
18 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Entropic Score Metric: Decoupling Topology and Size in Training-Free NAS / Cavagnero, Niccolo'; Robbiano, Luca;
Pistilli, Francesca; Caputo, Barbara; Averta, GIUSEPPE BRUNO. - ELETTRONICO. - (2023), pp. 1451-1460. (Intervento
presentato al  convegno IEEE/CVF International Conference on Computer Vision tenutosi a Paris (FR) nel 02-06
October 2023) [10.1109/ICCVW60793.2023.00158].

Original

Entropic Score Metric: Decoupling Topology and Size in Training-Free NAS

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ICCVW60793.2023.00158

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2982841 since: 2023-11-07T14:43:14Z

IEEE



Entropic Score metric: Decoupling Topology and Size in Training-free NAS
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Abstract

Neural Networks design is a complex and often daunting
task, particularly for resource-constrained scenarios typi-
cal of mobile-sized models. Neural Architecture Search is
a promising approach to automate this process, but existing
competitive methods require large training time and com-
putational resources to generate accurate models. To over-
come these limits, this paper contributes with: i) a novel
training-free metric, named Entropic Score, to estimate
model expressivity through the aggregated element-wise en-
tropy of its activations; ii) a cyclic search algorithm to sep-
arately yet synergistically search model size and topology.
Entropic Score shows remarkable ability in searching for
the topology of the network, and a proper combination with
LogSynflow, to search for model size, yields superior capa-
bility to completely design high-performance Hybrid Trans-
formers for edge applications in less than 1 GPU hour, re-
sulting in the fastest and most accurate NAS method for Im-
ageNet classification. Code available here1.

1. Introduction
The design of neural networks has been a pivotal re-

search area in deep learning, with many notable exam-
ples [18, 51, 40, 45, 30, 14]. In an attempt to foster deep
learning on edge applications, in the last few years there has
been a particular interest of the community for the develop-
ment of tiny architectures able to efficiently run on limited-
resource hardware, such as mobile devices.

However, the manual design of such models is a chal-
lenging task, further exacerbated by the need of finding a
trade-off between model accuracy and computational effi-
ciency. This is especially true for Transformer-based archi-
tectures [49, 14], which suffer from quadratic increase in
computational complexity as the size of input data grows.
As a result, deploying such models in resource-constrained
environments can be extremely challenging.

Neural Architecture Search (NAS) has emerged as an ef-

1https://github.com/NiccoloCavagnero/EntropicScore
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Figure 1: Model Size vs ImageNet-1k Top-1 Accuracy for
state-of-the-art NAS methods. The size of each point repre-
sents the model’s MACs.

fective tool to automate this process at the expenses of long
and costly training phases to evaluate all the candidate net-
works [15, 5, 43, 23], which make the search process com-
putationally expensive and time-consuming.

Recently, training-free approaches [35, 6, 4, 26, 57] have
been proposed to simplify and speed-up the neural architec-
ture search process. The core idea is to completely replace
the training phase with the computation of zero-shot metrics
to score the networks at initialisation.

Although these solutions offer a significant reduction in
computation time and cost, most of the metrics proposed
so far only encode specific characteristics of the network,
and their adoption for the design of the whole architecture
potentially leads to sub-optimal models.

To push the boundaries of training-free NAS, then, it is
crucial to provide better metrics, more strictly related to rel-
evant model attributes, such as its dimensionality and topol-
ogy, that can be adopted for improved decoupled search



strategies, where each metric only drives the design of spe-
cific model characteritics.

In this paper, we propose a solution to these problems
with a novel training-free NAS algorithm where an origi-
nal metric, Entropic Score, is introduced to co-supervise the
search process. Entropic Score captures the expressivity of
the candidate models by means of an entropy-like function
over the activation layers’ outputs, showing to be particu-
larly suited for the design of the network topology, an aspect
of paramount importance for the accuracy of the searched
architecture.

Furthermore, the search algorithm relies on a novel de-
coupled design paradigm, which synergistically yet inde-
pendently designs model size and topology based on a
proper combination of Entropic Score and LogSynflow [4],
an advanced variant of the popular Synflow [46].

