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ABSTRACT  

The present study investigates the analysis of the optimal friction coefficient with respect to the 

seismic performance of isolated multi-span continuous deck bridges, equipped with single concave 

friction pendulum (FPS) isolators. A six-degree-of-freedom system is used to model the structural 

system and the FPS friction property is described by means of a law that considers the dependency 

on the velocity. The equations of motions have been implemented in nondimensional form by 

considering the peak ground acceleration-to-velocity ratio (PGA/PGV) and the peak ground 

acceleration (PGA) as ground motion parameters for two different sets of seismic records: near-fault 

and far-field inputs. In addition, different bridge models are considered for various parameters (i.e., 

pier period, deck period, friction coefficient and mass of the structural system). The results show the 

effectiveness of the PGA/PGV ratio within the proposed nondimensionalization together with the 

existence of an optimum value of the friction coefficient that minimizes the nondimensional response 

of the pier. At the end, a linear regression expression is presented with the aim to compute the optimal 

value of the normalized friction coefficient as a function of the deck period and PGA/PGV ratio, 

which can be used in the preliminary phase to design the FPS bearings. Additionally, a multivariate 

non-linear regression expression is also provided to evaluate the pier response. 

 

Keywords: multi-span continuous deck bridges, seismic isolation, non-dimensional equations, 

seismic performance, optimal friction coefficient, PGA/PGV ratio. 

 

1. INTRODUCTION  

Currently, one of the most effective solutions to enhance the seismic performance of bridges is the 

adoption of the isolation technique. The main effect of this strategy is to reduce the seismic inertia 

forces acting on the deck and thus transmitted to the substructure, by increasing the period of the 

isolation system [1]-[3]. Among the possible isolation devices (e.g., high or low damping elastomeric 

bearings, lead-rubber bearings, sliding bearings) [4]-[6], the friction pendulum system (FPS) bearings 

have the important advantages of both decoupling the isolation period from the deck mass and 

dissipating energy thanks to the friction between the concave surface and slider [7]-[9]. Many 

researches have investigated the behaviour of the FPS isolators through both experimental and 

numerical analyses [10]-[20]. In detail, the improvement of the seismic performance of a three-span 

continuous deck highway bridge, adopting double concave friction pendulum devices, is commented 

in [21]. In [22], different mathematical models are studied to represent the response of bridges under 

real earthquake ground motions, demonstrating the accuracy of the results when simplified 
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approaches are adopted to model the flexibility of the piers and of the deck. An experimental test on 

a 1:6 scale railway bridge isolated with friction pendulum bearings is described in [23] using a shake 

table, with the goal to study the influence of transverse poundings on the seismic response. Three-

dimensional models of multi-span steel girder bridges isolated with FPS devices are investigated in 

[24], by changing many modeling parameters (i.e., geometrical and material characteristics of the 

bridge and isolator design properties). The effectiveness of variable friction pendulum system for a 

three-span continuous deck bridge under near-fault ground motions is analyzed in [25]. Seismic 

reliability-based abacuses for the design of FPS devices have been proposed in [26] for multi-span 

continuous deck bridges. 

Contextually, Jangid [27]-[28] observed the existence of an optimal value for the friction coefficient 

in isolators able to minimize the structural response under seismic events, including respectively 

stochastic random processes and near-fault ground motions as seismic inputs. Successively, other 

works have been focused on this issue proposing non-dimensional analyses of different structural 

systems as a function of the most relevant parameters. Specifically, the research of [29] considered 

the influence of the seismic input intensity and the soil condition on the optimal friction coefficient 

for isolated piers. Nondimentionalizations with respect to the seismic input intensity for multi-span 

continuous deck bridges isolated with single and double concave FPS devices have been proposed, 

respectively, by [30] and [31]. Similarly, in [32] it was performed a normalization of the time of the 

seismic input with respect to its harmonic frequency omega, to evaluate the dynamics of the sliding 

response of structures.The frequency content of the ground motions in terms of PGA/PGV ratio has 

been considered to assess the optimal properties of the FPS isolators for base-isolated buildings in 

[33]. The PGA/PGV ratio has been also adopted by [34]-[36] to investigate the relation between the 

optimal isolator properties and the ground motion inputs for seismically isolated bridges. 

This work examines the seismic performance of multi-span continuous composite or reinforced 

concrete (RC) deck bridges isolated with single concave FPS devices. The aim is to evaluate the 

influence of ground motion characteristics on the optimal friction coefficient of the isolators by means 

of a non-dimensionalization of the motion equations. In agreement with [15],[22],[30]-[31], a six-

degree-of-freedom (dof) model has been adopted, including 5 dofs for the lumped masses of the RC 

pier and 1 additional dof for the composite or RC deck, which is considered infinitely rigid. Two FPS 

devices are modelled, respectively, on top of the elastic RC pier and on the rigid RC abutment. The 

latter is modelled as a fixed support in order to include the interaction between the deck and the 

abutment. The velocity dependency of the FPS device behavior is taken into account according to 

[10]. To include the record-to-record variability, different sets of ground motions are considered, 

including both far-field (FF) records with different ranges of peak ground acceleration-to-velocity 

ratios (i.e., PGA/PGV) and near-fault (NF) inputs [33]. By including the PGA/PGV ratio, the non-

dimensionalization of the motion equations with respect to the seismic intensity has been proposed. 

In addition, a wide parametric analysis is implemented (i.e., the pier period, the ratio between the 

deck period and the period associated to the ground motion input, the friction coefficient and the ratio 

between the mass of the deck and of the pier). In this way, the normalized responses in terms of peak 

horizontal displacement of the pier and of the isolators are assessed. Finally, a linear regression 

expression is evaluated in order to compute the normalized friction coefficient of the isolators with 

respect to the ratio between the deck period and the ground motion period. This proposed expression 

can be very useful for a preliminary design of the FPS devices to isolate multi-span continuous 

composite or RC deck bridges. Additionally, a multivariate non-linear regression expression is also 

provided to evaluate the seismic pier response. 

2. NON-DIMENSIONAL ANALYSIS FOR MULTI-SPAN CONTINUOUS DESK 

BRIDGES ISOLATED WITH FPS DEVICES  

To model the response of multi-span continuous composite or RC deck bridges isolated with single 

concave FPS devices, a 6-dof system is implemented, according to [15],[22],[30]-[31]. Specifically, 



5 dofs are adopted for the elastic RC pier and 1 additional dof for the rigid composite or RC deck 

(Figure 1(a)). The choice of discretizing the pier in 5 lumped masses is a trade-off between the 

computational effort and the accuracy in the assessment of the corresponding elastic response, as 

commented in [30]. Two FPS devices are placed, respectively, on top of the rigid and fixed RC 

abutment and on top of the pier, as shown in Figure 1(a). In agreement with [15],[22],[30]-[31], it is 

underlined that the presence of non-structural elements such as parapets or kerbs are not modelled. 

In addition, the effects of soil-structure interaction [7],[37]-[38] as well as the combination of 

horizontal and vertical components of ground motions or the asynchronous effects [3],[20],[38]-[40] 

are not included in the present study. It should also be underlined that this model is representative of 

multi-span continuous deck bridges having spans of similar length and piers with similar stiffness. 

The analysis can be effective also for piers with different heights depending on the effects due to the 

higher modes. 
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Figure 1 6dof model of a multi-span continuous deck bridge isolated by FPS devices (a); response of the FPS device on 

the pier (b). 

