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Driven by the growing interest in fractional constitutive modeling, we adopt a
two-scale asymptotic homogenization approach to study the effective properties
of fractional viscoelastic composites. We focus on a purely mechanical setting
and derive the cell and homogenized problems corresponding to the balance
of linear momentum equation in the absence of body forces and inertial terms.
In doing this, we reformulate the original framework in the Laplace–Carson
domain and discuss how to obtain the effective coefficients in the time domain.
We particularize the general setting of our work by considering memory func-
tions that describe special types of fractional linear viscoelastic behaviors, and
after presenting the limit cases of our selections, we framed the homogenization
results to account for benchmark problems with different combinations of con-
stitutive models. Specifically, these latter involve elastic, fractional Kelvin–Voigt,
fractional Zener and fractional Maxwell constituents. Our results permit us to
reinforce the interpretation of the theoretical findings and to elucidate the role
of the fractional constitutive models on the effective properties of the composites
under investigation.
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1 INTRODUCTION

Recent advances in the investigation of materials possessing a complex micro-structure have shown that
their time-dependent constitutive behavior can be described in terms of power laws (see, e.g., [1–3]). Within
the context of linear viscoelasticity, spring–dashpot networks [3] have been used to mimic power-law models. However,
the definitions provided by the theory of fractional calculus [4, 5] have permitted to capture power-law behaviors by
introducing a number of fractional parameters.

Fractional viscoelasticity has arisen as a promising tool to describe and analyze experimental data related to the
rheological behavior of various heterogeneous systems found in biology [6, 7], and materials science [8, 9], among oth-
ers. Together with successful experimental data fitting, there have been significant efforts to answer theoretical questions
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2 RAMÍREZ-TORRES ET AL.

on the foundations of linear fractional viscoelastic models. For instance, Bologna et al. [10] provide thermodynamic
restrictions for the orders of the power laws used to characterize the fractional-order hereditary behavior of
hydroxyapatite-based composites. On the other hand, the thermodynamical restrictions for a linear constitutive equation
containing fractional derivatives of stress and strain of different orders are discussed in Atanacković et al. [11] by using
the entropy inequality for isothermal processes.

In spite of the examples reported above, and the several studies concentrating on the effective properties of linear vis-
coelastic composites (see, for instance, [12–17]) using different homogenization approaches, to the best of our knowledge,
fractional viscoelasticity is considerably underused in the investigation of the overall behavior of composite materials.
For example, Gallican and Brenner [18] propose estimates for the effective response of viscoelastic composites with frac-
tional Zener constituents via micro-mechanical modeling. On the other hand, in Ostoja-Starzewski and Zhang [19], the
Hill–Mandel condition is used to determine the overall response of a random viscoelastic micro-structure. In the context
of asymptotic homogenization, we mention, for instance, the works [20] and [21] where closed formulas for the effective
coefficients of fiber-reinforced viscoelastic and visco-piezoelastic composites are obtained based on the Rabotnov's frac-
tional exponential kernel. Finally, we mention the paper by Wang and Pindera [15], in which, even though the notion
of fractional viscoelasticity is not considered, the authors employ the locally exact homogenization theory to investigate
the effective properties of a unidirectional composite with the viscoelastic matrix exhibiting a power-law constitutive
behavior.

We further remark that it is still lacking a well-established theoretical study connecting the role of the micro-structure in
the origins of fractional behavior. In this respect, we mention the paper by Brenner [22] where the author studies the emer-
gence of a fractional viscoelastic behavior resulting from micro-structural information considering Hashin–Shtrikman
and self-consistent estimates. We also mention that, in recent investigations, there have been attempts to propose
variable-order fractional parameters depending on specific fields or micro-structural information. For instance, to study
the effect of temperature on the mechanical behavior of a linear fractional viscoelastic material, Colinas-Armijo et al.
[23] propose fractional orders explicitly depending on the temperature. On the other hand, in Ramirez and Coimbra [24],
the time-dependent order of the fractional derivative is assumed to be a measure of the rate of change of disorder within
a composite material. In particular, the results derived from the statistical mechanical model proposed in Ramirez and
Coimbra [24] where in agreement with experimental studies conducted in an epoxy resin and a carbon/epoxy composite.

Here, motivated by previous works (see, e.g., [17, 20, 21, 25–27]), we use the asymptotic homogenization method [28–30]
to compute the effective properties of a composite with viscoelastic constitutive response. In particular, we conduct our
calculations in the general setting of linear viscoelastic materials and specialize them for the case in which the local con-
stitutive response of each constituent is described by a fractional viscoelastic model. Although the approach has common
points with that followed in Rodríguez-Ramos et al. [20] and Otero et al. [21], we set the problem differently such that
it is possible to explicitly split the elastic and the memory contributions of the composite. This is one of the novelties of
this work. Furthermore, we analyze the consequences of limit cases by using a unified memory law which includes the
fractional Kelvin–Voigt, Maxwell, and Zener models and that can be generalized to include Prony series and Rabotnov's
kernels. In addition, we find analytical expressions for the effective coefficients for special cases of composite media.
Within this context, we find that for a layered composite with elastic and fractional Kelvin–Voigt constituents the effec-
tive coefficients can be written in terms of a two-parameter Mitta–Leffler function. This constitutes another novelty of
this work.

The present work is organized as follows. In Section 2, we introduce the main equations governing our model. In
Section 3, we reformulate the original problem in a two-scale fashion and introduce the topology of the composite
micro-structure. Afterwards, in Section 4, we derive the cell and homogenized problems and the general form of the
effective coefficients for a two-phase viscoelastic composite via the asymptotic homogenization technique. In doing this,
we transform the two-scale problem to the Laplace domain using the elastic-viscoelastic correspondence principle and
take advantage of the Laplace–Carson transform in the inversion of the effective coefficients to the time domain. Fur-
thermore, we use these theoretical results to derive the analytical expressions for the effective elasticity and relaxation
tensors in the case of a composite medium with a three-dimensional layered structure. In Section 5, we present specific
constitutive models for linear viscoelastic and fractional viscoelastic materials and discuss some limit cases of the lat-
ter. Moreover, we specialize the general theory by presenting different benchmark problems and discussing the results
produced by analytical and numerical simulations. Finally, in Section 6, we highlight the main results and outline some
future developments.
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RAMÍREZ-TORRES ET AL. 3

2 PROBLEM FORMULATION

Let us denote by B an open and bounded set of the three-dimensional Euclidean space, S, representing a continuum
body with periodic micro-structure and constituted by two different solid sub-phases denoted by B1 and B2. The two
open subsets B1 and B 2 partition B such that B = B 1 ∪ B2, B1 ∩ B 2 = ∅ and B1 ∩ B 2 = ∅. The bar notation
indicates that we consider the topological closure of the subset. Furthermore, we denote by I the interface between B1
and B2 and by N I the unit vector normal to I, where the positive orientation is taken from B1 to B2. Additionally, for
each point X ∈ B, we associate a triple of real numbers represented by (X1,X2,X3) so that they represent, with abuse of
notation, the coordinates of X in a Cartesian reference system.

In the absence of body forces, the point-wise balance of linear momentum for the composite B reads

divS𝜂(X , t) = 𝟎, (1)

where S𝜂(X , t), with 𝜂 = 1, 2, denotes the Cauchy stress tensor related to the constituent B 𝜂 and (X , t) ∈ B 𝜂 × [0, tf [, with
tf representing a positive time. In addition, we prescribe continuity of displacements and tractions on the constituents'
interface, namely, for all t ∈ [0, tf[,

U1(X−, t) = U2
(

X+, t
)
, (2a)

S1(X−, t)NI (X) = S2
(

X+, t
)

NI (X), (2b)

where we have used the notation

Φ1(X−, t) ∶= lim
X→X−

Φ1(X , t), (3a)

Φ2
(

X+, t
)
∶= lim

X→X+
Φ2(X , t), (3b)

with X− ∈ I − (X+ ∈ I +) and I − (I +) being the set of points of I interpreted as the points of I which are in con-
tact with the sub-phase B1 (B2). The problem defined by Equations (1), (2a), and (2b) needs to complemented with
appropriate boundary and initial conditions. However, since here we are focused on computing the effective material
properties, they do not need to be specified. We also notice that the notation used so far is not general to all pos-
sible topological configurations and, thus, may need to be adapted, for example, to include the case of disconnected
subsets [31].

By adhering to the infinitesimal theory of viscoelasticity [32, 33], the stress tensors, S𝜂(X , t), for non-aging viscoelastic
media in the absence of residual stresses can be written as

S𝜂(X , t) = C𝜂(X) ∶ E𝜂(X , t) +

t

∫
−∞

L𝜂(X , t − 𝜏) ∶
.
E𝜂(X , 𝜏)d𝜏, (4)

where E𝜂(X , t) ∶= sym(gradU𝜂(X , t)) represents the infinitesimal strain tensor, U𝜂 is the displacement field, gradU𝜂 =
𝜕[U𝜂]a∕𝜕Xbia⊗ib denotes the displacement gradient, and {ia}3

a=1 is the orthonormal vector basis in Cartesian coordinates.
The fourth-order tensors C𝜂(X) and L𝜂(X , t) are referred to as the elasticity tensor and the stress-relaxation tensor [33, 34],
respectively, which we consider to enjoy of both left and right minor symmetries, and major symmetry, that is,[

C𝜂(X)
]

abcd =
[
C𝜂(X)

]
bacd =

[
C𝜂(X)

]
abdc =

[
C𝜂(X)

]
cdab, (5a)

[
L𝜂(X , t)

]
abcd =

[
L𝜂(X , t)

]
bacd =

[
L𝜂(X , t)

]
abdc =

[
L𝜂(X , t)

]
cdab, (5b)

with a, b, c, d = 1, 2, 3. In particular, under the hypothesis of causal histories, that is, by requiring the infinitesimal strain to
be zero for t < 0 and non-zero in the interval [0, t[, we can write Ē𝜂(X , t) = H(t)Ē𝜂(X , t), where H(t) denotes the Heaviside
step function and Ē𝜂(X , t) is the infinitesimal strain which can have non-zero values for t < 0. Therefore, Equation (4) can
be rewritten as

S𝜂(X , t) = C𝜂(X) ∶ Ē𝜂(X , t) + L𝜂(X , t) ∶ Ē𝜂(X , 0) +

t

∫
0

L𝜂(X , t − 𝜏) ∶ Ē𝜂(X , 𝜏)d𝜏. (6)
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4 RAMÍREZ-TORRES ET AL.