Unlike previous approaches [6, 4, 1, 57], which seam-
lessly combine metrics in an aggregated score, we propose
to decouple two aspects of the network design, the topol-
ogy and the dimensionality, supervising each search with
a dedicated metric, Entropic Score and LogSynflow [4] re-
spectively. This strategy enables a more targeted search and
a better exploitation of the strengths of each metric.

The experimental results demonstrate the effectiveness
of our approach in discovering high-performing neural net-
works without the need for training, improving the accu-
racy and the efficiency of the search. The resulting models
perform favourably not only with respect to hand-designed
architectures but also with respect to training-based NAS
methods (see Figure 1).

Remarkably, the search process requires less than 1 GPU
hour, highlighting the efficiency of our training-free algo-
rithm and enabling the design of resource-efficient Hybrid
Transformers in a timely manner.

To conclude, this paper contributes with:

• a new data-agnostic metric, named Entropic Score, for
the assessment of model topology;

• a decoupled search strategy to fully exploit the poten-
tial of two complementary metrics for neural networks
design, capable to accurately tailor model dimension
and topology in less than 1 GPU hour;

• a thorough experimental validation, together with the
release of ESFormers, a family of tiny Hybrid Trans-
formers that outperforms existing mobile-sized models
for ImageNet classification.

2. Related Works
2.1. Hybrid Transformers

The advent of Transformers [49] marked a significant
milestone in deep learning, where the multi-head attention
mechanism has been successfully applied to various do-
mains obtaining state-of-the-art results.

Nevertheless, when it comes to Computer Vision tasks,
Vision Transformers (ViTs) [14] lack some of the critical
inductive biases present in Convolutional Neural Networks
(CNNs), such as translation equivariance and locality. This
crucial drawback leads to a need for significantly larger
amount of data [14] or longer and more sophisticated train-
ing pipelines [47] to match similar performances.

Furthermore, the classic attention mechanism does not
enjoy weight sharing and it scales quadratically with re-
spect to the input dimension. This poses critical difficulties
in adopting Transformer-based architectures in mobile set-
tings or downstream tasks that require large input signals.

To address these challenges, the research community has
been focusing on two main research fields: developing more
efficient attention mechanisms or combining Convolutional
Neural Networks and Transformers to exploit the strengths
of both architectures.

One noticeable example of the first approach is Swin
Transformer [29], which employs a local window to im-
prove efficiency at the expense of the global receptive field
of standard attention. Other following studies [3, 34, 23]
have proposed alternative attention mechanisms that can be
used to improve the speed and performance trade-off of
Transformer-based architectures.

Instead, the hybridisation of CNNs and Transformers
aims to directly incorporate convolutional biases into the
Transformer architecture by combining convolutions and at-
tention in a single model.

CoAtNet [10] is a pioneering example of a CNN-
Transformer hybrid, adopting Inverted Bottleneck blocks
(IBN) [40] for the first two stages of the architecture and
Transformer blocks in the last two. The resulting family
of hybrid models has achieved state-of-the-art performance
by outperforming both CNNs and pure ViT architectures.
LocalViT [25] took a step forward alternating global and
local computations across all Transformer blocks. Specifi-
cally, it introduces locality replacing all the standard Multi-
Layer Perceptrons (MLPs) with IBNs. Other Transformer
hybrids [3, 34, 8, 5, 24, 23] apply similar concepts.

Still, adopting Vision Transformers in resource-
constrained scenarios remains a challenging task and dif-
ferent NAS approaches have been proposed to tackle this
issue [57, 5, 43, 52, 24, 23].

2.2. Neural Architecture Search

The field of Neural Architecture Search was first intro-
duced in a notable study [58], which employed Reinforce-
ment Learning (RL) to generate high-performing neural net-
works. However, this approach requires over 22,400 GPU-
hours for the partial training of tens of thousands of net-
works, making it prohibitively expensive from a computa-
tional point of view. Consequently, researchers have been
exploring more efficient NAS methods, such as differen-



tiable and evolution-based search techniques.
Differentiable methods aim to make the entire search

process differentiable to enable optimisation using gradi-
ent descent algorithms [27, 13]. These approaches have led
to significant improvements compared to the original RL-
based method [58] in terms of efficiency.

