
19 November 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Gamified GUI testing with Selenium in the IntelliJ IDE: A Prototype Plugin / Garaccione, Giacomo; Fulcini, Tommaso;
Stefanut Bodnarescul, Paolo; Coppola, Riccardo; Ardito, Luca. - ELETTRONICO. - (2024), pp. 76-80. (Intervento
presentato al convegno IDE '24: 1st ACM/IEEE Workshop on Integrated Development Environments tenutosi a Lisbon
(PT) nel 20 April 2024) [10.1145/3643796.3648459].

Original

Gamified GUI testing with Selenium in the IntelliJ IDE: A Prototype Plugin

Publisher:

Published
DOI:10.1145/3643796.3648459

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2986570 since: 2024-03-05T11:30:07Z

ACM/IEEE

Gamified GUI testing with Selenium in the IntelliJ IDE: A
Prototype Plugin

Giacomo Garaccione
giacomo.garaccione@polito.it

Politecnico di Torino
Turin, Italy

Tommaso Fulcini
tommaso.fulcini@polito.it

Politecnico di Torino
Turin, Italy

Paolo Stefanut Bodnarescul
Politecnico di Torino

Turin, Italy

Riccardo Coppola
riccardo.coppola@polito.it

Politecnico di Torino
Turin, Italy

Luca Ardito
luca.ardito@polito.it
Politecnico di Torino

Turin, Italy

ABSTRACT
Software testing is a crucial phase in software development, en-
abling the detection of issues and defects that may arise during
the development process. Addressing these issues enhances soft-
ware applications’ quality, reliability, user experience, and perfor-
mance. Graphical User Interface (GUI) testing, one such technique,
involves mimicking a regular user’s interactions with an appli-
cation to identify defects. However, GUI testing is often under-
utilized due to its perceived repetitiveness, error-proneness, and
lack of immediate feedback on test quality. In recent years, gam-
ification—incorporating game elements in non-game contexts to
boost interest, motivation, and engagement—has gained traction
in various fields, including software engineering and education.
This paper presents GIPGUT: a prototype of a gamification plugin
for IntelliJ IDEA, an Integrated Development Environment (IDE)
that supports scripted GUI testing. The plugin enhances testers’
engagement with typically monotonous and tedious tasks through
achievements, rewards, and profile customization. A preliminary
prototype evaluation was conducted with a small group of users to
assess its usability and the impact of gamification on the GUI testing
process. The results indicate high usability and positive reception
of the gamification elements. However, due to the limited sample
size of participants, further research is necessary to understand the
plugin’s effectiveness fully.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; Integrated and visual development environments.

KEYWORDS
software testing, graphical user interface testing, gamification, in-
tegrated development environment, web testing

IDE ’24, April 20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0580-9/24/04
https://doi.org/10.1145/3643796.3648459

ACM Reference Format:
Giacomo Garaccione, Tommaso Fulcini, Paolo Stefanut Bodnarescul, Ric-
cardo Coppola, and Luca Ardito. 2024. Gamified GUI testing with Selenium
in the IntelliJ IDE: A Prototype Plugin. In 2024 First IDE Workshop (IDE
’24), April 20, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3643796.3648459

1 INTRODUCTION
Software testing is a critical phase in software development, aiming
to identify issues and problems in a software product before its final
release. Fixing these issues during testing enhances the quality and
performance of the final product.

Among various testing methodologies, Graphical User Interface
(GUI) testing examines the behaviour of an entire application by
simulating a user’s interactions to identify issues and defects. De-
spite its importance, GUI testing is often neglected in practice, being
perceived as a repetitive, error-prone activity that needs immediate
feedback on test quality.

Gamification, defined as “the use of game-like elements in non-
game contexts to increase interest, motivation, and participation"
[9], has been widely adopted in software engineering with promis-
ing results. This includes its recent application in GUI testing.