For simplicity of notation, in the remainder of this work, we will write E𝜂 instead of Ē𝜂 . In particular, the constitutive
expression in Equation (6) can be equivalently rewritten in the form

S𝜂(X , t) = G𝜂(X , t) ∶ E𝜂(X , 0) +

t

∫
0

G𝜂(X , t − 𝜏) ∶
.
E𝜂(X , 𝜏)d𝜏. (7)

where G𝜂(X , t) ∶= C𝜂(X)+L𝜂(X , t). We remark that we follow the approach outlined by Eringen [33] for the presentation
of the general form of the viscoelastic constitutive law. Therefore, we adopt the notation and terminology used in Eringen
[33]. In doing this, instead of referring to G𝜂 as the relaxation tensor (as it is usually done), we prefer to call L𝜂 the
relaxation tensor, since it is the one that encodes the memory properties of the constituents.

3 MULTI-SCALE FORMULATION

Here, we reformulate the equations specified in the previous section in a multi-scale fashion and describe the topology of
the micro-structure for the problem under consideration.

3.1 Separation of scales
We start by denoting with Lc and 𝓁 the characteristic length scales of the composite medium and of its internal structure
so that

0 < 𝜀 ∶= 𝓁
Lc

≪ 1, (8)

where 𝜀 is referred to as the smallness parameter. Moreover, following Ramírez-Torres et al. [26] and Di Stefano [31],
we formally rewrite a given physical quantity Φ ∶ B × [0, tf [→ R in a two-scale fashion, so that the dependence on the
characteristic length scales is explicitly taken into account. Specifically, the multi-scale version of a quantity Φ(X , t) is
written as [26, 31]

Φ(X , t) = 𝜑(x, 𝑦, t), (9)

where the dimensionless variables x ∶= X∕Lc and 𝑦 ∶= X∕𝜀 are referred to as the macroscopic variable and the micro-
scopic variable, respectively. We notice that, in this framework, the partial derivatives of Φ with respect to the spatial
coordinates Xi, i = 1, 2, 3, of X can be expressed as

𝜕Φ
𝜕Xi

(X , t) = 1
Lc

[
𝜕𝜑

𝜕xi
(x, 𝑦, t) + 1

𝜀

𝜕𝜑

𝜕𝑦i
(x, 𝑦, t)

]
. (10)

For the problem under study, we introduce the notations

U𝜂(X , t) = u𝜂(x, 𝑦, t) and S𝜂(X , t) = 𝝈𝜂(x, 𝑦, t), (11)

for the displacement and stress fields, and

C𝜂(X , t) = 𝕔𝜂(x, 𝑦, t) and L𝜂(X , t) = 𝕝𝜂(x, 𝑦, t), (12)

for the elasticity and the relaxation tensors. Furthermore, we set G𝜂(X , t) = 𝕘𝜂(x, 𝑦, t).

3.2 Topology of the micro-structure
As usually done in the context of the asymptotic homogenization technique [28, 29], we assume that all the fields of
interest are periodic with respect to the micro-scale variable 𝑦 and introduce an elementary cell, which we denote Y in a
non-dimensional formalism. Specifically, we consider that Y is partitioned such that Y = Y 1 ∪ Y 2, Y 1 ∩ Y 2 = ∅, and
Y 1 ∩ Y 2 = ∅, where Y 1 and Y 2 are open subsets. Furthermore, we denote by IY the interface between Y 1 and Y 2 and
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RAMÍREZ-TORRES ET AL. 5

with nY the normal vector to IY where the positive orientation is taken from Y 1 to Y 2, that is, nY is directed outwards
the interior of Y 1.

For the sake of simplicity, we adopt the assumption of macroscopic uniformity (see, for instance, Burridge and Keller
[35] and Penta et al. [36]), which permits to choose the elementary cell independently of the position in the domain
B. This consideration implies that the elementary cell, Y, and, thus, the sub-phases Y 1 and Y 2 as well as the interface
I are representative of the micro-structure of B. Consequently, the normal vector nY results to be independent of the
macroscopic variable x.

3.3 Two-scale governing equations
In view of the above discussions, we can reformulate the original problem given by Equations (1)–(2b) as

L−1
c
[
divx 𝝈𝜂(x, 𝑦, t) + 𝜀−1div𝑦𝝈𝜂(x, 𝑦, t)

]
= 𝟎, (13a)

u1 (x, 𝑦−, t) = u2
(

x, 𝑦+, t
)
, (13b)

𝝈1 (x, 𝑦−, t)nY (𝑦) = 𝝈2
(

x, 𝑦+, t
)

nY (𝑦), (13c)

where x ∈ B̌, 𝑦 ∈ Y, and t ∈ [0, tf [, with B̌ being the dimensionless version of B. Particularly, in (13b) and (13c), we
have introduced the notation

𝜑1 (x, 𝑦−, t) ∶= lim
𝑦→𝑦−

𝜑1(x, 𝑦, t), (14a)

𝜑2
(

x, 𝑦+, t
)
∶= lim

𝑦→𝑦+
𝜑2(x, 𝑦, t), (14b)

for the generic field 𝜑(x, 𝑦, t), with 𝑦− ∈ I−
Y

(𝑦+ ∈ I+
Y

) and I−
Y

(I+
Y

) being the set of points of IY interpreted as the
points of IY which are in contact with the sub-phase Y 1 (Y 2). Furthermore, for 𝜂 = 1, 2, we have that

𝝈𝜂(x, 𝑦, t) = 𝕘𝜂(x, 𝑦, t) ∶ e𝜂(x, 𝑦, 0) +

t

∫
0

𝕘𝜂(x, 𝑦, t − 𝜏) ∶ .e𝜂(x, 𝑦, 𝜏)d𝜏, (15a)

e𝜂(x, 𝑦, t) = e𝜂x(x, 𝑦, t) + 𝜀−1e𝜂𝑦(x, 𝑦, t), (15b)

e𝜂𝛾 (x, 𝑦, t) ∶= L−1
c sym(grad𝛾u𝜂(x, 𝑦, t)), with 𝛾 = x, 𝑦. (15c)

Before going further, we transform the problem specified in (13a)–(15c) from the time domain to the
Laplace transform domain by considering the elastic-viscoelastic correspondence principle (see, e.g., [15, 17, 37]
in the context of asymptotic homogenization). Specifically, by introducing the Laplace transform of the generic field
𝜑(x, 𝑦, t), namely,

{𝜑}(x, 𝑦, s) ≡ �̃�(x, 𝑦, s) ∶=

+∞

∫
0

exp(−st)𝜑(x, 𝑦, t)dt, (16)

the system of Equations (13a)–(13c) can be rewritten as

L−1
c
[
divx �̃�𝜂(x, 𝑦, s) + 𝜀−1div𝑦�̃�𝜂(x, 𝑦, s)

]
= 𝟎, (17a)

ũ1(x, 𝑦−, s) = ũ2
(

x, 𝑦+, s
)
, (17b)

�̃�1(x, 𝑦−, s)nY (𝑦) = �̃�2
(

x, 𝑦+, s
)

nY (𝑦), (17c)
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6 RAMÍREZ-TORRES ET AL.

where, by considering the expressions in formulae (15a)–(15c), the Laplace transform of the two-scale, infinitesimal stress
tensor can be written as

�̃�𝜂(x, 𝑦, s) = s�̃�𝜂(x, 𝑦, s) ∶ ẽ𝜂(x, 𝑦, s) = �̂�𝜂(x, 𝑦, s) ∶ ẽ𝜂(x, 𝑦, s), (18)

where �̂�𝜂 denotes the Laplace–Carson transform of 𝕘, which is defined as [38]

c{𝜑}(x, 𝑦, s) ≡ �̂�(x, 𝑦, s) ∶= s

+∞

∫
0

exp(−st)𝜑(x, 𝑦, t)dt = s{𝜑}(x, 𝑦, s), (19)

for the generic field 𝜑. In particular, since the elasticity tensor is time independent, �̂�𝜂(x, 𝑦, s) = 𝕔𝜂(x, 𝑦), and thus, we can
write

�̂�𝜂(x, 𝑦, s) = �̂�𝜂(x, 𝑦, s) + �̂�𝜂(x, 𝑦, s) = 𝕔𝜂(x, 𝑦) + s�̃�𝜂(x, 𝑦, s). (20)

4 THE ASYMPTOTIC HOMOGENIZATION TECHNIQUE

Following the standard procedure in the asymptotic homogenization technique [28, 29], we prescribe a formal two-scale
expansion for the displacement ũ𝜂 in power series of the smallness parameter 𝜀 as follows:

ũ𝜂(x, 𝑦, s) =
+∞∑
i=0

u(i)
𝜂 (x, 𝑦, s)𝜀i, (21)

where u(i)
𝜂 represent smooth, Y-periodic fields. The substitution of the expansion (21) into (17a) leads, after multiplication

by 𝜀2 and equating in powers of the smallness parameter 𝜀, to a set of differential equations holding in the periodic
cell, Y, and parametrized by the macro-scale variable x. These equations, in particular, are supplemented with interface
conditions resulting from the substitution of the formal expansion (21) into (17b)–(17c). In the following, we report the set
of problems associated with the asymptotic homogenization procedure. Although the description of the homogenization
technique presented in this section is classical, we report its main steps since the presentation of the problem at hand
differs from those typically encountered in the existing literature.

