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ABSTRACT12

This paper presents and discusses the feasibility of complete model updating of cable-stayed13

bridges using experimental estimates of the cable forces and modal parameters. The procedure14

is applied to the model updating of a curved cable-stayed bridge in Venice (Italy). Conventional15

optimization problems of mass and stiffness using ambient vibration data are prone to ill-posedness16

and ill-conditioning. Generally, the scholar must assume one of the two to achieve a trustworthy17

optimization. This paper demonstrates that it is possible to assess a large set of parameters18

affecting the mass and stiffness of a cable-stayed bridge following a step-wise procedure based on19

ambient vibration tests. Preliminary variance-based sensitivity analysis supports the reduction in20

the number of parameters to be calibrated. Then, the selected parameters are tuned using a meta-21

heuristic optimization algorithm. In the considered case study, the sensitivity analyses highlight22

the significance of the following: the concrete mass, the vertical stiffness of the bearings, and the23
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concrete Young’s modulus of the deck and the tower. However, optimizing all the unknowns using24

a single objective function does not lead to optima within the search domain. Therefore, the authors25

show that a three-step optimization is required in the considered case study to achieve convergence26

within the parameters space. As a result, all the twelve modes of the calibrated model perfectly27

match the experimental ones, with the Modal Assurance Criterion (MAC) higher than 0.9. In28

addition, the cable forces of the calibrated model present a good match with the experimental ones,29

with an average percentage error equal to 11%.30

INTRODUCTION31

Finite element (FE) updating of large-scale structures is a challenging task using traditional32

optimization methods (Friswell and Mottershead 1995). Classical parametric FE updating is based33

on comparing experimental and simulated modal parameters. The main drawback of parametric34

optimization using the modal parameters extracted from ambient vibration data is indeterminacy35

when assessing the stiffness, and mass matrix simultaneously (Simoen et al. 2015). Operational36

modal analysis (OMA) returns unscaled mode shapes, which cannot be used to simultaneously37

estimate the elastic and inertial features of a structural model (Rainieri and Fabbrocino 2014). The38

optimization problem would be ill-posed and requires the selection of either the inertia or stiffness39

as unknown parameters.40

However, there can be exceptions, and in some instances, ambient vibration data could be41

used to update the inertial and structural stiffness features reliably. It could be the case of cable-42

stayed bridges (Zárate and Caicedo 2008), where an experimental estimate of the cables’ natural43

frequencies and the deck’s modal parameters can be obtained. The natural frequencies of the cables44

can return an indirect assessment of the cable forces using suitable mechanical models of the cable45

dynamics (Irvine 1981; Zhao et al. 2020).46

Mechanical intuition suggests that the cable forces, if the cable almost behaves like a linear taut47

string (Graff 2012), largely depend on the mass of the suspended structure. At the same time, the48

modal parameters are affected by both the mass and the structural stiffness. Therefore, a step-wise49

model updating could be carried out in cable-stayed bridges using the cable forces and the modal50
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parameters, respectively.51

Optimizing parameters affecting both the inertial and stiffness features represents a problem52

analogous to estimating scaling factors of mode shapes in operational modal analysis. Since the53

forces in OMA are unknown, the mode shapes cannot be mass normalized, and only the un-scaled54

mode shapes can be determined for each mode (Parloo et al. 2001; Parloo et al. 2002; Parloo et al.55

2003; Parloo et al. 2005; Brincker and Andersen 2003). Therefore, scaling the mode shapes to the56

mass matrix would allow a well-posed optimization problemwhen estimating the mass and stiffness57

matrices from OMA. Since the majority of existing structures are not cable-stayed, several scholars58

devised alternative and more general strategies to get information about the structural mass based59

on modifications of the structure by changing the stiffness and the mass during OMA (Bernal and60

Gunes 2002; Bernal 2004; Brandt et al. 2019). The most known scaling techniques is the mass-61

change method (Parloo et al. 2001; Parloo et al. 2002; Brincker and Andersen 2003; Lopez Aenlle62

et al. 2005), although there are another approaches based on exogenous inputs (López Aenlle63

et al. 2007; Parloo et al. 2005) or moving loads (Tian et al. 2019; Tian et al. 2021; Sheibani64

and Ghorbani-Tanha 2021). For instance, the mass-change method involves attaching masses to65

the points of the structure where the mode shapes of the unmodified structure are known. The66

mass-change method has also been used in FE-model updating, where the modal parameters of67

the modified structure are used as additional information to calibrate the mass, and the stiffness68

matrices of the system (Shahverdi et al. 2005). This approach has been validated by experimental69

testing of lab-tested structure scale models (Lopez Aenlle et al. 2005), bridges (Parloo et al. 2005),70

buildings (Brincker et al. 2004), and mechanical systems (Parloo et al. 2001). In cable-stayed71

bridges, the additional information required for a complete FE model updating is provided by the72

cable forces, determined from their vibration response by assuming a specific dynamic response73

model. Achieving an almost complete model updating is particularly relevant for structural health74

monitoring (Arangio and Bontempi 2015; Li and Ou 2016) and in particular for the identification75

of damage (Talebinejad et al. 2011; Babajanian Bisheh et al. 2019; Ni et al. 2008).76

The cable-stayed bridge selected for the current analysis is the bridge of Porto Marghera77
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in Venice (Italy) (Briseghella et al. 2021; Gentile and Siviero 2007; De Miranda et al. 2010;78

Briseghella et al. 2010; Fa et al. 2016) to prove the feasibility of the proposed approach: assessing79

an almost complete FE model updating from ambient vibration data. In the first step, the authors80

carried out a variance-based sensitivity analysis (Saltelli and Sobol’ 1995) of the cable forces to81

the bridge’s significant inertial and stiffness parameters. The analyses proved that cable forces are82

mainly affected by the mass of the deck and the support deformability. This evidence enabled83

uncoupling the model updating in separate phases. There are multiple examples of FE model84

updating of cable-stayed bridges, but most of them are based on the sole experimental modal85

parameters (Zhang et al. 2001; Brownjohn and Xia 2000; Xiao et al. 2015; Zhu et al. 2015; Bursi86

et al. 2014; Lin et al. 2020a; Lin et al. 2020b; Ding and Li 2008; Pinqi and Brownjohn 2003;87

Park et al. 2015; Park et al. 2012; Ding and Li 2008). However, the FE updating of the cable88

forces is also a crucial task. As remarked by (Martins et al. 2020), 80% of research studies on89

cable-stayed bridges focus on cable forces optimization and control (Correia et al. 2020; Ferreira90

and Simoes 2011; Feng et al. 2022; Kim and Adeli 2005). Still, there are few pieces of research91

on the experimental evaluation of the cable forces (Cho et al. 2010; Haji Agha Mohammad Zarbaf92

et al. 2017; Nazarian et al. 2016; Feng et al. 2017; Haji Agha Mohammad Zarbaf et al. 2017),93

and a fewer on the model updating using both the modal parameters and the estimated cable forces94

(Hua et al. 2009). Nonetheless, the experimental assessment of the cable forces and the subsequent95

calibration of the forces predicted by the FE model is imperative to achieve a reliable prediction of96

the structural response.97

Cable-stayed bridges, especially those built in the last decade, possess peculiar aesthetic and98

structural features. Cable-stayed bridges play a crucial role in infrastructure networks (Virlogeux99

1999). However, they also characterize the urban landscape with their unique structural shape100

(Wilson and Liu 1991; Astaneh-Asl and Black 2001; Ni et al. 2019). There are multiple examples101

of cable-stayed bridges, but only some of them possess curved decks. The most known examples102

of cable-stayed bridges with a curved deck are: the Rhine bridge near Schaffhausen in Switzerland103

(Deger et al. 1996), the Safti Link bridge in Singapore (Brownjohn and Xia 2000), the twin bridges104
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close to the Milan-Malpensa airport (Gentile and Martinez Y Cabrera 2004), the Katsushika bridge105

in Japan (Siringoringo and Fujino 2007), the Térénez bridge in France (Halpern and Billington106

2013), the Yabegawa River Bridge (Kim and Lee 2012) and the Ponte del Mare bridge in Pescara107

(Italy) (Bursi et al. 2014; De Miranda et al. 2010). The deck curvature, despite its appreciated108

aesthetic peculiarities (Bonelli et al. 2010), adds complications in the construction phase and109

when assessing the actual structural behavior compared to cable-stayed bridges with a straight deck110

(Daniell andMacdonald 2007;Wen et al. 2016; Zhang et al. 2017; Martins et al. 2020). The selected111

bride also possesses an inclined tower to reduce the eccentricities of the cable forces. Therefore,112

especially for curved cable-stayed bridges, the experimental modal analysis is a determinant aspect113

for assessing the reliability of the structural model.114

In (Briseghella et al. 2021), the authors discussed the dynamic characteristics of the bridge of115

Porto Marghera. Briseghella et al. (Briseghella et al. 2021) used the bridge’s finite element (FE)116

model, calibrated to the experimental modal parameters, to assess the effect of its geometric con-117

figurations on its dynamic response. Specifically, the analyses aimed at determining the sensitivity118

of the natural frequencies to cable arrangement, deck curvature, and cross-section of the tower.119

This paper represents an extension of the previous research (Briseghella et al. 2021) to discuss120

the feasibility of simultaneously calibrating an extended set of parameters affecting both the mass121

and stiffness features from ambient vibration data. Dynamic identification and FE model updating122

is a standard practice in structural engineering (Sehgal and Kumar 2016). However, the peculiarity123

of the Porto Marghera bridge also adds originality to this piece of research. The main aspects of124

novelty and originality are:125

• Assessing the sensitivity of the cable forces and modal parameters to the structural param-126

eters using a variance-based sensitivity analysis (Asgari et al. 2013).127

• Proposing a step-wise procedure for the model updating of cable-stayed bridges using128

ambient vibration data and testing the updating procedure on the bridge of Porto-Marghera129

using two meta-heuristic optimization algorithms: the particle swarm optimization (PSO)130

and the differential evolution (DE).131
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• The authors found a significant discrepancy between the experimental and simulated cable132

forces in the preliminary FE model. The paper discusses the role of the bearing and tower133

stiffness in affecting the cable forces. These effects cannot be appreciated from the modal134

parameters of the deck.135

• Highlighting the numerical issues related to the simultaneous identification of all the pa-136

rameters from a single or multi-objective optimization problem. (Brincker et al. 2000).137

