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Review of open neuromorphic architectures and a
first integration in the RISC-V PULP platform

Michelangelo Barocci∗, Vittorio Fra∗, Enrico Macii∗ and Gianvito Urgese∗
∗ Politecnico di Torino, 10138, Torino (TO), ITALY. Email: name.surname[at]polito.it

Abstract—Although initially conceived as a tool to empower
neuroscientific research by emulating and simulating the human
brain, Spiking Neural Networks (SNNs), also known as third
generation neural networks, are gaining popularity for their
low-power and sparse data processing capabilities. These at-
tributes are valuable for power-constrained edge and Internet of
Things (IoT) applications. Several open-source FPGA and ASIC
neuromorphic processors have been developed to explore this
field, although they often require additional computing elements
to manage data and communications. In this work, we review
recent open-source neuromorphic architectures and the PULP
ecosystem. We then present an integration of the ReckOn digital
neuromorphic processor with the PULPissimo RISC-V single core
microcontroller to enable edge IoT applications. Our integrated
design is validated through QuestaSim hardware simulation.
Through this integration of low-power neuromorphic and RISC-
V processors, we focus on the promising potential of SNNs for
optimizing edge IoT systems constrained by power budgets and
data sparsity.

Index Terms—Neuromorphic Engineering, Neuromorphic
Hardware, RISC-V SoC, Configuration on Edge

I. INTRODUCTION

Since the late 1980s, when the term neuromorphic was
coined by Carver Mead to refer to artificial neural systems
with architectures and design principles inspired by those
of biological systems [1], both hardware and computation
aimed at providing brain-inspired functionalities have evolved
significantly [2, 3, 4, 5]. Despite this, and although the
neuromorphic paradigm has demonstrated the possibility of
achieving remarkable gains in terms of energy saving [6, 7,
8, 9], dedicated hardware is still hardly available. For this
reason, services and infrastructures like Ebrains [10] or the
Intel Neuromorphic Research Community (INRC) [11] can
be joined to get access to platforms like SpiNNaker [12,
13], BrainScaleS [14] or the Loihi chip [15, 16]. Such a
limitation can negatively impact the foreseen widespread of
neuromorphic solutions for on-edge and low-power applica-
tions in domains like the Internet of Things (IoT) and Industry
4.0 [17, 18, 19, 20, 21, 22]. Complementary strategies are
needed, especially at the research level, to foster and accelerate
further development of neuro-inspired models and systems. To
this aim, Field Programmable Gate Arrays (FPGAs) represent
an optimal tool to prototype and deploy digital neuromorphic
architectures: their flexibility makes them particularly suitable
for customization and promising candidates for open-source
HW [23]. However, their need for external data management
and transfer forces them to consider an additional processor
responsible for controlling operations during runtime [24].

FPGA-based design of neuromorphic architectures therefore
implies a twofold perspective, or a co-design of collaborative

units: on the one hand, the definition of the actual neuromor-
phic architecture and, on the other hand, the integration with a
traditional processor to configure the Spiking Neural Network
(SNN) and complement the data analysis in the digital world.

This paper reviews the open neuromorphic architectures
suitable for open-HW design and integration with the Parallel
Ultra Low Power (PULP) platform. We also show a prelimi-
nary example involving ReckOn [25] and PULPissimo [26]
as neuromorphic processor and traditional micro-controller
respectively.

II. ARCHITECTURES OVERVIEW

FPGA-based neuromorphic architectures have gained pop-
ularity due to their potential advantages for the develop-
ment of dedicated HW coprocessors [27]. Recently, FPGA-
deployable neuromorphic architectures have offered computer
science researchers access to neuromorphic HW that may
otherwise be limited. They also provide flexibility in program-
ming the architecture to suit different use cases and exper-
iments. Researchers can rapidly iterate on different neuron
and synapse models, learning rules, and network topologies
without needing to deploy a new HW design for each change.
However, FPGA designs also face challenges related to re-
source constraints, limited efficiency, and long reconfiguration
times. Nonetheless, the unique combination of accessibility,
flexibility and reconfigurability offered by FPGAs has made
them good candidate platforms for developing neuromorphic
architectures in the newcomer of the neuromorphic research
community.

