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ABSTRACT Bounded Model Checking (BMC) is one of the most prominent approaches used as a
falsification engine, capable of identifying counterexamples of bounded length, in a scalable and sustainable
way. Nevertheless, in the context of a portfolio-based verification suite, BMC can benefit from potential
interaction with other engines, exploiting their capabilities and partial results as a form of application-
dependant learning. In the past, previous works tackled the issue of using over-approximated state sets
generated via Binary Decision Diagrams (BDD) based traversals. In a sense, BDD engines can be considered
as external tools, whereas interpolants are directly related to BMC problems. Since interpolants come from
Boolean satisfiability (SAT) refutation proofs, their role as a SAT-based learning can be potentially higher.
Furthermore, their integration is more tightly linked to the BMC problem at hand. In this paper we aim at
improving the efficiency of SAT calls in BMC problems, exploiting interpolation-based invariants computed
over different cut points, as additional constraints for BMC problems. We experimentally evaluate costs and
benefits of our proposed approach on a set of publicly available model checking problems.

INDEX TERMS Boolean satisfiability (SAT), hardwaremodel checking, formal verification, boundedmodel
checking, Craig’s interpolants.

I. INTRODUCTION
Ranging from personal and commodity devices up to business
and safety critical environments, digital systems have become
ubiquitous into our daily lives. Furthermore, thanks to
the advent of high-level synthesis, contemporary hardware
designs comprise an extremely high level of complexity, and
thus design verification has become one of the most relevant
aspects of the design and production flow. In such a scenario,
assessing and guaranteeing the correct behavior of digital
systems, with respect to their specification, is becoming an
ever more pressing need for manufacturers [1].

Traditionally, hardware designs are verified through simu-
lation, in which a model of the system is solicited with a set of
stimuli and the resulting behavior is checked against a golden
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reference. Simulation is scalable and applicable to designs
of virtually any size, but at the same time it is also costly
and incomplete. It is often unfeasible to completely cover
the behaviors of a realistic design through simulation. Since
the late ‘80s, formal hardware verification has become an
increasinglymore relevant approach to deal with the coverage
limitations of simulation. Formal verification is the use of the
formal methods of mathematics and logic to (dis)prove the
correctness of a design considering a formal specification of
its expected behavior. Currently, model checking is one of
the most widely used formal verification approaches when
taking into account sequential hardware designs. Given a
model of the design and a representation of its specification,
via algorithmic procedures it is possible to check whether
the model meets the formal specification. Such procedures
exhaustively traverse the modeled behaviors of the system
to either confirm theirs adherence to specifications or to
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generate a trace demonstrating a violating behavior, called
counterexample. Designs are usually modeled as transition
systems, comprising states and transitions between states,
and their specification is formalized using temporal logic
properties. Invariant verification is a model checking task
in which system specifications are described as invariant
properties that must hold true in every reachable state of the
models [2].

Bounded Model Checking (BMC) [3] is a state-of-the-art
formal verification method with widespread industry-level
application in various domains. Such a technique has been
established as a relevant falsification engine, in order to
identify bugs and counterexamples up to a given unroll bound
k . Despite it being an incomplete approach, as it produces
bounded proofs, it plays an important role in a verification
context due to its simple and scalable SAT-based approach.
Furthermore, the bounded proofs BMC produces can be
significant in scenarios where it is impossible to fully verify
the design under test.

Complete SAT-based verification approaches based on
BMC have been studied in order to address the completeness
issue: inductive techniques [4] and Craig interpolation
based model checking [5] are among the most notable
and successful ones. More recently, a novel algorithm
called IC3 [6] has emerged as an approach unrelated to
BMC, as it does not require transition relation unfoldings.
Variants of standard interpolation-based techniques have
been introduced as well [7].

Previous research addressed the issue of using
over-approximated state sets generated by BDD-based [8]
traversals. This paper focuses on Craig interpolation as an
operator able to provide a form of learning, derived from
a BMC-like problem, to be exploited in order to speed-up
subsequent BMC queries. Our target is to accelerate BMC
runs with the help of interpolation-based learning.