The paper has the following organization. The second section briefly introduces the case study138

and the outcomes of operational modal analysis. The third section describes the FE model of139

the bridge and preliminary analysis to show the initial discrepancies with the experimental data.140

The fourth section discusses the sensitivity analysis of the cable forces to the inertial and stiffness141

parameters. The fifth section shows the results of the variance-based sensitivity analysis of the142

natural frequencies of the deck’s stiffness in terms of Young’s moduli of steel and concrete. The143

last section presents the global optimization results based on a step-wise approach.144

PROBLEM FORMULATION145

Ambient vibration tests of cable-stayed bridges can be used to obtain estimates of the modal146

parameters of the deck, the tower, and the stay-cables, which are the main components of a147

cable-stayed bridge. In OMA, the forces are unknown, therefore, the mode shapes cannot be mass148

normalized, and only the unscaledmode shapes can be determined for eachmode (Parloo et al. 2001;149

Parloo et al. 2002; Parloo et al. 2003; Parloo et al. 2005; Brincker and Andersen 2003). However, in150

cable-stayed bridges, the forces can be effortlessly estimated from elementary mechanical models151

of the cables (Irvine 1981). Therefore, cable-stayed bridges represent a peculiar case where ambient152

vibration tests yield both the modal parameters and some forces acting in the structure. This paper153

shows that the augmented information due to cable forces might allow the complete model updating154

of the bridge model in terms of inertial and stiffness parameters. In conventional model updating155

from OMA, the scholar must select either the mass or stiffness matrix to be updated to avoid an156

ill-posed mathematical problem. As illustrated in Fig.1, the augmented information compared to157
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traditional OMA allows the formulation of two objective functions in terms of cable forces and158

modal parameters, respectively. Fig.1 illustrates the procedure followed in this paper to understand159

whether the cable forces and the modal parameters can be used to achieve an almost complete FE160

model updating.161

The authors are aware that each cable-stayed bridge is a stand-alone case. Therefore, it is162

challenging to generalize a model update using the cable forces, natural frequencies, and unscaled163

modal parameters. However, although each cable-stayed bridge might deserve minor adjustments164

to the procedure, this paper proves that it is possible to calibrate most of the parameters of the FE165

model, affecting both the mass and stiffness matrices. Specifically, except for the cables, each cable-166

stayed bridge consist of three main constituents: the tower, the deck, and the bearings. Intuition167

suggests the stiffness of the tower, bearings, and deck, and the mass of the deck influence both the168

modal parameters and the cable forces. It also indicates that the tower mass little affects the modal169

parameters and the stay-cables being a self-sustained structure.170

Rigorously, a variance-based sensitivity analysis can highlight the most significant parameters171

affecting each cable force and modal parameter. As discussed in the body of the paper, the outputs172

of the sensitivity analysis prove that it is challenging to estimate all parameters at once since173

some parameters are more influential than others on a cable force or modal parameter. Therefore,174

the optimization problem formulation cannot be generalized and deserves a case-by-case analysis.175

However, as illustrated in Fig.1, the outputs from a sensitivity analysis and OMA can be used to176

select the parameters and properly formulate an optimization problem. Eq.(1) displays the general177

expression for the optimization problem, where 𝒙 collects all the involved parameters affecting the178

deck, tower, and bearings.179

𝒙̂ = min
𝒙∈Ω

{𝒈(𝒙)} (1)180

where 𝒙̂ and 𝒙 collect the optimized and unknown parameters respectively, 𝒈 the objective functions181

and Ω is the input space parameters. The objective function can be written by manipulating two182
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functions containing the squared difference between the two types of input parameters.183

𝒈(𝒙) =


∑𝑛𝑐

𝑖=1

(
𝑇𝑚
𝑖
−𝑇𝑐

𝑖

𝑇𝑚
𝑖

)2
, Cable forces∑𝑛𝑚

𝑖=2

(
𝜔𝑚
𝑖
−𝜔𝑐

𝑖

𝜔𝑚
𝑖

)2
+∑𝑛𝑚

𝑖=2
(
1 − diag(MAC(Φ𝑚

𝑖
,Φ𝑐

𝑖
))
)
, Modal parameters

(2)184

Where 𝑇𝑚
𝑖
and 𝑇 𝑐

𝑖
are the measured and calculated cable forces, 𝜔𝑚

𝑖
and 𝜔𝑐

𝑖
are the measured and185

calculated natural pulsations, MAC is theModal Assurance Criterion,Φ𝑚
𝑖
, andΦ𝑐

𝑖
are the measured186

and computed mode shapes, 𝑛𝑐 is the number of cables, while 𝑛𝑚 is the number of modes. The187

sensitivity analysis might indicate that some experimental parameters should be excluded from188

the objective function. Following a common approach in FE model updating, (Friswell and189

Mottershead 1995), meta-heuristic algorithms are used to solve the optimization. These techniques190

are mainly based on mimicking natural phenomena with simple iterative stochastic search rules in191

a phenomenological perspective, without a solid mathematical framework ensuring convergence to192

the global optima and its existence (Martí et al. 2018). Due to their intrinsic nature, does not exist193

a single unique method since the No-Free Lunch theorem (Wolpert and Macready 1997) affirms194

that there is no ideal algorithm to deal with any problem. However, their successful capability to195

handle complex problems without requiring any gradient-based information often represents the196

only means to deal with such situations (Martí et al. 2018). Indeed, meta-heuristic algorithms can197

accomplish the solution estimate of the optimal Pareto front for hard computational and multi-198

objective problems (Jones et al. 2002).199

The general problem in Equation 2 is presented as a multiobjective optimization, where two200

objective functions to are optimized simultaneously. No single solution exists for a nontrivial201

multiobjective optimization problem that simultaneously optimizes each objective. The goal may202

be to find a representative set of Pareto optimal solutions and/or quantify the trade-offs in satisfying203

the different objectives. To simplify the problem, the authors conducted two separate single-204

objective optimizations in the following sections, as shown in Equations 5 and 8.205

In this paper, the authors attempt to achieve the almost complete model updating of a cable-206
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stayed bridge in Porto Marghera, selected as a case study, using experimental estimates of cable207

forces and modal parameters. The sensitivity analysis of each experimental parameter will support208

the formulation of the objective functions. However, despite multiple attempts, the optimization209

does not achieve convergence when a single objective function comprising all unknowns and210

experimental data is used. Despite several attempts, the authors will find that optimization is211

successful only if the optimization is split into three companion optimizations.212

One for the tower stiffness using selected cable forces and modal parameters, one for the213

deck stiffness using selected modal parameters, and another for the vertical stiffness of the bearings214

using the deck mass and selected cable forces. By bearing, the authors intend the bridge component215

between the abutment and the deck. The selection of the cable forces and modal parameters for216

each optimization is based on the results of the sensitivity analysis.217

This paper reveals the information obtained from a sensitivity analysis is necessary to achieve218

a mindful formulation of the objective function. Each cable stayed-bridge is a stand-alone case.219

However, the investigations prove that, under certain choices of objective functions, the problem220

can be considered well-posed and leads to the optimal set of parameters.221

CASE STUDY222

This section briefly describes the bridge and the experimental tests for characterizing its dynamic223

response.224

Bridge description225

The Porto Marghera bridge, connecting the city of Mestre to the Commercial Harbor of Venice-226

Marghera, Italy (Fig.2), has a total length of 387m, divided into six spans (42m + 105m + 126m +227

30 + 42m + 42m). The first spans present a straight alignment, and the others a curved one with a228

175m radius. Fig.3 shows the plan, elevation and typical cross-sections of the deck (DeMiranda and229

Gnecchi-Ruscone 2010). The bridge is characterized by an inclined L-shape prestressed concrete230

tower, a single set of cables with a spatial arrangement and a curved steel-concrete composite231

deck (Briseghella et al. 2010). The two main spans have a cable-stayed structure with the stays232

arranged on a single plane, attached by the cross-section center. The bridge has two traffic lanes and233
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pedestrian walkways with a 23.70m total width. The deck consists of a composite concrete-steel234

continuous girder embracing all six spans. There are two cross-sections of the deck, depicted235

in Fig.3. The first one, adopted by the end spans, consists of four double-T steel girders, while236

the second one, by the central spans, consists of two outer double-T steel girders and one central237

girder with a box section. Transverse crossbeams made by double-T beams spaced every 5.25m238

stiffen the girder. Steel girders and crossbeams have a 1.90m height and are connected to a cast-239

in-place concrete slab with a 25-27 cm thickness. The cast-in-place prestressed concrete inclined240

tower represents the bridge landmark and played a determining role in the conceptual and executive241

design of the bridge. The tower has about 75m in height, and a triangular cross-section characterizes242

its geometric layout. The cross-section base enlarges upward to provide a more suitable anchorage243

for the stays. The tower prestressing aimed at reducing the dead loads’ eccentricity due to the curved244

deck layout. Despite the classic static scheme conception, typical of cable-stayed bridges with a245

central tower, numerous elements present a considerable architectonic impact and originality: the246

curvilinear layout of the suspended deck, the suspension scheme with a central curtain of stays,247

and the inclined tower with variable cross-section. Furthermore, the remarkable size of the deck248

made in the open profile (23.7m) and the mentioned bridge singularities supported the dynamic249

identification of the bridge for the experimental assessment of its dynamic response.250

Dynamic characterization of the deck251

The Laboratory of Vibrations and Dynamic Monitoring of Structures of Politecnico di Milano252

carried out the dynamic identification of the Porto Marghera bridge in two experimental campaigns253

during Autumn 2010 and Spring 2011 (Talebinejad et al. 2011; Yang et al. 2018). The two254

studies identified the modal parameters of the bridge and the natural frequencies and damping255

of the cable stays. The experimental modal analysis of the bridge was carried out using the256