 

The dimensional equations of motion for the 6-dof system under a seismic input ( )gu t  along the 

longitudinal direction are: 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )5 4 3 2 1 ( )d d d p d p d p d p d p d d p a d gm u t m u t m u t m u t m u t m u t c u t F t F t m u t+ + + + + + −+ + =  (1a) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )5 5 5 4 5 3 5 2 5 1 5 5 5 5 5p p p p p p p p p p d d p p p p p p gm u t m u t m u t m u t m u t c u t c u t k u t F t m u t+ + + + − + + − −=  (1b) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4 4 4 3 4 2 4 1 5 5 5 5 4 4 4 4 4p p p p p p p p p p p p p p p p p gm u t m u t m u t m u t c u t k u t c u t k u t m u t+ + + − − + + −=  (1c) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 3 3 2 3 1 4 4 4 4 3 3 3 3 3p p p p p p p p p p p p p p p gm u t m u t m u t c u t k u t c u t k u t m u t+ + − − + + −=  (1d) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 1 3 3 3 3 2 2 2 2 2p p p p p p p p p p p p p gm u t m u t c u t k u t c u t k u t m u t+ − − + + −=  (1e) 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 2 2 1 1 1 1 1p p p p p p p p p p p gm u t c u t k u t c u t k u t m u t− − + + −=  (1f) 

 

where du  represents the horizontal displacement of the deck relative to the pier top, 
piu  is the 

displacement of the i-th lumped mass of the pier with respect to the subsequently inferior one, dm  is 

the deck mass, 
pim  and 

pik  are, respectively, the mass and stiffness of the i-th dof of the pier, assumed 

equal for all the dofs, 
pic  is the inherent viscous damping coefficient of each dof of the pier, dc  is 

the viscous coefficient of the bearing, t  is the time instant, the dot indicates differentiation over 

time, while ( )aF t  and ( )pF t  are the resisting forces of the FPS devices placed on top of the abutment 

and of the pier, respectively, expressed as [8]: 
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The first part of both Eq.s(2a,b) indicates the elastic component of the force while the second 

addendum is the friction one (Figure 1(b)). In detail, / / (2 )d dk W R m g R= = , g  is the gravity 

constant, R represents the radius of curvature of the FPS bearing on the abutment (i.e., Ra) or on the 

pier (i.e., Rp),   denotes the sliding friction coefficient for the FPS bearing on the abutment (i.e., a) 

or on the pier (i.e., p). The difference between Eq.(2a) and Eq.(2b) is that ( )aF t  depends on the 

displacement and velocity of the deck with respect to the ground while the force on the pier ( )pF t  is 

a function of the relative displacement and velocity of the deck with respect to the pier top. According 

to the experimental results [8],[10],[14],[16], the sliding friction coefficient of teflon-steel interfaces 

is velocity-dependent and can be expressed as: 

 

 ( ) ( ) ( )max max min expu f f f u = − −  −  (3) 

 

where du u=  in case of p or 

5

1

d pi

i

u u u
=

= +  in case of a, maxf  and minf  are the sliding coefficients 

at large and zero velocity respectively,  is the parameter that controls the transition from low to 

large velocities. According to [16],[31]-[33], it can be assumed max min3f f=  with 30 = .  

Eq.s(1a-f) are based on the assumptions of equal FPS isolators with low curvatures: fmax=fmax,a=fmax,b 

and fmin=fmin,a=fmin,b as well as R=Ra=Rp. Therefore, the fundamental period of the isolated bridge is 

2 / (2 ) 2 / gd d dT m k R = = , which does not depend on the mass of the bridge but only on the 

radius of curvature of the isolating device [8].  

In this study, it is proposed a non-dimensional analysis following the approaches of [30]-[33] inspired 

by [41]-[42]. In detail, according to Buckingham’s Π-theorem [43]-[44], it is possible to normalize 

the dimensional terms of Eq.s(1a-f) by means of time-scale and length-scale factors. In the following, 

the time scale is assumed as 1/ g , where 2 /g gT =  is herein assumed as representative circular 

frequency of the ground motion and, in a simplified way, calculated as the ratio between the peak 

ground acceleration and velocity (i.e., /g PGA PGV = ), while the length scale is assumed as 
2

0 / ga 

, where 0a  is an acceleration measuring the seismic intensity. Thus, the seismic input can be expressed 

as: 
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where ( )l t  is a nondimensional function describing the variation of the seismic input over time, 

while ( )  is obtained from ( )l t  by means of the time scale, such that 
gt = . By dividing Eq.s(1a-

f) by the deck mass dm  and introducing both the time and length scale factors, the nondimensional 

equations become: 
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where the first term measures the degree of isolation, while the second one indicates the ratio between 

the circular frequency of the isolated system and PGA/PGV. The terms , ,
d pp d pi     =  =  =  have 

been previously explained. The last two terms 
,a  and 

, p  represent the normalized friction 

coefficients. It is worth underling that even if the two isolators have equal mechanical and geometrical 

properties, the corresponding normalized friction coefficients (i.e., Eq.s6(f,g)) are different since they 

refer to different sliding velocities during the dynamic response. For this reason, each one is used in 

its peak stead, as follows: 
* * *

, , max 0a p f g a   = = = .  

3. DIFFERENT SETS OF THE SEISMIC INPUTS 

According to the Performance-Based Earthquake Engineering (PBEE) approach [45]-[46], the 

performance of the structural system has to be predicted accounting for a wide range of possible 

ground motions. To this goal, the seismic input is herein given by the product of an intensity measure 

(IM) denoted as a0 and a nondimensional function ( ) , such that the uncertainties of the seismic 



intensity are separated from those related to the characteristics of the record (i.e., record-to-record 

variability in addition to the event-to-event variability). In this context, the choice of the IM is 

important to respect the criteria of efficiency, sufficiency and hazard compatibility in agreement with 

[47]-[49].  

In this study, the PGA has been selected as seismic intensity measure 0a  to achieve results useful in 

any site of the world where the seismic design is based on elastic pseudo-acceleration spectra 

according to the codes.  

It is worthy to highlight that the time scale, adopted in the proposed non-dimensionalization, is the 

inverse of the ratio /g PGA PGV =  and this ratio has been considered efficient in describing the 

effects of the seismic input on the isolation effectiveness [33]-[36] and also in being representative 

of the ground motion characteristics in terms of frequency content [50]-[54]. 

For the purposes of this work, a group of 85 non-frequent natural ground motions has been selected, 

divided into two sets: the first set is made of 45 far-field (FF) records (Table 1-Table 3) [51] and the 

second one is composed of 40 near-fault (NF) inputs (Table 4) [55].  

Table 1: Subset of far-field records corresponding to high PGA/PGV values [PGA(g)/PGV>1.2 s/m]. 

Earthquake Date M Site 

Epic. 

Dist. 

(km) 

Comp. 
PGA 

(g) 

PGV  

(m/s) 

PGA(g)/PGV 

(s/m) 
Soil  

Parkfield California June 27 1966 5.6 Temblor No. 2 7 N65W 0.269 0.145 1.86 Rock 

Parkfield California June 27 1966 5.6 Cholame, Shandon No. 5 5 N85W 0.434 0.255 1.70 Rock 

San Francisco California Mar. 22 1957 5.25 Golden Gate Park 11 S80E 0.105 0.046 2.28 Rock 

San Francisco California Mar. 22 1957 5.25 State Bldg., S.F. 17 S09E 0.085 0.051 1.67 Stiff Soil 

Helena Montana Oct. 31 1935 6 Carroll College 8 N00E 0.146 0.072 2.03 Rock 

Lytle Creek Sep. 12 1970 5.4 Wrightwood, California 15 S25W 0.198 0.096 2.06 Rock 

Oroville California Aug. 1 1975 5.7 Seismogr. StationOroville 13 N53W 0.084 0.044 1.91 Rock 

San Fernando California Feb. 9 1971 6.4 Pacomia Dam 4 S74W 1.075 0.577 1.86 Rock 

San Fernando California Feb. 9 1971 6.4 Lake Hughes,Station 4 26 S21W 0.146 0.085 1.72 Rock 

NahanniN.W.T., Canada Dec. 23 1985 6.9 Site 1, Iverson 7.5 LONG 1.101 0.462 2.38 Rock 

Central Honshu Japan Feb. 26 1971 5.5 Yoneyama Bridge 27 TRANS 0.151 0.059 2.56 Stiff Soil 

Near E. Coast of Honshu Japan May. 11 1972 5.8 Kushiro CentralWharf 33 N00E 0.146 0.060 2.43 Stiff Soil 

Honshu Japan Apr. 5 1966 5.4 Hoshina–A 4 N00E 0.270 0.111 2.43 Stiff Soil 

Monte Negro Yugoslavia Apr. 9 1979 5.4 Albatros Hotel,Ulcinj 12.5 N00E 0.042 0.016 2.63 Rock 

Banja Luka Yugoslavia Aug. 13 1981 6.1 Seism. Station, Banja Luka 8.5 N90W 0.074 0.032 2.31 Rock 

Table 2: Subset of far-field records corresponding to medium PGA(g)/PGV values [0.8 s/m <PGA(g)/PGV<1.2 s/m]. 

