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Abstract—In the last decade, internet traffic has increased
exponentially due to the expansion of bandwidth-intensive ap-
plications and the evolution of the concept of the internet
of things. To sustain this growth in internet traffic, network
operators insist on maximizing the utilization of already deployed
network infrastructure to its maximum capacity to maximize
the CAPEX. In this context, an accurate and earlier calculation
of the Quality of transmission (QoT) of the lightpaths (LPs) is
essential for minimizing the required margins that result from the
uncertainty of the working point of network elements. This article
presents a novel QoT-Estimation (QoT-E) framework assisted
by Transfer-learning (TL). The main focus of this study is to
present a detailed analysis of two major TL approaches, i.e., the
Transfer-learning feature extraction (TLFE) approach and the
Transfer-learning fine-tuning (TLFT) method, and demonstrate
their effectiveness in minimizing the uncertainties in QoT-E in
comparison with standard baseline models like Artificial neural
network (ANN) and Convolutional-neural network (CNN). The
Generalized signal-to-noise ratio (GSNR) is considered a char-
acterizing parameter for the QoT of LP. The dataset utilized in
this analysis is generated synthetically using the GNPy platform.
Promising results are achieved by reducing the overall required
margin and extracting the residual network capacity.

Index Terms—Machine learning; Quality of Transmission es-
timation; Generalized SNR; Transfer learning.

I. INTRODUCTION

In recent years, there has been an enormous growth in
internet traffic driven by the adoption of modern technologies
such as 5G, cloud computing, and the Internet of Things. As
a result, the core optical network is under pressure to meet
the high capacity demands. Installing new infrastructure or
enhancing the capacity of existing installed optical networks
are typically the two options that can be used to address
this problem. The first option requires a substantial CAPEX
investment and is unfeasible from the operator’s perspective.
The alternate solution, however, is more practical because it
may potentially boost the returns on already installed network
infrastructure.

Currently, a major part of the existing optical transport
networks employs Wavelength-division multiplexing (WDM)
around a spectral window of ≈ 4 THz in the C-band. For
further capacity enhancement, modern technologies such as

Band-division multiplexing (BDM) are being adopted to utilize
the residual capacity of already deployed WDM optical trans-
port systems over the complete low-loss spectrum of optical
fibers (e.g., ≈ 54 THz in ITU G.652.D fiber) [1]. In addition to
this, employing modern technologies such as Software-defined
networking (SDN) and Elastic optical networks (EONs) allows
for the efficient use of this WDM spectrum with the dynamic
and adaptive provisioning of network resources. These two
technologies facilitate the optical networks to evolve towards
fully disaggregated networks. The important step in network
disaggregation is to carefully consider the Optical line systems
(OLSs) that include fibers and amplifiers to interconnect the
network nodes.

The QoT degradation is eventually determined by the OLS
controller, which operates in the control plane, and is respon-
sible for deciding the amplifier operating point. The nominal
operating point needs to be carefully defined to improve
reliance on the QoT degradation. The accurate determination
of these parameters eventually leads to deploying a lower
margin in LP and allows for better utilization of network
resources with higher deployed traffic rates. Therefore, the
precise estimation of the QoT of LP before its deployment
becomes a key factor for effective resource utilization and high
performance of optical networks. Various supervised Machine
learning (ML) models have been explored recently as an
alternative solution to conventional QoT estimation approaches
in order to provide fast and precise QoT estimation [2]–[5].
Most of these ML-based approaches require a fair amount
of dataset for training with the assumption that both training
and testing datasets possess the same distribution and feature
space. In the case of optical networks, each system is deployed
with different configuration settings, and the traditional ML
model trained on one system will unlikely perform well on
another system. Therefore, a new ML model needs to be
developed for specific system settings, which can be adaptive
and require a fair amount of data samples for retraining.
In such scenarios, TL emerged as a promising solution to
achieve high performance by utilizing the learned knowledge
of an already trained ML model with a reduced number of
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Fig. 1: Transfer-learning schematic utilizing traditional C-band knowledge to assist QoT-E engine of extended C-band network.

samples and training time. The TL applies the concept of
generalization; a model trained on one problem can be used
for another related problem without starting to learn from
scratch. The model begins learning from the already learned
knowledge.