This paper explores the application of gamification to GUI testing
by describing a prototype for IntelliJ IDEA, a well-known Integrated
Development Environment (IDE) that supports scripted GUI testing.
The plugin introduces mechanics aimed at enhancing testers’ in-
terest in testing, such as achievements, profile customization, daily
tasks, level progression, and unlockable content.

The remainder of this paper is structured as follows: Section
2 presents relevant background information on GUI testing and
gamification. Section 3 describes the plugin, detailing its implemen-
tation and the gamification mechanics it incorporates. Section 4
describes a preliminary evaluation of the plugin. Finally, Section 5
discusses the current limitations of our work and outlines plans for
future development of the plugin.

2 BACKGROUND
Graphical User Interface (GUI) testing involves assessing the be-
haviour of a complete application by interacting with its UI, as a
regular user would. This includes checking for the presence and

This work licensed under Creative Commons Attribution International 4.0 License.

76

2024 First IDE Workshop (IDE)

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3643796.3648459&domain=pdf&date_stamp=2024-08-07

IDE ’24, April 20, 2024, Lisbon, Portugal Garaccione et al.

positioning of specific elements, ensuring the functionality and ac-
cessibility of different elements, and verifying the correct handling
of error scenarios.

The most prevalent method for GUI testing is manual, where a
tester executes a sequence of operations as per a test case. How-
ever, recent trends show a shift towards automated testing. In this
approach, test cases are not executed manually but are defined as
automated scripts, thus reducing time consumption and tedium.
Automated GUI testing strategies include scripted GUI testing (us-
ing dedicated frameworks and APIs for script writing), Capture
and Replay (generating scripts from recorded GUI interactions),
and Automated Test Generation (employing random or systematic
inputs to navigate the user interface).

Automated GUI testing is beneficial as it requires fewer develop-
ers and less time thanmanual testing. It also enhances bug detection
and test coverage [15]. Nevertheless, a significant drawback is the
fragility of test scripts: GUI changes can cause previously func-
tional scripts to fail, necessitating developer intervention for script
updates.

An example of a scripted automated GUI testing tool is Selenium
WebDriver. This open-source tool automates web browsers and sup-
ports testing operations like acceptance, functional, performance,
load, and stress testing.

Selenium WebDriver simulates a web browser and offers APIs
in multiple programming languages for interacting with a web
application’s GUI. This flexibility allows developers to choose the
most suitable language for their needs. Testers can identify widgets
on a web page using ‘locators’ — unique properties such as id,
name, CSS class name, tag name, or XPath that pinpoint specific
page elements. However, test cases created with WebDriver may
fail if the locators are not updated following changes in the system
under test.

Gamification has emerged as a popular strategy in recent years to
boost interest and motivation in various contexts, both educational
[10, 21] and industrial [1, 17].

Numerous frameworks have been established in the field of gam-
ification. Among them, one of the most prominent, and upon which
this article is based, is Octalysis [5]. The key appeal of Octalysis
lies in its ‘human-focused design,’ as termed by the creator. This
approach prioritizes understanding and catering to the user’s emo-
tions, motivations, and interests rather than emphasizing efficiency
or rapid results.

The Octalysis framework delineates eight specific ‘Core Drives’
that encapsulate various human aspects activated by gamification.
These drives are the underlying reasons that motivate users to
engage in certain activities and contribute to the enjoyment of
games. Each drive represents a distinct aspect of human behaviour
and is illustrated in Figure 1.

Octalysis incorporates two primary distinctions within its core
drives. The first is the division between ‘White Hat’ and ‘Black Hat’
drives. White Hat drives utilize positive motivators, such as giving
players a sense of control over their actions and satisfaction with
the outcomes. Conversely, Black Hat drives leverage more negative
motivators, creating feelings of anxiety and exploiting fears such
as the unknown or the fear of loss.