Digital neuromorphic architectures that are FPGA-
deployable vary widely in their design goals. For example,
some architectures such as ODIN [28] and ReckOn [25]
are designed as single-core solutions to increase power
efficiency. On the contrary, architectures such as Minotaur
[29] and Spiker [30] prioritize optimization of inference
performance over energy consumption. Minotaur is a digital
event-driven SNN accelerator with online learning capabilities
that optimizes performance by working on memory accesses
for synaptic connections, weights, and neuron statuses. Spiker,
on the other hand, consists of a single layer of 400 Leaky
Integrate and Fire (LIF) neurons updated with a clock-driven
approach, meaning that the internal state of the neuron is
updated at every clock cycle, even in the absence of spikes.
Other architectures, such as SENeCA [31], are powered by
a low-power RISC-V Ibex core that offers a wide range
of possibilities in terms of hardware co-design, thanks to
the neuron processing instruction set that it provides. In
contrast, the work proposed in [32] is capable of adapting



its computing scheme between clock or event-driven based
on the frequency of the input spikes. Some architectures
are targeted towards scalability, like RANC [33], a scalable
neuromorphic platform designed to accelerate research in the
SNN domain, while others like Darwin [34], a neuromorphic
co-processor powered by a RISC-V core, focus on improving
computational efficiency. Finally, the architectures proposed
by [35] address several critical issues pertaining to efficient
parallelization of the update of membrane potentials, on-chip
storage of synaptic weights, and integration of approximate
arithmetic units.

From this short analysis, it is clear that there is a wide
diversity of targets for these architectures, each with its unique
focus. However, what truly makes a difference in this field
is the availability of these architectures under open-source
licensing. This availability makes these architectures appealing
to use, integrate, and extend.

A. Open neuromorphic architectures

In the following, we will review in detail the four principal
open-source neuromorphic architectures that can be potentially
integrated with a digital microprocessor to be exploited as a
neuromorphic coprocessor in IoT use cases.

1) ODIN: a digital neuromorphic processor developed by
Frenkel et al. [28]. The chip is open-source and comprises
N = 256 neurons and N2 synapses arranged in a crossbar
array. The ODIN processor was designed to be power-efficient
and to minimize chip area overhead. The results obtained
[28] demonstrate that ODIN chip consumes just 15 nJ for
the classification inference of the MNIST dataset with 84.7%
accuracy, with a power efficiency of 12.7 pJ per synaptic op-
eration. The chip is fabricated using a 28 nm FDSOI process,
occupying a total area of 0.086mm2.

The chip has two on-chip SRAM modules that store the
network configurations and status for neurons and synapses.
Synapses are characterized by 3-bit words each, plus 1 bit to
enable online learning. Neurons are described using 126-bit
words, comprising 70 configuration bits, 55 status bits, and 1
bit for choosing the neuron model. ODIN has two possible
event-driven neuron implementations: the Leaky Integrate-
and-Fire (LIF) model and a custom model based on the
20 Izhikevich behaviors observed in biological neurons [36].
Both neuron models support online learning via the Spike
Dependent Synaptic Plasticity (SDSP) learning rule, which has
been proven to be convenient for chip area management while
showing limited accuracy loss with respect to offline training
algorithms such as Gradient Descent-based algorithms, as
demonstrated in [28].

In Fig. 1 it is reported the high level architecture of
the ODIN core. ODIN is equipped with a Serial Peripheral
Interface (SPI) port that can be used to configure the SNN
by accessing the parameters bank’s write-only registers. The
SPI port can also be used to access the SRAM blocks to read
or write neuron statuses or synaptic weights. To execute an
operation, a specific command is sent to ODIN via a 20-bit
address and a 20-bit data packet, either on the MOSI channel

in case of a write operation or on the MISO channel if a read
operation from the SRAMs is requested.