Earthquake Date M Site 

Epic. 

Dist. 

(km) 

Comp. 
PGA 

(g) 

PGV  

(m/s) 

PGA(g)/PGV 

(s/m) 
Soil  

Imperial Valley California May 18 1940 6.6 El Centro 8 S00E 0.348 0.334 1.04 Stiff Soil 

Kern County California July 21 1952 7.6 Taft Lincoln School Tunnel 56 S69E 0.179 0.177 1.01 Rock 

Kern County California July 21 1952 7.6 Taft Lincoln School Tunnel 56 N21E 0.156 0.157 0.99 Rock 

Borrego Mtn. California April 8 1968 6.5 San Onofre SCE Power Plant 122 N57W 0.046 0.042 1.10 Stiff Soil 

Borrego Mtn. California April 8 1968 6.5 San Onofre SCE Power Plant 122 N33E 0.041 0.037 1.11 Stiff Soil 

San Fernando California Feb. 9 1971 6.4 3838 Lankershim Blvd., L.A. 24 S90W 0.150 0.149 1.01 Rock 

San Fernando California Feb. 9 1971 6.4 
Hollywood Storage P.E. Lot, 

L.A. 
35 N90E 0.211 0.211 1.00 Stiff Soil 

San Fernando California Feb. 9 1971 6.4 3407 6th Street, L.A. 39 N90E 0.165 0.166 0.99 Stiff Soil 

San Fernando California Feb. 9 1971 6.4 
Griffith Park Observatory, 

L.A. 
31 S00W 0.180 0.205 0.88 Rock 

San Fernando California Feb. 9 1971 6.4 234 Figueroa St., L.A. 41 N37E 0.199 0.167 1.19 Stiff Soil 

Near E. Coast of Honshu,Japan Nov. 16 1974 6.1 Kashima Harbor Works 38 N00E 0.07 0.072 0.97 Stiff Soil 

Near E. Coast of Honshu,Japan Aug. 2 1971 7 Kushiro Central Wharf 196 N90E 0.078 0.068 1.15 Stiff Soil 

Monte Negro Yugoslavia Apr. 15 1979 7 Albatros Hotel, Ulcinj 17 N00E 0.171 0.194 0.88 Rock 

Mexico Earthq. Sept. 19 1985 8.1 El Suchil, Guerrero Array 230 S00E 0.105 0.116 0.91 Rock 

Mexico Earthq. Sept. 19 1985 8.1 La Villita, Guerrero Array 44 N90E 0.123 0.105 1.17 Rock 

Table 3: Subset of far-field records corresponding to low PGA(g)/PGV values [PGA(g)/PGV<0.8 s/m]. 

Earthquake Date M Site 

Epic. 

Dist. 

(km) 

Comp. 
PGA 

(g) 

PGV  

(m/s) 

PGA(g)/PGV 

(s/m) 
Soil  

Long Beach California Mar. 10 1933 6.3 Subway Terminal, L.A. 59 N51W 0.097 0.237 0.41 Rock 

Long Beach California Mar. 10 1933 6.3 Subway Terminal, L.A. 59 N39E 0.064 0.173 0.37 Rock 

Lower Calif. Dec. 30 1934 6.5 El Centro 58 S00W 0.160 0.209 0.77 Stiff Soil 

San Fernando California Feb. 9 1971 6.4 2500 Wilshire Blvd., L.A. 40 N61W 0.101 0.193 0.52 Stiff Soil 

San Fernando California Feb. 9 1971 6.4 3550 Wilshire Blvd., L.A. 39 WEST 0.132 0.216 0.61 Stiff Soil 

San Fernando California Feb. 9 1971 6.4 222 Figueroa St., L.A. 41 S37W 0.129 0.186 0.69 Stiff Soil 

San Fernando California Feb. 9 1971 6.4 3470 WilshireBlvd., L.A. 39 S90W 0.114 0.186 0.61 Stiff Soil 

San Fernando California Feb. 9 1971 6.4 4680 WilshireBlvd., L.A. 38 N15E 0.117 0.215 0.54 Stiff Soil 

San Fernando California Feb. 9 1971 6.4 445 Figueroa St., L.A. 41 S38W 0.119 0.173 0.69 Rock 

San Fernando California Feb. 9 1971 6.4 Hollywood Storage L.A. 32 S00W 0.106 0.170 0.62 Stiff Soil 

Near E. Coast of Honshu, Japan May 16 1968 7.9 Muroran Harbor 290 N00E 0.226 0.334 0.68 Stiff Soil 

Near E. Coast of Honshu, Japan June 17 1973 7.4 Kushiro Central Wharf 112 N00E 0.205 0.275 0.75 Stiff Soil 

Mexico Earthq. Sep. 19 1985 8.1 Zihuatenejo, Guerrero Array 135 S00E 0.103 0.159 0.65 Rock 

Mexico Earthq. Sep. 19 1985 8.1 Teacalco, Cuerrero Array 333 N00E 0.052 0.074 0.70 Rock 



Mexico Earthq. Sep. 19 1985 8.1 
Mesa VibradoraC.U., Mexico 

City 
379 N90W 0.040 0.110 0.36 Rock 

Table 4: Set of near-fault records. 

Earthquake Date M Site 
Epic. 

Dist. 

(km) 
Comp. 

