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Abstract—Walking speed in real-life conditions is typically 
estimated through wearable inertial sensors mounted on waist, 
lower limbs, or wrists. Very recently, head-mounted inertial 
sensors are emerging for gait assessment. The present study 
explores the feasibility of measuring the stride speed with a 
head-mounted inertial sensor in both laboratory and real-world 
settings. The developed algorithm exploits a Temporal 
Convolutional Network for the detection of the gait events and a 
Gaussian Process Regression for the stride speed estimation. 
The experimental evaluation was carried out on healthy young 
participants during both standardised indoor and real-world 
walking trials. For indoor trials, errors were smaller than 
previous studies (0.05 m/s). As expected, errors increased at 
lower speed regimes due to a reduced signals amplitude. During 
2.5-hours real-world evaluation, errors were slightly larger but 
acceptable (0.1 m/s). Reported results are encouraging and show 
the feasibility of estimating gait speed with a single head-worn 
inertial sensor.  
Keywords— machine learning, gait analysis, head IMU, gaussian 
process regression  

I. INTRODUCTION 

AIT is the main form of locomotion for human beings, 
and it is strictly related to the individual’s quality of life 

[1]. For this reason, gait-related spatio-temporal parameters 
have been widely explored in both healthy and pathological 
cohorts [2]. Walking speed is particularly relevant in the 
assessment of mobility and it is an indicator of one’s health 
status [3]. In the last decades, accelerometers and gyroscopes 
housed within a single Inertial Measurement Unit (IMU) 
have emerged as the election technology for the tracking of 
gait in the real-world, thanks to their wearability and 
affordability [1]. Multiple body-worn IMUs configurations 
for estimating walking speed have been extensively explored 
in literature [4]. Although multi-sensor configurations 
provide more accurate results, they are less likely to gain 
acceptance in customer-oriented solutions, as they are less 
easy to use and comfortable for the subject [5]. Therefore, 
research groups have started to focus on single-sensor 
configurations [5]. The most exploited body sites for the 
positioning of single sensors include wrist [6], foot [7], and 
waist [8]. However, current IMU-based solutions typically 
lack in aesthetics and ease of use, resulting in low user 
engagement [9]. Recently, the use of head-worn devices with 
IMUs started to spread due to the unique characteristics of 
this location [10] and its potential integration in smart-glasses 
for daily life use [9]. Some head- worn devices with inertial 
sensors have already been translated into commercial 
solutions and validated for walking speed estimation, such as 
the Recon Jet [11] smart glasses. Not surprisingly, the use of 
head-mounted IMUs (H-IMUs), and head-worn devices in 
general, is expected to grow in the healthcare sector [12]. 

Traditionally, IMU-based walking speed estimation methods 
include biomechanical models of gait, direct integration 
methods and machine learning techniques [2]. Human gait 
models and direct integration methods respectively suffer 
from lack of customisation and drift errors [2]; moreover, 
walking speed is derived indirectly by estimating time and 
distance. Instead, machine learning allows to directly infer 
the stride speed through a mapping between stride-specific 
features and the walking speed [11]. The purpose of the 
present study is the estimation of the stride speed from 
signals recorded by a single H-IMU. Foot-to-ground initial 
contacts (ICs) are estimated through a Temporal 
Convolutional Network (TCN) and used to segment the 
strides. Then, time and frequency-domain features are 
extracted from the stride acceleration norm and fed to a GPR 
model that outputs the stride speed. The models are trained 
using data recorded in indoor standardised conditions and 
tested on data not used for training recorded in both 
standardised and real-world conditions. 

II. MATERIALS AND METHODS 

A. Experimental setup 

Each subject was equipped with the INertial module with 
DIstance sensors and Pressure insoles (INDIP) system [14] 
with the configuration shown in Fig. 1. For the purpose of 
this study, it included an H-IMU positioned on the left side of 
the head, in addition to the standard INDIP setup used as 
wearable reference system (three IMUs on right foot, left foot 
and lower back, two pressure insoles and two distance 
sensors). Each INDIP IMU contains a 3-D gyroscope (±2000 
dps), a 3-D accelerometer (±16 g) and a 3-D magnetometer 
(±50 G, not used in this study). 