The second distinction differentiates between ‘intrinsic’ and ‘ex-
trinsic’ motivators. Intrinsic motivators are associated with the

Figure 1: Octalysis diagram. (Source: Li [16])

right side of the brain, relating to creativity, self-expression, and
socialization. These motivators are fulfilling in themselves, without
any specific external reward. On the other hand, extrinsic motiva-
tors are linked to the left side of the brain and are driven by the
pursuit of specific goals or rewards.

An effective gamified system, adhering to the Octalysis frame-
work, should offer a balanced experience encompassing both sets of
distinctions. A system focused solely on extrinsic, tangible rewards
and positive motivators is not considered complete, as it needs
certain elements to enhance the overall experience.

Currently, the literature about gamification in software testing
is mainly related to unit testing, the use in GUI testing is secondary
[11]. One notable framework, developed by Cacciotto et al. [4], in-
corporates elements such as progress indicators to show page cov-
erage, easter eggs for discovering new web pages, points awarded
for identifying new page elements, and leaderboards to foster a
competitive environment. Such a framework has been empirically
validated, proving that gamification can effectively drive testers’
behaviour during their work [7].

Another example is GERRY [13], a Google Chrome extension
that adheres to the principles outlined in the framework mentioned
above and introduces additional features. These include enabling
testers to report issues and the automated generation of test scripts
compatible with prevalent GUI testing tools.

3 PLUG-IN DESIGN
In this section, we detail our plugin’s design and implementation
aspects. Specifically, Section 3.1 outlines the design and implementa-
tion process, while Section 3.2 discusses the gamification mechanics
aligned with the core drives of the Octalysis framework.

3.1 Implementation
The original idea of a gamification plugin based on achievements
was presented by Straubinger et al. [20]. They created an achievements-
based gamification plugin for IntelliJ IDEA to assist testers in ex-
ecuting their test using the JUnit framework. The authors report

77

Gamified GUI testing with Selenium in the IntelliJ IDE: A Prototype Plugin IDE ’24, April 20, 2024, Lisbon, Portugal

as a result of their experiment that the involved testers wrote bet-
ter tests and tested their code more frequently when their plugin
was activated. Based on this work, we decided to develop a simi-
lar plugin, which instead of providing achievements based on the
performance of unit testing, focuses on web testing at the GUI level.

During the design phase, we evaluated several Integrated Devel-
opment Environments (IDEs), including Visual Studio Code, Eclipse,
JetBrains’ IntelliJ IDEA, and JetBrains Aqua, ultimately selecting
IntelliJ IDEA for our plugin development.

IntelliJ IDEAwas chosen for its significant features, such as cross-
language support, intelligent code assistance, and a robust plugin
ecosystem. In contrast, the alternative options presented various
challenges: Visual Studio Code exhibited compatibility issues with
Java, Eclipse had a steeper learning curve, and JetBrains Aqua was
still in preview mode with limited support.

The plugin comprises two distinct modules: the gamification
plugin, developed as an IntelliJ IDEA extension, and the user appli-
cation where the Selenium WebDriver conducts its tests. Figure 2
shows a deployment diagram representing the two modules.

Figure 2: UML Deployment Diagram representing the plugin
infrastructure

This separation into two distinct modules was necessary due to
a challenge encountered during development: obtaining data from
the Selenium WebDriver during testing was not feasible using only
the IntelliJ Platform. The APIs provided by the IntelliJ Platform
are designed for static analysis rather than for use during program
execution. Consequently, we developed an external library with a
listener embedded in the WebDriver. This listener executes tasks
before and after each WebDriver call, enabling data collection to be
sent to the plugin at the end of a test. This approach was chosen as
the most effective compromise to minimize the setup complexity for
end-users, which at present time is limited to the inclusion of the
library to the project and the binding between the used WebDriver
and the library.

The two modules communicate via a local server initiated by the
plugin before testing. This server remains active throughout the
testing process, listening to each test to facilitate the generation of
necessary statistics. Upon completing a WebDriver test, the events

associated with the test are transmitted to the ‘Achievement Ser-
vice’ via the server. The Achievement Service then calculates the
progress towards each achievement, a concept elaborated upon in
the following subsection.