In this paper, we extend our previous work done in [6],
wherein we proposed a TL-assisted framework for an ex-
tended C-band network to reduce the uncertainties in GSNR
computation. The GSNR metric is used to assess the QoT
estimation in the given scenario well. The GSNR uncertainties
are typically introduced by the amplifier’s gain ripples, noise
figure, and variation of spectral load. In this paper, we try
to improve the performance of our already proposed method
in [6]; Transfer-learning partial tuning (TLPT). The main
focus of this study is to present a detailed analysis of two
different TL approaches, i.e. TLFE approach and the TLFT
approach and demonstrate their effectiveness in correcting
GSNR uncertainties in a newly deployed extended C-band
network. Furthermore, the performance of these two new TL
approaches is compared with standard baseline models, ANN
and CNN, trained from scratch.

II. SIMULATION FRAMEWORK AND DATASET ANALYSIS

This study considers a software-defined optical
network with re-configurable-optical add-drop-multiplexers
(ROADMs) as the nodes and OLS as the edges [7]. The
OLS under consideration is assumed to operate at their
optimal operating point, and the only factor accounting for
the perturbation behaviour of the physical layer is the noise
figure and amplifier’s ripple gain. The gain-ripples oscillate
in response to variations in the spectral load. With some
degree of working point uncertainty, OLS controllers can thus
guarantee that they operate at the nominal operating point.
The LPs are transparently deployed on the WDM flexible
grid system on the lower layer, linking the transceivers
and enabling dual-polarization multilevel modulation
formats [8]. Multiple impairments impact the LPs during their
transmission, but amplified-spontaneous noise-(ASE) and
non-linear impairments are the prominent ones (NLI). Each
in-line amplifier (ILA) introduces statistically independent
ASE noise, accumulating throughout propagation. The NLI
of every span, however, is statistically associated with one

another [9].. The following equation gives the total GSNR
of each LP propagating across the OLS:

1

GSNR
=

∑
n

1

GSNRn
(1)

where n is the number of OLSs, the LP passed along a specific
path. The ASE and NLI over the particular path are both taken
into account by the GSNR metric.

The simulation setup considers the conventional C-band net-
work (referred to as the EU network) and the extended C-band
(USA network). Although the two networks under analysis
have different topologies, they employ identical amplifiers and
fiber types.

The conventional C-band has a total bandwidth of approx-
imately ≈ 4 THz, enabling it to transport 80 channels over a
typical 50 GHz grid. In contrast, the extended C-band has a
total bandwidth of approximately ≈ 4.8 THz, allowing it to
carry 64 channels over a 75 GHz grid. Traditional C-band and
extended C-band transceivers are configured with a raised-
root-cosine filter and run at 32 Gbaud and 64 Gbaud, respec-
tively. The Erbium-doped fiber amplifiers (EDFAs) taken into
account for both networks are set up to function in a fixed
output power mode with 0 dBm/channel. It is envisaged that
both networks’ connections will function with standard single-
mode fiber (SMF) with an 80 km reach. The ILAs in both
networks are assumed to have a random gain ripple with a
1 dB variance and a noise figure for each amplifier in the
range of 3.5 to 4.5 dB. In Table I, the specifics of the network
simulation parameters are reported.