4.1 The first cell problem
The first cell problem reads

L−1
c div𝑦

[
�̂�𝜂(x, 𝑦, s) ∶ e(0)𝜂𝑦 (x, 𝑦, s)

]
= 𝟎, (22a)

u(0)
1 (x, 𝑦−, s) = u(0)

2
(

x, 𝑦+, s
)
, (22b)[

�̂�1(x, 𝑦−, s) ∶ e(0)1𝑦 (x, 𝑦
−, s)

]
nY (𝑦) =

[
�̂�2
(

x, 𝑦+, s
)
∶ e(0)2𝑦

(
x, 𝑦+, s

)]
nY (𝑦), (22c)

where, for i = 0, 1, 2, … , we have introduced the notation

e(i)𝜂𝑦(x, 𝑦, s) ∶= L−1
c sym(grad𝑦u(i)

𝜂 (x, 𝑦, s)). (23)

The system (22a)–(22c) represents a linear elastic-type boundary problem with zero source term, for which the only
periodic solutions are of the form [28, 29]

u(0)(x, s) ∶= u(0)
1 (x, s) = u(0)

2 (x, s). (24)
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RAMÍREZ-TORRES ET AL. 7

4.2 The second cell problem
The second cell problem can be written as

L−1
c div𝑦

[
�̂�𝜂(x, 𝑦, s) ∶ e(1)𝜂𝑦 (x, 𝑦, s) + �̂�𝜂(x, 𝑦, s) ∶ e(0)x (x, s)

]
= 𝟎, (25a)

u(1)
1 (x, 𝑦−, s) = u(1)

2
(

x, 𝑦+, s
)
, (25b)

[
�̂�1(x, 𝑦−, s) ∶ e(1)1𝑦 (x, 𝑦

−, s) + �̂�1(x, 𝑦−, s) ∶ e(0)x (x, 𝑦−, s)
]

nY (𝑦)

=
[
�̂�2
(

x, 𝑦+, s
)
∶ e(1)2𝑦

(
x, 𝑦+, s

)
+ �̂�2

(
x, 𝑦+, s

)
∶ e(0)x

(
x, 𝑦+, s

)]
nY (𝑦),

(25c)

where e(0)x (x, s) ∶= L−1
c sym(gradxu(0)(x, s)). The system (25a)–(25c), which can be also regarded as a linear elastic-type

boundary problem in the unknown field u(1)
𝜂 , admits a unique solution up to an additive 𝑦-constant field [30]. Conse-

quently, we can express u(1)
𝜂 through the ansatz

u(1)
𝜂 (x, 𝑦, s) = 𝝃𝜂(x, 𝑦, s) ∶ e(0)x (x, s) + w𝜂(x, s), (26)

where 𝝃𝜂 denotes a 𝑦-periodic third-order tensor field and w𝜂 is a vector field. We notice that using the expression
introduced in Equation (26), we can write

e(1)𝜂𝑦 (x, 𝑦, s) ∶= sym(grad𝑦u(1)
𝜂 (x, 𝑦, s)) = 𝕖𝜂𝑦(x, 𝑦, s) ∶ e(0)x (x, s), (27)

where the components of the fourth-order tensor field 𝕖𝜂𝑦 are

[𝕖𝜂𝑦(x, 𝑦, s)]abcd ∶= 1
2

(
𝜕
[
𝝃𝜂
]

acd

𝜕𝑦b
(x, 𝑦, s) +

𝜕
[
𝝃𝜂
]

bcd

𝜕𝑦a
(x, 𝑦, s)

)
. (28)

From the above expression, we can verify that 𝕖𝜂𝑦 enjoys of the left-minor symmetry, that is, [𝕖𝜂𝑦]abcd = [𝕖𝜂𝑦]bacd.
Now, by substituting the ansatz (26) in Equations (25a)–(25c) and taking into account the expression in (27), the second

cell problem, usually referred to as the local problem, reads

L−1
c div𝑦[�̂�𝜂(x, 𝑦, s) ∶ 𝕖𝜂𝑦(x, 𝑦, s) + �̂�𝜂(x, 𝑦, s)] = 𝟎, (29a)

𝝃1(x, 𝑦−, s) = 𝝃2
(

x, 𝑦+, s
)
, (29b)

[
�̂�1(x, 𝑦−, s) ∶ 𝕖1𝑦(x, 𝑦−, s) + �̂�1(x, 𝑦−, s)

]
nY (𝑦)

=
[
�̂�2
(

x, 𝑦+, s
)
∶ 𝕖2𝑦

(
x, 𝑦+, s

)
+ �̂�2

(
x, 𝑦+, s

)]
nY (𝑦).

(29c)

We remark that, to solve the cell problem (29a)–(29c), we take advantage of the symmetry of the tensor fields in these
equations to reduce the number of unknowns. Looking at Equation (28), we need to find the 81 components of the
fourth-order tensor 𝕖𝜂𝑦. However, by definition, the tensor 𝕖𝜂𝑦 enjoys the left-minor symmetry. On the other hand, the
symmetry of e(0)x implies that 𝝃 is symmetric in its last two indices and, consequently, 𝕖𝜂𝑦 also enjoys right minor sym-
metry. Therefore, the number of unknown components of the tensor 𝕖𝜂𝑦 reduces to 36. We refer the reader to Di Stefano
et al. [31] and Penta and Gerisch [39] for further details.
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8 RAMÍREZ-TORRES ET AL.

4.3 The homogenized problem
By considering the third cell problem, we can write

L−1
c divx

[
�̂�𝜂(x, 𝑦, s) ∶ e(0)x (x, s) + �̂�𝜂(x, 𝑦, s) ∶ e(1)𝜂𝑦 (x, 𝑦, s)

]
+ L−1

c div𝑦
[
�̂�𝜂(x, 𝑦, s) ∶ e(1)𝜂x (x, 𝑦, s) + �̂�𝜂(x, 𝑦, s) ∶ e(2)𝜂𝑦 (x, 𝑦, s)

]
= 𝟎,

(30a)

u(2)
1 (x, 𝑦−, s) = u(2)

2
(

x, 𝑦+, s
)
, (30b)

[
�̂�1(x, 𝑦−, s) ∶ e(1)1x (x, 𝑦

−, s) + �̂�1(x, 𝑦−, s) ∶ e(2)1𝑦 (x, 𝑦
−, s)

]
nY (𝑦)

=
[
�̂�2
(

x, 𝑦+, s
)
∶ e(1)2x

(
x, 𝑦+, s

)
+ �̂�2

(
x, 𝑦+, s

)
∶ e(2)2𝑦

(
x, 𝑦+, s

)]
nY (𝑦),

(30c)

where, for i = 0, 1, 2, … ,

e(i)𝜂x(x, 𝑦, s) ∶= L−1
c sym(gradxu(i)

𝜂 (x, 𝑦, s)). (31)

Before going further in our analysis, let us introduce, for a generic field 𝜑𝜂(x, 𝑦, s), with 𝜂 = 1, 2, the operator

⟨
𝜑𝜂

⟩
Y 𝜂

(x, s) ∶= 1|Y | ∫
Y 𝜂

𝜑𝜂(x, 𝑦, s)d𝑦, (32)

where |Y | represents the measure of Y 𝜂 . In particular, we notice that the average of 𝜑 over the cell Y is

⟨𝜑⟩Y (x, s) ∶= ⟨𝜑1⟩Y 1
(x, s) + ⟨𝜑2⟩Y 2

(x, s) = 1|Y | ∑
𝜂=1,2

∫
Y 𝜂

𝜑𝜂(x, 𝑦, s)d𝑦, (33)

where 𝜑 ∶= 𝜑1𝟙Y 1 + 𝜑2𝟙Y 2 and 𝟙Y 𝜂
denotes the indicator function of Y 𝜂 . Consequently, by applying the operator intro-

duced in (32) to (30a) and considering the assumption of macroscopic uniformity, which permits to commute the integral
operator over the periodic cell and the divergence with respect to x, we can deduce that

𝟎 = L−1
c divx

[⟨
�̂�𝜂(x, 𝑦, s)

⟩
Y 𝜂

∶ e(0)x (x, s) +
⟨
�̂�𝜂(x, 𝑦, s) ∶ e(1)𝜂𝑦 (x, 𝑦, s)

⟩
Y 𝜂

]
+ L−1

c

⟨
div𝑦

[
�̂�𝜂(x, 𝑦, s) ∶ e(1)𝜂x (x, 𝑦, s) + �̂�𝜂(x, 𝑦, s) ∶ e(2)𝜂𝑦 (x, 𝑦, s)

]⟩
Y 𝜂

.

(34)

Thus, summing up over 𝜂 = 1, 2 the second addend in (34) and considering the periodicity properties of u(1)
𝜂 and u(2)

𝜂 , we
have that

𝟎 =
∑
𝜂=1,2

⟨
div𝑦

[
�̂�𝜂 ∶ e(1)𝜂x + �̂�𝜂 ∶ e(2)𝜂𝑦

]⟩
Y 𝜂

= 1|Y | ∫
IY

∑
𝜂=1,2

[
�̂�𝜂 ∶ e(1)𝜂x + �̂�𝜂 ∶ e(2)𝜂𝑦

]
n𝜂d𝑦, (35)

where we have also invoked the interface condition (30c) and used the notation n1 ∶= nY and n2 ∶= −nY. We remark
that the result (35) holds true for a certain class of periodic cells with specific topological characteristics; see, for example,
Di Stefano et al. [31] for further discussion on this issue. Therefore, by summing Equation (34) over 𝜂 = 1, 2, and taking
into account (35) and (27), we obtain that Equation (34) can be equivalently rewritten as

L−1
c divx

[
𝕘eff(x, s) ∶ e(0)x (x, s)

]
= 𝟎, (36)
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RAMÍREZ-TORRES ET AL. 9

where we have introduced the auxiliary notation

𝕘eff(x, s) ∶=
∑
𝜂=1,2

⟨
�̂�𝜂(x, 𝑦, s) + �̂�𝜂(x, 𝑦, s) ∶ 𝕖𝜂𝑦(x, 𝑦, s)

⟩
Y 𝜂

. (37)

We notice that Equation (36) constitutes the homogenized equation for the unknown u(0)(x, s) and holds true in the spatial
domain Bh, namely, in the homogenized version of B̌.