Persistence across different testing sessions is vital for tracking
user progression. This is achieved with the ‘State Persistence’ class,
which stores essential user profile information, including levels and
achievements.

The external library was developed based on Selenium’s ’Web-
DriverInterface’, which provides listeners for web events such as
page loads or element clicks. However, a significant issue arose
during development: choosing the appropriate locator to identify
elements interacted with by the WebDriver’s various methods. Op-
tions included unique ID, name, XPath, or CSS style. Our strategy
was to select the first non-null option among ID, name, and XPath.
This decision was made because not all developers adhere to uni-
form conventions, resulting in some web page elements lacking
an ID or name. However, despite being considered rather a fragile
identifier, an XPath is always available. [12]

3.2 Gamification Mechanics
This section outlines the various gamification mechanics imple-
mented in our plugin, aligned with the eight Core Drives identified
in the Octalysis framework. The selected mechanics are as follows:

(1) Profile Customization. The plugin offers users a dedicated
profile page that can be personalized by altering the dis-
played username, icon, title, and visible achievements. This
customization enhances the sense of ownership and identity,
providing each user with a unique experience and encourag-
ing ongoing interaction with the plugin. The availability of
rare content for profiles, which users can unlock and show-
case, fosters a deeper connection between the user and their
achievements. Profile customization is linked to the ‘Owner-
ship’ Core Drive in the Octalysis framework and is a widely
used mechanic in various gamification frameworks, as noted
by Pedreira et al. [18]. A visual representation of the profile
section is provided in Figure 3.

(2) Progression. The profile page features a level indicator and
a progress bar, representing the user’s advancement towards
the next level. This level is a numerical symbol of their skill
as a tester and measures their accomplishments and inter-
actions with the plugin. The constant visibility of the level
also acts as a motivator, encouraging users to take on new
challenges and grow in their testing abilities. Users begin
at level 1 and accumulate experience towards higher levels
by completing achievements within the tool, with the high-
est attainable level being 10. This progression mechanism
embodies the ‘Accomplishment’ Core Drive in gamification.
Level progression is a ubiquitous element in gamification
theory, recognized for its simplicity in implementation and
effectiveness [2, 14, 18].

(3) Unlockable Content. The plugin’s unlockable content in-
cludes user icons and titles. Icons are images that users can
display on their profiles, while titles are short phrases ac-
companying the user’s name, reflecting their status. Both
icons and titles are linked to the user’s level progression;

78

IDE ’24, April 20, 2024, Lisbon, Portugal Garaccione et al.

Figure 3: Profile section Figure 4: Achievements

new options unlock at each level, providing a tangible sense
of progression and achievement. Rarer icons and titles at
higher levels carry greater intrinsic value, motivating users
to engage more thoroughly in testing to earn these coveted
rewards. The ‘Ownership’ Core Drive is associated with this
unlockable content. Such rewards are effective motivators
in numerous gamified tools [8, 18]

(4) Achievements. Achievements are a pivotal gamification
element in the plugin, as levels, experience, and unlockable
content are all linked to obtaining achievements. An icon,
a name, and a description denote each achievement. The
icon and name are designed to be memorable and easily
recognizable, while the description clarifies the activities re-
quired to earn the achievement. Achievements have various
milestones, rewarding experience points upon completion.
They are categorized into global achievements, which per-
tain to progress across the entire application and have higher
milestones and project achievements specific to an IntelliJ
project. Some global achievements mirror project achieve-
ments but are more challenging. Figure 4 illustrates the
achievements section in the plugin.Most achievements award
the user based on GUI-related behaviours, i.e. actions per-
formed with Selenium WebDriver, such as website visits or
WebElement interactions. Others recognize more general
accomplishments, like fixing failed tests or rewarding users
for initial profile customization.
Additionally, users can showcase up to five achievements
on their profile, highlighting their most significant or recent
successes. However, currently, there is no feature for users
to view each other’s profiles, limiting profile sharing to ex-
ternal means, such as screenshots. Achievements align with
the ‘Accomplishment’ Core Drive, while the achievement
showcase relates to the ‘Social Influence’ Drive. Like levels,
achievements are a common aspect in gamification [2, 19].