Frequency Domain Decomposition (Brincker et al. 2000). The natural frequencies of the stays257

derived from the direct inspection of the auto spectra of the recorded signals (Bendat 1993). The258

details of the experimental tests and the results of dynamic identification are thoroughly discussed259

in (Briseghella et al. 2021). Concisely, the analysis identifies 12 and 11 modes in the 0-6Hz range260
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during the experimental campaigns in 2010 and 2011 respectively. The authors selected the 11261

experimental modes detected in 2011 for the sensitivity analysis and the following optimization.262

Tab.1 shows the experimental modal parameters. Fig.4 shows a representation of the mode shapes.263

The pictures include the tower and the stays, although the displayed modal deformations refer to264

the sole deck. As remarked in (Briseghella et al. 2021), the bending-torsional modes disavow the265

assumption of transversal non-deformability of the profile.266

Dynamic characterization of the cables267

Each cable stay was instrumented with a single sensor, placed at approximately 9.0m to the road268

surface. Additional details about the experimental setup are presented in (Briseghella et al. 2021;269

Zhao et al. 2020). Fig.6 and Tab.2 display the natural frequencies of the 18 stay cables identified270

in 2010 and 2011. Each figure reports the results of two symmetric stay cables, following the271

numbering in Fig.5. Fig.6 plots the natural frequencies and interpolating line 𝑛- 𝑓𝑛, where 𝑛 is the272

mode order, and 𝑓𝑛 is the associated natural frequency.273

The interpolating line 𝑛- 𝑓𝑛 displayed in Fig.6 does not exhibit a significant discrepancy to the274

single natural frequencies. Therefore, a simplified mechanical model of a fixed-fixed vibrating275

string can be used to derive the cable forces. The 𝑛-th natural frequency of a linear fixed-fixed276

string can be written as:277

𝑓𝑛 =
1
2𝐿

(
𝑇

𝜌

)0.5
(3)278

where 𝐿 is the cable length, 𝑇 is the cable force, 𝜌 is the mass per unit of length of the cable. By279

assuming 𝐿, and 𝜌, the cable force can be estimated from the interpolating line 𝑛- 𝑓𝑛. Specifically,280

the cable force can be derived from the slope of the interpolating line as follows (Irvine 1981;281

Caetano et al. 2007):282

𝑇 = 𝜌

(
2𝐿

𝜕 𝑓𝑛

𝜕𝑛

)2
(4)283

where 𝜕 𝑓𝑛
𝜕𝑛
is the slope of the interpolating lines shown in Fig.6. Tab.3 and 4 list the estimated cable284

forces from the two experimental campaigns. As remarked in the original technical report, the recent285

publication (Briseghella et al. 2021) and past research on the cable force identification (Gentile and286
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Cabboi 2015), there is a certain discrepancy between the forces of two symmetric cables. However,287

there is a minor deviation to the 𝑛- 𝑓𝑛 interpolation line. Therefore, the cable bending stiffness, sag288

extensibility, and intermediate springs do not play a significant role in affecting the cable forces289

(Mehrabi and Tabatabai 1998). The elementary model of a taut string can be considered valid290

in this case study and the observed differences between the experimental and numerical values291

reasonably depend on the structural parameters of the deck, tower, and supports. In the following292

sections, the authors will attempt to understand the possible reasons for the detected differences.293

FINITE ELEMENT MODELLING OF THE BRIDGE AND PRELIMINARY ANALYSES294

The FE model is developed in SAP200 and consists of 8014 nodes and 6600 elements (namely295

2946 beams, 18 trusses, and 3636 solid elements), as depicted in Fig.7. The model is linear and296

does not reproduce any geometrical or mechanical non-linearity (Adeli and Zhang 1995; Song297

et al. 2007). In detail, four-node shell elements reproduce the concrete slab, while solid elements298

the tower. Rigid links, without mass, connected the concrete slab and the grid of steel stringers299

and transverse cross-beams. Additionally, rigid links reproduced geometrical offsets between the300

structural members and strut-and-tie bracings of the deck. The piers are modeled by 3D beam301

elements while the cables are modeled by cable elements. The bearings, not included in the302

original bridge model (Briseghella et al. 2021), are modeled by vertical linear spring. The model303

reproduces the curvature of the deck and the tower inclination. The initial values for the material304

properties are the following. The weight per unit volume and the Poisson’s ratio of the concrete305

were assumed to be 25.0 kN/m3 and 0.2, respectively. An additional weight equal to 1 kN/m2306

represented the deck slab, including the asphalt pavement and walkways. Young’s modulus and307

steel weight was assumed to be 205 GPa and 785 kN/m3 respectively.308

Fig.8, Tab.6 and Tab.5 highlight the starting point of the model updating. Fig.8 plots all the309

eleven modes with an indication of the experimental and numerical natural frequencies and the310

MAC before calibration. Analogously, Tab.5 compares the experimental estimates of the cable311

forces and the FE model predictions before the updating. The numerical estimates of the cable312

forces (the cables are modeled as cable elements in SAP 2000) were obtained from static analysis313
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under dead loads. The experimental forces were measured when the bridge was closed to vehicular314

traffic and only dead loads were acting on it. The authors do not adopt cable models with geometric315

nonlinearity for two main reasons. (i) The experimental estimates of the cable forces exhibit an316

almost exact agreement with the natural frequencies obtained from the classical linear model for317

a taut string. This observation proves that a nonlinear cable model might not be necessary for the318

current research objective. (ii) Secondarily, the authors are only considering ambient vibration319

tests, where the vibration amplitude of the cables is so low that geometric nonlinearities do not320

manifest. There is a significant gap in the starting point in terms of modal parameters and cable321

forces. The modal parameters exhibit an acceptable agreement before optimization. The cable322

forces are enormously biased. Therefore, a sensitivity analysis of the modeling parameters and323

cable forces is required to understand which parameters need to be updated.324

Tab.7 shows the mass participation ratios of the considered eleven modes. The first six modes325

present quite relevant mass participating ratios, thus producing global mode shapes. On the326

contrary, the remaining modes approach zero percent of mass ratios, thus evidencing local modes327

as depicted in Fig.4. It is worth noting that modes 1, 3, 4, and 10 are clearly characterized by328

a single-direction mobilized mass, whereas modes 2, 5, and 6 are characterized by mixed mass329

participation ratios.330

SENSITIVITY ANALYSIS OF THE CABLE FORCES331

Before estimating the optimum values of the modeling parameters, sensitivity analyses provided332

a quantitative assessment of their effect on the chosen objective function and the mass and stiffness333

parameters. The authors chose as objective functions the 18 force values of the cables (nine on the334

Mestre side and nine on the Venice side) and an error function defined as the difference between335

the estimated and the numerical cable forces:336

𝑔1 =

𝑛𝑐∑︁
𝑖=1

(
𝑇𝑚
𝑖
− 𝑇 𝑐

𝑖

𝑇𝑚
𝑖

)2
(5)337

where 𝑔1 is the cost function, 𝑇𝑚
𝑖
the measured cable force, 𝑇 𝑐

𝑖
the simulated cable force.338
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The analyses assessed the sensitivity of the objective functions to the parameters influencing the339

cable forces. The main parts of a cable-stayed bridge are the deck, the cables, the tower, and340

the supports. Each part possesses mass and stiffness properties. The cable forces are optimized341

by the designer to ensure the meeting of given design criteria generally in terms of stress and/or342

displacement. The physical parameters mainly affecting the actual value of cable forces are the343

mass and stiffness of the deck and the stiffness of the tower and the supports.344

The tower’s mass and bearings are self-sustained and have not been included. The geometry345

and material properties of the cables are known with high precision. Therefore, the authors will346

assume that they can be assumed as known in the sensitivity assessment. Young’s modulus of steel347

is also known with significant accuracy and has not been included in the sensitivity assessment.348

The above considerations led to selection of five parameters representative of the deck’s mass and349

stiffness, the tower’s stiffness, and the bearings.350

1. The Young’s modulus of the tower (𝐸𝑐,𝑡). The cable forces might be significantly reduced351

if the tower is more deformable than expected by design. If so, the tower does not behave352

as almost fixed support for the cables. Therefore, Young’s modulus of concrete has been353

chosen as a synthetic representation of the tower deformability. The bounds [30, 50] GPa354

were assumed in the analyses.355

2. The mass of the steel deck (𝜌𝑠). The FE model accurately reproduces the geometry of the356

steel deck by using finite elements. However, the approximation related to finite elements357

might lead to an over or underestimation of the structural mass. Therefore, the weight per358

unit of volume of steel has been chosen to represent the mass of the steel deck. Indeed, 𝜌𝑠359

should be a known parameter since steel is manufactured in a workshop. As envisioned, the360

analysis shows that the parameter is negligible and can be excluded from the updating. The361

bounds [75, 80] kN/m3 were assumed in the analyses. The variability does not represent362

the possible variation of the steel mass but comprises the possible uncertainties related to363

the steel deck modeling.364

3. Themass of the concrete deck (𝜌𝑐). The FEmodel attempts to reproduce the geometry of the365
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concrete deck accurately. However, it is conventionally assumed that the concrete specific366

weight is equal to 25kN/m3. Still, the weight of a reinforced concrete slab depends on the367

proportions of concrete and steel, which might cause variations of the conventional value368

assumed in calculations. Additionally, the uncertainties in the actual size of the concrete369

deck might propagate to the cable forces. Therefore, the authors selected the specific weight370

of concrete as a synthetic representative of the mass of the concrete deck. The uncertainties371

in the concrete deck’s actual weight may depend on both the slab size and the specific weight372

of the concrete. The bounds [24, 30] kN/m3 were assumed in the analyses.373

4. The Young’s modulus of the concrete deck (𝐸𝑐,𝑑). The paper proposes a two-stage FE374

model update for cable-stayed bridges. In the first stage, the mass of the deck is estimated375

from the experimental values of the cable forces. In the second stage, the deformability376

of the deck is estimated from the experimental modal parameters. This approach works377

if the cable forces do not significantly depend on the deck stiffness. Therefore, Young’s378

modulus of the concrete deck is used to prove that the cable forces are not affected by the379

deck stiffness. The bounds [30, 50] GPa were assumed in the analyses.380

5. The vertical stiffness of the bearings (𝑘𝑎). The vertical stiffness of the bearings can be a381

crucial parameter affecting the cable forces. For example, the cable forces might increase382

significantly if the bearings are too deformable. The bounds [10, 500] kN/mmwere assumed383

in the analyses.384

It must be remarked that the bounds of the parameters have been chosen so that the minimum385

never falls close to the bounds. The authors conducted several trial optimizations by progressively386

increasing the difference between the lower and upper bounds, initially close to the expected387

values corresponding to the physical variables the modeling parameters represent. Beyond a given388

increment of the bounds, the optimum parameters did not change and always fell within them.389