Remark 1. We remark that the fourth-order tensor 𝕘eff can be written as

𝕘eff(x, s) ∶= 𝕔eff(x, s) + 𝕝eff(x, s), (38)

where 𝕔eff and 𝕝eff are defined through the expressions

𝕔eff(x, s) ∶=
∑
𝜂=1,2

⟨
�̂�𝜂(x, 𝑦, s) + �̂�𝜂(x, 𝑦, s) ∶ 𝕖𝜂𝑦(x, 𝑦, s)

⟩
Y 𝜂

, (39a)

𝕝eff(x, s) ∶=
∑
𝜂=1,2

⟨
�̂�𝜂(x, 𝑦, s) + �̂�𝜂(x, 𝑦, s) ∶ 𝕖𝜂𝑦(x, 𝑦, s)

⟩
Y 𝜂

, (39b)

and represent, respectively, the effective elasticity and the effective relaxation tensors. It is worth noticing that, in
general, the fields u(i) may not represent the result of the application of the Laplace transform to a certain vector field
and, thus, the transformation of the effective coefficient to the time domain should be carefully done by selecting an
appropriate operator. This, however, is not an easy task as we would want to select a transformation operator which
permits us to obtain the equivalent homogenized properties corresponding to the original problem. Here, to avoid this
uncertainty, we assume that u(i) represents the result of a Laplace transformation, such that u(i)(x, 𝑦, s) ≡ ũ(i)(x, 𝑦, s).
Therefore, working with the second addends in (39a) and (39b), we can deduce that

�̂�𝜂 ∶ �̃�𝜂𝑦 = s�̃�𝜂 ∶ �̃�𝜂𝑦 = s{𝕔𝜂 ∗ 𝕖𝜂𝑦} = c{𝕔𝜂 ∗ 𝕖𝜂𝑦}, (40a)

�̂�𝜂 ∶ �̃�𝜂𝑦 = s�̃�𝜂 ∶ �̃�𝜂𝑦 = s{𝕝𝜂 ∗ 𝕖𝜂𝑦} = c{𝕝𝜂 ∗ 𝕖𝜂𝑦}, (40b)

where the time convolution is understood between the components of the fourth-order tensor. Then, we can conclude
that both 𝕔eff and 𝕝eff represent the result of Laplace–Carson transforms and we can write

𝕘eff ∶= 𝕔eff + 𝕝eff = �̂�eff + �̂�eff ≡ �̂�eff. (41)

Consequently, to obtain the value of 𝕘eff in the time domain, we need to consider the inverse Laplace–Carson
transform. In the remainder of this work, we will consider the assumptions leading to Equation (41).

4.4 Effective coefficients for viscoelastic layered composites
Our main scope is to show how fractional constitutive laws influence the effective properties of a composite. Thus,
although we could consider geometric settings more complex than the one factually employed in the sequel (see, e.g.,
Cruz-González et al. [17]), here, we specialize our theory to the case of a layered composite medium in order to give
prominence to the role of the use of a fractional constitutive law with respect to geometric complexity. We notice that
the effective coefficients that we obtain for our problem by using the Laplace–Carson transform for the case of strain and
stress fields uniform in each layer were previously determined in Backus [40].

The right minor symmetry of the tensor �̂�𝜂 allows to rewrite the cell problem (29a)–(29c) in the form

L−1
c div𝑦

[
�̂�𝜂(x, 𝑦, s) ∶ grad𝑦(𝝃

T
𝜂 )(x, 𝑦, s) + �̂�𝜂(x, 𝑦, s)

]
= 𝟎, (42a)

𝝃1(x, 𝑦−, s) = 𝝃2
(

x, 𝑦+, s
)
, (42b)
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10 RAMÍREZ-TORRES ET AL.

[
�̂�1(x, 𝑦−, s) ∶ grad𝑦

(
𝝃T

1
)
(x, 𝑦−, s) + �̂�1(x, 𝑦−, s)

]
nY (𝑦)

=
[
�̂�2
(

x, 𝑦+, s
)
∶ grad𝑦

(
𝝃T

2
) (

x, 𝑦+, s
)
+ �̂�2

(
x, 𝑦+, s

)]
nY (𝑦),

(42c)

where [grad𝑦(𝝃
T
𝜂 )]abcd ∶= 𝜕[𝝃T

𝜂 ]cda∕𝜕𝑦b = 𝜕
[
𝝃𝜂
]

acd∕𝜕𝑦b [41]. In particular, the symmetry of the third-order tensor 𝝃𝜂 in its
last two indices reduces the number of unknowns of the cell problem from 27 to 18. Then, for a three-dimensional layered
composite medium with layers orthogonal to the i3 direction and with each layer assumed to be homogeneous in 𝑦1 and
𝑦2, and, thus, in each plane orthogonal to i3, the material properties of the composite change solely along the i3 direction,
and thus, the first equation in the cell problem (42a)–(42c) reduces to

L−1
c

𝜕

𝜕𝑦

{[
�̂�𝜂(x, 𝑦, s)

]
a3cd +

[
�̂�𝜂(x, 𝑦, s)

]
a3p3

𝜕
[
𝝃𝜂
]

pcd

𝜕𝑦
(x, 𝑦, s)

}
= 0, (43)

where, for simplicity of notation, we have replaced 𝑦3 with 𝑦. Within this framework, the original problem, which is
three-dimensional, can be reconceived as one-dimensional and, accordingly, the unit cell can be associated with the
interval Y =]0, 1[ and the homogenized domain with Bh =]0,L∕Lc[, with L > 0. Due to the simplified structure of
Equation (43), a direct integration with respect to 𝑦 yields that the term inside the braces is independent of 𝑦, that is,

L−1
c

{[
�̂�𝜂(x, 𝑦, s)

]
a3cd +

[
�̂�𝜂(x, 𝑦, s)

]
a3p3

𝜕
[
𝝃𝜂
]

pcd

𝜕𝑦
(x, 𝑦, s)

}
= 𝕒𝜂(x, s), (44)

where 𝕒𝜂 is the “integration constant.” This, in turn, leads to

𝜕
[
𝝃𝜂
]

acd

𝜕𝑦
(x, 𝑦, s) = Lc

[
h−1
𝜂 (x, 𝑦, s)

]
ap

{
[𝕒𝜂(x, s)]p3cd − L−1

c
[
�̂�𝜂(x, 𝑦, s)

]
p3cd

}
, (45)

where the auxiliary notation h−1
𝜂 is used to represent the inverse of the second-order tensor with components

[h𝜂(x, 𝑦, s)]ab =
[
�̂�𝜂(x, 𝑦, s)

]
a3b3. We notice that, to solve the cell problem, one should determine 𝝃𝜂 . However, since we are

interested only in the determination of the effective coefficients, this is not necessary. Indeed, looking at Equations (39a)
and (39b), one can just determine 𝕖𝜂 , which reduces to the partial derivative of the third-order tensor 𝝃𝜂 , given by
Equation (45). Consequently, from Equation (45), we only need to find the “integration constants” supplied by the
components [𝕒𝜂]p3cd. In particular, the substitution of (45) into the interface condition (42c) leads to

[𝕒(x, s)]a3cd ≡ [𝕒1(x, s)]a3cd = [𝕒2(x, s)]a3cd. (46)

Thus, by applying the integral operator defined in (32) to (45), summing up over 𝜂 = 1, 2, and taking into account the
local periodicity of 𝝃𝜂 , as well as its continuity at the interface, we deduce that

[𝕒(x, s)]r3cd = L−1
c

{∑
𝜂=1,2

⟨[
𝝌𝜂(x, 𝑦, s)

]
rn

[
�̂�𝜂(x, 𝑦, s)

]
n3cd

⟩
Y 𝜂

}
, (47)

with [
𝝌𝜂(x, 𝑦, s)

]
rn ∶= [H(x, s)]rm

[
h−1
𝜂 (x, 𝑦, s)

]
mn, (48a)

[H(x, s)]rm ∶=

(∑
𝜂=1,2

⟨
[h−1

𝜂 (x, 𝑦, s)]rm
⟩

Y 𝜂

)−1

. (48b)
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RAMÍREZ-TORRES ET AL. 11

We notice that the tensorial coefficients of 𝝌𝜂 represent partition coefficients, so that Equation (47) defines [𝕒]r3cd as
the weighted average of [�̂�𝜂]n3cd. Now, by substituting (47) into (45), the effective elastic and relaxation tensors for the
three-dimensional layered composite medium are given by the expressions

[�̂�eff(x, s)]abcd =
∑
𝜂=1,2

⟨
[𝕔𝜂(x, 𝑦)]abcd

⟩
Y 𝜂

−
∑
𝜂=1,2

⟨
[𝕔𝜂(x, 𝑦)]abp3

[
h−1
𝜂 (x, 𝑦, s)

]
pq

[
�̂�𝜂(x, 𝑦, s)

]
q3cd

⟩
Y 𝜂

+

{∑
𝜂=1,2

⟨
[𝕔𝜂(x, 𝑦)]abp3

[
h−1
𝜂 (x, 𝑦, s)

]
pq

⟩
Y 𝜂

}{∑
𝜂=1,2

⟨[
𝝌𝜂(x, 𝑦, s)

]
qn

[
�̂�𝜂(x, 𝑦, s)

]
n3cd

⟩
Y 𝜂

}
,

(49)

and

[
�̂�eff(x, s)

]
abcd

=
∑
𝜂=1,2

⟨[
�̂�𝜂(x, 𝑦, s)

]
abcd

⟩
Y 𝜂

−
∑
𝜂=1,2

⟨[
�̂�𝜂(x, 𝑦, s)

]
abp3

[
h−1
𝜂 (x, 𝑦, s)

]
pq

[
�̂�𝜂(x, 𝑦, s)

]
q3cd

⟩
Y 𝜂

+

{∑
𝜂=1,2

⟨[
�̂�𝜂(x, 𝑦, s)

]
abp3

[
h−1
𝜂 (x, 𝑦, s)

]
pq

⟩
Y 𝜂

}{∑
𝜂=1,2

⟨[
𝝌𝜂(x, 𝑦, s)

]
qn

[
�̂�𝜂(x, 𝑦, s)

]
n3cd

⟩
Y 𝜂

}
.