(5) Daily Tasks. A daily task is a time-limited achievement, se-
lected randomly each day to maintain user engagement and

offer fresh challenges, even to those who have completed all
available achievements. Daily tasks resemble global achieve-
ments but have lower completion thresholds. They embody
the ‘Unpredictability’ Core Drive. While not as prevalent
as other mechanics, daily tasks are an innovative feature;
Coppola et al. [6] provide an example of incorporating daily
tasks into a gamification framework.

4 PRELIMINARY EVALUATION
A preliminary evaluation of the gamification plugin was conducted
following its development. This assessment aimed to gauge the
reception of the gamified mechanics, identify potential issues, and
pinpoint areas for improvement.

The participants in the experiment were four students, each
holding a Master’s degree in Software Engineering and possessing
experience in Object-Oriented Programming and web development.

The evaluation consisted of three tasks to be completed within a
maximum time frame of 45 minutes. Before the experiment, partici-
pants received a brief introduction to GUI testing and the Selenium
WebDriver. This introduction was designed to equip them with the
necessary knowledge to complete the tasks. Following the session,
participants were asked to complete a survey to provide feedback
and evaluate the plugin’s features and usability.

The tasks were centred around the popular e-commerce website
Amazon, serving to analyze user interaction with the plugin and
the impact of gamification on their approach to GUI testing. The
tasks, designed to have specific objectives but allowing freedom in
execution, were as follows:

(1) The tester was required to search for a specific product on
the website, select the first result and verify that its price
was below a predetermined threshold.

(2) Building on Task 1, the tester had to navigate to the product’s
review page, ensuring the accuracy of the title and author
for both the top positive and critical reviews.

(3) Continuing from Task 1, the tester needed to add the product
to the cart, proceed to the cart page, and confirm the prod-
uct’s name, quantity, price, and subtotal. Then, the tester
had to visit the checkout page and check for the presence of
a button to create a new account.

Among the four participants, only one was unable to complete
all three tasks within the allotted time, struggling to locate the
required page elements. However, all participants achieved enough
to reach level 2, enabling them to experience the full range of
mechanics offered by the plugin, including achievements, titles,
and showcasing their attained achievements.

The plugin’s usability was assessed using the System Usability
Scale (SUS) [3], a widely recognized questionnaire for evaluating a
system’s perceived usability. It’s important to note that the survey
focused solely on the usability of the plugin rather than on the
combined usability of IntelliJ IDEA and the plugin.

The SUS questionnaire results were predominantly positive, with
most questions receiving favourable responses. The final SUS score
was 93.75, significantly surpassing the threshold of 68 required for
a system to be considered usable. However, it should be acknowl-
edged that SUS scores are not absolute usability indicators. Despite
this caveat, the high usability score of the plugin is a promising

79

Gamified GUI testing with Selenium in the IntelliJ IDE: A Prototype Plugin IDE ’24, April 20, 2024, Lisbon, Portugal

outcome, particularly as usability is a critical factor for the success
of a gamified system.

5 LIMITATIONS AND FUTURE WORK
In this paper, we presented a gamification plugin for IntelliJ IDEA
designed to enhance test script generation for GUI testing using
the Selenium WebDriver. The plugin, evaluated in an experiment
with four participants, demonstrated promising results in usability
and user appreciation.

However, the plugin is still in its prototype stage and faces several
limitations. Firstly, the necessity of including a gamification library
for tracking actions via the Selenium WebDriver is a constraint,
although the overhead is limited to the inclusion of the library jar
file to the build path of the project.