Therefore, after several attempts, the authors selected the limits specified above for running the390

optimization discussed in this paper. The boundarieswhich requestedmore attention and effort were391

those for the bearing stiffness, which are those characterized by the highest uncertainty since there392
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was no preliminary experimental estimate of them. Therefore, the authors centered the boundaries393

at the nominal value of the bearing stiffness according to the producer and then increased the394

boundaries so that the minimum clearly fell within them. The analysis allowed decomposing the395

variance of the model’s output (objective function and natural frequencies) into fractions that can396

be attributed to the chosen mechanical parameters (Pasca et al. 2021). The first step was setting397

the inputs sampling range and generating the model inputs according to Saltelli’s sampling scheme398

(Saisana et al. 2005). (𝑁 · (2𝐷 + 2) model inputs were generated, where 𝑁 = 100 is the number of399

samples, and 𝐷 = 2 is the number of input parameters). After running all the model inputs, the first400

order was calculated. The authors computed the first-order sensitivity indexes (𝑆1), which do not401

consider interactions among input variables (Sobol’ 1990). Instead, they contribute to the output402

variance of the chosen objective function of a given modeling parameter (Young’s modulus, mass403

density, e.g.) (Aloisio et al. 2020; Aloisio et al. 2021; Aloisio et al. 2022a; Aloisio et al. 2022b).404

𝑆1 measures the effect of varying each parameter alone, averaged over variations of the other input405

parameters. Theoretically, the summation of all indexes is one. However, the sensitivity analysis406

is based on a Montecarlo approach. Therefore, the sum of all indexes tends to be one, but it is not407

precisely one due to the statistical approach followed for their estimation. Tab.8,9 list the sensitivity408

indicators of the objective function and cable forces respectively, where the rows refer to different409

parameters.410

The objective function in Eq.(3), later used for the optimization of cable forces, comprises the411

modeling errors of all cables, although each cable is more affected by a specific set of variables412

among the chosen five. The results show that the most significant variable is the vertical stiffness413

of the bearings. In the original model developed by the authors (Briseghella et al. 2021), the414

bearings were assumed as fixed supports since their stiffness did not cause a significant effect on the415

modal parameters. Conversely, the cable forces are significantly influenced by 𝑘𝑎, as proved by the416

sensitivity indicator, reaching approximately 94%. In this preliminary phase, the authors assumed417

a range of stiffness to have a maximum vertical displacement of 1mm. The other significant418

parameters, with sensitivity indicators of approximately 5%, are Young’s tower modulus and the419
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concrete deck’s mass. The authors expected the importance of the two parameters, compared to the420

steel mass and Young’s modulus of the concrete deck, which have a minor influence on the cable421

forces. The results in Tab.8 indicate that the vertical stiffness will be the most influential parameter422

in the FE updating of the cable forces.423

Parallelly, Tab.9 displays the contribution of each of the five parameters to the force values of424

the nine cables on the Mestre and Venice sides. The results are almost identical for the two sides,425

despite minor discrepancies. The tower deformability influences the force in the shortest cable426

close to the tower. The sensitivity indicator reaches almost 85%. The mass of the concrete deck427

influences its value by nearly 15%, while the bearings, quite distant from the cables, do not sensibly428

affect the force value.429

The sensitivity indicators start modifying in favor of the concrete deck’s mass and the subsequent430

cables’ bearing stiffness. The middle cables exhibit the highest sensitivity to the deck mass,431

reaching more than 90% in some cases. Conversely, the cables closest to the bearings (especially432

the ultimate three) exhibit the highest sensitivity to the bearing supports, close to 90%.433

In conclusion, the outcomes of the sensitivity analyses on the single cable forces highlight three434

trends for the 𝐸𝑐,𝑡 , 𝜌𝑐, and 𝑘𝑎. First, the tower deformability exhibits the highest effects on the435

shortest cable. Then its effects decrease to the ninth cable with an almost null effect. The mass of436

the concrete deck shows a sensitivity growth starting from the shortest to the middle cables. Then,437

the effects decrease for the cables close to the supports. The sensitivity indicators to the bearings’438

stiffness grow to a maximum for those cables closest to the supports.439

Fig.9,10 and 11 provide a graphical illustration of the outcomes of the sensitivity analysis by440

means of a scatter plot of the objective functions in the considered space of parameters. The441

representation has been limited to 𝐸𝑐,𝑡 , 𝜌𝑐, and 𝑘𝑎, which play the most significant role.442

Fig.9 shows two representations of the scatter plot of the objective function in Eq.(3). The objective443

function reduces significantly if the 𝑘𝑎 is lower than 100 kN/mm. For higher values of 𝑘𝑎, the444

objective function tends to stabilize. This effect is reasonable. Due to a lower deformation, the445

supports tend to behave rigidly and play a minor role in the cable forces. The alternate dots’ color446
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evidences the presence of a maximum for the 𝜌𝑐 value.447

Fig.10,11 illustrate the effects of 𝐸𝑐,𝑡 , 𝜌𝑐 and 𝑘𝑎 on each cable force on the Mestre and Venice448

sides. The plots confirm the results in Tab.9. The shortest cables exhibit a prevalent dependence449

on the stiffness of the tower. If Young’s modulus 𝐸𝑐,𝑡 grows to values higher than 30MPa, the450

objective function reduces. Conversely, the objective function stabilizes at a higher value as the451

tower’s stiffness lowers. If the tower does not deform, it behaves as a rigid support for the cables.452

The second and third cables start manifesting an inversion of the objective function dependence453

since the weight of the concrete deck leads to a higher dispersion of the dots towards lower values454

of the objective function. Starting from the fourth cable, the dependence of the objective function455

on 𝑘𝑎 starts displaying. Specifically, moving from the fourth to the ninth cable, the surfaces tend to456

reduce in the vertical scatter related to the concrete specific weight and exhibit a clear dependence457

on 𝑘𝑎. Expressly, the curves referred to as the ninth cables have a nonlinear trend, where the458

objective function reduces for lower values of the bearing stiffness.459

The plots in Fig.10,11 are proxies for assessing the role of the parameters in finding the optimal set460

associated with the minimum of the objective function in Eq.(3). The optimal set of parameters461

is associated with higher values of Young’s modulus of the tower (𝐸𝑐,𝑡 > 30MPa), a lower value462

of the concrete mass of the deck (𝜌𝑐 < 25kN/m3), and a lower value of the bearing stiffness463

(𝑘𝑎 < 100kN/mm).464

SENSITIVITY ANALYSIS OF THE MODAL PARAMETERS465

To measure the distance between the estimated and the numerical modal parameters, the466

following objective function is used:467

𝑓 (𝒙) = 𝑓1(𝒙) + 𝑓2(𝒙) (6)468

469

𝑓1(𝒙) =
𝑛𝑚∑︁
𝑖=1

(
𝜔𝑚
𝑖
− 𝜔𝑐

𝑖

𝜔𝑚
𝑖

)2
(7)470

471

𝑓2(𝒙) =
𝑛𝑚∑︁
𝑖=1

(
1 − diag(MAC(Φ𝑚

𝑖 ,Φ
𝑐
𝑖 ))

)
(8)472
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where 𝑓 (𝒙) is the cost function, 𝒙 is the vector collecting all the modeling parameters, 𝑓1(𝒙) and473

𝑓2(𝒙) the cost functions in terms of natural frequencies and mode shapes, 𝜔 the natural pulsation,474

the apex (∗)𝑚 indicates a measured variable, the apex (∗)𝑐 a calculated variable, Φ𝑖 is the mode475

shape vector, 𝑛𝑚 is the number of modes, MAC is the Modal Assurance Criterion.476

477

The main aspects arising from the observation of the sensitivity analysis might be itemized as478

follows based on the results collected in Tabs.10,11,12:479

• Tab.10-The vertical stiffness of the bearing is the most influential parameter in Eq.(6).480

However, as shown in Tab.10, the highest sensitivity to the bearing stiffness is given by the481

cost function in terms of mode shapes (≈ 97.2%). Conversely, the cost function in terms482

of natural frequencies is more affected by the mass of the deck (𝜌𝑐), with an approximate483

61.4% indicator. In the selected ranges of variation, the weight per volume of steel does not484

sensibly affect the objective functions with a sensitivity indicator less than 0.1%.485

• Tab.11-The sensitivity analysis of each natural frequency confirms the minimal effect of486

the weight per unit of volume of steel. Conversely, there are several cases where Young’s487

modulus of the tower and the deck and mass per unit of volume of concrete are more488

influential than the bearing stiffness. This fact can be mainly observed for modes V2,489

V3, T1, and T2. Specifically, V2 exhibits a marked dependence on 𝐸𝑐,𝑡 (≈ 49.6%), 𝜌𝑐490

(≈ 25.4%), and 𝑘𝑎 (≈ 74.1%). Modes V3, T1, and T2 also significantly depend on Young’s491

modulus of the deck, with sensitivity indicators approximately equal to 16.3%, 58.3%,492

and 48.8%, respectively. These are the only cases where Young’s modulus of the deck493

is influential. Therefore, V3, T1, and T2 are the only modes that can be ideally used to494

estimate Young’s modulus of the deck. Except for the mentioned modes, the other modes495

exhibit a prevalent dependence on the bearing stiffness.496

• Tab.12-The results in natural frequencies are pretty similar to those in MAC. The main497

difference stands in the role of the mass per unit of volume of concrete. In comparison,498