B. Experimental protocol 

The experimental protocol included: i) a standardised indoor 
session comprising two motor tasks (12m-straight walk and 
double-ring walk, Fig. 2), each performed at different speeds 
(slow, comfortable, and fast) and repeated thrice, for a total 
of 12 trials; ii) a 2.5-hour unsupervised real-world acquisition 
in which the participants were asked to follow their daily life 
routine. All the INDIP sensors, sampling at 100 Hz, were 
synchronised before each acquisition by setting the 
timestamp of each unit. Data acquired during the 
standardised indoor session and the 2.5-hour real-world 
acquisitions will be referred to as the “standardised” and the 
“real-world” datasets, respectively. 

C. Participants 

Data were collected on fourteen young healthy adults 
(YHA) (6 females, age: 25 ± 3 years, height: 1.73 ± 0.08 m, 
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weight: 65 ± 10 kg). All participants provided written 
informed consent before taking part to the study. Of the 14 
participants recruited, 11 participated to the standardised 
indoor session, while the remaining 3 performed the 2.5-hour 
real-world acquisition. 

  
Fig. 1: The INDIP setup. IMUs and distance sensors are firmly attached to 
the body through Velcro bands to prevent any slippery o motion artifact. 

 
Fig. 2: Walking paths for the standardized acquisitions. A) Straight walk; B) 
“Double-ring” walk. 

D. H-IMU algorithm 

The estimation of the stride speed requires the previous 
segmentation of the stride. Therefore, the work was outlined 
as a two-tasks process: 

i. Gait events detection 
ii. Speed estimation 

The gait events detection task was thought as a sequence 
classification task and was performed through a TCN [15], 
while the speed estimation task was organised as a regression 
task and was performed through a GPR model [11]. 

1) Pre-processing: H-IMU signals were virtually aligned to 
the direction of gravity, so that the x, y and z components of 
3-D acceleration and angular rate were considered as parallel 
to the anteroposterior (AP), vertical (V) and mediolateral 
(ML) directions, respectively (Fig. 3). 

 
Fig. 3: A) Acceleration and B) angular velocity over four strides during a 
trial of standardized straight walking at comfortable speed. Acceleration is 
rotated with respect to gravity. Red: V component; Yellow: ML component; 
Blue: AP component.  

2) Gait events detection: Norms of 3-D acceleration and 
angular rate were computed (Eq. 1). 
 
𝑎𝑛 =  𝑎𝑣

2 + 𝑎𝑚𝑙
2 + 𝑎𝑎𝑝

2  𝜔𝑛 =  𝜔𝑣
2 + 𝜔𝑚𝑙

2 + 𝜔𝑎𝑝
2       ( 1) 

The six acceleration and angular rate components plus their 
norms were smoothed with a 5-points moving average filter 
and passed as predictors to a TCN. The network response 
was a binary signal of 0s and 1s with the same number of 
samples of the input sequence, with 0 denoting the double 
support phase (DS: both feet in contact with the ground, ∼ 
60% of the gait cycle) and 1 denoting the single support 
phase (SS: only right or left foot in contact with the ground, 
∼ 40% of the gait cycle). Portions of non-walking signals 
were ignored.  
3) Stride segmentation: The ICs were detected at the falling 
edges of the network binary output i.e. at the end of the SS 
phases. Strides were determined as the time intervals between 
two ICs of the same foot. Since the TCN did not make a 
distinction between right and left SS phases, left and right 
ICs were not distinguished; however, the succession was 
preserved by picking adjacent ICs with a step of two. 
4) Stride speed estimation: The raw acceleration norm of the 
segmented stride was filtered with a 4th-order Butterworth 
low pass filter with cut-off frequency of 5 Hz. A set of 134 
features in the time and frequency domains were derived 
from the filtered norm and passed - together with height and 
weight of the subject - as input predictors to a GPR model 
(Table I). The decision regarding the number and typology of 
the input features was performed according to previous 
similar studies [11].  
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E. Training and testing 