In the context of Model Checking, Craig interpolation
can be interpreted as an operator capable of computing
over-approximated images of reachable state sets. Using
interpolation in such a scenario, it can be viewed as a form
of iterative refinement of proof-based abstractions whose
purpose is of narrowing down proofs to just the relevant facts.
In order to derive the aforementioned over-approximations of
the reachable states, they can be computed taking into account
refutation proofs arising from unsatisfied BMC formulas.

A. RELATED WORKS
We build upon works taking into account advances in both
BMC- and interpolation-based settings. Given the context
of application, our approach is directly related to various
recent works on SAT-based Model Checking, such as those
presented in [9] and [10]. More in details, in [9] the authors
propose a method to improve standard BMC using BDDs
representing over-approximations of reachable states. The
overestimated reachable state sets are used to restrict the
search space of BMC runs. Such BDDs can thus be seen as
explicit constraints for the SAT solver. In [10] the authors

propose various approaches to strengthen and/or weaken
interpolants, in order to exploit their representativeness while
maintaining their size under control.

Although this paper focuses explicitly on bit-level SAT-
based hardware model checking, BMC has seen a growing
application in other branches of formal verification, such
as software model checking. In such a context, recent
works aimed at improving efficiency and applicability of
BMC have arisen, such as [11], that addresses scalability
through underapproximations widening driven by proofs of
unsatisfiability, and [12] that exploits partial proofs to reuse
within BMC runs.

B. CONTRIBUTION
In this paper we introduce a technique to improve the
efficiency of SAT calls for BMC problems. The proposed
technique is based on exploiting interpolation-based invari-
ants, as additional constraints. These invariants are computed
over different cut points alongside a given unrolling and
injected as a constraining factor at various bounds within
the BMC problem itself. Our work is focused on trying
to understand whether and how much interpolants can be
exploited to speed up BMC checks, being used to represent
constraints on forward and backward reachable states at given
unrolling boundaries.

In this paper we propose the following contributions:
1) A technique to generate redundant constraints derived

from:
• BMC problems, taking into account just the easy,
i.e., quick to solve, bounds;

• Interpolation-based runs;
2) A technique to reuse and exploit generated constraints

in order to improve BMC checks performance for hard
bounds;

3) An experimental evaluation of the novel approaches
here presented.

C. OUTLINE
The paper is organized as follows. Section II introduces the
notation used throughout the paper as well as some pre-
liminary concepts on SAT-based techniques for verification,
reachability analysis, and interpolation. Section III introduces
our novel approach at exploiting interpolation-based learning
as a way to speed-up BMC checks. Section IV presents
the experimental evaluation of the proposed techniques
over state-of-the-art hardware model checking benchmarks.
Section V draws conclusion concerning the proposed tech-
niques, provides some insight and outlines possible future
works.

II. PRELIMINARIES
A. MODEL, NOTATION AND PROPERTY DEFINITION
We take into account systems modelled by labelled state
transition structures, implicitly represented using Boolean
formulas.
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Definition 1: A transition system S is a triple ⟨X , I,T ⟩,
where X is a set of Boolean variables which represent the
system states, I is a Boolean formula, defined over X , which
represents the set of initial states and T is a Boolean formula,
defined over X × X ′, which represents the system transition
relation.
Variables of X take the role of state variables for S. A state

of S can be thus represented taking into account a complete
truth assignment s for its state variables. Sets of system
states can be represented using Boolean formulas over X .
With Space(S) we denote the state space of S. Given both a
Boolean formulaF overX and s, a complete truth assignment,
such that s |H F , we have that s is a state within the set
represented by F and can be in turn be called an F-state.
Future states of S, i.e., states reached after a transition, are
represented using primed state variablesX ′. Accordingly, sets
of future states are then represented using Boolean formulas
over X ′. With the notation s, s′ we identify a complete truth
assignment to X × X ′ derived by joining a complete truth
assignment s to X with a complete truth assignment s′ to X ′.
In our context, transition systems are used to represent the

behaviour and model sequential hardware circuits. In such
a scenario, every state variable xi ∈ X corresponds to
a latch. The set I , i.e., the initial states of the system,
is defined by reset values of latches. Transition relation T
is the conjunction