Fig. 1. Schematic representation of ODIN’s architecture

The input Address Event Representation (AER) bus of
ODIN has been expanded from 8 bit (256 neurons addressing)
to 17 bit to increase the capabilities of the implemented SNN:
a 17 bit-wide bus message can stimulate the network with five
possible neural/synaptic events:

• The Neuron spike event is a standard synaptic operation
between a pre-synaptic neuron (addressed in the bus) and
all post-synaptic neurons, it triggers the update of the
neurons with the associated synaptic weights.

• The Single synapse event is similar to the neuron spike
event, but with the additional provision of the post-
synaptic neuron address on the bus. Only the destination
neuron is updated with the related synaptic weight.

• The Virtual synapse event updates the status of a synapse
by providing the post-synaptic neuron address and a
weight value. No source neuron is involved in this op-
eration.

• The Neuron time reference event defines the time constant
for the Izhikevich neuron model by providing an external
time reference event to all neurons.

• The Bistability time reference event triggers the bistability
mechanism in all synapses.

Spiking events generated by firing neurons in ODIN are man-
aged by a scheduler that receives 14-bit long event packets.
These packets contain information about the source neuron’s
address, the number of spikes generated in case of a burst, and
the Inter-Spike-Interval.

ODIN’s Address Event Representation (AER) is also uti-
lized at the output stage. In normal operation, the controller
writes the address of the source spiking neuron to the 8-bit
AEROUT_ADDR field on the AER bus. Additionally, the same
AER bus can be employed for monitoring purposes. ODIN was
successfully synthesized in [24] by targeting a Xilinx PYNQ
Z2 FPGA.

2) TinyODIN: a simpler and low-cost version of ODIN.
Designed to reduce cost, some portions of architecture were
removed, the ones related to the Izhikevich-based custom
neuron model and the ones for online learning. As a matter
of fact, only 12-bit LIF neuron models are available within
TinyODIN.

3) ReckOn: the latest open-source neuromorphic digital
processor developed by Frenkel et al. [25] that is capable of



simulating Spiking Recurrent Neural Networks. One of the
key features of ReckOn is the biological plausibility provided
by the online learning algorithm called e-prop [37]. This al-
gorithm is an approximation of the BackPropagation Through
Time (BPTT) training algorithm that exploits eligibility traces.

ReckOn’s architecture comprises of 256 input and recur-
rent Leaky Integrate-and-Fire (LIF) neurons and 16 Leaky-
Integrate (LI) output neurons that can be configured to perform
classification or regression tasks. The LI output neurons do not
have any firing and reset mechanisms.

Benchmark tests have demonstrated the low power con-
sumption of ReckOn [25] with the best efficiency achieved
at 5.3 pJ per synaptic operation, requiring a power budget of
less than 70 µW at 0.5V when processing spiking data from
neuromorphic sensors. Seconds-long learning showed accu-
racy values of 87.3% in a 10 class classification task, 90.7%
in a Keyword Spotting task, and 96.4% in a binary navigation
task. As represented in Fig. 2, memory elements are arranged
as follows: a parameter bank stores the network configuration
parameters, three SRAMs blocks store input (64 kB), recurrent
(64 kB) and output (8 kB) weights, and a fourth 2 kB SRAM
stores all neurons parameters and status. Similarly to ODIN,
ReckOn is provided with an SPI slave peripheral that allows
configuring the network and accessing the SRAM blocks for
neurons and weights data. More informations on the SPI
communication can be found in section III-B.

Input spiking data are handled through a 4-phase handshake
AER bus: the AERIN_ADDR channel shall be driven with
an 8-bit address indicating the input neuron that receives the
spike at a certain timestep. An additional input signal called
AERIN_TAR_EN is used to communicate to ReckOn whether
the input data represent the target neuron address or the target
data for learning. The output of ReckOn follows a protocol
similar to AER, indeed one 8-bit data channel and two ACK-
REQ channels are used to transmit data inference results.

