is
used as discrete velocity model.

Simulation

At the beginning of the simulation (t = 0), the model is initialized with zero
velocity and density everywhere except for the inlet cells, where a nonzero constant
density or velocity is imposed (Fig. 4.10).

After the initialization, time iterations start and the following operations are
performed during a single time step:

1) Collision (Eq. 4.64), using populations and macroscopic properties from the
previous time step.
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Figure 4.10: Example of simulation initialization with ρ = 0 (blue) everywhere
except that at the inlet cells where a constant ρ > 0 (yellow) is imposed. In this
picture the solid grains are represented in white.

2) Streaming of the new post-collision populations fpost
i to the neighbor nodes

(Eq. 4.65).

3) Boundary conditions are applied for computing missing populations at the
fluid-solid and inlet/outlet boundaries (Eqs. 4.78, 4.89-4.91 or 4.95).

4) Calculation of macroscopic properties using Eqs. 4.61, 4.62 and 4.63. Every
n iterations specified by the user, density, pressure and velocity values in both
x and y directions are saved in a database for post-processing purposes.

5) Check if steady state flow conditions are reached (i.e. the velocity does not
change with time), using the velocity criterion [163]

∑︁
i,j

⃓⃓⃓⃓(︂√︂
u2

i + u2
j

)︂t
−
(︂√︂

u2
i + u2

j

)︂t−1
⃓⃓⃓⃓

∑︁
i,j

(︂√︂
u2

i + u2
j

)︂t < tol, (4.96)

where t is the current time step, t− 1 the previous time step, i and j the two
velocity directions and tol is a tolerance to reach for having steady-state flow.
If the criterion is satisfied, the algorithm exits the loop, otherwise it continues
to iterate and go to t+ 1. Data at the last iteration are automatically saved
before leaving the loop. The simulation stops also if the maximum number
of iterations is reached.

Post-processing

After the simulation stops, two operations has to be performed:
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1) Convert all the quantities from lattice units to physical units.

2) Visualize the results.

At this point the simulation procedure ends and all the data are available.

4.3.6 Validation case: single-phase flow in a 2D microchan-
nel

In order to validate the numerical method for simulating single-phase flow of
incompressible fluids, the Poiseuille’s flow in a 2D microchannel (Eq. 4.19) was
considered. The microchannel has length L = 6×10−4 m and height H = 1.5×10−4

m. The fluid has a density ρ = 1050 kg/m3 and a viscosity of 1 × 10−3 Pa s (1
cP). A pressure gradient of 80 Pa/m is imposed between the inlet and the outlet
in order to induce the fluid flow. Constant pressure boundary conditions were
applied by using the Zou-He method. The bounce back boundary conditions was
used at fluid-solid boundary. The relaxation time was τ = 0.75. The average
velocity is uavg = 1.5 × 10−4 m/s, the maximum velocity umax = 2.25 × 10−4

m/s, the characteristic length l = H/2 = 7.5 × 10−5 m and the Reynolds number
Re = 1.77 × 10−2. The non-dimensionalization process is performed using the
equations reported in paragraph 4.3.3. In this test, maximum and average velocity
are calculated varying the number of lattices in the y direction. Input data and
analytical solutions of the quantities of interest are reported in Table 4.3. Five
cases are considered: Ny = 4, 6, 12, 30, 60 l.u. In Fig. 4.11, the numerical solution
is compared to the analytical solution (Eq. 4.19) over a cross section of the channel
for Ny = 60.

Table 4.3: Input parameters for the simulation of Poiseuille’s flow in a 2D mi-
crochannel.

H (m) 1.5 × 10−4

L (m) 6 × 10−4

∆p/L (Pa/m) 80
ρ (kg/m3) 1050
µ (Pa s) 1×10−3

umax (m/s) 2.25×10−4

uavg (m/s) 1.5×10−4

Re (-) 1.77 × 10−2

In Fig. 4.11, it is visible that the numerical solution approximates accurately
the theoretical behavior of the fluid flow. An estimate of the accuracy was obtained
calculating the numerical error of the maximum and average velocities with respect
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Figure 4.11: Validation of the LBM code for Poiseuille’s flow in a 2D microchannel
using Ny = 60. On the left, the velocity field is represented over the whole domain.
On the right, a cross section along y axis where a parabolic velocity profile occurs.

the analytical solution as:

E(u) =
⃓⃓⃓⃓
uan − unum

uan

⃓⃓⃓⃓
× 100, (4.97)

where u = umax or u = uavg. The results are reported in Table 4.4 and Fig. 4.12.
The Mach number is calculated by Ma = umax/cs = umax

√
3 in lattice units and it

was verified to be much smaller than 1 in all the cases, guaranteeing the flow to be
into the incrompressible limit. In this test, the minimum resolution able to resolve
and describe the fluid flow was investigated. As expected, the results show that
that the numerical error decreases increasing the resolution for the two quantities
of interest. For resolutions higher than Ny = 6 l.u., the numerical error is below 1%
in the maximum velocity and smaller than 3% in the average velocity. It should
be pointed out that in fluid flow in porous media the average velocity is more
significant because it influences the permeability, therefore it must be estimated
accurately. For resolutions higher than Ny = 12 l.u., the numerical error on the
average velocity is smaller than 2% and for Ny > 30 smaller than 1%. Since in
pore-scale simulations it is rarely possible to have 30 cells on the smallest pore
throat because it would be too computationally expensive, an accuracy of around
3% is enough to obtain reliable results and therefore it is necessary to guarantee
not less than 4-5 cells in the smallest pore-throat. In conclusion, the numerical
method and boundary conditions implemented were able to give accurate solution
results. Although not reported here, a larger number of simulations were run for
this case in order to check if the correct behavior was well estimated for different
space length and varying the pressure gradient.

Finally, it should be noted that the BGK model with bounce-back boundary
condition can lead to an incorrect estimate of the permeability. Pan et al. [102]
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proposed to solve this problem using the Multi-relaxation time in combination with
bounce-back boundary. Prestininzi et al. [104] also discussed this problem and they
showed that the BGK model and bounce back boundary condition leads to a correct
estimate of the permeability for Knudsen number (Kn) smaller than 0.01, which
correspond to the limit for the continuous flow regime, under which Navier-Stokes
equations and Darcy’s law are valid. The drawback of keeping Kn < 0.01 is a
considerable increasing in computational effort [104].

Table 4.4: Results of the validation test for different mesh resolutions.

Ny (l.u.) ∆y (m/l.u.) Ma (-) E(umax) E(uavg)
Case 1 4 3.75×10−5 1.3×10−3 4.23% 3.56%
Case 2 6 2.5×10−5 1.544×10−4 0.43% 2.95%
Case 3 12 1.25×10−5 1.527×10−4 0.95% 1.78%
Case 4 30 5×10−6 1.5121×10−4 0.65% 0.78%
Case 5 60 2.5×10−6 1.506×10−4 0.37% 0.4%

Figure 4.12: Numerical error of the maximum and average velocities computed with
the LBM with respect to the analytical values.

4.4 Eulerian grid-based methods
This Section briefly discusses the numerical procedure for solving the incom-

pressible Navier-Stokes equations numerically using Eulerian grid-based methods.
The problem is pressure-velocity coupled and requires iterative methods in order

56



4.4 – Eulerian grid-based methods

to be solved. In Section 4.4.1 the incompressible NSEs equations are presented in a
matrix form and the pressure-velocity coupled problem is introduced. In Paragraph
4.4.2, spatial and temporal terms in the NSEs are discretized using the Finite Vol-
ume Method. Finally in Section 4.4.6, the two most popular algorithms for solving
the incompressible NSEs (SIMPLE and PISO) are described. In this work, the
formulations of FVM and pressure-velocity coupling methods are presented as im-
plemented in OpenFOAM [164]. A more detailed description of these topics can be
found in Jasak [164], Versteeg & Malalasekera [165], and Guerrero [166].

4.4.1 Numerical solution of the Navier-Stokes equations
First of all, the incompressible NSEs are rewritten (Eqs. 4.3 and 4.9):

∇ · u = 0,
∂u
∂t

+ ∇ · (uu) − ∇ · (ν∇u) − g = −∇p,
(4.98)

where ν is the kinematic viscosity, p is the kinematic pressure and g the gravity
acceleration. In Eq. 4.98, we are seeking a solution for the velocity field u and for
the pressure field p. However, the main problem with Eq. 4.98 is that an equation
for pressure does not exist and an equation of state (such as p = ρRT ) cannot
be used in this case because density and temperature are constant. Therefore, in
order to resolve the fluid flow, an equation for pressure must be derived from the
momentum and continuity equations.

The momentum equation is rewritten in a general matrix form:

Mu = −∇p, (4.99)

where u is the unknown velocity field, ∇p the pressure gradient and M is a matrix
of coefficients obtained from the discretization of the differential terms in the NSEs.
As shown later, in this work the Finite Volume Method is used for the discretization.

The matrix M can be decomposed into the matrix A of diagonal components
and the matrix H(u) of off-diagonal components. The point of this decomposition
is that diagonal matrices are easier to invert. The matrix H(u) is defined as

H(u) = Au − Mu, (4.100)

Then the momentum equation in Eq. 4.99 can be rewritten as

Au − H(u) = −∇p, (4.101)

from which the velocity can be easily evaluated inverting the diagonal matrix A as

u = A−1H(u) − A−1∇p. (4.102)
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The velocity expression in Eq. 4.102 can be used into the continuity equation (i.e.
∇ · [A−1H(u) − A−1∇p]) to obtain an equation for pressure

∇ ·
[︂
A−1∇p

]︂
= ∇ ·

[︂
A−1H(u)

]︂
. (4.103)

Eq. 4.103 is called pressure-Poisson equation. Now, a new system of equations,
which includes an equation for pressure, equivalent to Eq. 4.98 is derived:

Au − H(u) = −∇p,
∇ ·

[︂
A−1∇p

]︂
= ∇ ·

[︂
A−1H(u)

]︂
.