Additionally, the scope of trackable actions is limited to those
compatible with the WebDriverListener interface. Another chal-
lenge is the reliance on external XML files for data persistence.
These files are susceptible to modification or deletion by the user
and can potentially slow down the plugin if overloaded with data.
The use of simple XML files also makes the use of the plugin a
purely single-player experience at the moment, without allowing
users to view colleagues’ profiles. Future works should focus on
making the gaming experience shared between participants, relying
on external sources for data persistence.

Furthermore, the small participant sample in our initial eval-
uation limits our ability to conclusively assess the gamification
mechanics’ impact. A larger-scale experiment is required to deter-
mine whether the plugin genuinely enhances tester efficiency and
morale. Such a study would also provide insights into the efficacy
of the gamification mechanics for GUI testing and whether they
require further refinement.

The source code is publicly available in the project repository:
https://github.com/SoftengPoliTo/GIPGUT

ACKNOWLEDGEMENT
This study was carried out within the “EndGame - Improving End-
to-End Testing of Web and Mobile Apps through Gamification”
project (2022PCCMLF) – funded by European Union – Next Gen-
eration EU within the PRIN 2022 program (D.D.104 - 02/02/2022
Ministero dell’Università e della Ricerca). This manuscript reflects
only the authors’ views and opinions and the Ministry cannot be
considered responsible for them.

REFERENCES
[1] Rodrigo Henrique Barbosa Monteiro, Maurício Ronny de Almeida Souza, San-

dro Ronaldo Bezerra Oliveira, Carlos dos Santos Portela, and Cesar Elias de
Cristo Lobato. 2021. The Diversity of Gamification Evaluation in the Software
Engineering Education and Industry: Trends, Comparisons and Gaps. In 2021
IEEE/ACM 43rd International Conference on Software Engineering: Software Engi-
neering Education and Training (ICSE-SEET). 154–164. https://doi.org/10.1109/
ICSE-SEET52601.2021.00025

[2] Jonathan Bell, Swapneel Sheth, and Gail Kaiser. 2011. Secret ninja testing with
HALO software engineering. In Proceedings of the 4th international workshop on
Social software engineering. 43–47.

[3] John Brooke. 1995. SUS: A quick and dirty usability scale. Usability Eval. Ind. 189
(11 1995).

[4] Filippo Cacciotto, Tommaso Fulcini, Riccardo Coppola, and Luca Ardito. 2021.
A Metric Framework for the Gamification of Web and Mobile GUI Testing. In
2021 IEEE International Conference on Software Testing, Verification and Validation
Workshops (ICSTW). 126–129. https://doi.org/10.1109/ICSTW52544.2021.00032

[5] Y.k. Chou. 2015. Actionable Gamification: Beyond Points, Badges, and Leaderboards.
Createspace Independent Publishing Platform. https://books.google.it/books?
id=jFWQrgEACAAJ

[6] Riccardo Coppola, Luca Ardito, Tommaso Fulcini, Giacomo Garaccione, Marco
Torchiano, and Maurizio Morisio. 2023. A Framework for the Gamification of GUI
Testing. Springer Nature Switzerland, Cham, 215–242. https://doi.org/10.1007/
978-3-031-33338-5_10

[7] Riccardo Coppola, Tommaso Fulcini, Luca Ardito, Marco Torchiano, and Emil
Alègroth. 2023. On Effectiveness and Efficiency of Gamified Exploratory GUI
Testing. IEEE Transactions on Software Engineering (2023), 1–16. https://doi.org/
10.1109/TSE.2023.3348036

[8] Igor Ernesto Ferreira Costa and Sandro Ronaldo Bezerra Oliveira. 2019. A System-
atic Strategy to Teaching of Exploratory Testing using Gamification.. In ENASE.
307–314.