PGA 

(g) 
PGV  

(m/s) 
PGA(g)/PGV 

(s/m) 
Soil  

Imperial Valley-06 1979 6.53 Subway Terminal, L.A. 7.31 SN 0.180 0.545 0.33 C 

Imperial Valley-06 1979 6.53 Subway Terminal, L.A. 0.07 SN 0.378 1.150 0.33 C 

Imperial Valley-06 1979 6.53 El Centro 7.05 SN 0.357 0.779 0.46 C 

Imperial Valley-06 1979 6.53 El Centro 3.95 SN 0.375 0.915 0.41 C 

Imperial Valley-06 1979 6.53 El Centro 1.35 SN 0.442 1.119 0.39 C 

Imperial Valley-06 1979 6.53 El Centro 0.56 SN 0.462 1.088 0.42 C 

Imperial Valley-06 1979 6.53 El Centro 3.86 SN 0.468 0.486 0.96 C 

Imperial Valley-06 1979 6.53 El Centro 5.09 SN 0.417 0.596 0.70 C 

Morgan Hill 1984 6.19 El Centro 0.53 SN 0.814 0.623 1.31 B 

Loma Prieta 1989 6.93 El Centro 9.96 SN 0.294 0.308 0.95 B 

Loma Prieta 1989 6.93 El Centro 3.88 SN 0.944 0.970 0.97 B 

Landers 1992 7.28 El Centro 2.19 SN 0.704 1.406 0.50 B 

Landers 1992 7.28 El Centro 23.62 SN 0.236 0.566 0.42 C 

Northridge-01 1994 6.69 El Centro 5.43 SN 0.617 0.674 0.92 B 

Northridge-01 1994 6.69 El Centro 5.43 SN 0.518 0.674 0.77 B 

Northridge-01 1994 6.69 El Centro 5.92 SN 0.724 1.203 0.60 C 

Northridge-01 1994 6.69 El Centro 5.48 SN 0.426 0.878 0.49 C 

Northridge-01 1994 6.69 El Centro 6.5 SN 0.870 1.672 0.52 C 

Northridge-01 1994 6.69 El Centro 5.35 SN 0.594 1.303 0.46 C 

Northridge-01 1994 6.69 El Centro 5.19 SN 0.828 1.136 0.73 B 

Northridge-01 1994 6.69 El Centro 5.30 SN 0.733 1.227 0.60 B 

Kobe, Japan 1995 6.9 El Centro 0.96 SN 0.854 0.963 0.89 C 

Kobe, Japan 1995 6.9 El Centro 0.27 SN 0.645 0.726 0.89 C 

Kocaeli, Turkey 1999 7.51 El Centro 10.92 SN 0.241 0.512 0.47 B 

Chi-Chi, Taiwan 1999 7.62 El Centro 3.14 SN 0.664 0.777 0.85 B 

Chi-Chi, Taiwan 1999 7.62 El Centro 9.96 SN 0.383 0.753 0.51 C 

Chi-Chi, Taiwan 1999 7.62 El Centro 3.78 SN 0.286 0.461 0.62 B 

Chi-Chi, Taiwan 1999 7.62 El Centro 0.66 SN 0.375 1.655 0.23 B 

Chi-Chi, Taiwan 1999 7.62 El Centro 5.97 SN 0.224 0.409 0.55 B 

Chi-Chi, Taiwan 1999 7.62 El Centro 5.30 SN 0.157 0.604 0.26 B 

Chi-Chi, Taiwan 1999 7.62 3470 WilshireBlvd., L.A. 0.32 SN 0.564 1.846 0.31 B 

Chi-Chi, Taiwan 1999 7.62 4680 WilshireBlvd., L.A. 0.91 SN 0.331 0.886 0.37 B 

Chi-Chi, Taiwan 1999 7.62 445 Figueroa St., L.A. 2.76 SN 0.310 0.678 0.46 B 

Chi-Chi, Taiwan 1999 7.62 Hollywood Storage L.A. 5.18 SN 0.235 0.578 0.41 B 

Chi-Chi, Taiwan 1999 7.62 Muroran Harbor 7.00 SN 0.127 0.437 0.29 B 

Chi-Chi, Taiwan 1999 7.62 Kushiro Central Wharf 2.13 SN 0.212 0.684 0.31 C 

Chi-Chi, Taiwan 1999 7.62 Zihuatenejo, Guerrero Array 1.51 SN 0.295 1.090 0.27 B 

Chi-Chi, Taiwan 1999 7.62 Teacalco, Cuerrero Array 6.10 SN 0.133 0.621 0.21 B 

Chi-Chi, Taiwan 1999 7.62 Teacalco, Cuerrero Array 9.35 SN 0.224 0.424 0.53 B 

Chi-Chi, Taiwan 1999 7.62 
Mesa VibradoraC.U., Mexico 

City 
9.96 SN 0.303 0.676 0.45 C 

 

In detail, the set of the FF records is divided into three subsets with 15 records, depending on the 

value of the /PGA PGV  ratio: high ratio (PGA(g)/PGV>1.2 s/m), medium ratio (0.8 s/m 

<PGA(g)/PGV<1.2 s/m) and low ratio (PGA(g)/PGV<0.8 s/m).  

The NF records of the second set have a low PGA(g)/PGV ratio, i.e., on average lower than 0.8 s/m.  

In general, high PGA/PGV ratios are associated to seismic inputs of short durations and containing 

high energy content in the low period range while those with low PGA/PGV ratios are pulse-type 

motions with longer durations and contain high energy content in the high period range [50]-[51],[56]. 

It is noteworthy that, as underlined in [33], the normalized response of the same system subjected to 

a seismic input having the same PGA/PGV ratio is different, even if the response is normalized with 

respect to a time scale equal to 1/ g . This happens because although the ratio PGA/PGV is a very 

effective parameter in providing information on the frequency content and duration of ground motions 

[33],[50]-[51], it is not completely representative of the ground motion input. It follows the 

importance to consider a wide set of natural records. 

4. DETERMINISTIC PARAMETERS 

The seismic performance of multi-span continuous composite or RC deck bridges isolated with FPS 

devices is evaluated by considering different ranges of the structural parameters relevant to the 

problem (introduced in Section 2), according to [56]-[58]. Specifically, 4 values of the pier period: 

pT  = [0.05, 0.1., 0.15, 0.2] s, 11 values of the period ratio: d gT T = [2, 2.5, 3, 3.5, 4, 6, 8, 10, 12, 14, 

16]; 3 values of the mass ratio:  = [0.1, 0.15, 0.2]; 85 values of the normalized friction coefficient 



corresponding to its peak: 
*

 = [0 - 1.5] with a smaller step for values lower than 0.3. Furthermore, 

the normalized viscous damping factors inherent to the isolator and to the pier are set, respectively, 

equal to 0%
d

 =  and 5%
p

 = .  

By combining all these structural parameters, a total number of 11200 different bridge models is 

obtained. Then, solving each structural model for the 85 ground motions, 952000 non-linear dynamic 

analyses have been carried out. The equations of motion in non-dimensional form (i.e., Eq.s(5a-f)) 

have been solved in Matlab–Simulink, adopting the ode3 (Bogacki-Shampine) solver [59].  

The response parameters (i.e., engineering demand parameters - EDPs) computed with respect to 

ground in order to evaluate the seismic performance of the bridge models are the peak isolator 

displacement in its normalized value 
2

,max
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
. The former displacements are necessary for the 

design of the FPS devices and of the seismic deck-abutment joints, while the latter are important to 

evaluate the internal forces of the substructure (i.e., pier). According to [30], the response parameters 

are assumed to follow a lognormal distribution and can be probabilistically treated. Particularly, it 

can be computed the geometric mean GM together with the dispersion   of the generic response 

parameter D (i.e., 
,maxd  and 

,maxp ) as follows: 

 (7) 

 (8) 

 

in which dj is the j-th sample realization of D, and N represents the total number of samples (i.e., 

earthquake records). Then, the k-th percentile of the response parameter D is computed as: 

 

 (9) 

 

where ( )f k  is equal to 0, 1 and -1 for k equal to the 50th, 16th and 84th percentile, respectively [60]. 

The lognormality assumption permits to estimate, with a limited number of samples, the response at 

different percentile levels, which is very useful for system reliability assessment and seismic risk 

analysis [61]. 

5. NUMERICAL RESULTS  

This section illustrates the nondimensional response parameters 
,maxd  and 

,maxp  in terms of 

geometric mean and dispersion, as a function of both the peak value of the normalized friction 

coefficient 
*

  and the ratio between the deck and the ground motion period /d gT T , for some pier 

fundamental periods (i.e., 
pT = 0.05 and 0.2 s) and mass ratios (

p = 0.1, 0.15 and 0.2).  

Initially, the results obtained for the first set of the FF records are described. In detail, Figure 2, Figure 

4, Figure 6, Figure 8 regard the normalized pier response 
,maxp  for the all FF records, FF records 

with high PGA/PGV ratio, FF records with medium PGA/PGV ratio and FF records with low 

PGA/PGV ratio, respectively. In general, 
,max( )pGM   increases for lower values of /d gT T , especially, 

for low 
*

 .  
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Figure 2 Geometric mean (a,b) and dispersion (c,d) of the peak nondimensional displacement of the pier top for all the 

FF records (the arrow indicates the increasing direction of p=0.1, 0.15, 0.2). 
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Figure 3 Geometric mean (a,b) and dispersion (c,d) of the peak nondimensional displacement of the isolation level for 

all the FF records (the arrow indicates the increasing direction of p=0.1, 0.15, 0.2). 
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Figure 4 Geometric mean (a,b) and dispersion (c,d) of the peak nondimensional displacement of the pier top for the FF 

records with high PGA(g)/PGV ratio >1.2 s/m (the arrow indicates the increasing direction of p=0.1, 0.15, 0.2). 
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Figure 5 Geometric mean (a,b) and dispersion (c,d) of the peak nondimensional displacement of the isolation level for 

the FF records with high PGA(g)/PGV ratio > 1.2 s/m (the arrow indicates the increasing direction of p=0.1, 0.15, 0.2). 
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Figure 6 Geometric mean (a,b) and dispersion (c,d) of the peak nondimensional displacement of the pier top for the FF 

records with medium PGA(g)/PGV ratio in the range 0.8 s/m -1.2 s/m (the arrow indicates the increasing direction of 

p=0.1, 0.15, 0.2).  
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Figure 7 Geometric mean (a,b) and dispersion (c,d) of the peak nondimensional displacement of the isolation level for 

the FF records with medium PGA(g)/PGV ratio in the range 0.8 s/m -1.2 s/m (the arrow indicates the increasing 

direction of p=0.1, 0.15, 0.2). 
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Figure 8 Geometric mean (a,b) and dispersion (c,d) of the peak nondimensional displacement of the pier top for the FF 

records with low PGA(g)/PGV ratio < 0.8 s/m (the arrow indicates the increasing direction of p=0.1, 0.15, 0.2). 
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Figure 9 Geometric mean (a,b) and dispersion (c,d) of the peak nondimensional displacement of the isolation level for 

the FF records with low PGA(g)/PGV ratio < 0.8 s/m (the arrow indicates the increasing direction of p=0.1, 0.15, 0.2). 
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Figure 10 Geometric mean (a,b) and dispersion (c,d) of the peak nondimensional displacement of the pier top for the NF 

records (the arrow indicates the increasing direction of p=0.1, 0.15, 0.2).  
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Figure 11 Geometric mean (a,b) and dispersion (c,d) of the peak nondimensional displacement of the isolation level for 

the NF records (the arrow indicates the increasing direction of p=0.1, 0.15, 0.2). 
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Figure 12 Geometric mean (a,b) and dispersion (c,d) of the peak nondimensional displacement of the pier top for both 

the NF and FF records (the arrow indicates the increasing direction of p=0.1, 0.15, 0.2). 
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Figure 13 Geometric mean (a,b) and dispersion (c,d) of the peak nondimensional displacement of the isolation level for 

both the NF and FF records (the arrow indicates the increasing direction of p=0.1, 0.15, 0.2). 