(4.104)

The two equations reported in 4.104 are pressure-velocity coupled and are solved
iteratively ussing pressure-velocity coupled algorithms. SIMPLE and PISO proce-
dures are the most poplar methods for dealing with coupled pressure-velocity sys-
tems of equations. The SIMPLE algorithm is used for steady-state problems and
the PISO algorithm for transient problems. They are discussed in Section 4.4.6.

In Section 4.4.2, the Finite Volume Method used for the discretization of the
terms in Eq. 4.104 is shown.

Before moving to the next Section, a few general considerations about iterative
methods for solving systems of linear equations (such as Mu = −∇p) are presented.
In order to guarantee convergence, iterative solvers require the matrix of coefficients
to be diagonally dominant, which means that, for every row of the matrix, the
magnitude of the diagonal coefficient is higher or equal to the sum of the off-
diagonal elements (|aP | > ∑︁

N |aN |) [164]. Then, the diagonal dominance of the
of the system should be increased in order to improve the convergence. As shown
later, there are terms that tend to increase the diagonal dominance of the matrix
and therefore improve the convergence and the stability (the temporal derivative
or source terms), and others that reduce it (non-orthogonal corrections). When
diagonal dominance is not guaranteed, it is necessary to under-relax matrix the
coefficients in order to use iterative solvers.

4.4.2 Finite Volume discretization
The Finite Volume Method (FVM) is a discretization method (such as the Fi-

nite Difference Method or the Finite Element Method), that transform a partial
differential equation into a set of algebraic equations that can be solved numeri-
cally using iterative algorithms. In general, a system of algebraic equations can be
written in a matrix form as

Mu = b, (4.105)
where M is the matrix of coefficients, u is the vector of unknown variables and b
is the vector of known terms. At this stage, two more considerations are neces-
sary. The variable u is considered as implicit if it is unknown and therefore it is a
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solution of the Eq. 4.105; it will be referred to an implicit contribution using the
superscript n (e.g. un). The variable u is considered as explicit if it is known from
the previous time step and therefore it is included in b; it will be referred to an
explicit contribution using the superscript n − 1 (e.g. un−1). This distinction is
important in the computation of the discretize terms in the NSEs [164].

In order to introduce the FVM, we consider the general form of the transport
equation for an arbitrary variable φ:

∂(ρφ)
∂t

+ ∇ · (ρuφ) = ∇ · (ρΓ∇φ) + S(φ), (4.106)

where u is the fluid velocity and Γ is the constant diffusion coefficient. In Eq. 4.106,
on the left hand side, the two terms are the temporal derivative and the convection
term of φ respectively, while on the right hand side, the two terms are the diffusion
term and the source term respectively.

Note that the Navier-Stokes equations can be obtained from Eq. 4.106. In fact,
in Eq. 4.106, if φ = 1, Γ = 0 and S(φ) = 0, the continuity equation is obtained:

∂ρ

∂t
+ ∇ · (ρu) = 0, (4.107)

and if φ = u, Γ = ν and S(φ) = S − ∇p, the momentum equation is obtained

∂(ρu)
∂t

+ ∇ · (ρuu) = ∇ · (µ∇u) − ∇p+ S. (4.108)

In the FVM, the spatial domain is discretized in control volumes, or cells, to
form a mesh where the quantities (e.g. pressure, velocity and temperature) live
[165]. The control volumes can have any shape, however they require the cell faces
to be planar. An example of a control volume VP is represented in Fig. 4.13. The
point P is called centroid and f is called face center, and they are defined as∫︂

VP

(x − xP ) dV = 0 (4.109)

and ∫︂
Sf

(x − xf ) dS = 0. (4.110)

In Fig. 4.13, The point N is the centroid of the neighbor control volume VN and
d is the distance vector from P to N . The cell having centroid P is called owner
cell and the cell having centroid N is called neighbor cell. The point fi denotes
the intersection between d and the cell face. The vector Sf = ˆ︁nfS is the normal
surface unit vector and points outwards the control volume.

Finally, second-order (linear) approximations of the differential terms are re-
quested (second-order FVM). Therefore, it is assumed that the values of the vari-
ables vary linearly across the cell. This is equivalent to approximate the cell value

59



Pore-scale hydrodynamic modeling

Figure 4.13: Control volume [166]. The control volume has a volume V constructed
around the point P , which is the centroid of the control volume. The vector from
P to the centroid N of the neighboring control volume is named d. The control
volume faces are labeled f . The location where the vector d intersects a face is fi.
The face area vector Sf points outwards the control volume and it is located at the
face centroid normal to the face.

in the control volume the value at the centroid (average value):

φP = 1
VP

∫︂
φ(x) dV. (4.111)

In the same way, the values of the variables on the cell face are stored at the face
center and are calculated as the average value of the variable over the cell face:

φf = 1
Af

∫︂
φ(x) dA. (4.112)

4.4.3 Discretization of gradient and divergence operators
Here, it is shown how to evaluate the gradient of a generic variable φ at the

cell centroid P , i.e. (∇φ)P . The knowledge of (∇φ)P will be needed in the scheme
for the discretization of the convection term, for the non-orthogonal corrections in
the diffusion term and for the discretization of the pressure gradient term. The
gradient is obtained from the generalized form of the Gauss theorem and Eq. 4.112
respectively as [164]:∫︂

VP

∇φdV =
∮︂

∂VP

dSf φ =
∑︂

f

∫︂
f
dSφ =

∑︂
f

Sf φf . (4.113)

Using Eq. 4.111, it can be written as
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(∇φ)P = 1
VP

∑︂
f

Sf φf . (4.114)

In the same way, the Gauss theorem can be applied also for discretizing the diver-
gence operator at the cell centroid P [164], obtaining

(∇ · a)P = 1
VP

∑︂
f

Sf · af , (4.115)

where a is a generic vectorial field. Eq. 4.115 can be applied straightforward to the
discretization of the continuity equation (∇ · u = 0). In fact, substituting a with
the velocity field u, the discretized form of the continuity equation on the cell is∑︂

f

Sf · uf = 0, (4.116)

where Sf ·uf is the volumetric flux across the cell face. From Eq. 4.116, it is visible
that when the continuity equation is satisfied, the fluxes across the cell face are
conserved. This is an important property of the FVM.

4.4.4 Discretization of the momentum equation
In this Section, the discretization of the terms in the momentum equation is

discussed. The FVM requires that the incompressible NSEs (Eq. 4.98) are satisfied
over the control volume VP in the integral form [164]:∫︂ t+∆t

t

[︄
∂

∂t

∫︂
VP

u dV +
∫︂

VP

∇ · (uu) dV −
∫︂

VP

∇ · (ν∇u) dV
]︄
dt =∫︂ t+∆t

t

[︃∫︂
VP

−∇p dV +
∫︂

VP

g dV
]︃
dt.

(4.117)

The discretization of Eq. 4.117 is shown term by term. Second-order accuracy
must be guaranteed in the discretization of spatial and temporal terms.

Convection term

Using the divergence theorem, the volumetric integral over VP is transformed
into a surface integral over the control volume boundary faces ∂VP as:∫︂

VP

∇ · (uu) dV =
∮︂

∂VP

dS · (uu) , (4.118)

Now, Eq. 4.112 is applied to obtain∑︂
f

∫︂
f
dS · (uu)f =

∑︂
f

Sf · (uu)f =
∑︂

f

Fuf , (4.119)
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Figure 4.14: Linear upwind scheme for the convection term.

where Sf ·uf = F is the volume flux through the cell face. In order to calculate uf ,
we focus on the Linear Upwind Differencing (LUD) method, which is a second-order
accurate scheme.

In order to introduce the LUD scheme, we consider two cells in a structured 1D
mesh with centroids named P and E as represented in Fig. 4.14. Our purpose is
to evaluate the velocity on the cell face uf . The LUD scheme takes into account
the gradient between the two centroids upstream f . In this simple case, the LUD
scheme can be formulated as

uf =

⎧⎪⎪⎨⎪⎪⎩
uP + 1

2 (uP − uW ) F > 0

uE + 1
2 (uE − uF ) F < 0

, (4.120)

Referring to Fig. 4.15, the LUD scheme in Eq. 4.120 can be generalized for
general 3D meshes using the method proposed by Barth & Jespersen [167]:

uf =

⎧⎪⎪⎨⎪⎪⎩
uP + ψf (∇u)P · dP f F > 0

uN + ψf (∇u)N · dNf F < 0
, (4.121)

where ψf is called gradient limiter and 0 < ψf < 1. In fact, sometimes the computed
gradient might be too steep, producing a velocity at the cell face greater than
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the velocities of the two neighbor cells (i.e. uP and uN), causing instabilities in
the solution. In this case, the role of the gradient limiter is to reduce the values
of the gradient and stabilize the simulation. Finally, the LUD scheme requires
the discretization of the gradient at the cell centroid ((∇φ)P or (∇φ)N); how to
compute this gradient is discussed in Section 4.4.3.

Figure 4.15: Generalization of the linear upwind scheme for the convection term
for unstructured meshes [166].