An open-source GNPy package is used to mimic the de-
scribed scenario and generate synthetic datasets by providing
the abstraction of the physical layer [10]. The GNPy library
builds the network models for the physical layer using an
end-to-end simulated environment. The datasets are collected
for the extended C-band network (USA network) and the
C-band network (EU network). The detailed description of
both considered network is provided in [6]. The acquired
dataset for the conventional C-band network is a subset of
280, with 80 channels being the maximum number of ways
the spectral load might be realized. In contrast, the generated
dataset for an expanded C-band network is 264, with 64
operating channels. The difference in traffic load and overall



TABLE I: Network simulation parameters.

Simulation Parameters
Launch Power/ Channel 0 dBm
Dispersion (D) 16.0 ps/nm/km
Attenuation coefficient (α) 0.2 dB/km
Channel Spacing (C-Band) 50 GHz
Channel Spacing (Extended C-
Band)

75 GHz

Span Length 80 km
WDM Comb (C-Band) 80
WDM Comb (Extended C-Band) 64
Baud Rate (C-Band) 32 Gbaud
Baud Rate (Extended C-Band) 64 Gbaud
Amplifier Noise Figure [3.5 - 4.5] dB [10]
Nominal Amplifier Noise Figure 4 dB
Amplifier Gain Ripple Variation of 1 dB
Nominal Amplifier Gain Ripple Flat
Fiber Type Standard SMF

bandwidth consumption for the two networks varies from
34% to 100%. The schematic diagram of the TL approach
is shown in Fig. 1. The proposed approach uses the EU
network’s learned knowledge to train the TL-agent application
program interface (API) that is incorporated with the core
engine of the QoT estimator engine running in the network
controller of the USA network. The core-QoT estimation
engine uses nominal parameters to calculate the LP GSNR.
The QoT-estimator engine calculates the GSNR using these
nominal parameters provided by the vendors. However, there
is uncertainty due to the change in the network elements’
working point during its operation. Due to the uncertainty in
the GSNR prediction, a margin is required, which lowers the
deployable traffic rate and leads to the under-utilization of
network resources. In the described framework, the core QoT-
estimator engine of another newly installed network (USA-
network in this scenario) is assisted by a TL agent trained on
the dataset from an already operational network (EU-network).
This work mainly aims to reduce the uncertainty caused by
noise figures and ripple gain in amplifiers.

III. TRANSFER-LEARNING APPROACHES FOR QOT
ESTIMATION

The proposed TL scheme relies on an already well-trained
ML model and its weights, which have been trained on a
sufficiently large dataset. Exploiting an already well-trained
model minimizes the overhead of developing a model from
scratch, which needs a fair amount of dataset and time.
This study considers three supervised TL approaches and two
baseline models. The proposed TL approaches are based on
the ANN model and are well-trained on the large dataset
obtained from the EU network operating on the C-band. In
these approaches, the feature space used to characterize the
GSNR of LP consists of power, NLI, ASE noise, and the
number of spans. The concept of TL is illustrated in the
Fig. 2. The proposed TL approaches and baseline models
are developed by utilizing high-level Keras API running on
top of the TensorFlow platform. A brief description of these
approaches is given below.

Fig. 2: Transfer Learning Methodology.

A. Transfer-learning Partial Tuning (TLPT)

This approach has already been implemented in our previous
work [6]. The model utilized a pre-trained ANN model (trained
on a C-band network) and preserved the weights of top layers
as the knowledge learned from these layers. Two new layers
have been added to this model, and the newly added layers
were merged along with the already present layers of the pre-
trained model. The newly added layers enable the retraining
of the model with a small number of samples obtained from
the extended C-band network and thus enable it to work in
another ecosystem (extended C-band network). The presented
approach is referred to as partial tuning because the retraining
is not performed on the entire model; instead, the model is
partially tuned to adjust the weights.