This happens because the lower is the period of the deck with respect to the ground motion period, 

the larger are the forces acting on the deck and thus transmitted to the pier. In addition, 
,max( )pGM   

increases for higher values of Tp whereas decreases for larger values of p, since this growth causes 

a decrease in the forces transmitted from the deck to the pier. However, the influence of the mass 



ratio is remarkable, especially, for low pier periods. Furthermore, there is a decrease followed by an 

increase in the response for increasing 
*

  values. This leads to highlight the existence of minimal 

values of 
,max( )pGM   for specific values of 

*

 , as also observed in [29]-[31]. 

The analysis of minimal values of 
,max( )pGM   for low Π∗

𝜇 values is better explained in the next 

section. The response of the pier follows a trend that is similar in all the figures related to the different 

PGA/PGV ratios. The only difference is in the orders of magnitude, since large PGA/PGV ratios imply 

larger pier responses. In this last case and for high Tp values with very low /d gT T , the results show 

also a reduction of the response for very high values of Π∗
𝜇. The similarity in the trends of the results 

indicates that for a given combination of the structural parameters, the trends of the median responses 

are statistically not different if different PGA/PGV ratios are considered, confirming that the record 

selection does not strongly influence the response if 1/ g  is adopted as the time scale for the 

normalization [33]. As for the dispersion, 
,max( )p  , in general, decreases for higher values of Π∗

𝜇, 

remains almost constant for varying values of /d gT T  and slightly increases for higher values of p. 

Figure 3, Figure 5, Figure 7, Figure 9 show the normalized deck response 
,maxd  for the all FF inputs 

and for three 3 subsets of the FF records considered. It can be observed slight differences depending 

on the record selection also regarding the order of magnitude. The values of 
,max( )dGM   first increase 

with /d gT T  and then decrease, especially, for low Π∗
𝜇. This trend is similar to the displacement 

response spectrum of an isolated mass with a low damping factor. Higher isolated deck periods 

improve the effectiveness of the isolation. In addition, 
,max( )dGM   is mainly influenced by 

*

  since 

the response decreases if this parameter increases due to the energy dissipation showing an hyperbolic 

trend as obtained in [30]. Regarding the dispersion, 
,max( )d   is in general quite low, especially, in 

correspondence of the optimal friction coefficient values minimizing 
,max( )pGM   and strongly 

increases moving far from these values, since high-linearities are involved. 

Similar results (i.e., GM and   of both 
,maxp  and 

,maxd ) are presented considering the second set 

related to the NF records and, finally, to the two sets of NF and FF records considered together. 

Specifically, Figure 10 and Figure 12 illustrate the statistics of the pier top while Figure 11 and Figure 

13 regard the isolation level. The trend of the responses both in terms of geometric mean and 

dispersion are very similar to the one obtained by considering the FF records, confirming that the 

choice of /g PGA PGV =  as the inverse of the time scale is a good indicator of the frequency content 

of the seismic input. The difference is in the order of magnitude. In fact, the responses of both pier 

top and isolation system are larger if the FF records are considered. This can appear in contrast with 

other studies [34]-[36],[62]-[63] that demonstrate how the NF records are more demanding since 

characterized by larger dominant pulses. On the other hand, the cyclic characteristic of the larger 

excitations in case of the FF inputs lead to larger displacement responses as also observed in [33],[56].  

From the results, it is noteworthy that Figure 12(b) shows a reduction of the pier response for very 

high values of Π∗
𝜇 combined with high Tp values and very low /d gT T  as also noted in Figure 2(b) 

and Figure 4(b). This is due to the larger dissipation capacity given by the isolators. However, these 

high values of Π∗
𝜇 lead also to very high dispersions of the isolation response. For this reason 

combined with the current FPS technology, the search of the optimal parameter Π∗
𝜇 is focused in the 

range 0 - 0.5 in the following section. 

6. OPTIMAL SLIDING FRICTION COEFFICIENTS 



As already mentioned, the previous results indicate how it is possible to minimize the normalized 

response of the pier top for an optimal value of the normalized friction coefficient, denoted as 
*

,opt .  
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Figure 14 Geometric mean of the normalized response of the pier top with respect to Π∗

𝜇 for the two sets of records, for 

Td/Tg=2.5 and for: a) λp=0.1 and Tp=0.05 s; b) λp=0.1 and Tp=0.15 s; c) λp=0.3 and Tp=0.05 s; d) λp=0.3 and Tp=0.15 s. 
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Figure 15 Geometric mean of the normalized response of the pier top with respect to Π∗

𝜇 for the two sets of records, for 

Td/Tg=8 and for: a) λp=0.1 and Tp=0.05 s; b) λp=0.1 and Tp=0.15 s; c) λp=0.3 and Tp=0.05 s; d) λp=0.3 and Tp=0.15 s. 

The existence of this optimum value, deeply discussed in literature [27]-[28],[35],[64]-[65], derives 

from the equilibrium between two counteracting results caused by increasing Π∗
𝜇 values: on the one 

hand, there is an increase of the substructure response because higher modes participate and also due 



to the increase of the isolator strength, determining higher equivalent stiffness [29] of the isolation 

system, and, thus of the forces transmitted to the pier; on the other hand, the substructure response 

decreases due to a larger energy dissipation.  

Figure 14 and Figure 15 show the geometric mean of the peak normalized pier response as a function 

of the normalized friction coefficient for fixed values of the other structural parameters (i.e., Td/Tg, λp 

and Tp). These figures confirm the observations explained in the previous section with respect to the 

influence of the PGA/PGV ratio values on the pier response. Moreover, as emphasized at the end of 

the previous section, the maximum normalized value of 
*

  assumed to search 
*

,opt  is set equal to 

0.5. From the results, it is possible to observe that the orders of magnitude of the response parameter 

are different, as previously explained, but the optimum value of the normalized friction coefficient 
*

,opt  is essentially equal for all the sets and subsets of the records considered, demonstrating the 

effectiveness of the parameter /g PGA PGV =  within the proposed nondimensional approach. For 

this reason, the FF and NF records can be considered together in the following.  
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Figure 16 Optimal values of the normalized friction coefficient minimizing the 50th percentile of substructure response 

for fixed 𝑇𝑝 and varying p , for both the FF and NF records. 

In Figure 16, Figure 17 and Figure 18, it is shown the optimum normalized friction coefficient 
*

,opt  

as a function of the ratio Td/Tg, for the four different values of the pier period (i.e., Tp=0.05, 0.10, 

0.15, 0.20 s) and the three different values of the mass ratio (i.e., p=0.1, 0.15, 0.2). Specifically, the 

results are presented considering both the FF and NF records with respect to the 50th, 84th and 16th 

percentiles, respectively. The optimum normalized friction coefficient decreases with larger Td/Tg 

ratios, since the normalized response of the substructure is lower as a consequence of the isolation 

effectiveness. 
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Figure 17 Optimal values of the normalized friction coefficient minimizing the 84th percentile of substructure response 

for fixed 𝑇𝑝 and varying p , for both the FF and NF records. 
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Figure 18 Optimal values of the normalized friction coefficient minimizing the 16th percentile of substructure response 

for fixed 𝑇𝑝 and varying p , for both the FF and NF records. 

Moreover, the values assumed by *

,opt  do not change significantly with the pier period or mass ratio 

for each percentile. Therefore, the results suggest the possibility of identifying a relationship between 



*

,opt  and Td/Tg without considering the other structural parameters, accounting for the 16th, 50th and 

84th percentiles. 