It is worth noting that, since these methods require the
use of a supernet, the dimensionality of the search space
may be strongly limited due to memory constraints. Fur-
thermore, it is not straightforward to apply differentiable
methods to ViT architectures due to the presence of gradi-
ent conflicts in the supernet [15].

On the other hand, evolution-based techniques, such as
those discussed in [28] and [39], are easier to implement
with respect to the former categories, and enable natu-
ral parameter inheritance from parent networks. However,
they have been found to be less effective than other search
techniques [38]. REA algorithm [38] introduced a regu-
larised Tournament Selection approach, resulting in the first
evolution-based NAS method able to outperform human-
designed neural networks.

Nevertheless, all these classic NAS techniques still re-
quire expensive training phases of thousands of candidate
architectures. This highlights the ongoing challenges in
NAS research in terms of computational efficiency, partially
solved by the adoption of training-free techniques.

2.3. Training-free NAS

In recent years, there has been an increasing interest in
training-free methods, which are known for their efficiency
and scalability. A key role in this framework is played by
the chosen metrics that supervise the search process acting
as a proxy for the accuracy of an untrained network. To this
end, several metrics have been proposed, each with its own
advantages and drawbacks.

The first proposed metric was NASWOT [35], a proxy
for the expressivity of a network, which measures the simi-
larity of activation patterns for different input samples. TE-
NAS [6] improved NASWOT by incorporating the train-
ability of the architectures through the use of the Neural
Tangent Kernel (NTK) [21]. However, NTK is computa-
tionally expensive, time-consuming, and it has been shown
to have low correlation with accuracy [4, 1].

The study of Zero-cost Proxies [1] analysed various
saliency-based metrics from pruning literature and found
Synflow [46] to be superior with respect to other ap-
proaches [35, 50, 22, 48]. FreeREA [4] further enhanced
Synflow by proposing LogSynflow, which adopts a loga-
rithmic function to scale down the gradients to mitigate the
issue of gradient explosion. Moreover, the authors demon-
strated that the contribution of NASWOT when combined
with Synflow and its variants is extremely limited.

In addition, there are two other metrics worth mention-

ing: Zen-score [26] and DSS [57]. Both of these met-
rics are correlated with the expressivity of networks. Zen-
Score measures the expected Gaussian complexity of a
given convolutional network, while DSS is a Synflow vari-
ant that takes into account the synaptic diversity of atten-
tion weight matrices. Nonetheless, Zen-score is specifically
designed for Convolutional Neural Networks and DSS for
pure Transformers architectures [57], and therefore they are
not seamlessly adaptable for the purpose of our work.

3. Method

3.1. Search for topology and size

Model design can be categorised in two main families:
topological and dimensional. Topology refers to the struc-
ture of the network, including the types of layers, their con-
nections, and how they are arranged (see Figure 3). Size,
on the other hand, refers to the number of parameters or
the computational cost of the model. The latter can be con-
trolled by the varying, for example, the number of layers,
the number of channels in each layer, the expansion ratios
in bottlenecks, and so on.

Following this categorisation, different NAS bench-
marks have been introduced. In particular, NATS-
Bench [12] contains a topological search space of more
than 15 thousands convolutional topologies and a size
search space with more than 35 thousand networks with
same structure and different dimensionality. NAS-Bench-
101 [53] instead contains over 400 thousands convolutional
architectures with varying topologies.

3.2. Entropic Score

The training-free NAS method proposed in this paper ex-
ploits a novel metric, called Entropic Score, to guide the
search process. Entropic Score represents a measure of the
network ability to represent and encode meaningful signal
information, computed by feeding a random tensor to the
networks and summing the average element-wise entropy
of the normalised activations.

Intuitively, we expect that the higher is the Entropic
Score, the larger is the information flow in the forward pass,
with a positive impact on the fitting capability of a given ar-
chitecture. From this standpoint, Entropic Score may be
interpreted as a proxy for the expressivity of a network.