∧
i(x
′
i ↔ ∃PI .δi(X ,PI ) = ⊤) where

δi(X ,PI ) are formulas representing the next-state function of
each latch. Note that, in the modelled transition system, the
primary inputs PI of the circuit are abstracted away.
Definition 2: A literal is a Boolean variable or its

negation. A clause (cube) is a possibly empty disjunction
(conjunction) of literals. A Boolean formula is inConjunctive
Normal Form (CNF) or clausal normal form if it is a
conjunction of one or more clauses.
Definition 3: Given a Boolean formula F , a truth assign-

ment for F defined over variables X is a function τ : Y ⊆
X → {⊤,⊥} mappings Y variables to truth values. τ can
either be complete, iff Y ≡ X , or partial otherwise.
Definition 4: Given a truth assignment τ and a literal x,

τ satisfiesx, expressed as τ |H x, iff τ (x) = ⊤. Conversely, τ
satisfies ¬x iff τ (x) = ⊥. A clause C is satisfied by a truth
assignment τ , written as τ |H C , iff at least one literal in
C is satisfied by τ . Given a truth assignment τ and a CNF
formula F , τ satisfies F , written as τ |H F , iff all clauses in
F are satisfied by τ .
Definition 5: Given a Boolean formula F , F is said to be

satisfiable iff a truth assignment τ such that τ |H F exists.
F is said to be unsatisfiable otherwise. Given two Boolean
formulas F and G, if they are either both satisfiable or both
unsatisfiable, they are said to be equi-satisfiable.
Abusing notation, a truth assignment can be represented

in the form of a set of literals of different variables.
A truth assignment τ expressed in this way assigns each
variable to the appropriate truth value satisfying the cor-
responding literal in the set. We also represent a clause,
or a cube, as a set of literals, leaving the disjunction,

or conjunction, implicit when unambiguous given the
context.

Given a Boolean formula F, whenever it is necessary to
explicitly indicate its before/after version with respect to an
evaluation, such a refinement step for instance, in order to
express its before version we use a −1 superscript, i.e., F−1.
We will conventionally use letters in boldface for arrays of
functions, such as F = (F0, F1, . . . ).

Clauses and their representations are quite relevant, since
most modern SAT solvers [13], [14] use them as their
principal representation and manipulation formalism to
express Boolean functions.
Definition 6: Given a transition system S = ⟨X , I,T ⟩,

and a complete truth assignment s, s′ to X × X ′, if we have
that s, s′ |H T then s is a predecessor of s′ and s′ is a successor
of s. A states sequence π0,n

= (s0, . . . , sn) is a path in S iff
si, s′i+1 |H T for every pair of adjacent states in the sequence
(si, si+1), 0 ≤ i < n.
Definition 7: A state s ∈ Space(S) is said to be reachable

exactly in k steps in S iff there exists a finite initial path of
length k π = (s0, . . . , sk ) such that sk = s.
Definition 8: A state s ∈ Space(S) is reachable within k

steps or, alternatively said, reachable bounded by k in S iff
there exists i ≤ k such that s is reachable exactly in i steps
in S.
Definition 9: A state s ∈ Space(S) is reachable in S if it

can be reached within a arbitrary, but finite, number of steps
in S.
Definition 10: RE

i (S) denotes the set of states reachable
in exactly i steps in S.
Definition 11: Ri(S) denotes the set of states reachable

within i steps in S, i.e.,

Ri(S)
def
=

⋃
0≤j≤i

RE
j (S)