Fig. 2. Schematic representation of ReckOn’s architecture

4) RANC: Reconfigurable Architecture for Neuromorphic
Computing, released in 2020 by Joshua Mack et al. [33],
from the University of Arizona. It consists in a neuromorphic
computing framework aimed at accelerating neuromorphic
computing-based research by taking inspiration from IBM’s
TrueNorth [38]. Respectively, three main environments are
part of the RANC ecosystem: the Training environment, the
Simulation environment, and the FPGA emulation environ-
ment. The first is used to create SNNs that can be mapped

within the architecture of RANC by exploiting a backprop-
agation algorithm proposed in [39]. The second accurately
simulates the entire RANC architecture by mapping such pre-
trained SNNs. While the third environment helps to synthesize
the network and to configure the memory blocks to implement
the SRAM elements belonging to the neuron cores.

The architecture of RANC, whose high-level schematic can
be found in Fig. 3, consists of a highly customizable 2D mesh
called Network on Chip (NoC) where each basic element, a
Neuron Core, is composed of five different blocks:

• The first block is the Neuron Block, which serves as the
basic computing unit. It emulates neurons using the LIF
model, and synaptic connections are mapped through a
crossbar array that can be customized to have a variable
number of axons (N(a)) and neurons (N(n)).

• The second block is the Core Controller, which is a state
machine-based logic unit responsible for coordinating
memory accesses and monitoring the correct functioning
of the LIF neurons.

• The third block is the Core SRAM, which stores all
configuration parameters related to each neuron inside the
core. Each row in the SRAM corresponds to a specific
neuron, and the dimensions of the SRAM depend on the
size of the Neuron Block and the number of parameters.

• The fourth block is the Packet Router, which serves as
the logic unit that directs output spikes’ packets towards
the correct destination. These packets deliver information
regarding the destination core, which is computed as a
N-E-S-W offset with respect to the source core. Addi-
tionally, the destination axon in that core and the time
offset related to the spike event are also included in the
packet.

• The fifth block is the Packet Scheduler, which receives
the input packet from a Packet Router and sends it to the
Neuron Block. This block is responsible for decoding the
input spike packet into the destination axon and the time
offset it should wait before feeding the spike to the axon.

RANC has demonstrated its capability to replicate IBM’s
TrueNorth architecture by achieving comparable accuracy re-
sults in the MNIST and EEG use cases proposed in [40], where
TrueNorth was employed under the same operating conditions,
network size, and encoding windows. To ensure a determin-
istic tick-to-tick correlation between RANC and TrueNorth, a
vector matrix multiplication (VMM) algorithm was used, and
RANC successfully emulated TrueNorth’s behavior using the
VMM mapping proposed in [41]. This benchmark has also
provided insights for potential HW optimization opportunities
for RANC.

Regarding the FPGA resources required to synthesize
RANC, Joshua Mack et al. [33] provided a detailed analysis of
the resources necessary to implement various square grids of
RANC cores with 256 neurons and 256 axons. For a single-
core implementation, a total of 23,152 LUTs and 5.5 RAM
blocks were utilized. In contrast, for the largest square grid
that can be synthesized, which is a 23x23 grid, a total of
1,599,760 LUTs and 2,684 RAM blocks were employed.



Fig. 3. Schematic representation of the Neuron Core structure of RANC

5) SENeCA: Scalable Energy-efficient Neuromorphic
Computing Architecture: it’s an open-source digital
neuromorphic processor designed to enhance the execution of
SNNs on the edge [31]. One of the most significant features of
SENeCA is its flexibility in terms of neuron implementation,
as it incorporates a set of HW-accelerated instructions that
can be used to model various types of silicon neurons and
learning algorithms, instead of relying on pre-defined neuron
models. This gives users the power to customize their neural
network models and optimize them for their specific use
cases.

SENeCA can be instantiated as a multi-core architecture,
with the basic computing unit called Neuron Compute Clusters
(NCC). As illustrated in Fig. 4, an NCC comprises several
main elements, including:

• The Ibex Core: a low power, 32-bit, 2-stage pipeline
RISC-V core that controls all the operations of the NCC.