Similarly to Synflow [46] and its variants, Entropic Score
is completely data-agnostic. Searched architectures are
therefore generic and not specifically related to a given
dataset, naturally enabling the adoption of the models in
different scenarios. Therefore, we propose a general search
algorithm, not dataset-constrained, able to provide models
for a given task that can be adopted in various settings.

Given a network parameterised by θ, the proposed ag-



(a) Topological search space.
Entropic Score Spearman ρ = 0.68.

(b) Size search space.
LogSynflow Spearman ρ = 0.92.

Figure 2: Training-free metrics vs CIFAR10 test accuracy. a) Entropic Score evaluated on a topological search space (NAS-
Bench-101 [53]). b) LogSynflow evaluated on a dimensional search space (NATS-Bench [12]). Entropic Score shows to be
particularly suitable in choosing topologies, while LogSynflow excels in dimensioning the architectures.

gregated metric can be defined as follows:

E(θ) = −
N∑
i=1

1

K

K∑
j=1

aij(θ) · log (aij(θ) + ϵ), (1)

where N is the number of activations in the network,
K is the number of elements in the normalised activation
tensor a and ϵ is a small stability constant.

A critical step of the proposed Entropic Score consists in
the computation of the layer-wise value that is later aggre-
gated to rank the whole architecture. Before computing the
score, the network must undergo a preparation step inspired
by Synflow [46]. Namely, we suppress all normalisation op-
erators and take the absolute value of the weights. Then, any
activation, such as GELU [19] or Swish [37], is replaced by
a ReLU function [2]. This way, only non-negative values
are propagated through the network. Next, a random tensor
x ∈ [−0.5, 0.5] is fed to the network and the activation val-
ues are normalised in the interval (0, 1] by dividing for their
maximum value across the channel dimension.

The layer-wise score is computed by taking the average
element-wise entropy of these normalised activation values.
Finally, we aggregate the score across the layers to provide
a measure for the expressivity of a network topology. In
practice, we compute Entropic Score three times with dif-
ferent network and input initialisations and take the average
as the actual score.

In the context of NAS, Entropic Score provides informa-
tion about the potential expressivity of a network, as mod-
els with higher Entropic Score values are expected to have
more complex activation patterns. Entropic Score proves to

be particularly well-suited for designing the topology of the
network (see Table 4a and Figure 2a).

3.3. Decoupled Search

Since metrics for training-free NAS provide cues on
different characteristics of neural models, in our method
we developed a strategy to properly combine our Entropic
Score with LogSynflow metric [4], to drive the topology and
size search respectively.

LogSynflow, which proved to be sensible for dimension-
ality design (see Table 4b and Figure 2b), constitutes an im-
proved version of Synflow [46], a saliency metric derived
from pruning literature, which provides information about
the gradient flow and the complexity of the network. More-
over, its strong ability in dimensioning the networks pro-
vides complementary information to Entropic Score.

By aggregating Entropic Score and LogSynflow metrics,
our approach provides an original comprehensive evalua-
tion of candidate architectures in terms of topology and size.

Seamlessly combining different metrics, as done in pre-
vious works [6, 1, 4, 57], could yield to sub-optimal results
as these may conflict with each other. For example, a met-
ric with a high capability in dimensioning the model can
contribute poorly in topological decisions, and vice versa.

To better exploit the strengths of each metric, we adopt
a novel decoupled approach, where Entropic Score and
LogSynflow are used separately yet synergistically to select
only specific aspects of the network (see Table 1).

In particular, Entropic Score is adopted to choose the
topological characteristics of the network, such as type of
block or kernel size, while LogSynflow focuses on the size
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Figure 3: Different configurations of FFN blocks enhanced
with locality. Left: Inverted Bottleneck Block [40]. Right:
ConvNeXt Block [30].

of layers selecting, among other aspects, output channel di-
mension and expansion ratio for bottlenecks and MLPs.

This allows each metric to have a larger influence in
areas where it excels, leading to more accurate and effi-
cient search results. Furthermore, the proposed decoupled
approach provides a flexible framework that can be easily
adapted to incorporate additional metrics as needed.