In Eq. 4.121, it is evident that both the owner cell P and all the neighbor cells
N contribute to the convection term. Furthermore, the velocities of the convection
term are evaluated implicitly and therefore they contribute to fill the M matrix
of coefficients. For the convection term, a triagonal matrix (which reflects the
connectivity between owner and neighbor cells) will be created, having the owner
cells P on the diagonal and the neighbor cells N off the diagonal. Formally, it can
expressed as

mP un
P +

∑︂
N

mNun
N , (4.122)

where mP and mN are the diagonal and off-diagonal coefficients of M, respectively.

Diffusion term

As for the convection term, the volumetric integral of the convection term is
transformed into a surface integral by the divergence theorem:∫︂

VP

∇ · (ν∇u) dV =
∮︂

∂VP

dS · (ν∇u) . (4.123)
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The discretized form of Eq. 4.123 is∑︂
f

∫︂
f
dS · (ν∇u)f =

∑︂
f

Sf · (ν∇u)f =
∑︂

f

νfSf · (∇u)f , (4.124)

where νf is obtained by central differencing at the cell face. Central differencing is
second-order accurate.

In orthogonal meshes, i.e. vectors d and S in Fig. 4.16 are parallel, the gradient
term at the cell face (∇u)f is discretized by central differencing:

Sf · (∇u)f = |Sf |uN − uP

|d|
. (4.125)

Figure 4.16: Vectors d and S on a non-orthogonal mesh [164].

In non-orthogonal meshes, Fig. 4.16, non-orthogonality has to be taken into
account. As shown in Fig. 4.17, the Sf is evaluated as the sum of two parts:

Sf = ∆⊥ + k, (4.126)

where ∆⊥ is the component parallel to d and k is the non-orthogonal component.
In this way, the dot product Sf · (∇u)f in Eq. 4.125 is split into two parts:

Sf · (∇u)f = |∆⊥|uN − uP

|d|
+ k · (∇u)f , (4.127)

where, on the right hand side, the first part is the orthogonal contribution and the
second part the non-orthogonal contribution. The gradient in the non-orthogonal
contribution is calculated as shown in Eq. 4.114.

In Eq. 4.127, the orthogonal contribution is treated implicitly because both
uP and uN are unknown. As discussed for the convection term, uP represents the
diagonal components and uN the off-diagonal components. Therefore, the orthog-
onal contribution of the diffusion term tends to improve the overall stability of the

64



4.4 – Eulerian grid-based methods

Figure 4.17: Non-orthogonality treatment in the orthogonal correction approach
[164].

solution procedure. On the contrary, the non-orthogonal contribution is evaluated
explicitly and it is added to the source term. Since explicit terms increase instabil-
ity, the non-orthogonal term should be as small as possible. Note that higher the
non-orthogonal term, higher the explicit term and, as a consequence, smaller the
implicit term (orthogonal contribution). This is the reason why it is important to
have a mesh as good as possible.

Source term

The source term in Eq. 4.117 is the gravitational acceleration and it is a constant
vector g. Integrating g over the control volume, it becomes∫︂

VP

g dV = g VP . (4.128)

Clearly, in this expression there is no dependency to the velocity field, then this
source term will be added to the vector s of the known terms in Eq. 4.105.

Even if this is the most common form of the source term in incompressible
NSEs, it is worth mentioning a more general form of the source term. In general,
the source term the source term S(u) can be linearized, i.e. S(u) = Sp + Suu. In
this case, Eq. 4.111 is applied, obtaining∫︂

VP

S(u) dV =
∫︂

VP

[Sp + Suu] dV = SpVP + SuVP uP . (4.129)

The term proportional to the velocity can be treated in two different ways, depend-
ing on the sign of the source term. If the source terms has a negative sign, it is
treated implicitly because it contributes to increase the diagonal dominance of the
matrix M. However, if it has a positive sign it is treated explicitly and it is added
to the known term vector s because it would reduce the diagonal dominance of M.

65



Pore-scale hydrodynamic modeling

Temporal discretization

In order ensure second-order approximation in time, linear variation of the
generic property φ over the time interval between t and t+ ∆t is assumed [164]:

φ(t+ ∆t) = φ(t) + ∂φ(t)
∂t

∆t. (4.130)

Furthermore, φ(t+ ∆t) is denominated as φn and φ(t) as φn−1.
Assuming that the control volume does not change in time, the temporal deriva-

tive term in Eq. 4.117 becomes∫︂ t+∆t

t

∂

∂t

(︃∫︂
VP

u dV
)︃
dt =

∫︂ t+∆t

t

(︄
∂u
∂t

)︄
P

VP dt =
(︂
un

P − un−1
P

)︂
VP . (4.131)

The temporal variation of centroid values, face values and gradients are ne-
glected [135]. They are assumed to be constant during a time step [136]. Consid-
ering that all terms are treated implicitly, the discretized from of Eq. 4.117 in the
P cell centroid can be written as:(︂

un
P − un−1

P

)︂
VP +

∑︂
f

Fun
f ∆t− |∆⊥|u

n
N − un

P

|d|
∆t+ k ·

(︂
∇un−1

)︂
f

∆t−

− g VP ∆t = − 1
VP

∑︂
f

Sf p
n
f ∆t.

(4.132)

Discretized momentum equation

Eq. 4.132 can be rearranged dividing by ∆t and writing all the implicit terms
on the right hand side of the equation and the explicit terms plus the source term
on the right hand side:

un
PVP

∆t +
∑︂

f

Fun
f − |∆⊥|u

n
N − un

P

|d|
+ 1
VP

∑︂
f

Sf p
n
f =

= un−1
P VP

∆t − k · (∇u)n−1
f + g VP .

(4.133)

Grouping all the explicit terms on the right hand side of the equation into bP , Eq.
4.133 can be written in matrix form as

aP un
P +

∑︂
N

aNun
N +

∑︂
f

Sf p
n
f = bP . (4.134)

The H(u) matrix contains the off-diagonal coefficients ∑︁N aNun
N and the source

terms bP :
H(u) = −

∑︂
N

aNun
N + bP . (4.135)
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Eq. 4.134 can be rearranged using Eq. 4.135 as

aP un
P + H(u) = −

∑︂
f

Sf p
n
f . (4.136)

This is the discretized form of Eq. 4.101. From Eq. 4.136, the discretized from of
Eq. 4.102 can be expressed as

un
P = H(u)

aP

− 1
aP

∑︂
f

Sf p
n
f . (4.137)

4.4.5 Discretization of the pressure equation
The pressure-Poisson equation (Eq. 4.103) can be discretized using Eq. 4.134

and applying the schemes reported in Section 4.4.3 as [164]:
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4.4.6 Pressure-velocity coupling algorithms
In order to calculate pressure and velocity fields, Eq. 4.136 and Eq. 4.139 must

be solved. For this purpose, PISO and SIMPLE algorithms are used for transient
and steady-state problems respectively [164]. Since this is a coupled problem, the
two equations are solved in sequence and iteratively. Before going into detail, two
major assumptions valid for both algorithms are pointed out: in Eq. 4.136, the
H(u) matrix and the pressure gradient are evaluated explicitly:

aP un
P + H(u) = −

∑︂
f

Sf p
n−1
f . (4.140)

where
H(u) = −

∑︂
N

aNun−1
N + bP . (4.141)

4.4.7 PISO
The PISO algorithm (Fig. 4.18) was proposed by Issa [134] and it is used for

transient calculations.
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1) Momentum predictor. The momentum equation (Eq. 4.140) is solved. At
this stage, the pressure from the previous time step (or from initial conditions)
is used. The velocity at this stage does not satisfy the continuity.

2) Pressure solution. Using the predicted velocities, the pressure equation
(Eq. 4.139) is solved. The obtained pressure gives an estimate of the new
pressure field.

3) Momentum corrector. The pressure obtained in the step 2 is used to cor-
rect the velocity field using Eq. 4.137. Now the velocity satisfy the continuity.

At the end of step 3, the pressure has to be recalculated because the velocity
has changed and therefore H (u) has changed. Therefore, H (u) is corrected and
the new pressure equation (step 2) is formulated.

In other words, at each time step, the PISO algorithm consists of one momentum
predictor followed by a series of pressure solutions and momentum correctors. If
there is high non-orthogonality, non-orthogonality loops has to be performed over
the pressure equation [166]. Finally, it is important to mention that the PISO loop
requires a small number of iterations (usually less than 10) to converge, especially
when the time step size is small and the diagonal dominance of the matrix is
increased; this is an important characteristic of this algorithms because it allows
solve the equations over a large number of time steps in an acceptable amount of
time.

4.4.8 SIMPLE
The SIMPLE (Fig. 4.18) algorithm was proposed by Patankar [135] and it is

used for solving steady state problems.

1) Momentum predictor. As in PISO, the first step is the momentum pre-
dictor. However, since in steady-state simulations the temporal derivative
is not present, Eq. 4.140 is under-relaxed in order to increase the diagonal
dominance of the matrix [164]:

1
α
aP un

P = H(u) −
∑︂

f

Sf p
n−1
f + 1 − α

α
aP un−1

P , (4.142)

where α is the under-relaxation coefficient between 0 and 1. The pressure gra-
dient is computed using the pressure distribution from the previous iteration
or from an initial guess.

2) Pressure solution. The pressure equation (Eq. 4.139) is formulated and
solved in order to obtain the new pressure field.
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3) Momentum corrector. The velocity is corrected using Eq. 4.137.