𝜌𝑐 and 𝑘𝑎 are the most influential parameters for the natural frequencies, except for V2,499
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V3, T1, and T2 modes. The sole bearing stiffness is the most significant parameter with500

a sensitivity higher than 90%. Similarly, V2, V3, and T1 also show a clear dependence501

on Young’s modulus of the tower. In contrast, V3, T1, and T2 also depend on Young’s502

modulus of the deck.503

On average, the sensitivity ranking of the selected parameters from the most influential to504

the less is: bearing stiffness (𝑘𝑎), weight per unit of volume of concrete (𝜌𝑐), Young’s modulus505

of the tower (𝐸𝑐,𝑡), Young’s modulus of the deck (𝐸𝑐,𝑑), and the weight per unit of volume of506

steel. In general, the parameters are highly correlated since the sum of the sensitivity indicators507

in Tabs.10,11,12 is much higher than 100%. This fact depends on including mass and stiffness508

parameters in the sensitivity analysis. Figs.12-13 show selected scatter plots of the simulated data509

as a function of the three most influential parameters, the bearing stiffness, Young’s modulus of the510

tower, and the mass per unit of volume of concrete.511

Differently from the scatter plots of the cable forces’ sensitivity analysis, the current ones manifest512

the presence of subspaces where dots coalesce. The shape of the objective functions, the one513

in Eq.(6) and those representatives of the frequency and MAC contributions stand on the same514

hyper-surface. They all prove a lowering of the objective function as the bearing stiffness rises and515

the concrete mass lowers. Other aspects cannot be interpreted from a direct inspection of the scatter516

plots of the three objective functions in Fig.12. The dots associated with the same realizations but517

corresponding to each mode aggregate peculiarly, exhibiting discontinuities like for V3 and VT1,518

local minima like for M1 and T2, and stationary regions where the variation of the parameters is519

not influential.520

Discussion521

The selected plots show the complexity of a possible model update driven by the modal pa-522

rameters. There are two main reasons. (i) The preliminary model of the bridge without updating523

already exhibits an excellent agreement with experimental data. Therefore, the parameter calibra-524

tion should lead to the near identity between the experimental and numerical modal parameters.525
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However, the model updating using both the mass and stiffness parameters would be indeterminate,526

and the scholar should arbitrarily assume one parameter possibly associated with lower uncertainty.527

(ii) The presence of subspaces and discontinuities in the plots of either the natural frequency or the528

mode shape prove the possible limits of a meta-heuristic optimization algorithm. The optimization529

outcome depends on the subspace where the algorithm might fall in the search process. Therefore,530

a FE model updating using the cable forces has several advantages compared to one based on the531

modal parameters.532

The simulated cable forces are in lousy agreement with the experimental ones. Therefore, a model533

update using the cable forces would be more valuable than one based on the modal parameters,534

which are already in excellent agreement. Specifically, the parameters affecting the cable forces are535

not highly correlated. Therefore, a lower number of parameter subsets is associated with a good536

matching with the experimental data. In contrast, the parameters affecting the modes are highly537

correlated. This fact leads to higher parameter subsets related to an excellent agreement with the538

experimental data.539

The objective functions of cable forces have a regular trend without discontinuities. Conversely,540

the presence of multiple subspaces collecting the modal parameters might compromise the success541

of the search process of optimization algorithms.542

The cable forces T1,M1 and T2,M2 can be used to estimate 𝐸𝑐,𝑡 (𝑆𝑤 > 50%), the remaining cable543

to estimate 𝜌𝑐 (𝑆𝑤 > 50%) and 𝑘𝑎 (𝑆𝑤 > 50%). The sole parameter left is 𝐸𝑐,𝑑 which can be544

estimated from an objective function in terms of cable T1, and mode shapes excluding the second545

one, mainly affecting the tower deformability.546

547

FE MODEL UPDATING548

Multiple attempts were carried out to test the feasibility of a global optimization algorithm549

where all the parameters are updated simultaneously. However, all the efforts were unsuccessful.550

The parameters are highly correlated, and the objective functions, especially those dependent on551

the modal parameters, present many local minima. Therefore, simultaneously updating all the552
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parameters using meta-heuristic algorithms is challenging. Furthermore, the algorithms always553

select the lower or upper bounds of the parameter domain. Thus, the following is the unique554

updating procedure that provided optimum parameters within the bounds and in good agreement555

with the experimental data. The main drawback of the procedure is the assumption of specific556

parameters in the first optimization steps. However, as proved by the sensitivity analysis, different557

choices of the assumed parameters, namely 𝐸𝑐,𝑡 and 𝐸𝑐,𝑑 , do not modify the optimization outputs,558

with differences lower than 5%. Therefore, the sole successful optimization will be described and559

discussed in this section. The optimization process is based on the following steps:560

1. Optimization of 𝜌𝑐 and 𝑘𝑎, after assuming a specific value for Young’s moduli of the tower561

𝐸𝑐,𝑡 and the deck 𝐸𝑐,𝑑 . The objective function depends on all the cable forces except for T1,562

M1, and T2, M2.563

2. Optimization of Young’s modulus of the concrete tower (𝐸𝑐,𝑡), after assuming 𝜌𝑐 and 𝑘𝑎564

from the first step and Young’s modulus of the deck 𝐸𝑐,𝑑 . The objective function depends565

on the cable forces T1, M1 and T2, M2, and the second mode shape.566

3. Optimization of Young’s modulus of the concrete deck (𝐸𝑐,𝑑), after assuming 𝜌𝑐, 𝑘𝑎 and567

𝐸𝑐,𝑑 , from the previous optimization steps.568

The global optimization algorithms, the differential evolution (DE) (Storn and Price 1997) and the569

particle swarm optimization (PSO) (Kennedy and Eberhart 1995), are used for mutual validation.570

Also, to perform the model updating, the script is written in Python using SAP2000 OAPI with the571

Python module Scipy (to run DE) and PySwarms (Miranda 2018) (to run PSO). Since no significant572

difference is observed in comparing the outcomes of the two optimization algorithms, the authors573

will only report the results from PSO. In detail:574

1. Optimization of 𝜌𝑐 and 𝑘𝑎: This optimization can be formulated as unconstrained and575

single-objective since there is one Objective Function (OF) 𝑔(𝒙) to be minimized and no576

equality or inequality constraints. The problem can be formulated as follows:577
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𝒙̂1 = min
𝒙1∈Ω1

{𝑔1(𝒙1)} (9)578

𝑔1(𝒙1) =
9∑︁
𝑖=3

(
𝑇𝑚
𝑖
− 𝑇 𝑐

𝑖

𝑇𝑚
𝑖

)2
𝒙1 = {𝜌𝑐, 𝑘𝑎}𝑇 , 𝐸̂𝑐,𝑡 = 𝐸̂𝑐,𝑑 = 30GPa (10)579

The objective functions include all the nine cable forces on the Venice and Mestre sides580

except for the two close to the tower mainly affected by 𝐸𝑐,𝑡 . The search domain is581

a multidimensional space Ω, based on the admissible intervals of values for each 𝑗-th582

variable, defined by its lower and upper bounds [𝑥𝑙
𝑗
, 𝑥𝑢

𝑗
]. This detects a box-type hyper-583

rectangular search space Ω which is typically defined as the Cartesian product (denoted by584

the × symbol) among the admissible intervals585

Ω = [𝜌𝑙𝑐, 𝜌𝑢𝑐 ] × [𝑘 𝑙𝑎, 𝑘𝑢𝑎] (11)586

2. Optimization of 𝐸𝑐,𝑡 This optimization can be formulated as unconstrained and single-587

objective, since there is one Objective Function (OF) 𝑔(𝒙) to be minimized and no equality588

or inequality constraints.589

𝒙̂2 = min
𝒙2∈Ω2

{𝑔2(𝒙2)} (12)590

591

𝑔2(𝒙2) =
2∑︁
𝑖=1

(
𝑇𝑚
𝑖
− 𝑇 𝑐

𝑖

𝑇𝑚
𝑖

)2
+
2∑︁
𝑖=2

(
𝜔𝑚
𝑖
− 𝜔𝑐

𝑖

𝜔𝑚
𝑖

)2
+
2∑︁
𝑖=2

(
1 − diag(𝑀𝐴𝐶 (Φ𝑚

𝑖 ,Φ
𝑐
𝑖 ))

)
(13)592

593

𝒙2 = {𝐸𝑐,𝑡}𝑇 , 𝐸̂𝑐,𝑑 = 30GPa, { 𝜌̂𝑐, 𝑘̂𝑎}𝑇 in Tab.13 and 14 (14)594

The objective functions include two cables on the Venice and Mestre sides close to the595

tower and the second mode shape associated with the tower deformation.596

3. Optimization of 𝐸𝑐,𝑑: This optimization can be formulated as unconstrained and single-597

objective since there is one Objective Function (OF) 𝑔(𝒙) to be minimized and no equality598
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or inequality constraints.599

𝒙̂3 = min
𝒙3∈Ω3

{𝑔3(𝒙3)} (15)600

601

𝑔3(𝒙3) =
12∑︁

𝑖=1,3

(
𝜔𝑚
𝑖
− 𝜔𝑐

𝑖

𝜔𝑚
𝑖

)2
+
12∑︁

𝑖=1,3

(
1 − diag(𝑀𝐴𝐶 (Φ𝑚

𝑖 ,Φ
𝑐
𝑖 ))

)
(16)602

603

𝒙3 = {𝐸𝑐,𝑑}𝑇 , { 𝜌̂𝑐, 𝑘̂𝑎, 𝐸̂𝑐,𝑡}𝑇 in Tab.13 and 14 (17)604

The objective functions includes all mode shapes except for the second one related to the605

tower deformation.606

It must be remarked that beyond its strictly physical meaning, concrete Young’s modulus should607

be also considered as a modeling parameter (Schlune et al. 2009). Indeed, in the FEmodel updating608

procedures, the concrete Young’s modulus is often assumed as a single parameter describing the609

dynamical stiffness adaptation for all directions simultaneously, thus strongly affecting the simulated610

global dynamics of the FE model (Schlune et al. 2009). Therefore, since it summarizes different611

contributions to the global simulated dynamic response, it is affected by an intrinsic severe level612

of uncertainty (Schlune et al. 2009). Firstly, these uncertainties may be related to modeling errors,613

e.g. due to simplified assumptions when modeling complex structures, or from actual intrinsic614

factors, such as the mesh discretization level (Park et al. 2012). Secondly, they may be also related615

to model parameter errors, i.e. due to material and geometric properties uncertainties, as well as a616

proper definition of their variation range boundaries (Brownjohn and Xia 2000). These boundaries617

are normally set for the purpose of avoiding physically impossible updated parameter outcomes.618