(50)

In particular, by considering Equations (49) and (50), we can obtain an expression for �̂�eff by means of Equation (41).

5 BENCHMARK PROBLEMS

Let us assume to be in the presence of a layered composite with isotropic viscoelastic laminates such that, for 𝜂 = 1, 2,

𝕔𝜂(x, 𝑦) = 3𝜅e
𝜂 (x, 𝑦)𝕜 + 2𝜇e

𝜂(x, 𝑦)𝕞, (51a)

𝕝𝜂(x, 𝑦, t) = 3𝜅v
𝜂 (x, 𝑦, t)𝕜 + 2𝜇v

𝜂 (x, 𝑦, t)𝕞, (51b)

where 𝜅e
𝜂 and 𝜇e

𝜂 represent, respectively, the elastic bulk modulus and the second Lamé's parameter. Furthermore, 𝜅v
𝜂

and 𝜇v
𝜂 denote memory functions, which need to be expressed constitutively. The fourth-order tensors 𝕜 ∶= 1

3
I ⊗ I

and 𝕞 ∶= 𝕤 − 𝕜, with 𝕤 ∶= 1
2

[
I⊗I + I⊗I

]
, extract, respectively, the spherical and the deviatoric part of a symmetric

second-order tensor. Specifically,

𝕜 ∶ A = 1
3

tr(A)I and 𝕞 ∶ A = dev(A) ∶= A − 1
3

tr(A)I, (52)

where A is a generic second-order symmetric tensor. Moreover, the component expressions corresponding to the tensor
products I⊗I and I⊗I are (see, for instance, Federico [42])

[
I⊗I

]
abcd

= 𝛿ac𝛿bd and
[

I⊗I
]

abcd
= 𝛿ad𝛿bc, (53)

where 𝛿ab denotes the Kronecker delta symbol.

5.1 Linear viscoelastic and fractional viscoelatic constitutive laws
Here, following Mainardi [4], we specify the constitutive expressions for some types of viscoelastic and fractional
viscoelastic materials.
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12 RAMÍREZ-TORRES ET AL.

TABLE 1 Three types of viscoelastic models.

Kelvin–Voigt Maxwell Zener
a𝜷𝜼

b𝜷𝜼
𝝉𝜷𝜼 a𝜷𝜼

b𝜷𝜼
𝝉𝜷𝜼 a𝜷𝜼

b𝜷𝜼
𝝉𝜷𝜼

𝛽 = 𝜅 𝜈𝜅𝜂 0 – 0 𝜅M
𝜂 − 𝜅e

𝜂 exp
(

t
𝜏𝜅𝜂

)
𝜈𝜅𝜂

𝜅M
𝜂

0 𝜅Z
𝜂

𝜈𝜅𝜂

𝜅Z
𝜂

𝛽 = 𝜇 𝜈𝜇𝜂
0 – 0 𝜇M

𝜂 − 𝜇e
𝜂 exp

(
t

𝜏𝜇𝜂

)
𝜈𝜇𝜂

𝜇M
𝜂

0 𝜇Z
𝜂

𝜈𝜇𝜂

𝜇Z
𝜂

5.1.1 Linear viscoelastic models
Some classical types of linear viscoelastic models can be obtained by specifying the functional form of the memory
functions, e.g.

𝜅v
𝜂 (x, 𝑦, t) = a𝜅𝜂

(x, 𝑦)𝛿(t) + b𝜅𝜂
(x, 𝑦, t) exp

(
− t
𝜏𝜅𝜂

)
, (54a)

𝜇v
𝜂 (x, 𝑦, t) = a𝜇𝜂

(x, 𝑦)𝛿(t) + b𝜇𝜂
(x, 𝑦, t) exp

(
− t
𝜏𝜇𝜂

)
, (54b)

where 𝛿(t) is the Dirac delta distribution (with units of inverse of time) and 𝜏𝜅𝜂 and 𝜏𝜇𝜂
are referred to as relaxation times.

We remark that both a𝜅𝜂
and a𝜇𝜂

have physical units
[
a𝜅𝜂

]
=
[
a𝜇𝜂

]
= Σ ·T, where Σ denotes a characteristic stress unit and

T is a characteristic time unit. That is, they represent dynamic viscosities. On the other hand, b𝜅𝜂
and b𝜇𝜂

have physical
units

[
b𝜅𝜂

]
=
[
b𝜇𝜂

]
= Σ, that is, they denote elastic parameters.

The constitutive representations in (54a) and (54b) admit the possibility that for some materials the viscoelastic spher-
ical and deviatoric contributions can be represented by different viscoelastic models [43]. In Table 1, we summarize the
types of viscoelastic models that can be specified from (54a) and (54b). We remark that the expressions specified above
can be generalized to include other linear viscoleastic constitutive laws (see, for instance, Mainardi [4]). The symbols 𝜈𝜅𝜂
and 𝜈𝜇𝜂

have been used to represent the dynamic viscosities, and 𝜅M
𝜂 , 𝜅Z

𝜂 , 𝜇
M
𝜂 , and 𝜇Z

𝜂 are elastic parameters associated with
the Maxwell and Zener models.

Remark 2. We notice that the elastic parameters 𝜅M
𝜂 and 𝜇M

𝜂 and 𝜅Z
𝜂 and 𝜇Z

𝜂 are, in general, different from 𝜅e
𝜂 and 𝜇e

𝜂 .
Specifically, in the case of the Zener model, we need to comply with the condition at t = 0, [4]

0 < 𝜅e
𝜂 < 𝜅Z

𝜂 and 0 < 𝜇e
𝜂 < 𝜇Z

𝜂 . (55)

Furthermore, we remark that using the coefficients specified in Table 1 associated with the Maxwell model, the
tensor 𝕘𝜂 can be written in the more standard form

𝕘𝜂(x, 𝑦, t) = 3𝜅M
𝜂 (x, 𝑦) exp

(
−t∕𝜏𝜅𝜂

)
𝕜 + 2𝜇M

𝜂 (x, 𝑦) exp
(
−t∕𝜏𝜅𝜂

)
𝕞. (56)

That is, to obtain the expression in (56) from (54a) and (54b), we included the elastic term with elastic parameters 𝜅e
𝜂

and 𝜇e
𝜂 . In particular, we assume, at t = 0,

0 < 𝜅e
𝜂 ≤ 𝜅M

𝜂 and 0 < 𝜇e
𝜂 ≤ 𝜇M

𝜂 . (57)

5.1.2 Linear fractional viscoelastic models
Let us assume that the elasticity tensor, 𝕔𝜂 , and the relaxation tensor, 𝕝𝜂 , have the same form as in (51a) and (51b). However,
in this case, we consider that the constitutive expression for the memory functions 𝜅v

𝜂 and 𝜇v
𝜂 are of fractional type. Taking

inspiration from [4], we write

𝜅v
𝜂 ( · , t) = a𝜅𝜂

( · ) t−𝛼𝜅𝜂
Γ
(
1 − 𝛼𝜅𝜂

) + b𝜅𝜂
( · , t)𝛼𝜅𝜂

(
−

(
t
𝜏𝜅𝜂

)𝛼𝜅𝜂
)
, (58a)
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RAMÍREZ-TORRES ET AL. 13

TABLE 2 Three types of fractional viscoelastic models.

Fractional Kelvin–Voigt Fractional Maxwell Fractional Zener
a𝜷𝜼

b𝜷𝜼
𝝉𝜷𝜼 a𝜷𝜼

b𝜷𝜼
𝝉𝜷𝜼 a𝜷𝜼

b𝜷𝜼
𝝉𝜷𝜼

𝛽 = 𝜅 𝜅e
𝜂 (𝜏𝜅𝜂 )

𝛼𝜅𝜂 0
𝜈𝜅𝜂

𝜅e
𝜂

0 𝜅M
𝜂 − 𝜅e

𝜂∕𝛼𝜅𝜂 (−(t∕𝜏𝜅𝜂 )𝛼𝜅𝜂 )
𝜈𝜅𝜂

𝜅M
𝜂

0 𝜅Z
𝜂

𝜈𝜅𝜂

𝜅Z
𝜂

𝛽 = 𝜇 𝜇e
𝜂(𝜏𝜇𝜂

)𝛼𝜇𝜂 0
𝜈𝜇𝜂

𝜇e
𝜂

0 𝜇M
𝜂 − 𝜇e

𝜂∕𝛼𝜇𝜂 (−(t∕𝜏𝜇𝜂
)𝛼𝜇𝜂 )

𝜈𝜇𝜂

𝜇M
𝜂

0 𝜇Z
𝜂

𝜈𝜇𝜂

𝜇Z
𝜂

𝜇v
𝜂 ( · , t) = a𝜇𝜂

( · ) t−𝛼𝜇𝜂
Γ
(
1 − 𝛼𝜇𝜂

) + b𝜇𝜂
( · , t)𝛼𝜇𝜂

(
−

(
t
𝜏𝜇𝜂

)𝛼𝜇𝜂
)
, (58b)

where 𝛼𝜅𝜂 , 𝛼𝜇𝜂
∈]0, 1[, Γ(·) is the Gamma function and 𝛼𝜅𝜂 and 𝛼𝜇𝜂 denote one-parameter Mittag–Leffler functions of

t∕𝜏𝜅𝜂 and t∕𝜏𝜇𝜂
. We notice that in Equations (58a) and (58b), the dependence of a𝜅𝜂

, a𝜇𝜂
, b𝜅𝜂

, and b𝜇𝜂
on 𝛼𝜅𝜂 and 𝛼𝜇𝜂

is
understood but omitted for reducing the notational burden and the dot “·” indicates that these functions must be evaluated
in (x, 𝑦). Considering the discussions in the previous section, some types of fractional viscoelastic models can be obtained
by appropriately fixing the values of the coefficients in (58a) and (58b). In Table 2, we summarize such models.