At the end of step 3, the matrix H(u) has to be recalculated with the new
velocity field and therefore the pressure needs to be recomputed as well. Differently
from PISO, here the process restarts from the momentum predictor step (step 1)
and iterations continue until the tolerance is reached.

Figure 4.18: PISO (left) and SIMPLE (right) algorithms.

4.4.9 Boundary conditions
Three types of boundary conditions exist [166]: 1) Dirichlet (or fixed value)

boundary conditions, which fix the value of the variable on the physical boundary
(i.e. φ = φb at the boundary b), 2) Neumann (or fixed gradient) boundary condi-
tion, which prescribes the value of the gradient of the variable normal to the physical
boundary (i.e. (∇φ)b = gb at the boundary b), and 3) Robin (or mixed) boundary
condition, which mixes Dirichlet and Neumann boundary conditions. In the model,
physical boundaries (e.g. walls, inlet, outlet, symmetry plane) are associated with
a set of boundary conditions for each variable calculated [164].

Here, we report the most common boundary conditions used at inlet, outlet and
wall boundaries in CFD applications:

1) Inlet boundary: three configurations are mainly used.
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• fixed value boundary condition for the velocity and zero gradient bound-
ary condition for the pressure. This boundary conditions is the most
stable when used in combination with the outlet boundary condition
reported below, but the less representative from the physical point of
view.

• fixed flow rate, which is translated into a velocity profile, and zero gra-
dient boundary condition for the pressure. This configuration is useful
if a comparison with laboratory experiments is needed.

• zero gradient boundary condition for the velocity and fixed value bound-
ary condition for the pressure. Also this configuration is realistic in lab-
oratory flow experiments, where a pressure gradient between inlet and
outlet is applied to move the fluid.

2) Outlet boundary: fixed value boundary condition for pressure and zero
gradient zero gradient boundary condition for velocity.

3) No-slip wall: fixed value boundary condition for the velocity set to zero (the
wall is not moving) and zero gradient boundary condition for pressure.

4) Symmetry: when the geometry (and the flow) has a symmetry, it is possible
to insert a symmetry plane and simulate only half of the domain. The com-
ponent of the gradient normal to the symmetry plane is fixed to zero, and
the component parallel to the symmetry plane are projected from inside the
domain to the boundary face.

4.5 Estimate of hydrodynamic parameters
This paragraph discusses the methodology based on hydrodynamic modeling

proposed in this work to estimate the rock parameters showed in Section 2.3, i.e.
tortuosity, effective porosity and permeability. To this end, both the LBM and the
FVM can be used.

The hydraulic tortuosity was defined by Carman [55] as the ratio of the average
length of the fluid paths divided by the length of the sample:

τh,i = ⟨Lh,i⟩
Li

where i = x, y, z. (4.143)

Clennell [56] suggested a kinematical average in which the path lines were weighted
with fluid flow velocities. Later, Koponen et al. [57] suggested to calculate the
hydraulic tortuosity in a fixed direction i using the velocity field calculated by
direct numerical simulation in the pore space:

τh,i = ⟨|u|⟩
⟨ui⟩

where i = x, y, z (4.144)
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where |v| is the absolute value of the local flow velocity, vi is the i-th component
of that velocity and ⟨⟩ denotes the spatial average over the pore space. Here, the
LBM and the FVM were used to simulate the fluid flow in porous media at the
pore-scale and obtain the velocity field and calculate the hydraulic tortuosity (τh,i)
with Eq. 4.144. It was verified that the tortuosity value does not change varying
the pressure gradient until laminar flow conditions are guaranteed, i.e. Re ≤ 2
[168], where the Reynolds number Re was calculated as [7]:

Re = ρU dc

µ
, (4.145)

where dc is the characteristic length, ρ and µ are the density and the dynamic
viscosity of the fluid respectively and U is the averaged velocity over the porous
medium. There are several ways to define the characteristic length in a porous
medium: sometimes it is equal to the grain diameter [7], others it involves the
hydraulic radius (or hydraulic diameter)[169–171]. Here, the image-based definition
introduced by Mostaghimi et al. [172] and later proposed by Blunt [8] was adopted:

dc = π
Vb

Sw

= π
rH

ϕ
, (4.146)

where Vb is the total volume of the bulk system (pore and grain) and Sw is the
wetted surface (surface area between grain and void). Eq. 4.146 represents a sort
of average grain size diameter. In 2D, rH is replaced by rH,2D and ϕ by ϕ2D.

For comparison with the geometrical approach, the effective porosity can be
calculated using the hydrodynamic paths by [57]:

ϕeh,i = Ns,i

Nl,i

where i = x, y, z (4.147)

where, according to Koponen et al. [57], Ns is the number of grid cells crossed by
streamlines and Nl is the total number of grid cells. To reduce the computational
effort, we calculated the effective porosity by applying a cutoff on the local velocity
|u| obtained by numerical simulations. A preliminary analysis on the velocity field
distribution showed that the velocities of one order of magnitude lower than average
velocity value were not significantly contributing to the flow. The total effective
porosity ϕeh was then calculated merging the identified cells contributing to the
flow in i direction.

The connected porosity (ϕc), i.e. the fraction of pore space actually connected,
is also obtainable from the hydrodynamic simulation. In fact, the isolated pore
space is not affected by the imposed pressure difference and remains at the initial
pressure condition (p = pi), giving:

ϕc = ϕ− Npi

Nl

where i = x, y, z (4.148)
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where Npi is the number of porous grid cells with p = pi and Nl is the total number
of grid cells. The connected porosity ϕc represents a first estimate of the pore
fraction that can be potentially involved in the fluid flow. By definition, ϕe ≤ ϕc.

The permeability kh,i is directly calculated by inverting the Darcy’s equation
[173]:

kh,i = ui µ

∇ip
where i = x, y, z (4.149)

where ∇ip is the macroscopic pressure gradient across the sample in the i direction
and ui is the component of the Darcy’s velocity in the i direction. The pressure
gradient is calculated as

∇ip = pin − pout

Li

, (4.150)

where pin and pout are constant pressures at the inlet and outlet and Li is the sample
length in the i-direction. The Darcy’s velocity is calculated as

UD,i = 1
V

∫︂
V
ui(x, y, z) dV, (4.151)

with V the volume of the sample and vi(x, y, z) the local velocity field of the fluid
in the i-direction.
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Chapter 5

Characterization of 2D images of
rocks

The purpose of this Chapter is to show the application of the methodology
based on the geometrical and hydrodynamic characterization described in Chapters
3 and 4 to 2D binary images of rocks. The results obtained with these two different
procedures are discussed and compared. The case studies and the results reported
in this Chapter were published in Viberti et al. [73].

In 2D geometries, the inlet and outlet points are placed in the pore space on
the inlet and outlet boundaries of the image. These are the points where the fluid
enters and leaves the porous medium. Therefore, the application of A∗ algorithm
to the images gives a set of nin ×nout geometrical paths in the considered direction.

In the hydrodynamic approach, numerical simulation of single-phase fluid flow
in the pore space using the LBM was used to obtain the fluid paths. The imple-
mentation adopted for single-phase flow simulation in porous media is based on
the BGK model. The relaxation time was set equal to 1 and the time step was
calculated in accordingly to guarantee stability conditions [98]. The nine-velocity
square lattice model D2Q9 [150] was adopted to discretize the domain. At the
fluid-solid interface, no-slip condition was imposed by the halfway bounce-back
method. Constant pressure boundary conditions, which were implemented by the
non-equilibrium bounce-back method [162], were applied at the inlet and outlet
boundaries. No-flow boundaries parallel to the main flow direction were assumed
to reproduce laboratory conditions and they were implemented using the halfway
bounce-back method. Furthermore, in order to facilitate the application of bound-
ary conditions, additional cells were added to the inlet and outlet lines.
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5.1 Validation cases
In order to validate the two approaches, three simple cases were analyzed: a

thin curved channel (Case 1), a thick curved channel (Case 2) and a slanted straight
channel, inclined of 23◦ (Case 3); details are given in Table 5.1.

Table 5.1: Validation cases. Note that in this table τ refers to tortuosity and not
to relaxation time [73].

Image dimensions (px × px) Resolution (ppcm) ϕ2D (-) τan (-) r (mm)
Case 1 793 × 623 4170 0.061 1.571 0.030
Case 2 745 × 736 3920 0.360 1.512 0.223
Case 3 491 × 298 2650 0.206 1.086 0.108

In these cases, the hydraulic radius is equal to the capillary tube radius, the
effective porosity is equal to the porosity and the tortuosity is the length of the tube
median line divided by the extension in the x direction. The input parameters of the
three cases are reported in Table 5.2. The fluid used for hydrodynamic simulations
has the following properties: viscosity 0.5 cP, density 1050 kg/m3. A pressure
gradient of 100 Pa/m was applied between inlet and outlet. Laminar flow occurs in
all the three cases (Re ≤ 2). The identified geometrical and hydrodynamic paths
are compared in Fig. 5.1. Results are summarized in Table 5.3.