However, a trade-off between physically acceptable parameter values and the convergence level619

is often required (Brownjohn and Xia 2000). In addition, the after-updating concrete stiffness620

parameters are usually expected to increase because, by definition, the dynamic Young’s modulus621

of concrete is greater than the static one (Jaishi and Ren 2005). Another reasonable concomitant622

cause is related to concrete long-term hardening phenomena (Schlune et al. 2009). Thus, in623

(Daniell and Macdonald 2007) it is suggested to adopt an already significant value for the concrete624

Young’s modulus initial values, e.g. about 37 GPa. From this value, it is expected at least an625
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incremental variation at least of 15% (Park et al. 2012). However, after-updating values may also626

reach considerably high values, e.g. about 53 GPa, as demonstrated in (Jaishi and Ren 2005).627

In summary, due to epistemic uncertainty, the tuning parameters, generally Young’s moduli, not628

only express their intrinsic physical meaning, characterized by specific acceptable values. First,629

they are modeling parameters that collect and compensate for modeling errors in the optimization630

phase, while reducing the discrepancy between the simulated and experimental dynamic response.631

Therefore, for the above-mentioned reasons, the authors selected wide boundaries for Young’s632

moduli for both the sensitivity analysis and the optimization.633

The three optimizations led to the following values of the objective functions: 0.4306, 0.0347634

and 1.0296 corresponding to Eq.(10), (13) and (16), respectively. Multiple identical repetitions of635

the optimization gave the same results. Tab.13 and 14 show the results of the three optimizations636

in a single table, displaying the values of the cable forces and modal parameters before and after637

the updating. Additionally, Tab.13 and 14 show the optimum parameters and the relative upper and638

lower bounds.639

The updating reveals that, while the agreement between modal parameters does not improve640

meaningfully, the comparison in terms of cable forces enhances significantly. Except for cable two641

on both the Mestre and Venice side, the relative average error reduces from -17% to -6%. The key642

to successful updating is introducing the bearing stiffness.643

Initial updating attempts excluded the bearing stiffness and always led to minor improvements644

in the matching between cable forces. However, the agreement’s progress in modal parameters645

is negligible and worsens in some cases. This fact proves that the geometric features are more646

influential on the modal parameters than the chosen updated parameters. The average frequency647

error is approximately 1% before and after updating. The same for the average MAC, which648

keeps constant at 90%. The values of the optimum parameters are consistent with the engineering649

judgment. For example, the optimum concrete mass is 24kN/m3, while Young’s modulus of the650

deck is 40GPa. The optimum Young’s modulus of the tower is higher than the values expected for651

concrete, being equal to 61.1GPa. This value proves that the tower exhibits a higher stiffness. Higher652
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stiffness might be related to modeling errors in the actual geometry and possible discrepancies653

between the design and real tower geometry.654

As recalled by (De Miranda and Gnecchi-Ruscone 2010), the bearings of the considered655

structure were produced by TENSA and consist of laminated neoprene pads. The stiffness of the656

bearings significantly influences the global dynamic behavior in terms of torsional and horizontal657

modes and cable forces. The bearings, modeled as linear springs, possess a high level of uncertainty.658

As noted by (Petersen and Øiseth 2017; Petersen et al. 2018), the uncertainty depends not only659

on the neoprene material itself but also on unknown effects related to the embedded steel plates660

and pre-tensioning. Secondarily, the idealization of a bearing as a single node can also cause661

errors (Zhu et al. 2019). The optimum value of the bearing stiffness is 1350kN/mm. The vertical662

stiffness falls within the expected range of stiffness for this kind of support (Kaczinski et al. 2016;663

Zhang and Xie 2019). The average expected deformation of the bearing without traffic loads equals664

5.78mm. Tab.15 shows the reaction forces at the supports corresponding to fixed and deformable665

supports. While the bearing stiffness significantly affects the cable forces and themodal parameters,666

it does not influence the reaction forces. In particular, the reaction forces exhibit minor relative667

discrepancies, approximately 1%.668

The results of the updating are consistent with the ones discussed in (Briseghella et al. 2021).669

Briseghella et al. found that the optimum matching is achieved when 𝐸𝑐,𝑡 = 41.67Gpa and670

𝐸𝑐,𝑑 = 33.74Gpa. The introduction of the bearing stiffness within the updating process lead to an671

increment of the optimum values, equal to 𝐸𝑐,𝑡 = 51.1Gpa and 𝐸𝑐,𝑑 = 40Gpa, as shown in Tab.13672

and 14. Still, it is challenging to understand the mechanical reasons behind the observed, despite673

minor differences. Plausibly, the bearing stiffness adds higher deformability to the structure, which674

is compensated by a stiffer deck and tower, a consequent higher 𝐸𝑐,𝑑 and 𝐸𝑐,𝑡 . For optimization675

tasks considering non-linear problems, derivative- free global algorithms are particularly suitable676

(Hofmeister et al. 2019)677

As already mentioned before, it must be remarked that Young’s moduli of concrete of the678

FE model should not be considered strictly physical quantities, but, indeed, modeling parameters679
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(Schlune et al. 2009). Due to epistemic uncertainty, the FE model might not represent the actual680

structure. Therefore, the tuning parameters, generally Young’s moduli, not only express their681

intrinsic physical meaning, characterized by specific acceptable values. First, they are modeling682

parameters that collect and compensate for the modeling error in the optimization phase (Jaishi683

and Ren 2005; Park et al. 2012). Therefore, it generally happens that the values of Young’s moduli684

might exceed or underestimate the expected values for concrete (Schlune et al. 2009; Brownjohn685

and Xia 2000). Therefore, the authors selected wide boundaries for Young’s moduli for both the686

sensitivity analysis and the optimization (He et al. 2022).687

CONCLUSIONS688

This paper presents and discusses the almost complete finite element model updating of cable-689

stayed bridges using modal parameters and cable forces estimates. The optimization problem is690

particularly challengingwhen dealingwith large-scale structures with numerous degrees of freedom691

using traditional model updating methods. For this reason, several scholars use surrogate models692

to reduce computational costs, like the response surface (RS) method (Fang and Perera 2009; Fang693

and Perera 2011; Horta et al. 2011). However, if a preliminary sensitivity analysis is carried694

out to support the mindful formulation of the objective functions, the traditional model updating695

based on meta-heuristic optimization algorithms represents a feasible approach. In this paper, the696

authors achieve the almost complete model updating of a cable-stayed bridge following a step-wise697

procedure supported by extensive variance-based sensitivity analyses.698

The procedure was applied to a cable-stayed bridge with a curved deck and inclined tower in699

Porto Marghera (Italy). The authors used the particle-swarm (PSO) and differential evolution (DE)700

algorithms to calibrate the model parameters from ambient vibration data collected on the deck701

and cables. The availability of the cable forces estimates allows updating the inertial and stiffness702

features, compared to more conventional FE updating where the sole modal parameters impose703

the updating of either the mass or stiffness matrix to avoid ill-posedness and indeterminacy of the704

optimization problem. The paper highlights the importance of preliminary sensitivity analyses to705

formulate the optimization problem correctly. In the considered case study, preliminary sensitivity706
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analyses showed that the most influential parameters to be included in the update are: the concrete707

mass (𝜌𝑐), Young’s modulus of the concrete deck (𝐸𝑐,𝑑), Young’s modulus of the concrete tower708

(𝐸𝑐,𝑡), and the bearing stiffness (𝑘𝑎). The sensitivity analyses demonstrated that 𝜌𝑐 and 𝑘𝑎 aremainly709

affected by the cable forces, except for the cables close to the tower. The tower’s deformability710

(𝐸𝑐,𝑡) mainly influences the cables close to the tower. At the same time, the modal parameters711

are mainly influenced by Young’s modulus of the deck, except for the second mode related to712

the tower deformation. Therefore, this evidence supported a three-step model updating, leading713

to the progressive optimization of 𝜌𝑐 and 𝑘𝑎, then 𝐸𝑐,𝑡 and ultimately 𝐸𝑐,𝑑 . The updating in the714

first two steps required the assumptions of specific parameter values. However, the optimization715

results are not notably affected by different parameter choices, as confirmed by the sensitivity716

analysis. The authors attempted the optimization of all the parameters simultaneously, following717

multi-objective and single-objective approaches. However, all the endeavors were unsuccessful718

since the algorithm always selected optimum values corresponding to the lower and upper bounds.719

As evidenced by the sensitivity analysis, the chosen objective functions, especially the one in720

modal parameters, present several local minima/maxima regions, which undermine the success721

of global optimization, including all the parameters. Therefore, the only procedure which led to722

values within the confidence bounds is the three-step one discussed in this paper. The analyses723

also reveal that the agreement between modal parameters does not improve significantly. The724

average percentage error remains equal before and after the update. Conversely, the cable forces725

exhibited a noteworthy improvement. The key to this improvement is the introduction of bearing726

stiffness. The sensitivity analysis highlighted the influence of the bearing stiffness on the modal727

parameters and cable forces. The bearings consist of layered neoprene pads with an estimated728

vertical stiffness equal to 1350kN/mm, consistent with the vertical stiffness of these structural729

devices. This paper establishes that meta-heuristic optimization algorithms can be challenging to730

use in FE model updating of cable-stayed bridges, especially when many parameters need to be731

optimized. Therefore, the scholar must steer the optimization process by limiting the search space732

and devising step-wise methods. A sensitivity analysis represents a necessary step to correctly733
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isolate the most relevant unknown parameters and suitably formulate the sets of objective functions734

to be optimized.735
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TABLE 1. Comparison between the modal parameters estimated from experimental campaigns in
2010 and 2011.