Definition 12: The reachability diameter of S is the
minimal number d ∈ N of steps needed to reach all reachable
states in S:

d def
= argmin

i∈N
{i | Ri(S) = Ri+1(S)}

Definition 13: R(S) denotes the set of states reachable in
S, i.e.,

R(S) def=
⋃

0≤j<d

Rj(S)

We use a superscript notation whenever there is more than
one timeframe involved in a formula, for instance in the case
of circuit unrollings. We use X i for the variables instantiated
at the i-th time frame. When support variables can be easily
inferred from the context, they are omitted for the sake of
simplicity and compactness.
Definition 14: A path formula of length k = j − i from

two timeframes, i to j, is the propositional formula 5(i, j)
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over X i ∪ · · · ∪ X j:

5(i, j) def=
j−1∧
h=i

T (Xh,Xh+1)

Definition 15: An initial path formula of length k is a
propositional formula:

50(k)
def
= I(X0) ∧5(0, k)

Given 5(i, j), such a path formula encodes all paths of
length k = j − i that start at timeframe i in S. On the
other hand, an initial path formula 50(k) represents all paths
of length k that start from the initial states of the system.
An initial path formula 50(k) can thus be used to represent
the set of reachable states in exactly k steps, starting from the
initial states in S.
Definition 16: Given a transition system S = ⟨X , I,T ⟩,

an invariant property P is a Boolean formula that must hold
true in all reachable states s of S, i.e.,

∀s ∈ R(S) : s |H P

We denote as target the set of states represented by ¬P.
We informally call bad states those states, or set of states,
that either belong to the target or that can reach it.
Definition 17: Given a transition system S = ⟨X , I,T ⟩

and given an invariant property P defined over X , a propo-
sitional formula F over X is safe with respect to P iff F is
stronger than P, i.e., F → P.
Definition 18: A bad cone of length k = j − i from

timeframes i to j is the propositional formula Cone(i, j) over
X i ∪ · · · ∪ X j:

Cone(i, j) def= 5(i, j) ∧
j∨

h=i

¬P(Xh)

A bad cone Cone(i, j) encodes all paths starting at timeframe
i reaching the target in up to k = j− i steps. A bad cone thus
represents the set of backward reachable, in at most k steps,
bad states from the target.
Definition 19: Given a transition system S = ⟨X , I,T ⟩

and given a propositional formula F over X , F is an inductive
invariant of S if the following conditions hold:

I → F (Initiation)

F ∧ T → F ′ (Consecution)

An inductive invariant F of S can be seen as an
over-approximation of the reachable states setR(S).
Definition 20: Given a transition system S = ⟨X , I,T ⟩

and given an invariant property P over X , an inductive
invariant F of S is an inductive strengthening of P iff it is
safe with respect to P.

B. BOUNDED MODEL CHECKING

Given a transition system S def
= ⟨X , I,T ⟩ and an invariant

property P, Bounded Model Checking [15] is an iterative
process aimed at checking whether a counterexample to P of

length at most k in S exists, or at proving its absence. In order
to do so, BMC just needs to performs a SAT check on BMC
formulas.
Definition 21: A BMC formula of length k for P in S is

the propositional formula bmc(k) over X0
∪ · · · ∪ X k :

bmc(k) def= 50(k) ∧
k∨
i=0

¬P(X i) = I ∧ Cone(0, k)

A BMC formula of length k can be intuitively seen as
representing all initial paths, of length at most k , in S
that reach a bad state in ¬P. If the formula is SAT,
a counterexample to P of length at most k in S can be found.
On the contrary, no such a counterexample exists.

BMC-based tools iteratively solve BMC formulas at
increasingly deeper bounds, until either a counterexample is
found or an halting condition is met, e.g., some maximum
bound is reached. BMC is suitable for finding counterex-
amples, but on the other hand it is not capable of detecting
whether P holds in S. In order to face such a limitation, ad-
hoc approaches are necessary to support Unbounded Model
Checking (UMC). The capability of evaluating reachability
fix-points and finding inductive invariants is thus the main
difference between BMC and UMC.