B. Transfer-learning Feature Extraction (TLFE)

In this approach, we preserved the weights of the entire pre-
trained model developed in [6]. We added two new layers, each
with 500 neurons on top of the pre-trained model. In order to
avoid the vanishing gradient problem, a ReLU-based activation
function is employed in each hidden layer and linear-activation
function is used at output layer. A dropout layer with a rate
of 0.20 is inserted to discard 20% of the neurons to stop
co-adaptive learning in each iteration and prevent overfitting.
The last layer of a pre-trained model is more specific to
the C-band network prediction task on which the model is
trained; we also replaced it with a newly added fully-connected
layer. We trained newly added layers from scratch on top
of the pre-trained model to leverage the knowledge learned
previously on the dataset acquired from the C-band network.
The training is performed by employing an Adaptive-moment-
estimation (Adam) optimizer, with a learning rate of 0.01 on
a minimal number of samples acquired from the extended
C-band network. The retraining of the entire model is not
required in this approach. The already trained model contains
the generic features that are helpful in extracting meaningful
insights from the new samples obtained from the extended
C-band network.

C. Transfer-learning Fine Tuning (TLFT)

In this approach, the initial pre-trained model developed
in the TLFE approach is duplicated, and weights are fine-
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Fig. 3: Comparison of transfer learning schemes with baseline models.

tuned entirely to develop a TL model for an extended C-band
network. All the model layers unfreeze and optimize the shared
weights to make them more appropriate for performing well
on the new network (extended C-band); a low learning rate
(0.001) is used to retain some of the cognitive information
learned previously. The retraining of the entire model is per-
formed with the adam optimizer on a small dataset of extended
C-band network, and weights are adapted from their initial
values to reduce the prediction uncertainty on the extended
C-band network.

D. Baseline Models

Two baseline models, i.e., CNN and ANN, are selected for
comparison to better evaluate the performances of the above
TL approaches. Both baseline models are trained from scratch
using the Adam optimizer on the dataset acquired from the
extended C-band network.

• Convolutional Neural Network (CNN): The proposed
CNN model contains the feature-extraction and regression
units for end-to-end training. Before activating the
feature-extraction unit, z-score normalization is applied
to the dataset obtained from an extended C-band network.
After that, the normalized dataset is transformed from 2-
dimension to 3-dimension to get suitable 3-dimensional
data. Next, the normalized data is forwarded to the
feature-extraction unit, which has two convolutional
layers and an input layer. The convolutional layers are
used as a feature extractor to capture the important
characteristics of the input data for better prediction.
Additionally, each convolutional layer uses the ReLU
activation function to speed up training. Furthermore, the
average-pooling layers are inserted between subsequent
convolutional layers to perform spatial pooling. The
output of the feature-extraction unit is transformed into
a 1-dimensional array by employing the flattening layer,

which is then passed to the regression unit for prediction.

• Artificial Neural Network (ANN): We developed the
ANN model consisting of an input layer with 257 neu-
rons, two hidden layers each with 500 neurons, and an
output layer with one neuron. An activation function
based on ReLU is utilized in each hidden layer, whereas
a linear activation function is employed at output layer.
In addition, a dropout layer with a 0.20 rate is placed to
discard 20% of the random neurons to prevent the over-
fitting problem.

IV. PERFORMANCE ANALYSIS

In this section, we evaluate the performance of the GSNR
predictions in extended C-band networks both with and with-
out employing TL approaches (discussed in Section III), using
the R2-score metric and mean squared error (MSE) defined in
Eq. 2 and Eq. 3.

R2 = 1−

∑n
i

(
ypredictedi − yi

)2

∑n
i (yi − yi)

2 (2)

MSE =
1

n

n∑
i

(
∆GSNRpredicted

i −∆GSNRactual
i

)2

(3)

where n is the total number of test samples, yi
predicted

represents the predicted values, yi collectively represents the
values in the dataset and yi= 1/n

∑n
i yi. In addition to this,

∆GSNRpredicted = GSNRnominal − GSNRpredicted, while
∆GSNRactual = GSNRnominal −GSNRactual.