Before going further, we remark that the fractional parameters, in general, can also depend on x and 𝑦. However, in the
writing of the memory functions 𝜅v

𝜂 and 𝜇v
𝜂 , we have preferred not to specify this dependence for the sake of simplicity. We

also mention that we are tacitly assuming that the fractional parameters are time independent so that we can compute
the Laplace transform of the memory functions by using classical results.

Remark 3 (Physical units). By referring to Table 2, we notice that both a𝜅𝜂
and a𝜇𝜂

have physical units[
a𝜅𝜂

]
= Σ · T𝛼𝜅𝜂 and

[
a𝜇𝜂

]
= Σ · T𝛼𝜇𝜂 . (59)

Consequently, in the limit,

lim
𝛼𝜅𝜂→1−

[
a𝜅𝜂

]
= lim

𝛼𝜇𝜂→1−

[
a𝜇𝜂

]
= Σ · T, (60a)

lim
𝛼𝜅𝜂→0+

[
a𝜅𝜂

]
= lim

𝛼𝜇𝜂→0+

[
a𝜇𝜂

]
= Σ. (60b)

Thus, in the first case, the coefficients a𝜅𝜂
and a𝜇𝜂

become dynamic viscosities, while in the second case, they reduce to
elastic parameters. We remark that it is possible to design experiments that measure anomalous dynamic viscosities
(see, e.g., Bonfanti et al. [3]) represented by the coefficients a𝜅𝜂

and a𝜇𝜂
. Here, however, to overcome the use of an

anomalous dynamic viscosity, whose physical meaning may be unclear, we consider the expressions introduced in
Table 2. That is, we write, for the fractional Kelvin-Voigt model

a𝜅𝜂
= 𝜅e

𝜂 (𝜏𝜅𝜂 )
𝛼𝜅𝜂 and a𝜇𝜂

= 𝜇e
𝜂(𝜏𝜇𝜂

)𝛼𝜇𝜂 , (61)

where the characteristic times 𝜏𝜅𝜂 and 𝜏𝜇𝜂
are defined as in Table 2, namely, 𝜏𝜅𝜂 = 𝜈𝜅𝜂∕𝜅

e
𝜂 and 𝜏𝜇𝜂

= 𝜈𝜇𝜂
∕𝜇e

𝜂 .
Finally, we remark that both b𝜅𝜂

and b𝜇𝜂
represent elastic parameters.

Remark 4 (Limit cases). In the limit, in which the fractional parameters 𝛼𝜅𝜂 and 𝛼𝜇𝜂
tend to one from below, the

fractional viscoelastic models accounted for in this work and specified in Table 2 reduce to the standard linear vis-
coelastic models examined in Table 1 (see [3, 4, 11, 44] for further details). On the other hand, if we take the limit
{𝛼𝜅𝜂 , 𝛼𝜇𝜂

} → 0+, both the fractional Maxwell and Zener models reduce to constitutive expressions of linear elastic
type. Specifically, we have that, in the limit {𝛼𝜅𝜂 , 𝛼𝜇𝜂

} → 0+, the Laplace transform of the infinitesimal stress tensors
corresponding to fractional constitutive laws of Maxwell and Zener types take on the form (see Equations (78) and
(80) below)

lim
{𝛼𝜅𝜂 , 𝛼𝜇𝜂 }→0+

�̃�𝜂 = 𝕙M
𝜂 ∶ ẽ𝜂 and lim

{𝛼𝜅𝜂 , 𝛼𝜇𝜂 }→0+
�̃�𝜂 = 𝕙Z

𝜂 ∶ ẽ𝜂, (62)
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14 RAMÍREZ-TORRES ET AL.

respectively, where

𝕙M
𝜂 (x, 𝑦) =

3
2
𝜅M
𝜂 (x, 𝑦)𝕜 + 𝜇M

𝜂 (x, 𝑦)𝕞, (63a)

𝕙Z
𝜂 (x, 𝑦) = 3

[
𝜅e
𝜂 (x, 𝑦) +

1
2
𝜅Z
𝜂 (x, 𝑦)

]
𝕜 + 2

[
𝜇e
𝜂(x, 𝑦) +

1
2
𝜇Z
𝜂 (x, 𝑦)

]
𝕞. (63b)

On the other hand considering the coefficients in Table 2 corresponding to a fractional Kelvin–Voigt material, the
limit {𝛼𝜅𝜂 , 𝛼𝜇𝜂

} → 0+ of the Laplace transform of the infinitesimal stress tensor yields

lim
{𝛼𝜅𝜂 , 𝛼𝜇𝜂 }→0+

�̃�𝜂 = [𝕔𝜂 + s2𝕙KV
𝜂 ] ∶ ẽ𝜂, (64)

with
𝕙KV
𝜂 = 3𝜅e

𝜂𝕜 + 2𝜇e
𝜂𝕞. (65)

The expression for the limit of �̃�𝜂 specified in (64) suggests the existence of a second-order partial time derivative in
the constitutive expression of the infinitesimal stress tensor and, thus, a damping effect (see, e.g., Atanackovic et al.
[45] and Vaz and de Oliveira [46]).

5.2 Numerical results
For the sake of convenience, let us consider that the elastic parameters 𝜅e

𝜂 and 𝜇e
𝜂 , as well as the memory functions 𝜅v

𝜂 and
𝜇v
𝜂 are uniform in the macro-scale variable and piecewise constant in the micro-scale variable, that is,

𝜅e
𝜂 (x, 𝑦) =

{
𝜅e

1 , 𝑦 ∈ Y 1,

𝜅e
2 , 𝑦 ∈ Y 2,

and 𝜇e
𝜂(x, 𝑦) =

{
𝜇e

1, 𝑦 ∈ Y 1,

𝜇e
2, 𝑦 ∈ Y 2,

(66)

and

𝜅v
𝜂 (x, 𝑦, t) =

{
𝜅v

1 (t), 𝑦 ∈ Y 1,

𝜅v
2 (t), 𝑦 ∈ Y 2,

and 𝜇v
𝜂 (x, 𝑦, t) =

{
𝜇v

1(t), 𝑦 ∈ Y 1,

𝜇v
2(t), 𝑦 ∈ Y 2.

(67)

5.2.1 Benchmark problem I: Fractional viscoelastic–elastic composite
In this first benchmark problem, let us assume that one constituent is constitutively determined by a fractional viscoelastic
law, for example, B1, while the other constituent, B2, is linear elastic. Specifically, we assume that B1 is characterized by
a fractional Kelvin–Voigt viscoelastic law. Examples of the use of the fractional Kelvin–Voigt model in practical cases are
summarized in Bonfanti et al. [3] and include, but are not limited to, the modeling of human prostate [47] and of breast
cells [48].

Using the coefficients defined in Table 2 for the fractional Kelvin-Voigt model, the Laplace transforms of the memory
functions are

�̃�v
1 ( · , s) = 𝜅e

1( · )(𝜏𝜅1( · ))
𝛼𝜅1 s1−𝛼𝜅1 , (68a)

�̃�v
1( · , s) = 𝜇e

1( · )(𝜏𝜇1( · ))
𝛼𝜇1 s1−𝛼𝜇1 , (68b)

which, by considering Equation (51b), leads to the following expression for the Laplace transform of the relaxation tensor

�̃�1( · , s) = 3𝜅e
1( · )(𝜏𝜅1( · ))

𝛼𝜅1 s1−𝛼𝜅1𝕜 + 2𝜇e
1( · )(𝜏𝜇1( · ))

𝛼𝜇1 s1−𝛼𝜇1𝕞, (69)

where we notice that because of (66) and (67), the Laplace transform of the relaxation tensor, 𝕝1, is uniform in the
macro-scale variable x.

In particular, we notice that, by using formula (37) and the representations (51a) and (51b), the effective coefficient
[�̂�eff]3333 can be written in the form

[�̂�eff]3333 =
(
[�̂�1]3333 + [�̂�1]3333

𝜕[𝝃1]333

𝜕𝑦

) |Y 1| +(
[�̂�2]3333 + [�̂�2]3333

𝜕[𝝃2]333

𝜕𝑦

) |Y 2|, (70)
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RAMÍREZ-TORRES ET AL. 15

TABLE 3 Material properties.

Elastic parameters (GPa) Dynamic viscosities (GPa·s)
𝜿e

1 𝝁e
1 𝜿e

2 𝝁e
2 𝝂𝜿1

𝝂𝝁1
𝝂𝜿2

𝝂𝝁2

10 0.75 0.5 0.375 0.5 0.375 0.5 0.375

where
𝜕[𝝃1]333

𝜕𝑦
=

[�̂�2]3333

[�̂�2]3333|Y 1| + [�̂�1]3333|Y 2| − 1, (71a)

𝜕[𝝃2]333

𝜕𝑦
=

[�̂�1]3333

[�̂�2]3333|Y 1| + [�̂�1]3333|Y 2| − 1. (71b)

Thus, by substituting (71a) and (71b) in (70), the effective coefficient [�̂�eff]3333 can be written in the simplified form

[�̂�eff]3333 =
[�̂�1]3333[�̂�2]3333

[�̂�2]3333|Y 1| + [�̂�1]3333|Y 2| . (72)

In the specific case of the present benchmark problem, since Y 1 represents a fractional Kelvin–Voigt material and Y 2
is of elastic type, we have that

[�̂�1]3333 = 𝜅e
1 +

4
3
𝜇e

1 + 𝜅e
1(𝜏𝜅1)

𝛼𝜅1 s2−𝛼𝜅1 + 4
3
𝜇e

1(𝜏𝜇1)
𝛼𝜇1 s2−𝛼𝜇1 , (73a)

[�̂�2]3333 = [�̂�2]3333 = 𝜅e
2 +

4
3
𝜇e

2. (73b)

Consequently, by considering that 𝛼 ∶= 𝛼𝜅1 = 𝛼𝜇1 and applying the inverse Laplace–Carson transform, we can find an
analytical expression for the effective coefficient [𝕘eff]3333, which reads