C. CRAIG INTERPOLANTS
Craig’s interpolation theorem is a very influential result
in mathematical logic concerning the relationship between
model and proof theory. Craig [16] provided its original
formulation of the theorem in the context of first-order
logic. Additional variants of the original theorem valid for
other logical systems, such as propositional logic, have been
formulated as well. We provide here the formulation of
the theorem in propositional logic, since it is the one most
relevant in our scenario and the one which is typically
encountered in model checking contexts.
Theorem 1: Given two propositional formulas A and B,

if they are inconsistent, i.e., if A∧B is unsatisfiable, then there
is a propositional formula I , which can be called interpolant
between A and B, such that:
• A→ I is valid
• I ∧ B is unsatisfiable
• Vars(I ) ⊆ Vars(A) ∩ Vars(B)
Intuitively, I represents an abstraction of A from the

standpoint of B. The interpolant I summarizes and translates,
in the common language between A and B, the motive behind
A and B mutual inconsistency. In the following, we denote
with I = ITP(A,B) the procedure capable of computing
a Craig’s interpolant starting from a pair of inconsistent
formulas A and B.

Interpolants can be directly inferred from refutation proofs
of unsatisfiable SAT solving runs. Taking into account an
unsatisfiable formula in the form A ∧ B, most modern
SAT solvers can generate a refutation proof in either
resolution-based or clausal form. In the former case, i.e.,
given a refutation proof, an interpolant formula I = ITP(A,B)
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can be derived in polynomial time and space with respect
to the size of the proof itself, assuming the form of an
AND/OR combinational circuit. Specifically to the context
of model checking, if we interpret A as representing a
set of reachable states and B as representing a set of
bad states, then I = ITP(A,B) can be seen as a safe
overapproximation of A with respect to B. As a consequence,
overapproximations generated this way can be used to detect
reachability fix-points. McMillan [5] introduced the first
complete algorithm for symbolic model checking exploiting
Craig’s interpolation. Such an algorithm, called standard
interpolation or ITP for short, computes Craig’s interpolants,
starting from refutation proofs of unsatisfiable BMC runs,
to overapproximate reachable states of the system.

III. COMBINING SAT-BASED BMC AND
INTERPOLATION-BASED LEARNING
In this section we describe the novel approach we propose.
As it stands, it can be viewed as a way to partition a
verification task between an interpolation-based and a SAT-
based engine. Alternatively, it can be seen as an optimization
of a BMC run, by means of redundant information learned in
the form of interpolants.

Starting from an UNSATBMC run of length k with a given
bound, the proposed approach identifies two cut points k ′ and
k ′′ in order to split the BMC formula in three parts: a prefix,
identified as an initial path formula 50(k ′) up to bound k ′,
a transition relation unrolling, identified as a path formula
5(k ′, k ′′) from bound k ′ up to bound k ′′, and a backward cone
Cone(k ′′, k) from the target, i.e.:

bmc(k) = 50(k ′) ∧5(k ′, k ′′) ∧ Cone(k ′′, k)

For instance, let’s assume the procedure starts with an
initial unrolling of depth k = 40, choosing k ′ = 2 and
k ′′ = 26, we would have a backward cone of length
14 and a transition relation unrolling of length equal to
l = k ′′ − k ′ = 24.

The selection of the k ′ and k ′′ cut points directly impacts
the way in which the procedure implicitly uses them: such a
choice may help the solver propagate activity from the initial
states forward, from the target states backwards or inbetween
cuts, in intermediate frames.

Given the two cut points, the procedure tries to identify
a proper abstraction for the transition relation unrolling in
between k ′ and k ′′, performing an interpolation step I =
ITP(A,B) with A = 5(k ′, k ′′) and B = 50(k ′)∧Cone(k ′′, k).
The result is an interpolant defined over the state variables of
the two cut points, which represents an over-approximation
of the transition relation unrolling of a given depth l, that it is
guaranteed not to intersect B. Note that such an interpolant
can be used as a redundant constraint for any transition
relation unrolling of length l, modulo variables relabelling.
We denote this interpolant as an abstract transition unrolling.