Thus, the linear regression expression in Eq.(10) has been defined as follows: 

 
*

, 1 2 gopt a a  = +   (10) 

 

where the coefficients 1a  and 2a  together with the R-squared parameter (Table 5) are evaluated in 

Matlab [59]. High R-squared values (i.e., close to 1) are obtained, indicating the effectiveness of the 

formula in computing the optimum normalized friction coefficient. The graphical representation of 

the proposed linear regression formula is presented in Figure 19 depending on / 1/
gd gT T =  . 

Table 5: Linear regression coefficients for the optimum normalized friction coefficient. 

 R-squared a1 a2 

16th  0.9264 -0.0177 0.5374 

50th 0.9654 -0.0234 0.5699 

84th  0.9517 -0.0138 0.5774 
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Figure 19 Regression of the optimum normalized friction coefficient for both the FF and NF records related to a) the 

50th percentile, b) the 16th percentile, c) the 84th percentile and d) all the percentiles.  

 

In this way, knowing the seismic hazard of the site (i.e., knowing PGA and PGV ) and defined the 

safety level (i.e., the percentile), 
*

,opt  can be computed through Eq.(10). Then, this result can be 

used to define the optimal friction coefficient at large velocities of the FPS devices to improve the 

seismic performance of an isolated multi-span continuous composite or RC deck bridge, through 

Eq.(11), according to the proposed nondimensionalization:  

 
*

max, ,opt optf PGA g=   (11) 



 

Regarding the dimensions in plan of the FPS bearings as well as of the abutment-deck joints, the 

results illustrated in Figure 3, Figure 5, Figure 7, Figure 9 can be adopted to define the dimensional 

displacements.  

Furthermore, on the basis of the results described in Section 5, a multivariate nonlinear regression 

analysis has been performed to compute each percentile of the normalized peak displacement of the 

pier top as a function of the above optimum normalized friction coefficient and of the other structural 

properties, as follows: 

 
* 2 2 2

,max , 1 2 3 4 5 6 7 8 9 10( )
pp opt g p g p g p g pc c c c c c c c c c      = +  +  +  +   +   +   +  +  +   (12) 

 

where the regression coefficients nc (n=1,…,10) are again obtained via Matlab [59] and are reported 

in Table 6-Table 9 for the different sets of records. In fact, differently from the optimal value of the 

friction coefficient, the normalized pier peak response depends on the selected records, as commented 

in the previous sections. In general, quite high R-squared values are obtained for the 16th, 50th and 

84th percentile indicating a good estimation of the normalized peak substructure response. Similarly 

to Eq.(11) and according to the nondimensionalization including the PGA/PGV ratio, the results from 

this regression expression can be achieved in dimensional form as follows: 

 

,max

,max 2

p

p

g

PGA
u




=  (13) 

Table 6: Regression coefficients for the normalized peak pier top displacement considering the FF records with high 

PGA/PGV ratio. 

 R-squared c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 

16th  0.8238 0.0883 -0.0439 4.7266 -1.0243 -0.2112 0.0390 -1.776 0.0026 -7.0046 2.1065 

50th 0.7805 0.1798 -0.0666 5.3996 -1.0505 -0.2439 0.0178 4.1849 0.0039 -11.743 1.0663 

84th  0.7117 0.0268 -0.0704 6.2188 1.4000 -0.2709 -0.0461 8.5401 0.0045 -16.174 -6.2984 

Table 7: Regression coefficients for the normalized peak pier top displacement considering the FF records with medium 

PGA/PGV ratio. 

 R-squared c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 

16th  0.8838 0.0345 -0.0103 1.5704 -0.6654 -0.1352 0.0259 -2.4860 0.0008 2.5288 1.8654 

50th 0.9155 0.0559 -0.0150 2.1355 -0.9729 -0.1850 0.0352 -3.0752 0.0011 3.1803 2.6501 

84th  0.9302 0.0312 -0.0025 2.6361 -1.3887 -0.2381 0.0412 -4.5669 0.0005 5.8894 4.1816 

Table 8: Regression coefficients for the normalized peak pier top displacement considering the FF records with low 

PGA/PGV ratio. 

 R-squared c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 

16th  0.9094 0.0245 -0.0030 0.4780 -0.4384 -0.0327 0.0002 -2.0052 0.0003 1.2832 1.8503 

50th 0.9089 0.0194 -0.0096 0.7360 -0.1434 -0.0680 0.0228 -1.8481 0.0006 1.6322 0.2305 

84th  0.9016 0.0259 -0.0078 1.2774 -0.5507 -0.1050 0.0195 -3.8552 0.0006 2.9155 2.0023 

Table 9: Regression coefficients for the normalized peak pier top displacement considering the NF records. 

 R-squared c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 

16th  0.9256 0.0085 -0.0027 0.0842 -0.0132 -0.011 0.0148 -0.0207 0.0001 0.7299 -0.3325 

50th 0.9194 -0.0609 -0.0011 0.747 0.5680 -0.0308 -0.007 -3.276 0.0002 1.4395 -1.0878 

84th  0.8503 0.1372 -0.0185 0.5895 -1.2617 -0.0584 0.0776 0.5413 0.0006 2.7691 2.0480 

 

Finally, it is necessary to highlight that the proposed results have been derived assuming only the 

seismic loads, but during the design or verification of bridges, other serviceability actions, such as 

thermal movements [66], have to be absolutely considered, especially, when high friction coefficients 

are required under strong earthquake events. In these cases, a global cost-effectiveness analysis is 

suggested to reduce the costs if the same safety level is assured. Additionally, for lifetime 



assessments, the deterioration of the sliding surface of the isolators can be accounted for by means of 

the property modification factors [67].  

7. CONCLUSIONS 

This work is aimed at evaluating the optimal properties of single concave friction pendulum (FPS) 

bearings employed for the seismic isolation of multi-span continuous composite or RC deck bridges. 

The ground motion characteristics have been taken into account by means of both the peak ground 

acceleration (PGA) and parameter 
gT  expressed as a function of the peak ground acceleration-to-

velocity (PGA/PGV) ratio (i.e., 2 / 2 /g gT PGV PGA  = = ). These parameters have been employed 

as the length scale and time scale factors to develop a non-dimensional formulation to assess the 

normalized response of the six-degree-of-freedom structural model under different seismic events. 

Specifically, two different families of ground motions corresponding to the near-fault and far-field 

seismic records have been considered. The far-field events have been divided into three subsets 

depending on the PGA/PGV ratio. A wide set of natural records has been selected to take into account 

the record-to-record and event-to-event variability with respect to the simplified assumption of 
gT . 

Furthermore, many bridge systems have been analyzed by varying: the pier fundamental period 
pT , 

the ratio between the fundamental period of the isolated deck and the period of the ground motion 

/d gT T , the mass ratio 
p  and the normalized friction coefficient 

*

 . The results of the seismic 

analyses show that:  

- the normalized response for both the isolation system and pier is strongly influenced by the ratio 

/d gT T . In detail, by increasing the ratio /d gT T , the geometric mean of the isolator normalized 

response first increases, until reaching a peak, and then decreases following the trend of a 

displacement response spectrum. On the other hand, the geometric mean of the substructure 

response decreases for increasing values of /d gT T ; 

- the response for both the substructure and deck follows a very similar trend for the different sets 

of the records considered (i.e., PGA/PGV ratios). Different orders of magnitude are achieved, 

especially, for the pier response. Particularly, the far-field records, especially, with a high 

PGA/PGV ratio are more demanding since they are characterized by many pulses in a wider range 

of frequency. The similarity of the trends confirms that the choice of 1/ g  to define the time scale 

within the proposed nondimensionalization is very effective; 

- the response of the isolation system is not particularly influenced by both the mass ratio and pier 

period; 

- the optimum values of the normalized friction coefficient are defined to minimize the different 

percentiles of the normalized pier displacement. These optimum values are lower if larger /d gT T  

values are considered and are not significantly affected by the other bridge parameters. In addition, 

the optimal coefficients do not depend on the set of the records considered confirming the 

effectiveness of the PGA/PGV ratio. 

All these considerations have led to propose a formula for the design of FPS bearings to calculate the 

normalized optimum friction coefficient depending only on the /d gT T  ratio and, thus, on the seismic 

hazard of the reference site, through a linear regression expression. In addition, a multivariate 

nonlinear regression analysis is also presented to assess the different percentiles of the pier response, 

which depend on the /d gT T  ratio, characteristics of the records set and bridge structural parameters.  