• The Axon Message Interface, responsible for managing
input and output events and filtering.

• A Shared Memory Pre-Fetch Unit, that is used as an
advanced DMA to fetch data stored in the memory block
shared between NCCs.

• A Network-on-Chip (NoC), which acts as a multicast
router that delivers spike events between NCCs by using
stored routing tables. These routing tables allow for
source-based addressing and can be remapped later by
the Ibex core.

• The Neuron Co-Processor, which executes neuromor-
phic instructions inside its Neuron Processing Elements
(NPE). It supports for different data types for applications
that require specific quantization. Other components in-
side the NCP include the Event-Capture Unit, used for
handling input sparse data, and a Loop Buffer that stores
instructions that are going to be executed repeatedly in a
register-based memory.

An implementation of SENeCA comprising one NCC with 8
NPE, 2MB of data memory and 128 kB of instruction memory
required 5k CLBs, 4 Block-RAM and 8 Ultra-RAM units on
a Xilinx Virtex-7 FPGA [31].

Fig. 4. Schematic representation of the NCC structure of SENeCA

B. Open RISC-V cores

The landscape of RISC-V based processors is seeing a
relevant widening in terms of accessible architectures. In the
last years many companies and research centers have been
focusing on the release of RISC-V based architectures, both
commercially available or open-source. This is due mainly
to the open-source nature of the RISC-V ISA that allows
developers to create their own architectures without worrying
about licensing and by enabling collaborative communities
like PULP. Besides the commercial products, our interest
resides mainly in using open-source architectures, because
they can be customized and tailored to each specific need.
This is the case of RocketChip [42], developed by University
of Berkeley, which has already been proved suitable for the
kind of applications we are looking for [24], or the processors
and cores developed by PULP, which are aimed at providing
IoT-compatible end nodes where energy efficiency is the key
requirement.

PULP is an open-source project born with the collaboration
of ETH University of Zurich in Switzerland and the University
of Bologna in Italy, aimed at creating low power architectures
based on RISC-V Instruction Set and optimized for IoT
applications [26]. Started in 2013, different open-source chips
and cores have been released, with the state of the art being
OPENPULP, a multi-core RISC-V architecture with L1 shared
memory between cores.

PULPissimo: a 32-bit single-core, low-power microcon-
troller architecture released by PULP-platform in 2018 [26].
It can be implemented with either the CV32E40P (formerly
RI5CY) 4-stage pipeline core or the Ibex 2-stage core, and its
architecture includes advanced features such as:

• µDMA: an autonomous I/O subsystem that manages
data transfers to and from the external peripherals [43],
independently from the main core thanks to the dedicated
memory allocation in the L2 block. More informations on
the µDMA are listed in section III-C

• HWPE support: HardWare Processing Engines are
application-specific components that provide dedicated
HW to accelerate certain tasks. In PULP platform, HW-



PEs are tightly coupled with the on-chip memory (L2 for
single-core platforms like PULPissimo or L1 in multi-
core configurations), where they can access and write data
efficiently.

• Supported interfaces: Controlled by the µDMA, there are
many peripherals attached to PULPissimo: SPIM, I2C,
UART and I2S and others.

III. INTEGRATING DIGITAL AND NEUROMORPHIC
PROCESSORS

A. Neuromorphic Hardware Architectures

Table I presents a comparison of the four open-source neu-
romorphic architectures discussed. To achieve our goal of ex-
ploring the integration between neuromorphic and traditional
processors for on-the-edge applications, it is necessary to
select a specific neuromorphic architecture to use alongside the
RISC-V processor. The architectures can be divided into two
main groups: multi-core (RANC and SENeCA) and single-
core (ODIN and ReckOn). RANC is designed as a research
platform to explore various SNN architectures and is not opti-
mized for power efficiency. In contrast, SENeCA appears to be
a more comprehensive architecture, since it already includes
a RISC-V core for runtime control. Since we are searching
for an architecture that can coexist with a RISC-V processor
that controls its configuration and operations, the single-core
group of neuromorphic processors appears to be better suited
for our purpose. ODIN and ReckOn employ the widely used
SPI protocol for configuration and monitoring purposes, which
is compatible with most digital architectures. Furthermore, the
Verilog code they provide requires no modification and can be
used as-is, simplifying the integration process for users.