The resulting interpolant only depends on the cut points
variables and, intuitively, represent an existential quantifica-
tion for the variables of the cuts themselves.

Fig. 1 shows a visual representation of how the BMC
formula is partitioned, according to the description provided.

Interpolant generated as described above can be then used
as a form of redundant learning in the context of BMC
problems. In our current setup, the interpolant is mostly used
as-is, without further processing. At the cost of additional
computation, however, these interpolants can be optimized
using techniques such as [10] and [17] in order to reduce their
overhead.

Abstract transition unrolling can be conjoined to the
formula needed to solve a BMC problem at a specific bound,
with the specific aim of helping the SAT solver to reach a
decision faster. The main idea lies in the notion of providing
extra information with the purpose of limiting the activity
of the SAT solver, in terms of decision-propagation-conflict
cycles, as well as a form of external constraining for the
addressable state space and its size.

Usually, BMC runs use an exact bound strategy, in which
only a specific bound k is checked for counterexamples to the
property, and the verification procedure is run incrementally
for all the bounds of interests. Our approach can be applied to
BMC runs that uses either an exact bound or an up to bound
approach. The only relevant aspect to be taken into account
is the fact that the backward cone must not propagate beyond
the k ′′ cut point in the up to bound case, otherwise it would
overlap with the transition relation unrolling previously
mentioned. In our current setup, we rely on an exact bound
approach to keep the computation lightweight.

Since computing these interpolants involves some over-
head, it is important to evaluate if the performance gain
outweighs the added overhead. In order to investigate this
performance trade-off, we consider interpolant-enhanced
runs that can be customized with two additional parameters,
namely an init step and a period. Such parameters describe
the starting bound from which and how often to inject the
additional constraint in the SAT solver, respectively. The
former allows us to skip the shallowest part of the BMC prob-
lem, thus avoiding encumbering easier-to-solve bounds for
which little performance gains could be attained. The latter
is responsible for leveraging the benefits of the additional
constraints while still allowing us to keep the introduced
overhead under control. Sizing both parameters strictly
depends on the actual structure and behaviour of the
underlying circuit, thus their values have to be carefully
evaluated taking into account the problem we want to
solve.

The main contribution of the proposed technique is being
capable of abstracting a portion of the transition relation,
with the aim of helping problems in which the SAT solver
has to (potentially) analyze several branching conditions,
especially if bound to choices depending on primary inputs,
and subsequently may incur in a significant number of
backtracking steps. The proposed technique implicitly acts
as a form of primary input existential quantification, thus
limiting the number of traces that may lead to a specific state
and/or subsuming multiple behaviours at once.
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FIGURE 1. Standard combinational unrolling for BMC with two sample cut points, k ′

and k ′′ , and boundaries between A and B.

As mentioned before, the selection of proper cut points
is at the heart of the proposed technique. It is desirable for
the abstracted part to encompass a significant portion of the
sub-behaviours of the design under verification, thus the two
cut points cannot be too close together. At the same time, too
wide of a gap between the two cut points may result in a large
formula to be injected into the SAT solver, with significant
overhead to account for. One aspect to take into account,
is that it is not just a matter of numerical distance between
the two cut points, since different designs will manifest
different behaviours. For very complex designs, smaller gaps
will still encompass a relevant amount of behaviours. For
easier design, a larger gap may be beneficial, in order to
include a big enough abstraction for it to be useful, i.e.,
being representative of a significant part of the underlying
behaviours. Without a priori knowledge about the design, one
can estimate the number of bounds that may be suitable to
include in the abstraction taking into account the time needed
to solve single bounds, thus opting to either include many
easier-to-solve or just fewer harder-to-solve ones.