Table 5.2: Parameters for the numerical simulation of validation cases [73].

nx (l.u.) ny (l.u.) ∆x (µm/l.u) Re (-)
Case 1 793 623 2.4 0.0046
Case 2 745 736 2.55 1.97
Case 3 491 298 3.77 0.3443

The pore radius estimated with the geometrical approach r̃p is in good agree-
ment with the hydraulic radius rH,2D, which matches the channel radius. τg and τh

are similar to the theoretical values τ and they give an excellent estimate of tortu-
osity in Case 3. In the presence of curves (i.e. Case 1 and Case 2), τg is smaller
than τh because the shortest path is a slanted line crossing out the curve, while the
hydrodynamic path follows the tube curvature. The discrepancy is more significant
when the pore radius is larger (Case 2). In Case 1 the hydrodynamic path follows
the channel median line, while in Case 2 the hydraulic path does not perfectly follow
the channel median line and, as a consequence, in Case 2 the computed hydraulic
tortuosity differs a little from the analytic value. As expected, ϕeg matches the
total porosity. ϕeh is slightly lower, due to the combination of no-slip effect at the
solid-fluid interface, numerical discretization and velocity field processing.
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Figure 5.1: Simulated velocity map and detected geometrical paths for the valida-
tion cases: (a) Case 1, (b) Case 2, (c) Case 3 [73].

Table 5.3: Comparison of parameter estimates obtained by the geometrical and
hydrodynamic approaches for the validation cases [73].

rH,2D (mm) r̃p (mm) τg (-) τh(-) ϕeg (-) ϕeh (-)
Case 1 0.030 0.029 1.530 1.571 0.061 0.057
Case 2 0.231 0.221 1.268 1.486 0.359 0.353
Case 3 0.110 0.115 1.087 1.083 0.206 0.198

5.2 Case studies
The geometrical and hydrodynamic characterization was carried out on images

obtained from thin sections of 3D samples of sedimentary rocks. In this study, two
medium-to-fine-grained sandstone and a oolite were analyzed: Berea sand (D50 =
23 µm [174]), Hostun sand (D50 = 300 µm [175]) and Caicos ooid (D50 = 420 µm
[176]). All these images were taken from the literature. When available, multiple
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images of the same rock were studied. The images are represented in Fig. 5.2 and
the details are reported in Table 5.4.

(a) BE30

(b) CA52 (c) CA42

(d) HO49 (e) HO56 (f) HO47

Figure 5.2: Case studies: 2D images of sedimentary rocks [73].

These three rocks have very different pore geometries. Berea sand is character-
ized by a high difference in pore dimensions. Hostun sand is more homogeneous and
it is characterized by well-sorted predominantly quartz angular grains [177]. Caicos
ooid is relatively homogeneous and characterized by round calcite grains [176]. The
high porosity and permeability values of these rocks make them a potential source
of hydrocarbons. Also, they are used as standard rocks for various applications such
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Table 5.4: Case studies: images details [73].

Image dimensions (px × px) Resolution (ppcm) ϕ2D (-)
BE30 769 × 624 4120 0.3
HO49 640 × 640 1450 0.49
HO56 449 × 549 1915 0.56
HO47 657 × 654 858 0.47
CA52 546 × 549 1414 0.52
CA42 448 × 417 531 0.42

as laboratory core analysis, flooding experiment, testing the efficiency of chemical
surfactants and studying the drainage capacity in granular soil [178–180].

For Berea sand, a black and white image of a horizontal sample [129] widely
used in literature (for example in Gu et al. [181] and Xu & Liu [121]) was adopted;
the image is shown in Fig. 5.2a and named in the following as case BE30. For
Hostun sand, X-ray micro-tomography images of horizontal sections of three differ-
ent samples were considered: a section with ϕ2D = 49% [182], named case HO49;
a small horizontal section with ϕ2D = 56% [183], named case HO56; a more ex-
tended section with ϕ2D = 47% [183], named case HO47. For Caicos ooid, X-ray
micro-tomography of two samples were available: a small horizontal section [183],
named CA52, and a more extended vertical section, already segmented [176], named
CA42. The gray-scale X-ray micro-tomography images were segmented in order to
distinguish the solid part from the voids for the following geometrical analysis and
hydrodynamic simulation: 1 was assigned to the solid grain while 0 to the porous
domain. To this end, a threshold was applied to the gray-scale images based on
the histogram of pixels values [183]. The obtained binary images are shown in Fig.
5.2b-5.2f and the corresponding image parameters are reported in Table 5.4, where
the 2D porosity values were calculated from images.

In order to observe hydrodynamic behavior, the smallest pore size should be 4-5
lattice units [105]. When the pixel resolution of the rock images did not satisfy the
condition above, the figures were resized by bi-cubic interpolation [86], imposing
a number of lattices that guarantees a minimum of 5 lattice cells in the smallest
pore throats. The numerical parameters of the case studies are reported in Table
5.5. The fluid used for numerical simulations has the following properties: viscosity
0.5 cP, density 1050 kg/m3. The pressure gradient between inlet and outlet is 100
Pa/m. Laminar flow occurs in all the three cases. The case studies were analyzed
separately in the x and y directions to assess eventual discrepancy in tortuosity
which could be an indicator of permeability anisotropy.
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Table 5.5: Numerical simulation parameters [73].

nx (l.u.) ny (l.u.) ∆x (µm/l.u.) Re (-)
BE30 1706 1367 1.04 3.18E-04
HO49 1200 1200 3.45 0.054
HO56 1000 1209 2.5 0.0192
HO47 1200 1038 6.66 0.0281
CA52 800 804 5 0.0526
CA42 1200 1121 7.5 0.006

5.3 Results and discussion
Results of the geometrical analysis and hydrodynamic simulation are summa-

rized in Table 5.6. Moreover, the mode of the pore radius rp estimated through the
path finding approach is compared with the calculated hydraulic radius (rH,2D). In
CA42 there is no connectivity along the x direction, thus it was not possible to
estimate τx.

Table 5.6: Comparison of parameter estimates obtained by the geometrical and
hydrodynamic approaches [73].

rH,2D (µm) r̃p (µm) τxg (-) τxh (-) τyg (-) τyh (-) ϕeg (-) ϕeh (-) ϕch (-)
BE30 14.6 7.29 1.250 1.416 1.437 1.542 0.277 0.256 0.3
HO49 71.7 58.6 1.269 1.459 1.243 1.357 0.374 0.362 0.481
HO56 52.6 57.5 1.153 1.322 1.14 1.362 0.533 0.506 0.559
HO47 69.5 47.2 1.257 1.641 1.22 1.6 0.342 0.355 0.459
CA52 61.4 38.9 1.128 1.301 1.118 1.278 0.508 0.489 0.519
CA42 78.8 95.4 - - 1.317 1.65 0.065 0.056 0.31

In Figs. 5.3 and 5.4, the results for BE30 and HO49 are represented. In Fig.
5.5, it is shown the comparison of the effective porosity map obtained with the two
approaches. In Fig. 5.6, the pore radius analysis conducted with the geometrical
approach (i.e. overall pore radius distribution and pore radius evolution along a
single path) is shown.

In all cases, tortuosity values calculated with the two methods are comparable
(the discrepancy is less than 10%) and the geometrical tortuosity is slightly smaller
than the hydraulic tortuosity, as expected [54, 56]. The only exception is HO47,
which shows a discrepancy of around 16%; this is due to local significant narrow-
ing of the pore radius along the shortest paths which induces the fluid flow to
choose alternative ways even if longer. Comparing these results with the literature,
tortuosity results of Berea are coherent with the gamma-shaped distribution with
minimum value 1.07 and most probable value near to 2, reported in Lindquist et al.
[37] and just below the range 1.6-2.8 reported in Takahashi et al. [184].
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Figure 5.3: Simulated velocity map and detected geometrical paths on Berea
sandstone considering flow in the y direction [73].

The pore radius distribution obtained by the path-finding algorithm appears to
be reliable. For instance, in Berea the distribution is in good agreement with the
literature (Fig. 5.6a): 31% of pore throats diameter about 10 µm [83]; 5 µm as the
most frequent pore throat radius [84]; 37% of relative pore volume characterized
by 7-10 µm of pore radius [185]. In Hostun, results are comparable with the pore
diameter distribution calculated with Mercury Intrusion Porosity and analysis of
SEM images [175], which show a mode around 60-90 µm. Reasonable agreement
is observed between the hydraulic radius and the mode of pore radius distribution
obtained by the geometrical approach in all cases (Tab. 5.6), thus suggesting that
the hydraulic radius is reasonably representative of the effective pore radius of the
sample, at least if the pore radius variations are limited. The representativeness of
rH,2D is poorer when the pore radii is highly variable (e.g. BE30, HO47, CA42).

In all cases except CA42, the connected porosity is similar to the total porosity
(ϕc,h ≈ ϕ2D). In fact, CA42 shows a very poor connection as shown in Fig. 5.5.
Good agreement is observed in terms of estimated effective porosity in all scenar-
ios (Tab. 5.6). Pore space in small sections (CA57 and HO56), characterized by
higher porosities, is more interested by fluid flow (i.e. ϕ− ϕe < 10% ). Conversely,
in HO49, HO47 and CA42 significant dead zones (ϕ − ϕe ≈ 30% or greater) are
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Figure 5.4: Simulated velocity map and detected geometrical paths on Hostun
sandstone considering flow in the x direction [73].

clearly identified by both approaches. Discrepancies between effective porosity es-
timated with the two approaches is below 5% in most cases. These differences are
due to different treatments of meandering pore space zones by the two methods.
Trajectories identified by the A∗ algorithm agree with the paths shown by the ve-
locity map in HO49, H56, CA52 and CA42, and, as consequence, the identified
dead zones are well comparable. On the contrary, in BE30 and HO47, the more
complex pore structure, characterized by multiple possible paths between the en-
try and outlet points, and the higher variability in the pore radius induce local
discrepancies between the geometrical and hydrodynamic path. The fluid flow, in
presence of a conspicuous narrowing of the pore radius, choose to follow a wider
pathway.
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(a) geometric (b) hydraulic

Figure 5.5: Pore volume interested by fluid flow (red) and dead zones (white) on
Caicos ooid CA42, identified by applying (a) the path-finding algorithm and (b) a
threshold on the velocity simulated by the LBM [73].