With respect to ODIN, ReckOn has some advantages from
the point of view of the architecture (refer to Table I):

• Greater number of neurons and synapses per core
• Greater energy efficiency (pJ/SOP)
• Synaptic weights are described with more bits

Even if the range of potential applications of these two
architectures is different. This led to our choice to start
integrating ReckOn as a neuromorphic coprocessor with the
RISC-V processor.

B. ReckOn programming

In order to provide a comprehensive overview of the inte-
gration we implemented between Pulpissimo and ReckOn, it
is important to first discuss the various operations needed to
configure the ReckOn platform.

The ReckOn neuromorphic processor provides users with
a high degree of flexibility in terms of spiking RNN con-
figuration. Specifically, it is equipped with an external SPI
slave interface that enables the master to access both the
SRAM data and the parameter configuration. There are up
to 60 network parameters that can be used for programming
and controlling the spiking RNN inside ReckOn, identified by
specific addresses. For example:

• SPI_DO_EPROP (ADD 09): used for enabling or dis-
abling weights’ updates powered by e-prop.

• SPI_REGRESSION (ADD 25): used for enabling the
current task as a regression or a classification.

• SPI_NUM_INP_NEUR (ADD 94): used to set the number
of input neurons.

• SPI_NUM_REC_NEUR (ADD 95): used to set the num-
ber of recurrent neurons.

• SPI_NUM_OUT_NEUR (ADD 96): used to set the num-
ber of output neurons.

Read and write commands from the SPI master to ReckOn
should be sent through a 32-bit address, structured as follows:

• a[31]: R/W command - 1 for requesting a SRAM read
operation, 0 for requesting a write on a SRAM or on a
parameter register.

• a[30:28]: Target command - to identify the target for
the R/W operation.

• a[27:16]: Consecutive R/W accesses command - to
request a specific number of consecutive R/W operations,
this operation is performed by automatically increasing
the target address.

• a[15:0]: Target address - to identify a specific neuron
or weight to be accessed in a SRAM or a network
parameter.

Following the 32-bit address, a 32-bit data message is expected
on the SPI port: either in reading mode, when ReckOn sends
the SRAM accessed word through the MISO channel, or in
writing when the master is expected to drive the MOSI channel
for configuration.

C. PULPissimo’s µDMA

The µDMA subsystem integrated in PULPissimo has been
developed by the PULP-platform team to overcome traditional
DMAs’ data transfer bottlenecks by doubling the average
bandwidth between common systems [43], this is done by
tightly coupling the system with the multi-bank on-chip mem-
ory via multiple channels that are used for I/O communication
and a specific handshake protocol.

Each peripheral is directly connected to the memory through
the TX and RX channels, which are independent and not
synchronized. In the case of SPI, there are two main TX
and RX channels that have their own configuration registers
that can be used to enqueue I/O transfers: starting from the
base addresses of SPIM_TX_SADDR (0x1A102110) and
SPIM_RX_SADDR (0x1A102100), which contain respec-
tively the 32-bit pointer to the L2 memory allocation of the
buffer where the data is or will be stored, the SPIM_TX_SIZE
and SPIM_RX_SIZE registers at offset 0x4 contain the
size of the buffer in bytes, for a maximum of 1MB. The
SPIM_TX_CFG and SPIM_RX_CFG registers at offset 0x8
contain other auxiliary configurations for the transfer, includ-
ing the enable transfer bit.