Concerning the placement of the first cut point, i.e., the one
closest to the initial states, it should be placed after a possible
initial transient behaviour for the circuit at hand, in order
to skip, for instance, setup behaviours. The desired effect
is to keep only relevant behaviours in the abstracted part,
once again not to incur in unnecessary overhead. Intuitively,
if the additional learning injected in the SAT solvers concerns
a behaviour which is relevant only to the initial setup of
the circuit, but it is not related to the actual behaviour of
the design under verification, during its operation, such an
abstraction would be of little help for the following BMC
problems.

All in all, cut points selection is a matter of balancing
the extent of the behaviours included, while keeping initial
transients out, and limiting the size of the corresponding
interpolant.

Algorithm 1 reports a modified BMC procedure up to a
certain bound kmax , capable of exploiting external learning in
the form of an abstract transition relation. First the algorithm
checks whether the property P is satisfied by the initial
states (lines 2–3). If an initial state fails to satisfy P, the
procedure terminates by returning FAIL alongside a trivial
counterexample. Otherwise, the procedure starts iterating
over increasing values of k up to kmax . The actual BMC
problem taken into account differs according to whether
the procedure exploits or not the abstract transition relation.

In case the condition (line 6) holds, i.e., iteration is past the
initial step for which we are willing to use the abstraction
and the current bound respects the injection period, the
BMC formula (Definition 21) is slightly altered to inject also
the abstract transition relation, denoted as T ∗k ′,k ′′ . At each
iteration, the procedure checks whether there is at least a path
satisfying the BMC formula up to bound k (lines 10–11).
If a satisfying path π0,k is found, the procedure returns FAIL
along with the path as a counterexample. If the procedure
does not find any counterexample of length up to kmax ,
it returns a SUCESS, indicating that P holds up to the given
bound.

Algorithm 1 Modified BMC Traversal
Input: S = ⟨X , I,T ⟩ a transition system; P a property

over X ; kmax maximum bound; T ∗k ′,k ′′ abstract transition
relation between cut points k ′ and k ′′; i initial injection
bound; p period of injection.

Output: ⟨res, cex⟩ with res ∈ {SUCESS,FAIL}; cex a (pos-
sibly empty) initial path representing a counterexample.

1: procedure BoundedModelChecking(S, P, kmax , T ∗k ′,k ′′ ,
init_step, period)

2: if ∃s0 |H I(X ) ∧ ¬P(X ) then
3: return ⟨FAIL, (s0)⟩
4: k ← 1
5: while k ≤ kmax do
6: if k ≥ i and (k − i) mod p = 0 then

7: bmc(k)← 50(k) ∧ T ∗k ′,k ′′ ∧
k∨
i=0
¬P(X i)

8: else

9: bmc(k)← 50(k) ∧
k∨
i=0
¬P(X i)

10: if ∃π0,k
|H bmc(k) then

11: return ⟨FAIL, π0,k
⟩

12: k ← k + 1
13: return ⟨SUCESS,−⟩

We leave as future work to investigate how to optimize
abstract transition unrolling as well strategies to devise
proper heuristics to better support parameters selections (i.e.,
cut points, depth, initialization and period of injection).
Furthermore, we are interested in taking into account
both single an multiple properties designs [18], to better
characterize the role of learning from related, but different,
subset of properties.
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IV. EXPERIMENTAL RESULTS
In order to evaluate our proposed approach, we implemented
the described methodology within the PdTRAV tool [19],
a state-of-the-art model checking academic tool. Experiments
were run on an Intel Core i7-1370, with 16 CPUs running
at 5GHz, 16 GBytes of main memory DDR III, and hosting
a Ubuntu 22.04 LTS Linux distribution. All the experiment
were run taking into account a time limit of 3600 seconds
and a memory limit of 16 GB.

The experimental data here presented provide an eval-
uation of the proposed approach, compared to standard
techniques that we consider as our baseline.

The benchmarks set considered was derived from a subset
of past Hardware Model Checking Competitions (HWMCC)
suites [20], with a primary focus on instances belonging to the
deep bound track, considered hard-to-solve, and difficult SAT
instances from the other tracks. The set includes hardware
as well as software verification problems. We focused on
problems characterized by increasingly expensive BMC
bounds. We thus discarded problems involving a single hard-
to-solve bound following a sequence of very easy-to-check
bounds, since they are of rather limited interest in relation
with our proposed approach. We also discarded very deep
benchmarks characterized by just long series of easy-to-solve
bounds.