3.4. Search Space

The search space used in this study is largely based on
the design of EfficientFormerV2 [23]. This work defines
a modern hybrid Transformer architecture that integrates
Inverted Bottlenecks [40] and efficient Multi-head Self-
Attention (MHSA) layers [23]. This efficient formulation
of MHSA is enhanced with downsampling, locality [15, 42]
and Talking Heads [41].

The adoption of training-free metrics allows for more ef-
fective resource utilisation, and a more detailed exploration
of the network’s various components is therefore feasible.
To this end, the search space has been refined an expanded
to allow for greater flexibility in the network design.

Specifically, the output dimension and kernel size of
each Feed Forward Network (FFN) block can be indepen-
dently selected, rather than having a fixed per-stage output
dimension and a 3x3 kernel for the whole architecture as
in [23]. Moreover, the FFN can be configured not only as an
IBN [40] but also as a ConvNeXt block [30] by rearranging
the placement of the depthwise convolution (see Figure 3).

Additionally, we also allow more flexible MHSA blocks,
searching also for the number of heads and head dimension
of each layer. Kernel size of FFNs following attention is
instead fixed to 3x3, as there is no need for large kernel
sizes given the global receptive field of MHSA.

In summary, the following elements of each FFN block
are searchable: FFN configuration (IBN vs ConvNeXt),
output size, kernel size, and expansion ratio. Instead, for
each Transformer layer we search for FFN configuration,

Topology Size

FFN Type Output Channels
Kernel Size Expansion Ratio

Number of Heads Head Dimension

Table 1: Division of searchable dimensions between topol-
ogy and size.

output size, expansion ratio, number of heads and head di-
mension. A detailed division between topological and size
dimensions is shown in Table 1.

It must be noted that only non-decreasing output dimen-
sions are allowed, such that skip connections can always be
implemented by means of Zero-padded Residuals [17].

We follow [23] for both the number of blocks per stage
and the design of downsampling blocks.

Overall, the increased number of searchable character-
istics leads to a more fine-grained and significantly larger
search space with respect to the one originally proposed in
EfficientFormerV2 [23].

3.5. Search Algorithm

As search algorithm, we adopt an evolutionary approach
based on REA [38]. This method was further refined and
improved in line with the findings of [4], which introduced
multiple mutations at each step and crossover operations be-
tween parent networks to escape locality and improve ex-
ploration and population diversity. All considered mutation
and crossover probabilities are uniform.

Given the high dimensionality of the search space, a
multi-start strategy is employed prior to the main search
phase. This involves independently evolving multiple ran-
dom subpopulations for a limited time, and then using the
top performing architectures from each subpopulation as
seeds for the main search phase. This intuitively reduces the
dependence on the initial population, leading to improved
results and reduced variance between different runs.

During the initial multi-start phase, we adopt a popula-
tion and a Tournament size of 25 and 5 respectively, follow-
ing [4]. These sizes are doubled during the main search.

In order to favour better topologies from the beginning,
the multi-start phase is guided solely by Entropic Score.
The main search process then alternates between topology
search and size search in a cyclic manner, determining dif-
ferent characteristics of the networks in each phase. The
best performing models of each phase are adopted as seeds
for the subsequent step.

Specifically, the multi-start phase involves the evolution
of five separate populations for 3 minutes each. The topol-
ogy and size searches are then alternated every 5 minutes
for the smaller models and 6 minutes for the large one, for



a total search duration of 45 and 55 minutes respectively.
Notably, the whole process takes less than 1 GPU hour.

4. Experiments
4.1. Training Details

In all our experiments, we evaluate the performance of
the networks on the ImageNet-1k dataset [11] using a stan-
dard resolution of 224x224. The networks are trained for
300 epochs with Binary Cross-Entropy using the AdamW
optimiser [32] with a learning rate of 2e−3, a batch size of
1024, and a weight decay of 2e−2. The learning rate fol-
lows a cosine schedule [31]. In order to improve stability
during training, a warmup period of 20 epochs is prepended
to the main training phase.