(a)
(b)

Figure 5.6: Estimate of the pore size of Berea sandstone: (a) pore radius distribu-
tion compared with the hydraulic radius (red line) ; (b) pore radius variation along
a single geometrical path, compared with the mode of the pore radius along the
selected path (green line) and the hydraulic radius (red line) [73].
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(a) geometric (b) hydraulic

Figure 5.7: Pore volume interested by fluid flow (red) and dead zones (white) on
Berea sandstone, identified by applying (a) the path-finding algorithm and (b) a
threshold on the velocity simulated by the LBM [73].

Figure 5.8: Representation of the connected porosity in HO49 [73].
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(a) geometric (b) hydraulic

Figure 5.9: Pore volume interested by fluid flow (red) and dead zones (white) on
Hostun HO47 sandstone, identified by applying (a) the path-finding algorithm and
(b) a threshold on the velocity simulated by the LBM [73].

Figure 5.10: Velocity map obtained by LBM simulation and geometrical paths in
HO47 in y direction. Pore narrowing forces a change of the fluid path. on the other
hand, the shortest path is highlighted by red arrows and yellow circles [73].
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Chapter 6

Characterization of 3D images of
rocks

In this Chapter, the methodology presented in Chapters 3 and 4 and applied
to 2D binary images or rocks Chapter 5 is extended to 3D binary images of porous
media. Since 3D images data of real rocks were not available, synthetic 3D binary
samples were generated through the random porous media generation algorithm
Quartet Structure Generation Set (QSGS) [186]. For 3D images, the analysis was
also extended to the estimate of permeability k and anisotropy R. Anisotropy can
be quantified by [187]:

R = kmin√
kint kmax

, (6.1)

where kmin is the minimum permeability, kint is the intermediate permeability and
kmax is the maximum permeability value.

For the geometrical characterization, the A∗ algorithm is used to obtain the
shortest paths between pairs of inlet and outlet points.

For the hydrodynamic characterization, single-phase fluid flow was simulated by
CFD modeling at low Reynolds numbers (i.e. Re ≤ 2) to obtain the hydrodynamic
paths in the pore space. The CFD code OpenFOAM, based on the Finite Volume
Method (FVM), was used to perform simulations. The Navier-Stokes equations
(NSEs) govern the incompressible single-phase flow at small Reynolds numbers.
The NSEs are solved for steady-state conditions by the Semi-Implicit Method for
Pressure Linked Equations (SIMPLE) algorithm [135].

The case studies and the results reported in this Chapter were published in
Salina Borello et al. [75].
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6.1 Generation of 3D synthetic rock images
The QSGS is an algorithm to generate 3D porous media based on the stochastic

cluster growth theory [186]. The QSGS generates realistic microstructures of porous
media such as rocks [188–190] and soils [191] with a few control parameters. Three
control parameters must be set for generating a porous medium saturated by a
single fluid: porosity (ϕ), core distribution probability (P ) and a set of growth
probabilities (Di). The core distribution probability is the probability of a grid cell
center to become the core of a grain and it determines the degree of detail of a
structure. In fact, bigger P leads to more smaller grains. The growth probability
Di is the probability of the grain to grow in the i-direction. The set of growth
probabilities regulates the anisotropy. In 3D, 26 directions (6 main, 12 side, and 8
diagonal) are considered. The scheme of growth directions adopted in this work is
shown in Fig. 6.1, where main directions (from D1 to D6) are represented in green,
side directions (from D7 to D18) in red and diagonal directions (from D19 to D26)
in blue.

Figure 6.1: Scheme of growth directions for the QSGS algorithm [75].

Isotropic systems are obtained by setting uniform values within each class of
direction [186]. The values used in this work are:

D1, . . . , D6 = D1,

D7, . . . , D18 = 1
12D1,

D19, . . . , D26 = 1
8D7.

(6.2)
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In order to introduce anisotropy in the vertical (z) direction, horizontal and vertical
growth probabilities are connected to an aspect ratio AR = Dz/Dxy

D1, . . . , D4 = D1,

D5, . . . , D6 = ARD1, AR < 1,

D7, . . . , D10 = 1
12D1,

D11, . . . , D18 =
√
AR

12 D1,

D19, . . . , D26 =
3
√
AR

96 D1.

(6.3)

In terms of permeability, the resulting relationship between anisotropy, and growth
probability aspect ratio AR is nonlinear. A similar behavior can be recognized from
the data provided by Wang et al. [192].

In the QSGS algorithm there are two main steps [190]:

1) Grain cores are randomly distributed on the grid in according toP :

(a) a random number ng is assigned to each grid cell;
(b) cells having ng < P become grain cores.

2) Iterative enlargement of existing solid grains in according to Di, until the
desired value of porosity ϕ reaches the desired value ϕ:

(a) new random numbers ngi are assigned to all neighbor cells of the grain.
(b) the neighbor cells in the i-direction will belong to the grain if ngi < Di.

Since the generation procedure is random, the same set of control parameters
will produce different geometries having same morphological features. Recently,
some authors proposed a modified versions of the QSGS algorithm to take into
account multiscale pore size distributions [192, 193]. Wang et al. [192] used a
combination of a coarse and a refined structure obtained by two independent si-
multaneous construction processes, characterized by two different core distribution
probabilities (Pcoarse and Prefined). In this work, a modification of the two-scale gen-
eration method suggested by Wang et al. [192] was adopted to generate anisotropic
porous media. In this implementation, coarse and refined structures are constructed
in sequence. Once the coarse grain structure G1 is fully grown to a target porosity
(ϕcoarse), the refined grain structure G2 grows independently until the combination
of the two structures (G3) reaches the target porosity ϕ. G3 is obtained by the
union of the coarse and refined structures, with possible local permeation. Details
about the QSGS algorithm modified in order to consider multiple grain size distri-
butions is shown in Fig. 6.2. In the obtained geometry there may be some dead-end
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or isolated pores not connected to the main pore space. In order to generate 3D
porous media with the QSGS algorithm, the open-source code GenPorMed [194]
was used and then modified and integrated to include multiple grain distributions
and anisotropy.

It should be noted that the QSGS algorithm gives a simplified representation
of rock complexity. In fact, it assumes stationarity over the domain of interest,
therefore it is not able to reproduce heterogeneity. Also, unlike fractal approaches,
it ignores the scale-invariance properties widely existing in porous media [195].
However, it is a comprehensive algorithm to characterize the original complexity
in natural porous media, such as the random internal morphology and anisotropic
properties [195].

6.2 Case studies
Two different cases were considered: an isotropic porous medium with porosity

equal to 30% (Case 1) and an anisotropic porous medium having a porosity of 20%
and smaller grain sizes (Case 2). Case 1 was generated with the QSGS algorithm,
while case 2 was generated with the modified version of the QSGS algorithm con-
sidering two-scale grain size. The QSGS parameters are listed in Tab. 6.1 and the
generated samples are binary matrices having 100 × 100 × 100 voxels. The samples
have an edge length equal to 0.7 mm. The 3D images and 2D sections for Case 1
and Case 2 are shown in Fig. 6.3.

Table 6.1: Cases generated with the QSGS algorithm [75].

Case 1 Case 2
P (-) 0.001 Pcoarse=0.001; Prefined=0.0001
Dx,y (-) 0.001 0.001
Dz (-) 0.001 1 × 10−9

ϕ (%) 30 ϕcoarse=50; ϕ=20
rH (µm) 4.25 5.03

Resolution (ppcm) 142.9 142.9

For the geometrical characterization, a set of inlet and outlet points were po-
sitioned on the boundary faces of the domain orthogonal to the flow directions x,
y and z. In this case, inlet and outlet points were set by the user. However, since
in some cases the manual selection of inlet and outlet points might be time con-
suming, a procedure for the automatic selection these points was implemented and
described in Appendix A.

The mesh for the CFD simulations was created by using the native OpenFOAM
mesh generator snappyHexMesh. In order to use snappyHexMesh, the 3D binary
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Figure 6.2: QSGS algorithm with two grain-size distributions [75].

image obtained with the QSGS was converted into a stl file using the Matlab library
written by Aitkenhead [196].

For each case study, three simulations were run to assess the textural parame-
ters in each direction i = x, y, z. For each investigated direction i, the flow is forced
toward i direction by imposing a macroscopic pressure gradient ∇ip along the i
direction. To this end, constant pressure at the inlet (pin) and at the outlet (pout)
boundaries were imposed. No flow and no-slip boundary conditions were imposed
on the remaining external surfaces and at the fluid-solid interface. In the CFD
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Figure 6.3: 3D images of the cases generated with the QSGS algorithm: (a) isotropic
(Case 1) and anisotropic (Case 2). 2D top sections of Case 2 in x, y and z directions
[75].

simulations, the mesh was refined to guarantee at least 3-4 cells in the smallest
pores. In order to choose the correct mesh resolution, a mesh sensitivity was con-
ducted on Case 1 and in the x flow direction. In all the simulations, the grid is
structured and the cell is square, i.e. ∆x = ∆y = ∆z. Four different increasing
mesh resolution are considered and named refinement level: level 1 corresponds to
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the lowest resolution and level 4 to highest resolution. The accuracy is evaluated
by calculating the following relative error on permeability [173]:

E(k) = |k4
x − kj

x|
k4

x

, (6.4)

where j = 1,2,3 is the refinement level up to 3 and k4
x is the permeability calculated

with the refinement level 4, that has ∆x = 2 µm. Also, the same relative error
was calculated for tortuosity (E(τh)) and effective porosity (E(ϕe)). Using the
refinement level 4, the results are: k = 900 mD, τh = 1.653 and ϕe = 16.84. In
Table 6.2, the relative errors related to the refinement levels are showed.