[𝕘eff(t)]3333 = [𝕔]3333 +
(
[𝕔2]3333|Y 2| − [𝕔]3333

)
2−𝛼,1

⎛⎜⎜⎜⎝−
[𝕔2]3333|Y 1| + [𝕔1]3333|Y 2|(
𝜅e

1(𝜏𝜅1)𝛼 +
4
3
𝜇e

1(𝜏
e
𝜇1
)𝛼
) |Y 2| t2−𝛼

⎞⎟⎟⎟⎠ , (74)

where 2−𝛼,1(·) ≡ 2−𝛼(·) denotes the two-parameter Mittag–Leffler function in the case in which the second parame-
ter is 1, and [𝕔]3333 constitutes the effective coefficient of an equivalent layered composite made of two different elastic
constituents, that is,

[𝕔]3333 = [𝕔1]3333[𝕔2]3333

[𝕔2]3333|Y 1| + [𝕔1]3333|Y 2| . (75)

In Figure 1, we plot the effective coefficient [𝕘eff]3333 for different values of the fractional parameter, namely, 𝛼 ∶= 𝛼𝜅1 =
𝛼𝜇1 ∈ {0.01, 0.2, 0.4, 0.6, 0.8, 0.99}, in the time interval [0s, 10s], where, to highlight the role of the fractional constitutive
properties, we assumed that both constituents have the same volumetric fraction, namely, |Y 𝜂| = 0.5, 𝜂 = 1, 2. For our
analysis, we used the parameter values reported in Table 3, which have been taken from Alotta et al. [43]. In particular, for
𝛼 near 1, we recover the standard Kelvin–Voigt exponential decay, so that the effective coefficient converges exponentially
towards the value [𝕔]3333, which is the equivalent coefficient that the homogenized medium would have if both of its
constituents were elastic materials with the same elastic properties as the materials employed in our model. As 𝛼 decreases
towards zero, the decay is characterized by the Mittag–Leffler function of Equation (74), which implies that the decay is
accompanied by an oscillatory behavior. In fact, for 𝛼 → 0+, the oscillatory trend tends to increase, so that the convergence
towards [𝕔]3333 slows down considerably. Indeed, for 𝛼 = 0, no decay is observed, and [𝕘eff]3333 oscillates indefinitely
around [𝕔]3333, so that the viscous effect is lost. We recall that, as discussed in Remark 4, the oscillatory trend is related
to the fact that in the limit 𝛼 → 0+, the material property lim𝛼→0+ �̂�1 features a damping effect due to the presence of the
factor s2 in (64), which is equivalent to a second-order time derivative. Although it is not shown here, an oscillatory decay
for the effective coefficient 𝕘eff is predicted by our results also if a fractional Kelvin–Voigt constituent is combined with
a fractional Maxwell or fractional Zener one. Furthermore, from Equation (74), we notice that, at time t = 0s, the value
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FIGURE 1 Effective coefficient [𝕘eff]3333 for different values of 𝛼 ∶= 𝛼𝜅1
= 𝛼𝜇1

and same volumetric fraction |Y 𝜂| = 0.5. The value of
[𝕔]3333 is also reported. [Colour figure can be viewed at wileyonlinelibrary.com].
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FIGURE 2 Effective coefficient [𝕘eff]3333 for 𝛼 = 0.1 and different values of |Y 1|. The value of [𝕔]3333 is also shown. [Colour figure can be
viewed at wileyonlinelibrary.com].

of the effective coefficient of our model is independent of 𝛼 and coincides with the elastic coefficient of the material B2,
divided by |Y 2|. This behavior is due to the fact that, in our model, we have assumed that the composite is made of an
elastic medium, that is, B2, and a viscoelastic one, that is, B1. Indeed, if we had considered the case of two viscoelastic
materials, Equation (74) would have been different, and consequently, the effective coefficient at t = 0s would have been a
combination of the elastic coefficients of both materials. We finally notice that the oscillatory decay seems to be a property
of the geometrical setting since, in a previous work [17], we did not observe this trend when considering a fiber-reinforced
composite featuring power-law constitutive properties.

We continue our analysis by plotting the effective coefficient [𝕘eff]3333 for different values of the volumetric fraction of
the fractional Kelvin–Voigt constituent. In the case reported in Figure 2, we fix 𝛼 = 0.1 and notice that, for decreasing
values of the fractional Kelvin–Voigt constituent's volumetric fraction, the oscillatory behavior of the effective coefficient
decreases and tends, as expected, to the effective coefficient of the equivalent elastic composite, that is, a composite made
of two elastic constituents with the same material parameters reported in Table 3.

Before going further, we notice that, because of the simplicity of the setting considered so far, i.e. a composite made
of a fractional Kelvin–Voigt constituent with a single fractional parameter 𝛼 and an elastic one, it was possible to find
an analytical solution for the effective coefficient [𝕘eff]3333. Nevertheless, for more complex cases, finding such a solution
is not a simple task. For this reason, in what follows, we adopt the methodology described in previous works (see, for
instance, Cruz-González et al. [17, 25]), in which the MATLAB function INVLAP [49, 50] was adapted to numerically
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FIGURE 3 Comparison of the numerical and analytical values of [𝕘eff]3333 for different values of 𝛼. [Colour figure can be viewed at
wileyonlinelibrary.com].

find the inverse Laplace–Carson transform of �̂�eff. We emphasize that we choose this function because of its capability
of inverting power laws of the type s𝛼 , where 𝛼 is a real number. In order to test the accuracy of this numerical tool, we
compare, in Figure 3, the numerically obtained coefficient [𝕘eff]3333 with the analytical expression given in (74). As it can
be observed, both the numerical and the analytical solutions agree for each value of the fractional parameter.

5.2.2 Benchmark problem II: Fractional viscoelastic composite
In this section, we consider that the constituents of the composite medium are characterized by different fractional vis-
coelastic models. In particular, we examine the case in which B1 is assumed to be of fractional Maxwell type, whereas B2
is characterized by a fractional Zener law. Examples of the use of these models in biologically relevant scenarios include
the modeling of atrial tissue [6] and brain tissue [51]. Here, we numerically compute the effective properties of the com-
posite described above by considering the expressions obtained in (49) and (50) for different situations. In particular, the
memory functions for the constituent B1 (see Equations (58a) and (58b), and Table 2) are

𝜅v
1 (x, 𝑦, t) = 𝜅M

1 (𝑦)𝛼𝜅1

(
−
(

t
𝜏𝜅1

)𝛼𝜅1
)
− 𝜅e

1(𝑦), (76a)

𝜇v
1(x, 𝑦, t) = 𝜇M

1 (𝑦)𝛼𝜇1

(
−
(

t
𝜏𝜇1

)𝛼𝜇1
)
− 𝜇e

1(𝑦), (76b)

which, by means of the Laplace transform, can be written as

�̃�v
1 (x, 𝑦, s) = 𝜅M

1 (𝑦) s𝛼𝜅1−1

s𝛼𝜅1 + 1∕(𝜏𝜅1)
𝛼𝜅1

−
𝜅e

1(𝑦)
s

, (77a)

�̃�v
1(x, 𝑦, s) = 𝜇M

1 (𝑦) s𝛼𝜇1−1

s𝛼𝜇1 + 1∕(𝜏𝜇1)
𝛼𝜇1

−
𝜇e

1(𝑦)
s

. (77b)

Therefore, the Laplace transform of the relaxation tensor is

�̃�1(x, 𝑦, s) = 3𝜅M
1 (𝑦) s𝛼𝜅1−1

s𝛼𝜅1 + 1∕(𝜏𝜅1)
𝛼𝜅1

𝕜 + 2𝜇M
1 (𝑦) s𝛼𝜇1−1

s𝛼
𝜇

1 + 1∕(𝜏𝜇1)
𝛼𝜇1

𝕞 − 3𝜅e
1(𝑦)

1
s
𝕜 − 2𝜇e

1(𝑦)
1
s
𝕞. (78)
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FIGURE 4 Effective coefficients [𝕘eff]3333 (panel on the left) and [𝕘eff]1133 (panel on the right) for different values of 𝛼𝜅
1 = 𝛼

𝜇

1 and 𝛼𝜅
2 = 𝛼

𝜇

2
and same volumetric fraction |Y 𝜂| = 0.5. The composite features a fractional Maxwell constituent and a fractional Zener one. [Colour figure
can be viewed at wileyonlinelibrary.com].
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FIGURE 5 Effective coefficient [𝕘eff]3333 for different volumetric fractions of the fractional Maxwell constituent. We set 𝛼𝜅1
= 𝛼𝜇1

= 0.99
and 𝛼𝜅2

= 𝛼𝜇2
= 0.01 (panel on the left) and 𝛼𝜅1

= 𝛼𝜇1
= 0.01 and 𝛼𝜅2

= 𝛼𝜇2
= 0.99 (panel on the right). The composite virtually features a

fractional Maxwell constituent and a fractional Zener one. [Colour figure can be viewed at wileyonlinelibrary.com].