In addition, we adopt common data augmentations
and regularisations, including Mixup/Cutmix [55, 54],
RandAugment [9], Random Erasing [56], Stochastic
Depth [20], Gradient Clipping [36] and Label Smooth-
ing [44]. Stronger augmentations and regularisations are ex-
ploited to train the largest models. Detailed training hyper-
parameters can be found in Table 2.

S0-S1 S2

Optimiser AdamW AdamW
Batch Size 1024 1024
LR 0.002 0.002
LR schedule Cosine Cosine
Training Epochs 300 300
Warmup Epochs 20 20
Weight Decay 0.02 0.02
Gradient Clipping 2.0 0.01
Mixup/Cutmix 0.8/1.0 0.8/1.0
RandAugment m7-n1 m9-n1
Random Erasing 0.0 0.25
Stochastic Depth 0.05 0.1
Label Smoothing 0.1 0.1

Table 2: Training hyper-parameters for ImageNet-1k.

We do not employ distillation for faster training and for
a fair comparison with previous approaches.

4.2. ImageNet Classification

To compare our approach with state-of-the-art architec-
tures and NAS techniques, we conducted experiments using
the proposed fine-grained search space described in Sec-
tion 3.4. The purpose of this search is to determine the opti-
mal network architecture for different footprints, as outlined
in [23]. The three targeted model sizes were S0, S1, and S2,
each with a maximum parameter count of 3.5, 6, and 12.5
millions respectively. The resulting family of architectures
is named ESFormer, from the name of the proposed metric.

Table 3 shows the performance of state-of-the-art fami-
lies of mobile architectures for different model sizes on Im-
ageNet. The results in Table 3 are mainly taken from the
original papers, with the exception of EfficientFormerV2
models which have been retrained with their original train-
ing configuration without distillation.
Comparison with hand-designed networks. Our searched
architectures prove to achieve higher accuracy with respect
to the majority of hand-designed architectures.

In particular, our S0 achieves a Top-1 accuracy of 75.5%,
outperforming all other architectures with similar or even
slightly higher computational budgets. For medium-sized
models, ESFormer-S1 performs on par with the best archi-
tecture, Edge-NeXt-S [33], with a Top-1 accuracy of 78.8%.

It is possible to notice that, for the largest computa-
tional budget, EdgeViT-S [8] achieves slightly higher per-
formance, but this comes at the expense of a 35% increase
in MACs with respect to our S2 network. Notably, for the
medium-sized architectures where the computational bud-
gets are comparable, we have exceeded the performance of
EdgeViT-XS [8] by more than 1%.

Overall, for similar parameters and MACs counts, we
achieve the best Top-1 accuracy in all considered scenarios.

Comparison with NAS-designed networks. Comparing
our algorithm with respect to other NAS methods, we can
immediately appreciate the search speed of our approach.
The search time for ESFormers is always less than 1 GPU
hour, while most of the methods require several GPU days
to design the final model. Remarkably, we decrease the
search time by a factor 12x with respect to the previous
fastest method, TF-TAS [57], while achieving more than
3% increase in Top-1 accuracy with less MACs.

BurgerFormer-Small [52] is the only NAS-designed ar-
chitecture able to obtain competitive results with respect to
our S2 model in terms of accuracy. However, its search time
is orders of magnitudes higher, and the network has signifi-
cantly more parameters (+26%) and MACs (+50%).

Notably, our architectures largely outperforms Efficient-
FormerV2, with an increase in Top-1 accuracy of more than
3% across all model sizes.

4.3. Ablation Study

Correlation in NAS Benchmarks. The rank correlation
between training-free metrics and the test accuracy on com-
mon benchmark datasets for NAS is an interesting aspect
to consider. In particular, Table 4 shows a comparison of
the correlation between CIFAR-10 Top-1 accuracy and the
rank given by different state-of-the-art training-free metrics
on two common NAS benchmarks, NATS-Bench [12] and
NAS-Bench-101 [53].