Table 6.2: Relative errors for three different refinement levels.

Refinement ∆x (µm) E(k) E(τh) E(ϕe)
Level 1 3.5 15% 0.96% 2.55%
Level 2 2.8 8% 0.78% 2.43%
Level 3 2.3 2.3% 0.27% 0.35%

Increasing the refinement level, the relative error in permeability decreases from
15% to 2.3%, suggesting that the numerical error in permeability calculation is
related to the number of cell discretizing the smallest pores [173]. Hydrodynamic
tortuosity and effective porosity are much less sensible to grid refinement than
permeability. Therefore, when the main task is to calculate τh or ϕe, a high level
of refinement is not required to obtain an accurate result. However, in this study
we are interested in calculating permeability with good accuracy and therefore the
refinement level 4 was chosen.

Finally, in order to verify that the numerical method can be used to character-
ize the porous medium, it is necessary that the permeability and the other pore
structure parameters do not change with the type of fluid injected. Therefore, it
was also verified that permeability, tortuosity and effective porosity were invariant
with respect the fluid properties in single-phase fluid flow conditions. Three differ-
ent fluids were considered at reservoir conditions (150 bar, 45 ◦C): water, methane,
and heavy oil. In all the cases, the same pressure gradient between the inlet and the
outlet was applied, assuring Reynolds number Re<< 1. Details are given in Table.
6.3. The simulations were run for all the three types of fluids in the three direc-
tions and the values of permeability, tortuosity and effective porosity values were
found to be almost the same, ensuring the ability of the hydrodynamic approach
to characterize correctly the rock properties.
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Figure 6.4: Computational mesh for CFD simulation. The pore space of binary
images is directly discretized.

Table 6.3: Fluid properties, pressure difference, pressure gradient and Reynolds
number adopted for the hydraulic characterization [75].

water methane heavy oil
µ (Pa s) 0.0005 1.60 ×10−5 0.5
ρ (kg/m3) 1050 107.5514 1050
∆p (Pa) 0.0708 0.0708 0.0708

∆p/L (Pa/m) 101.1429 101.1429 101.1429
Re 10−4 10−2 10−10

6.3 Results and discussion
In this Section, the main results obtained with the geometrical and hydrody-

namic approach are reported, and a comparison between the two methods is pro-
posed. In Fig. 6.5, the pressure field computed with CFD for Case 1 and Case 2
in the z direction are represented. This picture shows a clear and uniform pressure
gradient over the all domain in Case 1, and a disconnected and sharp pressure
gradient in Case 2, where in only a few small regions of the domain a transition is
visible. This is a first qualitative indication of low connectivity in z flow direction
in Case 2, because the fluid is forced to flow into a few connected channels and a
large part of the domain is not connected.

In Figures 6.6 and 6.7, the main flow paths identified by the geometrical and
the hydrodynamic approaches are shown. On the top, the blue points on the inlet
and outlet sections represent the nin and nout sets of points selected as starting and
final points for the search and the geometrical paths are represented in red. On
the bottom, the hydrodynamic paths individuated through the velocity field map
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Figure 6.5: Pressure fields for Case 1 (left) and Case 2 (right) in z flow direction.
Note that the kinematic pressure (pkin = p/ρ) is represented, therefore the physical
pressure is obtained mutiplying pkin by the fluid density.

in the three main flow direction are reported. In Case 1, the isotropy of the system
is visible both from the geometrical and hydrodynamic paths because there are no
favorite flow direction over the others. In Case 2, fewer geometrical and hydraulic
paths are found in z direction over x and y directions, suggesting anisotropy in the
system. The geometrical and hydrodynamic approach are consistent in the results.

All the numerical results obtained with the geometrical and hydrodynamic ap-
proaches are listed in In Table 6.4. The distributions obtained with the geomet-
rical analysis of the pore space for tortuosity, pore radius and constriction factor
are compared for Case 1 and Case 2 and are showed in Figs. 6.9, 6.10 and 6.9
respectively. Note that the representative pore radius and the constriction factor
cannot be calculated by the hydrodynamic approach.

The values of tortuosity, effective porosity, permeability and anisotropy calcu-
lated with the geometrical and hydrodynamic approach are in good agreement both
in Case 1 and Case 2. The histograms of constriction values for Case 1 and Case
2 are showed in Fig. 6.10. In Case 1, the histograms confirm the isotropy of the
system because have similar shapes and the mode is around the same value; this
is confirmed by the numerical values of the mode reported in Table 6.4. In Case
2, the histogram of constriction in z direction is moved to higher values and its
mode Cz=222 is significantly larger than Cx=86 and Cy=94. An increase of the
constriction factor produces a decrease in permeability and the strong difference in
constriction factor is another sign of anisotropy in the sample. Similar considera-
tions can be done regarding the tortuosity distribution.

In the hydrodynamic approach, the fluid flow is intrinsically influenced by all
the features of the pore space (i.e. tortuosity, effective porosity, constriction and
pore radius) and the porous medium is usually characterized by a single parameter
that takes into account all these properties, which is the permeability calculated
directly inverting the Darcy’s law. Instead, in the geometrical approach all pore
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Figure 6.6: Geometrical paths for Case 1, considering flow in the x, y, and z
directions. Simulated velocity map for Case 1 in the x, y, and z directions [75].

space characteristics are evaluated individually and combined through the Kozeny-
Carman equation. In Case 1, the estimate of permeability values calculated with
the geometrical approach and using ck = 5.8 is in good agreement with permeability
values obtained with the hydrodynamic approach. In case 2, the Kozeny-Carman
coefficient (Section 2.3) ck = 20, obtained by fitting the permeability of the x
and y directions with the values of the hydrodynamic simulation, is within the
range of 4-40 reported in literature. The values of permeability calculated with
the geometrical approach are strongly affected by the selected value of the Kozeny-
Carman coefficient ck, which is difficult to be established a priori for irregular
geometries such as anisotropic porous media. The possibility to include information
about the constriction factor in ck should be investigated.

Since the A* algorithm has been implemented in a prototype Matlab code,
which is not been optimized and/or parallelized yet, a quantitative comparison in
terms of computational time against the CFD code OpenFOAM is not provided.
Nevertheless, the computational time of the geometrical approach is lower than
CFD single-phase flow simulation: run time reduction of about 5% considering
50 × 50 inlet and outlet points per direction; run time reduction of about 80%
considering 30 × 30 inlet and outlet points per direction.
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Figure 6.7: Geometrical paths for Case 2, considering flow in the x, y, and z
directions. Simulated velocity map for Case 1 in the x, y, and z directions [75].

Figure 6.8: Tortuosity distribution: a) Case 1; b) Case 2 [75].

A final consideration is related to the invariance of the hydrodynamic character-
ization to the chosen fluid. Fluids with very different properties such as water, gas
(CH4), and heavy oil were used for the hydraulic characterization of the anisotropic
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Table 6.4: Results obtained with the geometrical and hydrodynamic approaches
[75].

Geometrical Hydrodynamic
Case 1 τx (-) 1.35 1.653

τy (-) 1.38 1.660
τz (-) 1.4 1.443
ϕe,x (-) 16.7 16.84
ϕe,y (-) 16.9 16.83
ϕe,z (-) 19.0 17.26
ϕe (-) 24.9 26.32
rx (µm) 6.9 -
ry (µm) 7.2 -
rz (µm) 7.3 -
Cx (-) 187 -
Cy (-) 120 -
Cz (-) 125 -
kx (mD) 759 900
ky (mD) 807 764
kz (mD) 906 839

R (-) 0.89 0.88
Case 2 τx (-) 1.52 1.320

τy (-) 1.48 1.519
τz (-) 1.73 2.068
ϕe,x (-) 12.4 11.02
ϕe,y (-) 11.25 10.57
ϕe,z (-) 9.65 11.05
ϕe (-) 16.35 16.97
rx (µm) 15.5 -
ry (µm) 10.5 -
rz (µm) 8.5 -
Cx (-) 86 -
Cy (-) 94 -
Cz (-) 222 -
kx (mD) 653 663
ky (mD) 287 287
kz (mD) 118 72

R (-) 0.27 0.16

case. Consistent results were obtained for water, gas and heavy oil. Thus, the pro-
posed geometrical approach can be effectively applied to a variety of scenarios char-
acterized by single-phase flow, such as geothermal applications and aquifers, and to

96



6.3 – Results and discussion

Figure 6.9: Pore radius distribution: a) Case 1; b) Case 2 [75].

Figure 6.10: Constriction factor distribution: a) Case 1; b) Case 2 [75].

characterize petrophysical properties for gas storage scenarios, including CO2 and
H2 storage, and reservoir production. However, the proposed geometrical approach
cannot account for multiphase flow properties such as contact angle and interfacial
tension, which result in relative permeability and capillary pressure effects at the
macro scale. These properties affect the fluid flow and the fluid phases preferential
paths.
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Chapter 7

Conclusions

The aim of this thesis was to propose a methodology based on geometrical
analysis and hydrodynamic simulation at the pore-scale for the estimation of mi-
croscopic and textural parameters that influence the fluid flow behavior in porous
media. To this end, a geometrical analysis based on the A* path-finding algorithm
was implemented to characterize the pore network geometry of 2D and 3D binary
images of rock samples and the results were compared to hydrodynamic simulations
directly in the pore space.