The R2-score measures the proportion of variance in the
ML model’s predictions compared to the overall variance in
test data. The R2 metric computes the values in the range of 0
and 1. If the R2 score value is 1, it indicates that the ML model
is trained perfectly, while a 0 value indicates that the model



TABLE II: Detailed performance analysis of transfer learning schemes.

Transfer learning Without Transfer learning

Paths TLPT
MSE (dB)

TLFE
MSE (dB)

TLFT
MSE (dB)

ANN
MSE (dB)

CNN
MSE (dB)

Birmingham → Bismarck 0.079 0.064 0.041 0.084 0.081
Bismarck → Boston 0.079 0.062 0.053 0.251 0.133
Boston → Buffalo 0.085 0.071 0.063 0.122 0.095

Charlotte → Chicago 0.098 0.074 0.043 0.213 0.171
Cleveland → Columbus 0.083 0.061 0.042 0.173 0.131

Dallas → Denver 0.083 0.041 0.033 0.099 0.091
Detroit → ElPaso 0.083 0.037 0.031 0.098 0.092
ElPaso → Fresno 0.065 0.038 0.032 0.081 0.071

Greensboro → Hartford 0.094 0.062 0.021 0.12 0.099

won’t perform well on an unseen dataset. The MSE is used to
measure how precise the model predictions are. We consider
12000 testing data samples obtained from an extended C-
band network to assess the performance of all the discussed
approaches in Section III. The upper two graphs in Fig. 3 plot
the R2 score and MSE (computed on the test dataset) against
the number of epochs. Firstly we fixed the number of samples
to 175 and then varied the number of epochs from 20 to 140.

As we can see that all TL approaches perform well as
compared to baseline models (CNN and ANN) even on a
minimal number of epochs. The TLFT approach outperforms
all the other approaches with an R2 score value of 0.93 with
140 epochs. It illustrates that TLFT can capture 93% of the
variance in the dataset, while the TLFE and TLPT capture
86% and 83% variance, respectively. In the MSE graph, in the
beginning, all TL approaches obtained similar MSE. As the
number of epochs increases, the value of MSE also improves
for all TL approaches. Again, TLFT obtains the lowest MSE
with a value of 0.01 dB compared to TLFE with a value of
0.03 dB and TLPT with 0.09 dB. Both the baseline models
do not perform well for GSNR prediction on an extended
C-band network. To further assess the performance of these
approaches, we plotted the R2 score and MSE against the
number of samples (for 140 epochs), as demonstrated in the
lower two graphs of Fig.3. It is shown that all our proposed TL
approaches perform very well as compared to baseline models
(trained from scratch). With few training epochs and a limited
number of samples (175 samples in the given scenario), TL
approaches can obtain high accuracy in predicting the GSNR
in an extended C-band network compared to conventional re-
training approaches.

To compare the performance of TL approaches proposed
in this paper with our previous work in [6], we reported
both the results of TL approaches and without TL approaches
on the nine paths of extended C-band (USA network) as
shown in Table II. The two new approaches, TLFE and TLFT
significantly reduce the MSE in GSNR estimation compared to
TLPT proposed previously, against each path of the extended
C-band network. By noticing the MSE values against each
path, it is clear that the TL approach outperforms the baseline
approaches (Without TL). The TLFT approach is excellent
for correcting the GSNR uncertainty in an extended C-band
network.

V. CONCLUSIONS

In this work, we investigated two TL approaches, TLFE
and TLFT, to train the data-driven agent on the dataset
acquired from the traditional C-band network to reduce the
uncertainty in the GSNR prediction of an extended C-band
network operating with 400ZR. By utilizing the previously
learned knowledge and slowly adjusting the weights of the
entire model in the TLFT approach, we can achieve the best
performance with a small number of training samples and a
reduced number of epochs. It is indicated in the results that
both approaches have the potential to perform well to reduce
the uncertainties in QoT estimation of an LP in an extended
C-band network, utilizing the learned knowledge from the
traditional C-band network.
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