Both the TCN and the GPR models were trained with data 
of the standardised dataset (11 out of 14 participants). Data 
from participants 1-10 (construction set) were aggregated and 
used to train the models, while data from participant 11 
(standardised test set) were used only for testing the trained 
architecture at the end of training. The TCN architecture 
included four residual blocks, a dilation base of 2, 64 filters 
of size 5 and a drop-out factor of 0.005. The TCN layer was 
followed by a fully connected layer, a SoftMax layer and a 
classification layer. The TCN was trained with a hold-out 
cross-validation scheme. The construction set was randomly 
split into a training set (TRS) of 7 subjects (for network 
training) and a validation set (VS) of 3 subjects (to evaluate 
the network performance and prevent overfitting) for five 
times. The network was trained for each of the five TRS-VS 
combinations for 60 epochs with the ADAM learning rule. 
Eventually, the network with the best performance overall 
was selected. At training stage, a label "0" was associated to 
samples in the DS phase, while a label "1" was associated to 
samples in the SS phase. To determine the beginning and the 
end of the DS and SS phases at training stage, gait events 
estimated by the INDIP reference system were exploited. The 
performance of the best TCN was evaluated on data of 
subjects not used for training, i.e. participant 11 of the 
standardised dataset and on the real-world dataset (3 out of 
14 participants). The GPR model was trained according to a 
5-fold cross-validation scheme on the construction set. At 
training stage, the GPR model was fed with 136 stride-
derived features (predictors) and the reference value of the 
stride speed (target response) estimated by the INDIP system. 
At training stage, subjects’ anthropometric features were used 
as constant predictors for their respective strides. An 
exponential kernel was selected for the GPR model basing on 
previous studies [11]. Performance of the best GPR model 
was evaluated on the standardised test set and on the real-
world dataset. 

F. Data analysis 

Stride speed values predicted by the H-IMU algorithm 
were compared to the ones estimated by the INDIP reference 
system, that leverages validated algorithms [13] to predict 
gait parameters and events from data recorded by the pressure 
insoles and the IMUs (except the H-IMU). The adopted 
metrics for the method evaluation included mean absolute 
error (MAE), mean squared error (MSE), root mean squared 
error (RMSE), coefficient of adjusted determination (adR2) 
and Pearson index of correlation (ρ). Predicted and target 
response values were divided into three groups according to 
speed regime with two thresholds at 1 m/s and 1.5 m/s. 
Absolute percentage error was computed for each 
observation; then, errors out of the range [25th-percentile - 1.5 
IQR; 75th-percentile + 1.5 IQR] were classified as outliers 
and discarded. A Shapiro-Wilk test was used to test the 
normality of the distribution. Then, as the distribution 
resulted to be non-normal, Wilcoxon ranked sum test was 
performed against the alternative hypothesis that the 
population mean of the slow-speed regime error distribution 
is greater than the population mean of the medium-and-fast-
speed regimes error distribution. The significance level of the 
statistical test was set to 0.05.  

III. RESULTS 

Gait events, used to segment the strides, were detected by the 
TCN with a MAE of 0.05 ± 0.04 s on the test set and 0.02 ± 
0.02 s on the training set.  
Table II shows the results obtained from the comparison of 
the H-IMU algorithm with the reference system on the 
standardised dataset. Fig. 4 and 5 show the distributions of 
the absolute percentage errors for three speed regimes in the 
standardized construction set and test set, respectively. In 
both cases, the alternative hypothesis (Section II-F) was 
accepted at the specified significance level (p-value < 0.001). 
Table III shows the results obtained by the algorithm on the 
real-world dataset. 
 
 
 
 
 
 
 
 
 

 

 
Fig. 4: Boxplot representation of the absolute percentage error 
distribution in the standardized construction set. 