 



ACKNOWLEGEMENTS 

This work is part of the collaborative activity developed by the authors within the framework of the 

“PNRR”: VS3 “Earthquakes and Volcanos” - WP3.6 and SPOKE 7 “CCAM, Connected Networks 

and Smart Infrastructure” - WP4. 

This work is also part of the collaborative activity developed by the authors within the research project 

"RELUIS - PONTI". 

 

REFERENCES  

[1] A. Ghobarah, H.M. Ali, Seismic performance of highway bridges, Eng Struct, 10 (1988). 

[2] P. Tsopelas, M.C. Constantinou, S. Okamoto, S. Fujii, D. Ozaki, Experimental study of bridge 

seismic sliding isolation systems, Eng Str, 18 (4) (1996), pp. 301-310. 

[3] R.S. Jangid Seismic Response of Isolated Bridges J Bridge Eng, 9 (2) (2004), pp. 156-166. 

[4] M.C. Constantinou, A.S. Whittaker, D.M. Fenz and G. Apostolakis, Seismic isolation of bridges, 

Department of Civil, Structural and Environmental Engineering, University at Buffalo, State 

University of New York, Buffalo, NY 14260, 2007. 

[5] Tsiavos, A., Alexander, N.A., Diambra, A., ...Gonzalez-Buelga, A., Sextos, A., A sand-rubber 

deformable granular layer as a low-cost seismic isolation strategy in developing countries: 

Experimental investigation, Soil Dynamics and Earthquake Engineering, 2019, 125, 105731. 

[6] Rele, R., Balmukund, R., Bhattacharya, S., Cui, L., Mitoulis, S.A., Application of controlled-

rocking isolation with shape memory alloys for an overpass bridge, Soil Dynamics and 

Earthquake Engineering, 2021, 149, 106827. 

[7] N.P. Tongaonkar, R.S. Jangid, Seismic response of isolated bridges with soil–structure 

interaction, Soil Dyn Earthq Eng, 23 (2003), pp. 287-302. 

[8] Zayas VA, Low SS, Mahin SA. A simple pendulum technique for achieving seismic isolation. 

Earthquake Spectra1990; 6(2):317–33. 

[9] L. Su, G. Ahmadi, I.G. Tadjbakhsh, Comparative study of base isolation systems, J Eng 

Mech, 115 (9) (1989), pp. 1976-1992. 

[10] A. Mokha, MC. Constantinou, AM. Reinhorn, Teflon Bearings in Base Isolation. I: Testing. 

Journal of Structural Engineering 1990; 116(2):438-454. 

[11] MC. Constantinou, A. Mokha, AM. Reinhorn, Teflon Bearings in Base Isolation. II: Modeling. 

Journal of Structural Engineering 1990; 116(2):455-474. 

[12] JL. Almazàn, JC. De la Llera, Physical model for dynamic analysis of structures with FPS 

isolators. Earthquake Engineering and Structural Dynamics 2003;32(8):1157–1184. 

[13] G. Mosqueda, AS. Whittaker, GL. Fenves, Characterization and modeling of Friction Pendulum 

bearings subjected to multiple components of excitation. Journal of Structural Engineering 

2004; 130(3):433-442. 

[14] R. S. Jangid, Computational numerical models for seismic response of structures isolated by 

sliding systems, Structural Control and Health Monitoring 2005; 12:117–137. 

[15] Jangid RS. Stochastic response of bridges seismically isolated by friction pendulum system. J 

Bridge Eng. 2008;13(4):319. 

[16] MC. Constantinou, AS. Whittaker, Y. Kalpakidis, DM. Fenz, GP. Warn, Performance of Seismic 

Isolation Hardware Under Service and Seismic Loading. Technical Report MCEER-07-0012, 

2007.  

[17] N. Bonessio, G. Lomiento and G. Benzoni Damage identification procedure for seismically 

isolated bridges, Structural Control and Health Monitoring 2012; 19:565–578. 

https://www.scopus.com/authid/detail.uri?authorId=55748652500
https://www.scopus.com/authid/detail.uri?authorId=55522307000
https://www.scopus.com/authid/detail.uri?authorId=22933516100
https://www.scopus.com/authid/detail.uri?authorId=55953963500
https://www.scopus.com/authid/detail.uri?authorId=6506967924
https://www.scopus.com/record/display.uri?eid=2-s2.0-85068004284&origin=resultslist&sort=plf-f
https://www.scopus.com/record/display.uri?eid=2-s2.0-85068004284&origin=resultslist&sort=plf-f
https://www.scopus.com/record/display.uri?eid=2-s2.0-85068004284&origin=resultslist&sort=plf-f
https://www.scopus.com/sourceid/28960?origin=resultslist
https://www.scopus.com/authid/detail.uri?authorId=57209007662
https://www.scopus.com/authid/detail.uri?authorId=57209002037
https://www.scopus.com/authid/detail.uri?authorId=23989947100
https://www.scopus.com/authid/detail.uri?authorId=55037176500
https://www.scopus.com/authid/detail.uri?authorId=35311205700
https://www.scopus.com/record/display.uri?eid=2-s2.0-85108849433&origin=resultslist&sort=plf-f
https://www.scopus.com/record/display.uri?eid=2-s2.0-85108849433&origin=resultslist&sort=plf-f
https://www.scopus.com/sourceid/28960?origin=resultslist
https://www.scopus.com/sourceid/28960?origin=resultslist


[18] Tsiavos A., Vassiliou M.F., Mackie K.R., Stojadinovic B. Comparison of the inelastic response 

of base-isolated structures to near-fault and far-fault ground motions. In: VEESD 2013, Vienna 

congress on recent advances in earthquake engineering and structural dynamics & D-A-CH 

Tagung, Vienna, Austria, 28-30 August, 2013. 

[19] Tsiavos A., Schlatter D., Markic T., Stojadinovic B. Experimental and analytical investigation 

of the inelastic behavior of structures isolated using friction pendulum bearings. Procedia 

engineering 2017;199:465-70. 

[20] L. Landi, G. Grazi, P. Diotallevi, Comparison of different models for friction pendulum isolators 

in structures subjected to horizontal and vertical ground motions, Soil Dynamics and 

Earthquake Engineering 2016;81:75-83. 

[21] Young-Suk Kim, Chung-Bang Yun, Seismic response characteristics of bridges using double 

concave friction pendulum bearings with tri-linear behaviour, Eng Str, 29 (2007), pp. 3082-

3093. 

[22] Kunde MC, Jangid RS. Effects of pier and deck flexibility on the seismic response of isolated 

bridges. J Bridge Eng. 2006;11(1):109-121. 

[23] Meng, Dongliang, Menggang Yang, Ziqi Yang, and Nawawi Chouw. "Effect of Earthquake-

induced Transverse Poundings on a 32 m Span Railway Bridge Isolated by Friction Pendulum 

Bearings." Engineering Structures 251 (2022): 113538. 

[24] Eröz, M., & DesRoches, R. (2013). The influence of design parameters on the response of 

bridges seismically isolated with the friction pendulum system (FPS). Engineering 

structures, 56, 585-599. 

[25] V.R. Panchal, R.S. Jangid and Bhargav B. Shobhana, Seismic performance of bridges with 

variable friction pendulum system, International Journal of Structural Engineering, 2021, Vol. 

11(4), 342-363. 

[26] Castaldo, P., Amendola, G., Giordano, L., Miceli, E. (2022), “Seismic reliability assessment of 

isolated multi-span continuous deck bridges”. Ingegneria Sismica - International Journal of 

Earthquake Engineering, Anno XXXIX – Num. 3.  

[27] Jangid RS. Optimum frictional elements in sliding isolation systems. Computers and Structures 

2000;76(5):651–661. 10. 

[28] Jangid RS. Optimum friction pendulum system for near-fault motions. Engineering Structures 

2005; 27(3):349–359. 

[29] Castaldo, P., Ripani, M., & Lo Piore, R. (2018). Influence of soil conditions on the optimal 

sliding friction coefficient for isolated bridges. Soil Dynamics and Earthquake Engineering, 

111, 131–148. https://doi.org/10.1016/j.soildyn.2018.04.056. 