The NAS-Bench-101 dataset, which contains roughly
400,000 convolutional topologies, is used for comparison in



Model Type Design Search Time Params [M]↓ MACs [G]↓ Epochs↓ Top-1 (%)↑
XCiT-N12 [3] Hybrid Manual - 3.0 0.5 400 69.9
MobileViT-XS [34] Hybrid Manual - 2.3 0.7 300 74.8
EdgeViT-XXS [8] Hybrid Manual - 4.1 0.6 300 74.4
MobileFormer-96M [7] Hybrid Manual - 4.6 0.1 450 72.8
EfficientFormerV2-S0 [23] Hybrid Auto > 8 GPU days 3.5 0.4 300 71.8†

ESFormer-S0 (ours) Hybrid Auto 0.75 GPU hours 3.5 0.4 300 75.5

DeiT-T [47] Transformer Manual - 5.9 1.2 300 72.2
XCiT-T12 [3] Hybrid Manual - 7.0 1.2 400 77.1
MobileViT-S [34] Hybrid Manual - 5.6 2.0 300 78.4
EdgeViT-XS [8] Hybrid Manual - 6.7 1.1 300 77.5
LeViT-128S [16] Hybrid Manual - 7.8 0.3 1000 76.6⋄

MobileFormer-151M [7] Hybrid Manual - 7.6 0.2 450 75.2
Edge-NeXt-S [33] Hybrid Manual - 5.6 1.0 300 78.8
TF-TAS-Ti [57] Transformer Auto 0.5 GPU days 5.9 1.4 300 75.3⋄

ViTAS-DeiT-A [43] Transformer Auto ∼ 8 GPU days‡ 6.6 1.4 300 75.6
GLiT-Tiny [5] Hybrid Auto > 10 GPU days‡ 7.2 1.4 1000 76.3⋄

BurgerFormer-Tiny [52] Hybrid Auto 11 GPU days 10 1.0 300 78.0
EfficientFormerV2-S1 [23] Hybrid Auto > 8 GPU days‡ 6.1 0.7 300 75.6†

ESFormer-S1 (ours) Hybrid Auto 0.75 GPU hours 5.9 0.9 300 78.8

LeViT-192 [16] Hybrid Manual - 10.9 0.7 1000 80.0⋄

MobileFormer-508M [7] Hybrid Manual - 14.0 0.5 450 79.3
XCiT-T24 [3] Hybrid Manual - 12.0 2.3 400 79.4
EdgeViT-S [8] Hybrid Manual - 11.1 1.9 300 81.0
ViTAS-Twins-T [43] Hybrid Auto ∼ 8 GPU days‡ 13.8 1.4 300 79.4
BurgerFormer-Small [52] Hybrid Auto 11 GPU days 14.0 2.1 300 80.4
EfficientFormerV2-S2 [23] Hybrid Auto > 8 GPU days‡ 12.6 1.3 300 78.31†

ESFormer-S2 (ours) Hybrid Auto 0.9 GPU hours 11.1 1.4 300 80.4

Table 3: Results for ImageNet-1k. All models are tested with standard resolution 224x224 except for MobileViTs [34], for
which the resolution is 256x256. ⋄ Trained with distillation. † Trained with original training configuration w/o distillation.
‡ Search time is a conservative estimate, actual values not reported in original papers. ↑ stands for the higher the better.
↓ stands for the lower the better.

Table 4a, while the NATS-Bench search space, containing
over 30,000 architectures with same topology and different
sizes, is used for the comparison in Table 4b.

The results demonstrate the exceptional capability of En-
tropic Score in determining suitable network topologies, as
shown by its high correlation with accuracy, which is almost
two times greater than the one achieved by NASWOT [35].
Still, Table 4b shows how Entropic Score lacks the abil-
ity to determine the size of the architecture, an area where
LogSynflow [4] instead excels. Similar findings can be ap-
preciated in Figure 2, which reports the CIFAR-10 Top-1
accuracy with respect to the rank given by Entropic Score
(Figure 2a) and by LogSynflow (Figure 2b) in a topological
and size search space respectively.

This also vouches for the complementarity of the two
adopted metrics (see Figure 2).
Search Ablation. To better showcase the advantages of us-

ing Entropic Score as a search metric, we extend the search
space with an additional topological choice by incorporat-
ing a standard Residual Bottleneck block [18].