TABLE I: FEATURES FOR STRIDE SPEED PREDICTION 

Domain Parameter Definition 

 
 
Time (6) 
 
 
 

Median [g] 

Mode [g] 

Signal Magnitude Area 
(SMA) 

 ∑ |𝑎 |        [g] 

Energy ∑ (𝑎 )       [g2] 

Zero-crossing rate - 

Mean Absolute Value 
(MAV) 

 ∑ |𝑎 |     [g] 

Frequency 
(128) 

FFT coefficients ∑ 𝑎 𝑒 ( )( )  

[g] 

Anthro (2) 
 

Weight [kg] 

Height [cm] 

Features used by the GPR model to predict the stride speed. Frequency 
(128): magnitudes of the 128 coefficients of the Fast Fourier transform 
(FFT). g: norm of gravity acceleration (9.81 m/s2); a: samples of the 
acceleration norm for the current stride; N: number of samples of a; Anthro: 
anthropometric. 

TABLE II: RESULTS ON STANDARDIZED DATASET 

Set 
Number of 

strides 
MAE 
(m/s) 

RMSE 
(m/s) 

MSE 
(m2/s2) 

ρ adR2 

CS 3668 0.05 (4.6 %) 0.07 0.00 0.97 0.89 

TS 354 0.07 (5.8 %) 0.08 0.01 0.97 0.70 

CS+TS  4022 0.05 (4.7 %) 0.07 0.00 0.97 0.88 

CS: Construction set; TS: Test set.  
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Fig. 5: Boxplot representation of the absolute percentage error 
distribution in the standardised test set. 

 
 
 
 
 
 

 

IV. DISCUSSION 

 
As shown in Table. II, a strong correlation exists between 

the predicted and the actual stride speed values for the 
standardised walking trials (ρ = 0.97). The fact that adR2 is 
significantly lower than ρ suggests that some features have 
small contribution to the prediction output; therefore, 
dimensionality reduction methods shall be employed. The 
TCN-GPR-based algorithm has obtained a MAE of 0.05 m/s 
(4.7 %) on the standardised walking trials. Previous studies 
based on a single H-IMU for the estimation of the stride 
speed [11] have obtained higher errors in standardised 
conditions (6.5 %). As expected, significantly greater errors 
(p-value < 0.001) were found at lower speed regimes (MAE 
= 3.3±3.0% for medium and fast speed regime, MAE = 
8.0±13.0% for slow speed regimes) due to smaller signals 
amplitude. This also suggests that the slow speed walking 
patterns of the participants are remarkably different than the 
medium and fast walking patterns. In real-world conditions, 
gait features show greater variability. As a result, correlation 
indices decrease, as shown in Table III (ρ = 0.80). The 
reported error (RMSE = 0.1 m/s) was equal to the one 
obtained by [6] through a single wrist-IMU (RMSE = 0.1 
m/s). In the present study, the impact of gait events detection 
errors on the estimation of the stride speed was not 
investigated. However, MAE values obtained by the TCN 
were considerably low and in line with what achieved in 
other studies [15]. 

V. CONCLUSION 

 
In this study, feasibility of walking speed estimation based 

on a head-mounted IMU using a TCN-GPR-based algorithm 
is investigated. TCN and GPR models were trained with the 
data acquired from 10 young healthy adults during 
standardised walking trials. Performance of the model was 
evaluated for both standardised and real-world walking trials. 
Results showed that the algorithm can estimate the stride 

speed in standardised conditions with lower errors with 
respect to other IMU-based methods. Nevertheless, accuracy 
of the method decreases at lower speed regimes. The 
algorithm also showed good generalisation skill on data 
acquired in real-world conditions. However, training of the 
algorithm with data acquired in real-world settings is 
suggested to increase accuracy. An approach based on a 
single H-IMU may be successful for many applications of 
fitness and health monitoring; however, it also comes with 
some limitations, as the upper the sensor location, the harder 
the extraction of gait features [16]. In the future, further 
aspects related to the implementation of models for the 
estimation of the stride speed should be addressed, such as 
dimensionality reduction, hyperparameters tuning, dataset 
completeness and eventually validation on pathological 
patients, where a machine learning-based approach may be 
effective for seizing the underlying features of abnormal 
walking patterns. 
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TABLE III: RESULTS ON REAL-WORLD DATASET 

Set 
Number of 

strides 
MAE 
(m/s) 

RMSE 
(m/s) 

MSE 
(m2/s2) 

ρ adR2 

RW 26498 0.1 (9.2 %) 0.12 0.13 0.80 0.37 

RW: Real-world dataset. 