On the other hand, the memory functions 𝜅v
2 and 𝜇v

2 for B2 are specified through the expressions (see Equations (58a)
and (58b), and Table 2)

𝜅v
2 (x, 𝑦, t) = 𝜅Z

2 (𝑦)𝛼𝜅2

(
−
(

t
𝜏𝜅2

)𝛼𝜅2
)
, (79a)

𝜇v
2(x, 𝑦, t) = 𝜇Z

2 (𝑦)𝛼𝜇2

(
−
(

t
𝜏𝜇2

)𝛼𝜇2
)
, (79b)

so that the Laplace transform of the relaxation tensor can be written as

�̃�2(x, 𝑦, s) = 3𝜅Z
2 (𝑦)

s𝛼𝜅2−1

s𝛼𝜅2 + 1∕(𝜏𝜅2)
𝛼𝜅2

𝕜 + 2𝜇Z
2 (𝑦)

s𝛼𝜇2−1

s𝛼𝜇2 + 1∕(𝜏𝜇2)
𝛼𝜇2

𝕞. (80)

For the sake of exemplifying, we use the parameter values reported in Table 3, and for our purposes, we define 𝜅M
1 = 2𝜅e

1 ,
𝜅Z

2 = 2𝜅e
2, 𝜇M

1 = 2𝜇e
1, and 𝜇Z

2 = 2𝜇e
2. In Figure 4, we report the effective coefficients [𝕘eff]3333 and [𝕘eff]1133 for different

values of the fractional parameters. Specifically, we set 𝛼𝜅1 = 𝛼𝜇1 = {0.01, 0.5, 0.99} and 𝛼𝜅2 = 𝛼𝜇2 = {0.99, 0.5, 0.01}. For
the specific combinations examined in Figure 4, we notice that when 𝛼𝜅1 = 𝛼𝜇1 = 0.99, which approximately corresponds
to a standard viscoelastic Maxwell model, 𝛼𝜅2 = 𝛼𝜇2 = 0.01. Thus, in this case, we are in the presence of a composite
essentially comprising a viscoelastic Maxwell constituent and an elastic one. On the other hand, if 𝛼𝜅1 = 𝛼𝜇1 = 0.01, we
will have that 𝛼𝜅2 = 𝛼𝜇2 = 0.99. That is, in this situation, the composite will be constituted by a quasi-elastic component
and a quasi-standard viscoelastic Zener one. Thus, the fractional constitutive expression permits to examine two different
composite structures by just selecting appropriate values for the fractional parameters. In particular, we notice that all the
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curves in Figure 4 show a monotonically decreasing trend of the reported effective properties, which is characteristic of
composite materials composed of an elastic constituent and a Maxwell/Zener one (see, for instance, Cruz-González et al.
[17]).

Furthermore, in Figure 5, we show the influence of different volumetric fractions of the fractional Maxwell constituent
on the effective coefficient [𝕘eff]3333. For this purpose, we set 𝛼𝜅1 = 𝛼𝜇1 = 0.99 and 𝛼𝜅2 = 𝛼𝜇2 = 0.01 (panel on the left)
and 𝛼𝜅1 = 𝛼𝜇1 = 0.01 and 𝛼𝜅2 = 𝛼𝜇2 = 0.99 (panel on the right). This means that the results on the left panel of Figure 5
correspond to a composite constituted by a quasi-standard viscoelastic Maxwell material and a quasi-elastic one, while on
the right panel of Figure 5, the same effective coefficient is evaluated for the case of a quasi-standard elastic-viscoelastic
Zener composite. Particularly, we notice that the instant of time at which the effective properties of the composite become
stationary depends not only on the fractional parameter but also on the constituents' volumetric fractions.

6 CONCLUSIONS

In this work, we employ the asymptotic homogenization to compute the effective properties of a hypothetical linear
viscoelastic composite medium. Specifically, after laying out the main theoretical results, we specialize them to the case
of a laminated composite medium, each constituent of which is isotropic and constitutively described through a linear
viscoelastic model. This particular geometrical setting permits to reduce the computational complexity of the problem,
since it allows to obtain the analytical expressions of the effective elasticity and relaxation tensors (refer to Equations (49)
and (50)).

Motivated by the interest that fractional constitutive modeling has drawn in the investigation of heterogeneous, complex
materials, we considered memory functions describing special types of fractional linear viscoelastic behaviors. Following
the discussions of the limit cases in Remarks 3 and 4, we accounted for benchmark problems with different combinations
of linear viscoelastic laws. In particular, in a first benchmark problem, we assumed a composite medium made of an
elastic and a fractional Kelvin–Voigt viscoelastic medium, while in the second benchmark problem, we studied the case
of a composite with fractional Maxwell and fractional Zener viscoelastic constituents. We point out that the number of
benchmark cases investigated in this work can be extended to include other combinations.

We emphasize that, in our study, we gave prominence to the influence that the fractional parameters 𝛼𝜅𝜂 and 𝛼𝜇𝜂
,

and the constituents' volumetric fractions |Y 𝜂| exert on the time-dependent behavior of the effective properties of the
homogenized medium. In particular, with reference to the first benchmark problem, for 𝛼𝜅𝜂 = 𝛼𝜇𝜂

, we found an analyt-
ical expression for the effective coefficient [𝕘eff]3333 in terms of a two-parameter Mittag–Leffler function that entails, as
observed in Figure 1, a transition from an exponential decay trend to an oscillatory one, as the limit 𝛼 → 0+ is approached.
Furthermore, we analyzed the influence of the constituents' volumetric fraction on the effective properties. For this pur-
pose, we fixed the fractional parameter to be near zero, so that the fractional Kelvin–Voigt material included damping
effects (refer to Remark 4). In particular, in Figure 2, we showed that the increase of the elastic constituent's volumetric
fraction diminishes the damping effect created by the existence of the fractional Kelvin–Voigt material. We also showed
that for decreasing values of the fractional Kelvin–Voigt constituent's volumetric fraction, the oscillatory behavior of the
effective coefficient decreases and tends, as expected, to the effective coefficient of an equivalent elastic composite. In
the second benchmark problem, we examined the case of a composite made of a fractional Maxwell constituent and a
fractional Zener one. In this case, following previous works of some of the authors, we numerically computed the effec-
tive coefficients and illustrated the influence of different combinations of 𝛼𝜅𝜂 and 𝛼𝜇𝜂

. As it was for the first benchmark
problem, we noticed that the instant of time at which the effective properties remain constant depends not only on the
values of the fractional parameters but also on the constituents' volumetric fractions.

As we mentioned in Section 1, there is still lack of theoretical and experimental studies connecting the role of the
micro-structure in the origins and description of the fractional behavior of some kinds of materials. Thus, part of our
current investigations focuses on modeling the underlying mechanisms that give rise to fractional behavior starting from
the micro-structure. On the other hand, we will explore the consideration of micro-structural information in the fractional
parameters and study specific scenarios where this information could be valuable.

ACKNOWLEDGEMENTS

R.P. is partially funded by EPSRC Grants EP/S030875/1 and EP/T017899/1. A.G. acknowledges the Dipartimento di
Scienze Matematiche (DISMA) “G.L. Lagrange” of the Politecnico di Torino, “Dipartimento di Eccellenza 2018–2022”
(“Department of Excellence 2018–2022”), Project No. E11G18000350001, and the PRIN projects “Mathematics for indus-

 10991476, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.9457 by C

ochraneItalia, W
iley O

nline L
ibrary on [03/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



20 RAMÍREZ-TORRES ET AL.

try 4.0 (Math4I4)” (MUR, Italy) (2020F3NCPX) and “Mathematics of active materials: From mechanobiology to smart
devices.” (MUR, Italy) (2017KL4EF3). The authors conducted the research according to the inspiring scientific princi-
ples of the national Italian mathematics association INdAM (“Istituto Nazionale di Alta Matematica”), GNFM (“Gruppo
Nazionale per la Fisica Matematica”).

CONFLICT OF INTEREST STATEMENT

The authors declare no potential conflict of interest.

ORCID

Ariel Ramírez-Torres https://orcid.org/0000-0002-5775-8985

REFERENCES
1. R. N. Yancey and M.-J. Pindera, Micromechanical analysis of the creep response of unidirectional composites, J. Eng. Mater. Technol. 112

(1990), no. 2, 157–163.
2. G. Failla and M. Zingales, Advanced materials modelling via fractional calculus: challenges and perspectives, Phil. Trans. Royal Soc. A:

Math., Phys. Eng. Sci. 378 (2020), no. 2172, 20200050.
3. A. Bonfanti, J. L. Kaplan, G. Charras, and A. Kabla, Fractional viscoelastic models for power-law materials, Soft Matter 16 (2020), no. 26,

6002–6020.
4. F. Mainardi, Fractional calculus and waves in linear viscoelasticity, World Scientific (Europe), London, 2013.
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50. J. Valsa and L. Brančik, Approximate formulae for numerical inversion of Laplace transforms, Int. J. Numer. Model.: Electron. Netw., Devices
Fields 11 (1998), no. 3, 153–166.

51. M. Kohandel, S. Sivaloganathan, G. Tenti, and K. Darvish, Frequency dependence of complex moduli of brain tissue using a fractional zener
model, Phys. Med. Biol. 50 (2005), no. 12, 2799–2805.

How to cite this article: A. Ramírez-Torres, R. Penta, and A. Grillo, Effective properties of fractional viscoelastic
composites via two-scale asymptotic homogenization, Math. Meth. Appl. Sci. (2023), 1–21, DOI 10.1002/mma.9457.

 10991476, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.9457 by C

ochraneItalia, W
iley O

nline L
ibrary on [03/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.mathworks.com/matlabcentral/fileexchange/32824-numerical-inversion-of-laplace-transforms-in-matlab
info:doi/10.1002/mma.9457

	Effective properties of fractional viscoelastic composites via two-scale asymptotic homogenization
	Abstract
	1 INTRODUCTION
	2 PROBLEM FORMULATION
	3 MULTI-SCALE FORMULATION
	3.1. Separation of scales
	3.2. Topology of the micro-structure
	3.3. Two-scale governing equations

	4 THE ASYMPTOTIC HOMOGENIZATION TECHNIQUE
	4.1. The first cell problem
	4.2. The second cell problem
	4.3. The homogenized problem
	4.4. Effective coefficients for viscoelastic layered composites

	5 BENCHMARK PROBLEMS
	5.1. Linear viscoelastic and fractional viscoelatic constitutive laws
	5.1.1. Linear viscoelastic models
	5.1.2. Linear fractional viscoelastic models

	5.2. Numerical results
	5.2.1. Benchmark problem I: Fractional viscoelastic–elastic composite
	5.2.2. Benchmark problem II: Fractional viscoelastic composite


	6 CONCLUSIONS
	REFERENCES



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck true
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Euroscale Coated v2)
  /PDFXOutputConditionIdentifier (FOGRA1)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <>
    /CHT <>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
    /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENG (Modified PDFX1a settings for Blackwell publications)
    /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange.  For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide.  Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /HighResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