No 𝑓2010[Hz] 𝑓2011[Hz] 𝑓2010− 𝑓2011
𝑓2010

[%] MAC2010−2011

1 0.635 0.635 0.00 0.988
2 0.996 0.996 0.00 0.980
3 1.143 1.143 0.00 0.958
4 1.387 1.387 0.00 0.998
5 1.523 1.523 0.00 0.982
6 1.602 1.602 0.00 0.990
7 1.953 1.963 -0.51 0.988
8 2.637 2.646 -0.34 0.983
9 3.174 / / /
10 4.053 4.072 -0.47 0.954
11 4.932 4.951 -0.39 0.836
12 5.596 5.625 -0.52 0.835
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TABLE 2. Fundamental natural frequencies in [Hz] of the stay cables estimated in 2010 and 2011.
The first nine values refer to the Mestre side, the second nine to the Venice side.

Stay cable no. 2010 2011

1 1.250 1.230
2 1.211 1.211
3 1.621 1.621
4 1.543 1.543
5 1.387 1.387
6 1.289 1.289
7 1.250 1.250
8 1.113 1.094
9 0.977 0.977

1 1.445 1.406
2 1.309 1.289
3 1.641 1.641
4 1.563 1.563
5 1.426 1.406
6 1.328 1.328
7 1.230 1.230
8 1.094 1.113
9 0.938 0.938
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TABLE 3. Cable forces identified from vibration data in the tests of June 2010 and April 2011
(Mestre side)

Mestre side, stay cable n.

Cable force 1 2 3 4 5 6 7 8 9

𝑇2010 [kN] 455 755 2350 3721 3866 4190 4825 5294 4746
𝑇2011 [kN] 458 757 2359 3715 3842 4199 4828 5289 4771
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TABLE 4. Cable forces identified from vibration data in the tests of June 2010 and April 2011
(Venice side)

Venice side, Stay cable n.

Cable force 1 2 3 4 5 6 7 8 9

𝑇2010 [kN] 647 906 2414 3771 4005 4324 4588 5275 4512
𝑇2011 [kN] 614 860 2381 3704 3961 4352 4698 5310 4655
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TABLE 5. Experimental numerical estimates of the cable forces before calibration.

Cable Exp. [kN] Num. [kN] Error

M1 458 221 51.7%
M2 757 1342 -77.3%
M3 2359 2411 -2.2%
M4 3715 3516 5.4%
M5 3842 3384 11.9%
M6 4199 2961 29.5%
M7 4828 2513 47.9%
M8 5289 2311 56.3%
M9 4771 1986 58.4%
V1 614 353 42.5%
V2 860 1596 -85.6%
V3 2381 2844 -19.5%
V4 3704 4084 -10.3%
V5 3961 3979 -0.5%
V6 4352 3578 17.8%
V7 4698 2821 40.0%
V8 5310 2309 56.5%
V9 4655 1139 75.5%
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TABLE 6. Comparison between experimental and numerical modal parameters before model
updating, where 𝑓𝑒 and 𝑓𝑛 are the experimental and numerical natural frequencies.

No Mode 𝑓𝑒 [Hz] 𝑓𝑛 [Hz] ( 𝑓𝑒 − 𝑓𝑛)/ 𝑓𝑒 [%] MAC

1 V1 0.63 0.68 -6.49% 0.97
2 V2 1.00 0.97 2.12% 0.93
3 V3 1.14 1.23 -7.34% 0.86
4 T1 1.39 1.39 -0.54% 0.95
5 M1 1.52 1.65 -8.06% 0.80
6 T2 1.60 1.51 5.69% 0.76
7 V4 1.96 2.07 -5.49% 0.97
8 T3 2.65 2.56 3.31% 0.94
9 T5 4.07 3.99 1.91% 0.89
10 T6 4.95 4.84 2.17% 0.92
11 T7 5.63 5.54 1.53% 0.94
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TABLE 7. Mass participation ratios of the modes before model updating. X, Y and Z indicate the
longitudinal, transverse and vertical directions. U and R indicate the displacement and the rotation
wth respect to the mentioned directions X, Y and Z.

Mode Mass participation ratios [%]
No Label Ux Uy Uz Rx Ry Rz

1 V1 3.07 0.19 1.25 2.80 14.00 0.00
2 V2 1.29 8.29 6.33 9.86 0.02 0.43
3 V3 0.78 0.25 11.14 0.76 0.62 0.59
4 T1 2.85 16.58 0.35 0.16 0.01 0.28
5 M1 9.56 2.98 0.07 0.03 0.01 17.40
6 T2 0.95 3.79 1.34 0.10 0.04 3.46
7 V4 0.38 0.00 0.70 0.31 0.14 0.29
8 T3 0.01 0.00 0.00 0.06 0.08 0.00
9 T5 0.00 0.04 0.25 0.32 0.33 0.00
10 T6 0.00 0.00 0.04 1.78 3.19 0.00
11 T7 0.00 0.00 0.13 0.04 0.00 0.00
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TABLE 8. Sensitivity indicators of the objective function in Eq.(3) to the Young’s modulus of
the tower (𝐸𝑐), the mass of the steel deck (𝑀𝑠), the mass of the concrete deck (𝑀𝑐), the Young’s
modulus of the deck (𝐸𝑐,𝑑𝑒𝑐𝑘 ), and the vertical stiffness of the bearings (𝑘𝑎).

𝐸𝑐,𝑡 𝜌𝑠 𝜌𝑐 𝐸𝑐,𝑑 𝑘𝑎

5.14% 0.34% 4.13% 1.21% 93.14%
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TABLE 9. Sensitivity indicators of the cable forces labelled M1-M9 (Cables on the Mestre side)
and V1-V9 (Cables on the Venice side) to the Young’s modulus of the tower (𝐸𝑐), the mass of the
steel deck (𝑀𝑠), the mass of the concrete deck (𝑀𝑐), the Young’s modulus of the deck (𝐸𝑐,𝑑𝑒𝑐𝑘 ),
and the vertical stiffness of the bearings (𝑘𝑎)..

Cable force 𝐸𝑐,𝑡 𝜌𝑠 𝜌𝑐 𝐸𝑐,𝑑 𝑘𝑎

M1 87.13% 0.08% 12.57% 0.51% 0.48%
M2 38.14% 0.25% 61.29% 1.37% 0.69%
M3 9.06% 0.27% 86.05% 1.35% 4.79%
M4 1.32% 0.23% 78.93% 1.12% 19.18%
M5 0.01% 0.17% 55.23% 0.79% 43.59%
M6 0.27% 0.12% 31.74% 0.47% 66.41%
M7 0.97% 0.07% 16.75% 0.24% 80.52%
M8 2.10% 0.05% 9.23% 0.11% 86.86%
M9 4.22% 0.03% 6.82% 0.07% 87.17%

V1 82.85% 0.18% 17.14% 0.22% 0.19%
V2 30.49% 0.39% 68.93% 0.95% 0.83%
V3 6.76% 0.41% 93.46% 1.32% 0.01%
V4 1.18% 0.36% 94.99% 1.44% 3.79%
V5 0.12% 0.29% 78.15% 1.28% 21.13%
V6 0.00% 0.20% 48.68% 0.91% 50.04%
V7 0.08% 0.12% 22.88% 0.48% 75.34%
V8 0.21% 0.05% 8.28% 0.15% 89.66%
V9 0.44% 0.01% 2.06% 0.02% 95.70%

50 Aloisio et al., April 10, 2023



TABLE 10. Sensitivity indicators of the objective function (OF) in Eq.(6) to the Young’s modulus
of the tower (𝐸𝑐,𝑡), the mass of the steel deck (𝜌𝑠), the mass of the concrete deck (𝜌𝑐), the Young’s
modulus of the deck (𝐸𝑐,𝑑), and the vertical stiffness of the bearings (𝑘𝑎).

OF 𝐸𝑐,𝑡 𝐸𝑐,𝑑 𝜌𝑐 𝜌𝑠 𝑘𝑎

𝑓 (𝒙) 0.3% 0.5% 3.7% 0.0% 94.6%
𝑓1 (𝒙) 0.6% 0.9% 61.4% 0.1% 41.6%
𝑓2 (𝒙) 0.4% 0.7% 1.3% 0.0% 97.2%
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TABLE 11. Sensitivity indicators of each natural frequency to the Young’s modulus of the tower
(𝐸𝑐,𝑡), the mass of the steel deck (𝜌𝑠), the mass of the concrete deck (𝜌𝑐), the Young’s modulus of
the deck (𝐸𝑐,𝑑), and the vertical stiffness of the bearings (𝑘𝑎).

Mode 𝐸𝑐,𝑡 𝐸𝑐,𝑑 𝜌𝑐 𝜌𝑠 𝑘𝑎

1-V1 3.2% 0.3% 42.2% 0.1% 54.6%
2-V2 94.4% 0.0% 4.4% 0.0% 4.4%
3-V3 17.0% 5.3% 75.4% 0.6% 23.3%
4-T1 3.8% 17.8% 52.9% 0.7% 39.2%
5-M1 0.1% 0.7% 48.9% 0.1% 53.2%
6-T2 0.0% 1.2% 65.4% 0.1% 33.8%
7-V4 0.0% 0.5% 49.3% 0.1% 51.0%
8-T3 1.4% 3.9% 65.8% 0.1% 34.1%
9-T5 0.0% 5.3% 60.2% 0.6% 52.3%
10-T6 1.9% 4.3% 54.8% 0.0% 48.3%
11-T7 0.0% 2.0% 52.0% 0.8% 51.9%
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TABLE 12. Sensitivity indicators of the MAC of each mode to the Young’s modulus of the tower
(𝐸𝑐,𝑡), the mass of the steel deck (𝜌𝑠), the mass of the concrete deck (𝜌𝑐), the Young’s modulus of
the deck (𝐸𝑐,𝑑), and the vertical stiffness of the bearings (𝑘𝑎).