In addition to the TX and RX channels, there is a third
CMD channel that is used to give commands to the µDMA ,
at address 0x1A102120. It has the same three configuration
registers of the other channels and it’s used to give specific
commands to handle the transfers, like the ones needed to
set the SCK frequency, transfer or receive data, repeat certain



ODIN [28] ReckOn [25] RANC [33] SENeCA [31]
Type of architecture Single-core Single-core Multi-core Multi-core

Supported SW framework - - Platform-based SDK
# of Neurons/core 256 256+16* 512** 256***
# of Synapses/core 64k 132k 144.9k** -

Energy 8.4 - 12.7 pJ/SOP 5.7 pJ/SOP - 12.7 pJ/SOP**** [44]
Neuron model LIF + Izhikevich LIF LIF Custom

Online learning SDSP e-prop - Custom

Benchmark MNIST digits
DVS Hand Gestures

Keyword spotting
Navigation

MNIST digits
EEG

VMM*****

Human Activity Recognition
Handwritten digits [44]

TABLE I
SUMMARY TABLE OF THE DATA AVAILABLE FOR THE OPEN-SOURCE NEUROMORPHIC ARCHITECTURES

*: 256 INPUT/RECURRENT NEURONS + 16 OUTPUT NEURONS.
**: 512 INPUT AXONS AND 283 OUTPUT NEURONS WAS THE CORE CONFIGURATION USED THAT MAXIMIZED A SINGLE BRAM PRIMITIVE ON THE GIVEN
FPGA.
***: MAXIMUM NUMBER OF NEURONS THAT WERE USED IN A SINGLE SENECA CORE
****: ENERGY PER SOP RELATED TO AN IF NEURON.
*****: RANC’S VMM CAPABILITIES WERE BENCHMARKED USING SAR AND CIFAR-10 IMAGE RECOGNITION DATASETS.

blocks of commands, and configure the Chip Select bit when
multiple slaves are connected to the peripheral.

Fig. 5. Schematic representation of the ReckOn - PULPissimo integration
through the SPI port connection.

D. Hardware implementation

By integrating ReckOn with PULPissimo as an external
peripheral, HW-level connections are made inside the main
testbench file of the processor, as depicted in Fig. 5.

pulp-runtime: To enable the programming of PULPissimo
without the need for a complete SDK, a simplified runtime
developed by PULP-platform is available containing the nec-
essary functions to control all the microcontroller’s function-
alities via C code. This runtime includes libraries, such as
udma.h and udma_spim.h, which define the required reg-
isters’ addresses, offsets, and C functions to configure µDMA
SPIM transfers. For example, the plp_udma_enqueue
function can be utilized to configure µDMA transfers. This
function progressively writes the SADDR, SIZE, and CFG
registers associated with the given RX, TX, or CMD address.

The C code that was written takes advantage of the
pulp-runtime libraries to correctly access and program the

µDMA to send the correct SPI messages for the configuration
of ReckOn.

E. Results

The validation of the correct programming of PULPissimo
is made using Mentor QuestaSim 10.6 installed on Ubuntu
18.06: in Fig. 6 it’s possible to identify some of ReckOn
network parameters that are updated after the SPI transmis-
sion, respectively, the number of input, recurrent, and output
neurons (50, 100 and 10).
tx_data_i is an internal signal of PULPissimo where the

sequence of 32-bit packets that are sent can be identified, first
the command, that includes the address of the register, than
the data, i.e. the number of neurons - 1.
At the end of each 64-bit transmission, the internal signals of
ReckOn SPI_ADD and SPI_DATA are updated, and at the
same time the value inside the programmed register.

F. Future integration

Further improvements on the integration between neuro-
morphic cores and traditional processors will be made by
following two possible roads: the first will be to continue
on the edge applications by explore the HWPE capabili-
ties of the PULP ecosystem, which will allow to tightly
couple a neuromorphic core to the on-chip memory of the
microcontrollers, the other road will involve changing the
computing philosophy by exploring the computational power
of neuromorphic processors, this will be possible only through
the use of more performing RISC-V processors like the 64-bit
CVA6, which is capable of running Linux. Both HWPE and
CVA6 are described in this section.