[9] Sebastian Deterding, Dan Dixon, Rilla Khaled, and Lennart Nacke. 2011. From
Game Design Elements to Gamefulness: Defining "Gamification". In Proceedings
of the 15th International Academic MindTrek Conference: Envisioning Future Media
Environments (Tampere, Finland) (MindTrek ’11). Association for Computing
Machinery, New York, NY, USA, 9–15. https://doi.org/10.1145/2181037.2181040

[10] Daniel J. Dubois and Giordano Tamburrelli. 2013. Understanding Gamification
Mechanisms for Software Development. In Proceedings of the 2013 9th Joint Meet-
ing on Foundations of Software Engineering (Saint Petersburg, Russia) (ESEC/FSE
2013). Association for Computing Machinery, New York, NY, USA, 659–662.
https://doi.org/10.1145/2491411.2494589

[11] Tommaso Fulcini, Riccardo Coppola, Luca Ardito, and Marco Torchiano. 2023.
A Review on Tools, Mechanics, Benefits, and Challenges of Gamified Software
Testing. ACM Comput. Surv. 55, 14s, Article 310 (jul 2023), 37 pages. https:
//doi.org/10.1145/3582273

[12] Tommaso Fulcini, Giacomo Garaccione, Riccardo Coppola, Luca Ardito, and
Marco Torchiano. 2022. Guidelines for GUI Testing Maintenance: A Linter
for Test Smell Detection. In Proceedings of the 13th International Workshop on
Automating Test Case Design, Selection and Evaluation (Singapore, Singapore)
(A-TEST 2022). Association for Computing Machinery, New York, NY, USA, 17–24.
https://doi.org/10.1145/3548659.3561306

[13] Giacomo Garaccione, Tommaso Fulcini, and Marco Torchiano. 2022. GERRY: A
Gamified Browser Tool for GUI Testing. In Proceedings of the 1st International
Workshop on Gamification of Software Development, Verification, and Validation
(Singapore, Singapore) (Gamify 2022). Association for Computing Machinery,
New York, NY, USA, 2–9. https://doi.org/10.1145/3548771.3561408

[14] Felix Garcia, Oscar Pedreira, Mario Piattini, Ana Cerdeira-Pena, and Miguel
Penabad. 2017. A framework for gamification in software engineering. Journal
of Systems and Software 132 (2017), 21–40.

[15] Vahid Garousi, Ali Mesbah, Aysu Betin-Can, and Shabnam Mirshokraie. 2013. A
systematic mapping study of web application testing. Information and Software
Technology 55 (08 2013), 1374–1396. https://doi.org/10.1016/j.infsof.2013.02.006

[16] Cheng Hsiu Li. 2019. Gamification of an asynchronous HTML5-related
competency-based guided learning system. In IOP Conference Series: Materials
Science and Engineering, Vol. 658. IOP Publishing, 012004.

[17] Oscar Pedreira, Félix García, Nieves Brisaboa, and Mario Piattini. 2015. Gamifica-
tion in software engineering – A systematic mapping. Information and Software
Technology 57 (2015), 157–168. https://doi.org/10.1016/j.infsof.2014.08.007

[18] Oscar Pedreira, Félix García, Mario Piattini, Alejandro Cortiñas, and Ana Cerdeira-
Pena. 2020. An architecture for software engineering gamification. Tsinghua
Science and Technology 25, 6 (2020), 776–797. https://doi.org/10.26599/TST.2020.
9010004

[19] Swapneel Sheth, Jonathan Bell, and Gail Kaiser. 2013. A competitive-collaborative
approach for introducing software engineering in a CS2 class. In 2013 26th Inter-
national Conference on Software Engineering Education and Training (CSEE&T).
IEEE, 41–50.

[20] Philipp Straubinger and Gordon Fraser. 2023. Improving Testing Behavior by
Gamifying IntelliJ. arXiv:2310.11171 [cs.SE]

[21] Vladimir Uskov and Bhuvana Sekar. 2014. Gamification of software engineering
curriculum. In 2014 IEEE Frontiers in Education Conference (FIE) Proceedings. 1–8.
https://doi.org/10.1109/FIE.2014.7044098

Received 7 December 2023

80