Mode 𝐸𝑐,𝑡 𝐸𝑐,𝑑 𝜌𝑐 𝜌𝑠 𝑘𝑎

1-V1 2.8% 2.6% 2.2% 0.0% 95.7%
2-V2 49.6% 0.2% 25.4% 0.0% 74.1%
3-V3 41.5% 16.3% 57.7% 0.2% 30.2%
4-T1 24.3% 58.3% 41.6% 0.4% 36.3%
5-M1 1.4% 3.8% 11.6% 0.0% 97.9%
6-T2 1.6% 48.8% 24.2% 0.1% 87.2%
7-V4 0.0% 0.0% 0.4% 0.0% 99.6%
8-T3 1.6% 0.6% 4.8% 0.2% 98.5%
9-T5 0.0% 0.9% 1.6% 0.0% 99.4%
10-T6 0.6% 0.6% 0.7% 0.0% 98.4%
11-T7 0.0% 0.6% 1.7% 0.0% 96.9%
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TABLE 13. Cable forces and modal parameters associated with the optimum set of parameters
and percentage error before and after the updating.

Cable Exp. Num. Error Initial Mode Freq. Exp. Freq. Num. MAC Freq. Initial Initial freq.
Label [kN] [kN] error Label [Hz] [Hz] error MAC error

M1 458 408 11% 52% V1 0.635 0.699 97.10% -10.1% 97.41% -6.5%
M2 757 1228 -62% -77% V2 0.996 0.975 93.79% 2.1% 93.06% 2.1%
M3 2359 2372 -1% -2% V3 1.143 1.226 82.41% -7.3% 85.58% -7.3%
M4 3715 3852 -4% 5% T1 1.387 1.395 95.03% -0.6% 95.26% -0.5%
M5 3842 4271 -11% 12% M1 1.523 1.650 78.13% -8.3% 80.01% -8.1%
M6 4199 4453 -6% 29% T2 1.602 1.513 75.38% 5.5% 75.56% 5.7%
M7 4828 4540 6% 48% V4 1.963 2.073 97.04% -5.6% 96.91% -5.5%
M8 5289 5041 5% 56% T3 2.646 2.559 94.04% 3.3% 94.19% 3.3%
M9 4771 4618 3% 58% T5 4.072 3.995 89.03% 1.9% 89.10% 1.9%
V1 614 530 14% 43% T6 4.951 4.826 93.29% 2.5% 91.61% 2.2%
V2 860 1279 -49% -86% T7 5.625 5.539 94.48% 1.5% 94.48% 1.5%
V3 2381 2460 -3% -19%
V4 3704 3872 -5% -10%
V5 3961 4284 -8% 0%
V6 4352 4563 -5% 18%
V7 4698 4573 3% 40%
V8 5310 5229 2% 57%
V9 4655 4791 -3% 76%
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TABLE 14. Optimized estimated modal parameters with their upper (U.B) and lower (L.B.)
bounds.

Parameter Unit L.B. U.B. Optimum

𝜌𝑐 kN/m3 23 30 24
𝑘𝑎 kN/mm 100 10000 1350
𝐸𝑐,𝑑 GPa 30 1 40
𝐸𝑐,𝑡 GPa 30 70 51.1
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TABLE 15. Reaction forces on the Venice and Mestre side in case of rigid and flexible supports.

Label Reaction [kN] Relative difference Displacement [mm]
𝑘𝑎 → ∞ 𝑘𝑎 = 𝑘̂𝑎 𝑘𝑎 = 𝑘̂𝑎

Venice-1 9399.365 9302.627 1.03% 6.89
Venice-2 9055.16 8868.379 2.06% 6.57
Mestre-1 6705.512 6633.135 1.08% 4.91
Mestre-2 6480.927 6388.619 1.42% 4.73

56 Aloisio et al., April 10, 2023



List of Figures1050

1 Illustration of the followed procedure. . . . . . . . . . . . . . . . . . . . . . . . . 591051

2 View of the Porto Marghera Bridge (photographer: Bruno Briseghella). . . . . . . 601052

3 Schematic plan view of the deck and typical cross-sections (dimensions in cm in1053

(a) and mm in (b)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611054

4 Experimental mode shapes detected in the three experimental campaigns. The1055

sub captions indicate the natural frequencies of each mode corresponding to the1056

dynamic identifications carried out 2010 and 2011 respectively. . . . . . . . . . . . 621057

5 Numbering of the stay cables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631058

6 Natural frequencies of the nine stay cables on the Mestre side and their correlation1059

with the mode number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641060

7 FE model of the Porto Marghera bridge developed in SAP2000. . . . . . . . . . . . 651061

8 Representation of a few selected numerical modes. 𝑓 𝑒 and 𝑓 𝑛 in the sub-captions1062

indicate the experimental and numerical natural frequencies. . . . . . . . . . . . . 661063

9 Different views of the scatter plot of the sensitivity of the objective function in Eq.1064

(3) to the concrete Young’s modulus of the tower (𝐸𝑐, 𝑡), the vertical stiffness of1065

the bearings (𝑘𝑎) and the mass of the concrete deck (𝜌𝑐). . . . . . . . . . . . . . . 671066

10 Scatter plots of the sensitivity of the cable forces on the Venice side to the concrete1067

Young’s modulus of the tower (𝐸𝑐,𝑡), the vertical stiffness of the bearings (𝑘𝑎) and1068

the mass of the concrete deck (𝜌𝑐). . . . . . . . . . . . . . . . . . . . . . . . . . . 681069

11 Scatter plots of the sensitivity of the cable forces on the Mestre side to the concrete1070

Young’s modulus of the tower (𝐸𝑐,𝑡), the vertical stiffness of the bearings (𝑘𝑎) and1071

the mass of the concrete deck (𝜌𝑐). . . . . . . . . . . . . . . . . . . . . . . . . . . 691072

12 Selected scatter plots of the sensitivity of the modal parameters to the concrete1073

Young’s modulus of the tower (𝐸𝑐,𝑡), the vertical stiffness of the bearings (𝑘𝑎) and1074

the mass of the concrete deck (𝜌𝑐). . . . . . . . . . . . . . . . . . . . . . . . . . . 701075

57 Aloisio et al., April 10, 2023



13 Selected scatter plots of the sensitivity of theMAC to the concrete Young’smodulus1076
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Fig. 1. Illustration of the followed procedure.
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Fig. 2. View of the Porto Marghera Bridge (photographer: Bruno Briseghella).
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(a) Elevation.

(b) Plan and typical cross sections.

Fig. 3. Schematic plan view of the deck and typical cross-sections (dimensions in cm in (a) and
mm in (b)).
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(a) 𝑓1 = {0.635, 0.635} (b) 𝑓2 = {0.996, 0.996} (c) 𝑓3 = {1.143, 1.143} (d) 𝑓4 = {1.387, 1.387}

(e) 𝑓5 = {1.523, 1.523} (f) 𝑓6 = {1.602, 1.602} (g) 𝑓7 = {1.193, 1.963} (h) 𝑓8 = {2.637, 2.646}

(i) 𝑓9 = {3.174, /} (j) 𝑓10 = {4.053, 4.072}(k) 𝑓11 =

{4.932, 4.951}
(l) 𝑓12 = {5.596, 5.625}

Fig. 4. Experimental mode shapes detected in the three experimental campaigns. The sub captions
indicate the natural frequencies of each mode corresponding to the dynamic identifications carried
out 2010 and 2011 respectively.
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Fig. 5. Numbering of the stay cables.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Fig. 6. Natural frequencies of the nine stay cables on the Mestre side and their correlation with the
mode number.
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Fig. 7. FE model of the Porto Marghera bridge developed in SAP2000.
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(a) 𝑓 𝑒=0.635Hz; 𝑓 𝑛=0.676Hz;
MAC=0.97

(b) 𝑓 𝑒=0.996Hz; 𝑓 𝑛=0.975Hz;
MAC=0.93

(c) 𝑓 𝑒=1.143Hz; 𝑓 𝑛=1.226Hz;
MAC=0.85

(d) 𝑓 𝑒=1.387Hz; 𝑓 𝑛=1.394Hz;
MAC=0.95

(e) 𝑓 𝑒=1.523Hz; 𝑓 𝑛=1.646Hz;
MAC=0.80

(f) 𝑓 𝑒=1.602Hz; 𝑓 𝑛=1.510Hz;
MAC=0.75

(g) 𝑓 𝑒=1.963Hz; 𝑓 𝑛=2.071Hz;
MAC=0.96

(h) 𝑓 𝑒=2.646Hz; 𝑓 𝑛=2.559Hz;
MAC=0.94

(i) 𝑓 𝑒=4.072Hz; 𝑓 𝑛=3.994Hz;
MAC=0.89

(j) 𝑓 𝑒=4.951Hz; 𝑓 𝑛=4.844Hz;
MAC=0.91

(k) 𝑓 𝑒=5.625Hz; 𝑓 𝑛=5.539Hz;
MAC=0.94

Fig. 8. Representation of a few selected numerical modes. 𝑓 𝑒 and 𝑓 𝑛 in the sub-captions indicate
the experimental and numerical natural frequencies.
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Fig. 9. Different views of the scatter plot of the sensitivity of the objective function in Eq. (3) to
the concrete Young’s modulus of the tower (𝐸𝑐, 𝑡), the vertical stiffness of the bearings (𝑘𝑎) and the
mass of the concrete deck (𝜌𝑐).
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Fig. 10. Scatter plots of the sensitivity of the cable forces on the Venice side to the concrete Young’s
modulus of the tower (𝐸𝑐,𝑡), the vertical stiffness of the bearings (𝑘𝑎) and the mass of the concrete
deck (𝜌𝑐).
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Fig. 11. Scatter plots of the sensitivity of the cable forces on theMestre side to the concrete Young’s
modulus of the tower (𝐸𝑐,𝑡), the vertical stiffness of the bearings (𝑘𝑎) and the mass of the concrete
deck (𝜌𝑐).
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Fig. 12. Selected scatter plots of the sensitivity of the modal parameters to the concrete Young’s
modulus of the tower (𝐸𝑐,𝑡), the vertical stiffness of the bearings (𝑘𝑎) and the mass of the concrete
deck (𝜌𝑐).
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Fig. 13. Selected scatter plots of the sensitivity of the MAC to the concrete Young’s modulus of
the tower (𝐸𝑐,𝑡), the vertical stiffness of the bearings (𝑘𝑎) and the mass of the concrete deck (𝜌𝑐).
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