[30] Castaldo, P., and Guglielmo Amendola. "Optimal Sliding Friction Coefficients for Isolated 

Viaducts and Bridges: A Comparison Study." Structural Control and Health Monitoring, 2021, 

28(12), e2838, https://doi.org/10.1002/stc.2838. 

[31] Castaldo P., Amendola G. (2021) “Optimal DCFP bearing properties and seismic performance 

assessment in nondimensional form for isolated bridges”, Earthquake Engineering and 

Structural Dynamics, 2021, 50(9), 2442-2461, DOI: 10.1002/eqe.3454.  

[32] Tsiavos A., Haladij P., Sextos A., Alexander N. A. Analytical investigation of the effect of a 

deformable sliding layer on the dynamic response of seismically isolated structures. Structures 

2020; 27: 2426-2436. 

[33] Castaldo, P., and E. Tubaldi. "Influence of Ground Motion Characteristics on the Optimal Single 

Concave Sliding Bearing Properties for Base-isolated Structures." Soil Dynamics and 

Earthquake Engineering (1984) 104 (2018): 346-64. 

[34] Liao WI, Loh CH, Lee BH. Comparison of dynamic response of isolated and nonisolated 

continuous girder bridges subjected to near-fault ground motions. Eng Struct 

https://www.sciencedirect.com/science/journal/02677261/111/supp/C
https://doi.org/10.1016/j.soildyn.2018.04.056


2004;26(14):2173–83. 

[35] Dicleli M, Buddaram S. Effect of isolator and ground motion characteristics on the performance 

of seismic‐isolated bridges. Earthq Eng Struct Dyn 2006;35(2):233–50. 

[36] Hameed A, Koo MS, Dai Do T, Jeong JH. Effect of lead rubber bearing characteristics on the 

response of seismic-isolated bridges. KSCE J Civil Eng 2008;12(3):187–96. 

[37] Olmos BA, Jara JM, Roesset JM. Effects of isolation on the seismic response of bridges designed 

for two different soil types. Bull EarthEng. 2011;9(2):641-656. 

[38] Dehghanpoor A, Thambiratnam D, Taciroglu E, Chan T. Soil-pile-superstructure interaction 

effects in seismically isolated bridges under combined vertical and horizontal strong ground 

motions. Soil Dyn Earthq Eng. 2019;126:105753. 

[39] Dehghanpoor A, Thambiratnam D, Zhang W, Chan T, Taciroglu E. An extended probabilistic 

demand model with optimal intensity measures for seismic performance characterization of 

isolated bridges under coupled horizontal and vertical motions. Bull Earthq Eng. 

2021;19(5):2291-2323. 

[40] Papadopoulos, S. P., and A. G. Sextos. 2018. Anti-symmetric mode excitation and seismic 

response of base-isolated bridges under asynchronous input motion. Soil Dynamics and 

Earthquake Engineering 113: 148-61. doi: 10.1016/j. soildyn.2018.06.004. 

[41] Makris N, Black CJ. Dimensional analysis of inelastic structures subjected to near fault ground 

motions. Technical report: EERC 2003/05. Berkeley: Earthquake Engineering Research Center, 

University of California; 2003. 

[42] Makris N, Black CJ. Dimensional analysis of bilinear oscillators under pulse-type excitations. J 

Eng Mech 2004;130(9):1019–31. 

[43] Barenblatt, G. I. (1996). Scaling, self-similarity, and intermediate asymptotics, Cambridge 

University Press, Cambridge, U.K. 

[44] Langhaar, H. L. (1951). Dimensional analysis and theory of models, Wiley, New York. 

[45] H. Aslani, E. Miranda, Probability-based seismic response analysis. Engineering Structures 

2005;27(8):1151-1163. 

[46] Porter KA. An overview of PEER’s performance-based earthquake engineering methodology. 

Proceedings, Proceedings of the 9th International Conference on Application of Statistics and 

Probability in Civil Engineering (ICASP9), San Francisco, California, 2003. 

[47] Shome, N., Cornell, C.A., Bazzurro, P., & Carballo, J.E. (1998). Earthquake, records, and 

nonlinear responses. Earthquake Spectra, 14(3), 469-500. 

[48] Pinto, P.E., Giannini, R., & Franchin, P. (2003). Seismic Reliability Analysis of Structures, IUSS 

Press, Pavia, Italy. 

[49] Luco, N., & Cornell, C.A. (2007). Structure-specific scalar intensity measures for near-source 

and ordinary earthquake ground motions. Earthquake Spectra, 23(2), 357-92. 

[50] Zhu, T.J., Tso, W.K., and Heidebrecht, A.C. (1988). “Effect of peak ground A/V ratio on 

structural damage.” Journal of Structural Engineering, Vol. 114, pp. 1019–1037. 

[51] Tso, W. K., Zhu, T. J., & Heidebrecht, A.C. (1992). Engineering implication of ground motion 

A/V ratio. Soil Dynamics and Earthquake Engineering, 11(3), 133-144. 

[52] Palermo, M., Silvestri, S., Gasparini, G., Trombetti, T. “A Statistical Study on the Peak Ground 

Parameters and Amplification Factors for an Updated Design Displacement Spectrum and a 

Criterion for the Selection of Recorded Ground Motions.” Engineering structures 76 (2014): 

163–176. 

[53] Sawada T, Hirao K, Yamamoto H, Tsujihara O. Relation between maximum amplitude ratio and 

spectral parameters of earthquake ground motion. In: Proc. 10th world conf. on earthquake 

engineering, vol. 2. 1992, p. 617–22. 



[54] F. Pavel & D. Lungu (2013) Correlations Between Frequency Content Indicators of Strong 

Ground Motions and PGV, Journal of Earthquake Engineering, 17:4, 543-559. 

[55] PEER Ground Motion Database Web Application Beta Version – October 1, 2010. 

[56] Chopra, A.K. and Chintanapakdee, C. (2001), Comparing response of SDF systems to near-fault 

and far-fault earthquake motions in the context of spectral regions. Earthquake Engng. Struct. 

Dyn., 30: 1769-1789. https://doi.org/10.1002/eqe.92. 

[57] P., Palazzo, B., & Ferrentino, T. (2017b). Seismic reliability-based ductility demand evaluation 

for inelastic base-isolated structures with friction pendulum devices. Earthquake Engineering 

and Structural Dynamics, 46(8), 1245-1266. DOI: 10.1002/eqe.2854. 

[58] Ryan, K., Chopra, A. (2004). Estimation of Seismic Demands on Isolators Based on Nonlinear 

Analysis. Journal of Structural Engineering, 130(3), 392–402. 

[59] Math Works Inc. MATLAB-High Performance Numeric Computation and Visualization 

Software. User’s Guide. Natick: MA, USA; 1997. 

[60] Ang AHS, Tang WH. Probability Concepts in Engineering-Emphasis on Applications to Civil 

and Environmental Engineering. John Wiley & Sons, New York, USA, 2007. 

[61] Cornell C, Jalayer F, Hamburger R, Foutch D. Probabilistic basis for 2000 SAC Federal 

Emergency Management Agency steel moment frame guidelines. Journal of Structural 

Engineering 2002; 128(4):526–533. 

[62] Jangid R. S., Kelly J. M. Base isolation for near-fault motions. Earthquake Engineering and 

Structural Dynamics 2001, 30:691-707. 

[63] Mazza F., Vulcano A. Nonlinear Response of RC Framed Buildings with Isolation and 

Supplemental Damping at the Base Subjected to Near-Fault Earthquakes. Journal of Earthquake 

Engineering 2009, 13(5):690-715. 

[64] Fragiacomo, M., Rajgelj, S., & Cimadom, F. (2003). Design of bilinear hysteretic isolation 

systems. Earthquake engineering & structural dynamics, 32(9), 1333-1352. 

[65] Iemura H, Taghikhany T, Jain S. Optimum design of resilient sliding isolation system for seismic 

protection of equipments. Bulletin of Earthquake Engineering 2007; 5(1):85–103. 

[66] National Cooperative Highway Research. NCHR program report 276Thermal effects in concrete 

bridge superstructures, 1985. 

[67] Warn Gordon P, Whittaker Andrew S. Property modification factors for seismically isolated 

bridges. J Bridge Eng. 2006;11(3):1084-0702. 

https://doi.org/10.1002/eqe.92