FIGURE 2. Bounds distribution of baseline BMC runs with respect to ones
using abstract transition unrollings.

Fig. 2 compares the bound reached taking into account
baseline BMC runs and runs exploiting the injection of
pre-computed abstract transition unrollings. All the abstract
transition unrollings have been pre-computed offline with a
cutoff time of around 100 seconds. Overall we can notice
that, upon properly selecting bounds for the abstractions and
adopting a suitable injection period, we can support the SAT
solver activity by providing redundant information which
in turn reduces the decision effort required at each bound,
as well as providing a form of space constraining, which limit
the state space the procedure has to explore while addressing
each bound.

Fig. 3 compares, in percentage, the activity of the under-
lying SAT solvers taking into account number of clauses,
variables, decisions, propagations and conflicts. The ratio

FIGURE 3. Ratio distribution of SAT solver activities for runs using
abstract transition unrollings with respect to baseline.

is computed evaluating each parameter obtained from runs
exploiting the injection of pre-computed abstract transition
unrollings against the baseline.We can see that the ratio for all
the parameters tends to lie below the unit threshold (i.e., same
or very close value for both baseline and enhanced runs).
Even for instances where there is more effort required from
the SAT solver standpoint, not all parameters are impacted
negatively at the same time, as both improvements and
degradations are observed.

Table 1 summarizes data plotted in Fig. 2 and Fig. 3 to pro-
vide a better understanding of actual data distributions. For
each parameter we provide aggregate data, namely average,
median, standard deviation, minimum and maximum values,
taking into account both the baseline, i.e., no use of abstract
transition relation, and runs exploiting it. Concerning data
relative to Fig. 3, the table presents actual values for the two
series rather than the ratio, to give a hint about the scales of
the values at hand.

In order to highlight the impact of using external informa-
tions to speed-up baseline BMC runs, we took into account
a specific benchmark, namely intel032 to compare more
explicitly the time requirement needed to reach a specific
bound in various configurations, and the underlying SAT
solver effort. Fig. 4 compares the impact of different abstract
transition unrollings on the candidate benchmark, both in
terms of time required to reach a given bound and in terms of
the parameters characterizing SAT solver activity at a given
bound. From the plots we can see that the curves present the
same overall patterns for all runs, consisting of have easier
bounds, the plateaus, interleaved with harder to solve ones.
All the enhanced runs manage to reach deeper bounds and
tend to lie beneath the baseline, i.e., they take less time to
reach the same bound.

In order to better highlight the difference among runs, the
y axis is charted in logarithmic scale. It is possible to notice
how there might be up to an order of magnitude, if not more,
in term of timing difference among runs. For all charts, the
first data sample plotted along the x axis is the first instance
for which the relative parameter presents a non-zero value.
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TABLE 1. Values distributions and summaries for Fig. 2 and Fig. 3 data.

FIGURE 4. Comparison of time required to reach different bounds and respective SAT solver activity over the same candidate benchmark intel032 with
different run setups.

V. CONCLUSION
In this paper we addressed the problem of understanding
whether and how interpolants could be used to speed up BMC
checks, exploiting them as a form of redundant learning,
representing constraints on forward and backward reachable
states at given unrolling boundaries.We proposed a technique
exploiting interpolation-based invariants, computed over
different cut points alongside a given transition unrolling, that
can be injected as an external constraining factor within a
BMC problem. We experimentally evaluated costs, benefits,
as well as invariant selection options, on a set of publicly
available model checking problems. Experimental results
support our take that external constraints can be beneficial in
order to speed up BMC runs. Future works will investigate

improvements on appropriate cut and application points
selections, since they are strictly related to the benchmark
and/or verification problem at hand, and directly impact the
proposed approach effectiveness.
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