Chapter 2 introduced and discussed the parameters of interest for rock char-
acterization, i.e. tortuosity, effective porosity, permeability, hydraulic radius and
constriction factor.

Chapter 3 presented the A* algorithm and its implementation in this work
in order to find the shortest paths between inlet and outlet points in 2D and 3D
binary images of rocks. A sensitivity analysis showed that the algorithm was robust
with respect to the selected number of inlet and outlet points. Furthermore, a
methodology based on the A* algorithm to calculate the parameters introduced in
Chapter 3 was proposed.

Chapter 4 showed two numerical methods to simulate fluid flow in porous media
at the pore-space: the Lattice Boltzmann Method and the Finite Volume Method
with pressure-velocity coupling. In this work, the LBM with BGK collision opera-
tor was implemented to solve single-phase flow in 2D porous media. Bounce-back
boundary condition was applied at the fluid-solid interface and Zou-He boundary
condition at open boundaries. A validation test showed that the method and bound-
ary conditions implemented were able to reproduce accurate results for Poiseuille’s
flow in a 2D microchannel. For the simulation of fluid flow in 3D geometries, the
open source code OpenFOAM was used. The pressure-velocity algorithms SIMPLE
was used to solve numerically the Navier-Stokes equations and steady-state condi-
tions. Finally, a methodology based on hydrodynamic simulation was adopted to
estimate tortuosity, effective porosity and permeability of rock images.

Chapter 5 showed the use of the geometrical analysis based on the A* algorithm
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for the characterization of the pore network geometry and connectivity of 2D bi-
nary images of rock samples representative of real geological formations. In order to
validate the results provided by the geometrical analysis, the LBM code discussed
in Chapter 4 was used. Results showed that the geometrical approach produced
reasonable estimates of tortuosity and effective porosity and was successfully ap-
plied to analyze the distribution of the pore size. Some discrepancies in the results
provided by the geometrical and hydrodynamic approaches were present in cases
characterized by large pores (i.e. Case 2), or high variability of pore radius along
the paths (i.e. Berea B30 and Hostun HO47). In fact, the geometrical approach
always selected the shortest paths, without considering the pore size. Thus, the
geometrical paths did not always reflect some local flow paths.

In Chapter 6, the geometrical analysis based on the A* algorithm was adopted
to characterize the pore network geometry of 3D binary images representative of
rock samples. Two cases, isotropic and anisotropic, were generated using the QSGS
algorithm, which was modified to generate different types of rocks having different
grain size distribution and anisotropy ratio. An algorithm for automatic selection of
inlet and outlet points was also proposed (Appendix A). The geometrical analysis
was performed to produce a detailed description of the pore space and a tensorial
representation of tortuosity, effective porosity, representative pore radius for cal-
culation of permeability and anisotropy. The results provided by the geometrical
approach were validated by using the CFD simulator OpenFOAM. Results showed
that the geometrical approach was able to characterize tortuosity, effective porosity,
permeability, and anisotropy. The results obtained with the two approaches are in
good agreement in both cases.

The developed geometrical approach can be applied to a thorough description
and characterization of the internal geometry of porous media in terms of pore
radius distribution and texture parameters. As a consequence, it can be useful for
a variety of scenarios such as geothermal applications, gas storage, including CO2
and H2, and reservoir production. Since physical parameters such as interfacial
tension and contact angle are not taken into account, multiphase properties cannot
be characterized. The proposed geometrical methodology should not be considered
as an alternative to CFD simulation but as a possible additional tool for a thor-
ough geometrical description and characterization of the pore network geometry.
Another interesting and promising area to apply the methodology described in this
work is microfluidics. In fact, microfluidics contributes to the investigation of fluid
flow, providing synthetic tools that mimic porous media and enable the direct vi-
sualization of the fluid dynamics and the tuning of geometrical features. These
devices can also be called micromodels. A microfluidic device is typically consti-
tuted by a patterned layer bonded to a transparent covering layer. The integrated
usage of experimental and computational microfluidics is a powerful approach to
understand the complex mechanisms that occur in geological porous systems. The
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methodology reported in this thesis can be a useful tool for the design of microflu-
idic devices. The geometrical characterization can be used to extract properties
such as pore-size distribution and constriction factor and, on the other hand, the
hydrodynamic characterization can be used to calculate tortuosity and permeabil-
ity of the micromodel. These parameters can be used as input for the design of
synthetic rocks that have geometrical and transport properties similar to real rocks.

7.1 Future work
Based on the results reported in this thesis, the following suggestions can be

studied and developed in future works:

1. Parallelization of the A* algorithm. As discussed in Section 6.3, the A*
algorithm is implemented in a prototype Matlab code which is not optimized
nor parallelized. The A* algorithm is particularly suitable for parallelization
because a path search is independent from the others. For this reason, the
current code should be translated to a more efficient programming language
and parallelized in order to drop significantly the computational time.

2. Improvement and optimization of the LBM code. First of all, it is necessary
to implement the multi-relaxation time to obtain reliable estimates of per-
meability without increasing significantly the computational time. In fact, a
very fine mesh is required in order to keep the Knudsen number smaller than
0.01 as required in simulations with single-relaxation time. However, this is
not always possible, especially in simulations on large domains. Secondly,
although the code is already compatible to 3D simulations, it has never been
tested on 3D cases of porous media. In order to perform 3D simulations on
3D geometries, further optimization of the code is necessary to reduce the
computational cost.

3. 3D images of real rocks. In this work, the methodology was applied to 3D
synthetic images generated with the QSGS algorithm. It would be interesting
to apply the methodology to real 3D images of rocks obtained with micro-CT.

4. Multiphase flow simulation. A further step necessary to study pore-scale
phenomena associated to CO2 and H2 underground storage is the simulation
of multiphase flow in porous media. Multiphase simulations can be used to
calculate saturation, capillary pressure and relative permeability curves and
to visualize displacement patterns and trapping phenomena such as snap-off
and water by-pass.
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Appendix A

Automatic selection of inlet and
outlet points

In 3D binary images of porous media, boundary faces can be characterized by
a significant number of pores and therefore a manual selection of inlet and outlet
points could be not efficient and time-consuming. Therefore, an algorithm based on
the medial axis algorithm was developed in order to place inlet and outlet points
automatically. In order to extract the skeleton of the pore network, the Matlab
Image Processing Toolbox was used on 2D images of the boundary faces. Then,
the points of the skeleton are grouped in clusters with the K-means algorithm. The
number of clusters is fixed to the desired number of inlet and outlet points. The cell
centroid nearest to the cluster centroid is selected as an inlet/outlet point. In this
way, the selected inlet/outlet points lay on the medial axis and are spread almost
uniformly on the pore domain. In Fig. A.1, a 2D inlet surface of a porous medium
is showed. The medial axis of the pore space network is represented in cyan. The
algorithm individuated automatically 150 inlet points depicted in blue.
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Figure A.1: Example of a boundary surface with automatic identification of inlets
[75].
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Nomenclature

∆t: Time step size

∆x: Cell size

A: Matrix of diagonal coefficients

c: Microscopic velocity, m/s

ci: Lattice velocity

d: Distance vector between two centroids

H: Matrix of off-diagonal coefficients

M: Matrix of coefficients

Sf : Surface vector normal to the cell face

u: Local (i.e. pore-scale) velocity, m/s

UD: Darcy’s velocity, m/s

Ma: Mach number

Re: Reynolds number

µ: Dynamic viscosity, Pa s

ν: Kinematic viscosity, m2/s2

Ω: Collision operator

ϕ: Porosity

ϕc: Connected porosity

ϕe: Effective porosity

ρ: Density, kg/m3
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Nomenclature

τ : Relaxation time

τg: Geometrical tortuosity

τh: Hydraulic tortuosity

R: Anisotropy

φ: Arbitrary variable

Aw: Wetted area, m2

C: Constriction factor

c(ni): A∗ cost function

cd: Connecting distance

ck: Kozeny’s constant

cs: Sound speed

Di Growth probability

E: Error

F : Cell volume flux

f : Particle distribution function

f eq: Equilibrium particle distribution function

fi: Discrete particle distribution function (also called population)

fpost
i : Post-collision discrete particle distribution function

g(ni): A∗ backward cost

h(ni): A∗ forward cost

k: Permeability, m2

P Distribution probability

p: Pressure, Pa

rH : Hydraulic radius, m

rp: Equivalent pore radius, m
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Nomenclature

S: Surface

V : Volume

wi: Weights depending on the lattice velocity direction

BGK: Bhatnagar-Gross-Krook

CFD: Computational Fluid Dynamics

FIB-SEM: Focused Ion Beam-Scanning Electron Microscopy

FVM: Finite Volume Method

LBM: Lattice Boltzmann Method

LUD: Linear Upwind Differencing

Micro-CT: X-ray micro-computed tomography

NSEs: Navier-Stokes Equations

PISO: Pressure-Implicit with Splitting of Operators

QSGS: Quartet Structure Generation Set

REV: Representative Elementary Volume

SEM Scanning Electron Microscopy

SIMPLE: Semi-Implicit Method for Pressure Linked Equations
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