This block is not suitable for mobile-sized networks and
it would be rightly overlooked by standard training-based
NAS algorithms that rely solely on validation accuracy as a
supervisory signal. However, training-free NAS approaches
that employ proxy metrics could consistently choose this
type of block due to lack of accuracy information, resulting
in poor performances of the final architecture. Instead, we
show that Entropic Score is able to overcome this limitation.

We ablate our decoupling algorithm by performing sev-
eral searches with different combinations of metrics (see
Table 5). In particular, we compare a search guided solely
by LogSynflow, a search that seamlessly combines LogSyn-
flow and Entropic Score and our proposed algorithm. The
hardware constraints were set to a maximum of 6 millions



Metric Kendall τ ↑ Spearman ρ ↑
NASWOT [35] 0.26 0.37
LogSynflow [4] 0.31 0.45
Entropic Score (ours) 0.50 0.68

(a) Correlation w.r.t. a topological search space.

Metric Kendall τ ↑ Spearman ρ ↑
NASWOT [35] 0.45 0.63
LogSynflow [4] 0.76 0.92
Entropic Score (ours) 0.03 0.04

(b) Correlation w.r.t. a size search space.

Table 4: Kendall and Spearman rank correlation between training-free metrics and CIFAR10 Top-1 (%) accuracy, evaluated
on a) NAS-Bench-101 [53] topological search space and b) NATS-Bench [12] size search space. ↑ stands for the higher the
better. Entropic Score shows to be particularly suitable for topology definition. On the other hand, it lacks the ability of
dimensioning the architecture, where LogSynflow excels.

LogSynflow Entropic Score Decoupling Params [M]↓ MACs [G]↓ Top-1 (%)↑
✓ ✗ ✗ 6.00 0.86 72.4
✓ ✓ ✗ 5.92 0.94 75.7
✓ ✓ ✓ 5.97 0.96 77.8

Table 5: Ablation on different configurations of the search algorithm with the extended search space containing Residual
Bottlenecks. Top-1 (%) accuracy on ImageNet-1k is reported. ↓ stands for the lower the better. ↑ stands for the higher the
better.

parameters, focusing on medium sized candidates.
In Table 5, it can be observed that the straightforward

combination of LogSynflow and Entropic Score as guid-
ing metrics already results in a significantly higher accu-
racy compared to the baseline configuration that relies on
LogSynflow only, with an improvement of over 3%. The
decoupled search strategy, allowing for specialisation of the
metrics, leads to even higher-performing architectures, with
an additional consistent improvement of 2%.

5. Limitations

The limitations of the proposed approach should be ac-
knowledged. Although the results demonstrate the efficacy
of Entropic Score in discovering high-performing neural
network topologies, it is a training-free metric and therefore
only a proxy for the actual performance of the architecture.
Hence, it is likely that, if larger computational resources are
available, even better networks can be discovered by includ-
ing training in the search process.

Additionally, while Entropic Score excels in identifying
high-performing network topologies, it does not show abil-
ity in determining network dimensions (see Table 4) and
must be combined with other metrics to obtain satisfying
results.

6. Conclusions

In this work, we present a novel efficient training-free
NAS framework leveraging an original metric, Entropic
Score, to guide the search process on a flexible and fine-
grained search space.

Entropic Score demonstrates to be particularly suitable
to design the topology of the networks and it is combined
with LogSynflow to account for the architecture size in an
original decoupled fashion. Decoupling the design of topol-
ogy and size allows each metric to focus on its strengths,
leading to a more targeted and precise search, and an over-
all higher accuracy of the searched models.

The discovered family of tiny Hybrid Transformers,
named ESFormers, proves to be competitive with respect
to the state-of-the-art in neural network design. ESForm-
ers outperform not only hand-designed networks but also
training-based NAS approaches. Remarkably, the search
time is reduced to less than 1 GPU hour, a 12x improve-
ment with respect to the previous fastest NAS method.

Future research directions can involve the development
of more precise proxies for the performance of the archi-
tectures and the extension of the training-free framework to
more complex tasks such as Segmentation or Detection.
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