HWPE support in PULPissimo: there is an interface avail-
able in PULPissimo for integrating co-processors as memory-
coupled accelerators that are used to increase the computa-
tional capabilities of a SoC and their power efficiency when
performing certain specific tasks. Data exchange is not slowed



Fig. 6. SPI transmission between PULPissimo and ReckOn: as the 64-bit packets are sent from the master, the internal ReckOn registers are updated to the
desired values (as specified in ReckOn’s documentation, such registers should be programmed with the desired number of neurons -1):

•••• Timestep 1: parameter SPI_NUM_INP_NEUR at address 94 is updated with the value 49, which represents 50 input neurons.
• Timestep 2: parameter SPI_NUM_REC_NEUR at address 95 is updated with the value 99, which represents 100 recurrent neurons.
• Timestep 3: parameter SPI_NUM_OUT_NEUR at address 96 is updated with the value 9, which represents 10 input neurons.

The correct address of the parameters and the related value can be seen from SPI_ADD and SPI_DATA at each timestep, which update after every transaction.

down by additional intermediate components, indeed they are
designed to work directly on the processor’s memory thanks
to the dedicated memory allocations, which are separated from
other peripherals.
Usually the architecture of an HWPE is composed by three
main sub-components and the related data exchange protocols:

• a Streamer, which handles the data transfer management
to and from the L2 memory by means of the HWPE-Mem
protocol, a 2 signals request-grant handshake to enable
communication between a master and a slave. If multiple,
consecutive read or write operations are needed, a more
suited protocol called HWPE-MemDecoupled can be
used to enable bursts.

• a Controller, that programs the accelerator using the
HWPE-Periph protocol, which is very similar to the
HWPE-Mem protocol except for additional channels used
to specify the master the communication is directed to.

• the main engine, which contains the logic used to perform
a specific task. There is an additional protocol called
HWPE-Stream that allows fast movement of data inside
the HWPE. This protocol is directional between a source
and a sink and it uses a two signals handshake. This
protocol can also be used to work on data streams, like
splitting one into multiple, or merge together.

CVA6/Ariane: CVA6 is an open-source CPU based on 64-
bit RISC-V ISA [45] originally developed by PULP-platform
as Ariane, now maintained by Openhwgroup. The core was
developed with the aim of minimizing the critical path length;
this led to a 6-stage pipeline with a critical path just two
times longer than server-class state of the art processors. What
is peculiar about this processor is its capability to run an
Operating System, like Linux, thanks to the resources overhead
that were added in its development: a 39-bit page-based Virtual
Memory capability, for which a Translation Lookaside Buffer
(TLB) and a Page Table Walker (PTW) are implemented
to accelerate the virtual to physical address translation, and
large instruction and data cache elements, that led to adding
critical path effects-limiting components for branch prediction,
scoreboarding and other out-of-order techniques.

The authors in [45] extensively describe the power per-
formance of the CVA6 core, by going in detail on the
single 6-stage pipeline instructions. To sum up, the peak
performance in terms of energy efficiency is reached at about
40GSOP s−1 W−1 at 0.5V with a maximum achievable fre-
quency of less than 300MHz. At a given supply voltage, the
maximum efficiency increases with the operating frequency.

IV. CONCLUSIONS AND FUTURE WORK

In this preliminary integration between PULPissimo and
ReckOn we showed how the two processors have the possibil-
ity to coexist in a single environment. This work is meant to
pave the way for future implementations between the worlds
of traditional and neuromorphic computing, in order to offer
intelligent data elaboration in embedded applications such as
IoT where power budgets are strictly limited.

For the future work we plan to expand this integration by
reproducing the whole testbench proposed with the ReckOn
source code, where a supervision delayed navigation prob-
lem is addressed to show the online learning capabilities of
ReckOn, by performing the whole SPI configuration directly
from the PULP microcontroller.

Later, once this work has been proven successful, we would
like to go deeper in the integration of the two processors by
exploiting the HWPE capabilities of PULPissimo. This will
allow to accelerate the process of learning and performing
inference by directly accessing data in the L2 memory. Also,
we would like to move to other computing domains such as
High Performance Computing to further develop improved
hybrid neuromorphic/digital solutions.
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