
26 June 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

PLiNIO: A User-Friendly Library of Gradient-based Methods for Complexity-aware DNN Optimization / Jahier Pagliari,
Daniele; Risso, Matteo; Motetti, Beatrice; Burrello, Alessio. - ELETTRONICO. - (2023), pp. 1-8. (Intervento presentato al
convegno Forum for Specification and Design Languages (FDL) tenutosi a Turin (Italy) nel September 13-15, 2023)
[10.1109/FDL59689.2023.10272045].

Original

PLiNIO: A User-Friendly Library of Gradient-based Methods for Complexity-aware DNN Optimization

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/FDL59689.2023.10272045

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2982474 since: 2023-10-12T13:35:03Z

IEEE

PLiNIO: A User-Friendly Library of Gradient-based
Methods for Complexity-aware DNN Optimization

Daniele Jahier Pagliari∗, Matteo Risso∗, Beatrice Alessandra Motetti∗, Alessio Burrello∗
∗Politecnico di Torino, Turin, Italy.

Corresponding Email: daniele.jahier@polito.it

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
Accepted at the 2023 Forum on Specification & Design Languages (FDL).

Abstract—Accurate yet efficient Deep Neural Networks (DNNs)
are in high demand, especially for applications that require
their execution on constrained edge devices. Finding such DNNs
in a reasonable time for new applications requires automated
optimization pipelines since the huge space of hyper-parameter
combinations is impossible to explore extensively by hand. In this
work, we propose PLiNIO, an open-source library implementing
a comprehensive set of state-of-the-art DNN design automation
techniques, all based on lightweight gradient-based optimization,
under a unified and user-friendly interface. With experiments
on several edge-relevant tasks, we show that combining the
various optimizations available in PLiNIO leads to rich sets of
solutions that Pareto-dominate the considered baselines in terms
of accuracy vs model size. Noteworthy, PLiNIO achieves up to
94.34% memory reduction for a <1% accuracy drop compared
to a baseline architecture.

Index Terms—NAS, Pruning, Quantization, Deep Learning,
PyTorch, Design Space Exploration, Domain-specific Computing

I. INTRODUCTION

Deep Neural Networks (DNNs) reach state-of-the-art per-
formance in many applications, ranging from computer vision
to bio-signals processing, but are extremely expensive in
terms of computation and memory [1]–[3]. This is currently
considered somewhat of a secondary issue for cloud-hosted
models, whose accuracy has improved in each new generation
as an effect of sheer model upscaling, also thanks to the
availability of gargantuous amounts of data. However, for tasks
that require the execution of DNNs on mobile or edge devices,
limiting computational complexity and memory footprint is
fundamental [2], and even in the cloud, hardware/energy costs
and sustainability issues will eventually mandate a careful
consideration of complexity [4].

Unfortunately, DNNs have a very large set of hyper-
parameters, i.e., configurations that are not (traditionally)
trained by gradient descent together with the model weights,
yet greatly influence results. At a high level, we can distinguish
training hyper-parameters (e.g., the optimizer used for train-
ing, the initial learning rate and its schedule, etc) and architec-
tural hyper-parameters (e.g., the number and type of layers,
their configuration, the weights and activations bitwidth, etc).
The former only affect the training process and, therefore, the
accuracy of the resulting model. The latter, instead, strongly
impact both predictive performance and inference complexity.

This work has received funding from the Key Digital Technologies Joint
Undertaking (KDT-JU) under grant agreement No 101095947. The JU re-
ceives support from the European Union’s Horizon Europe research and
innovation programme.

Furthermore, they can be set in virtually infinite combinations,
creating an immense optimization space [5]. Exploring such
space by hand is prone to following conventional rules of
thumb and results in suboptimal outcomes [6].

Accordingly, design exploration and automated optimization
tools, generally referred to as AutoML [7] are becoming
popular to design accurate yet compact and efficient DNNs
for new applications, especially when targeting constrained
edge hardware. More specifically, Neural Architecture Search
(NAS) methods automate the search for optimal combinations
of layers and their configurations [6], whereas Mixed-Precision
Search (MPS) solutions look for the optimal data representa-
tion for each model tensor [8]. In both cases, early approaches
resorted to time-consuming black-box optimization methods
such as Reinforcement Learning (RL) and Evolutionary Al-
gorithms (EA), which required tens of GPU-days for a sin-
gle optimization [6]. More recently, gradient-based NAS and
MPS have been proposed as lightweight alternatives to these
solutions. These so-called One-shot or Differentiable methods
utilize gradient-descent to simultaneously train a DNN and
optimize its architecture, thus obtaining an optimized model
in a time comparable to a single training [9].

One key limitation of gradient-based approaches, however,
is the lack of user-friendly libraries that can be employed
by ML practitioners without experience on NAS or MPS to
optimize a DNN for their applications while ignoring imple-
mentation details. Such a library should also combine opti-
mizations targeting multiple architectural hyper-parameters, at
different granularity levels, in order to fully explore the design
space. Similar tools have been recently released both com-
mercially [10] and open-source [11], but mostly for resource-
hungry iterative (i.e., RL, EA, etc.) AutoML methods.

In this paper, we present PLiNIO, a library for Plug-and-
play Lightweight Neural Inference Optimization, which tries
to bridge this gap by providing a unified and user-friendly
domain-specific language for a diverse set of gradient-based
AutoML procedures. Namely, PLiNIO currently supports: i)
a coarse-grained NAS for selecting among alternative lay-
ers [9]; ii) a fine-grained NAS for optimizing each layer’s
internal hyper-parameters (e.g., the number of channels in a
Convolutional layer) [12]; iii) a differentiable MPS method
for selecting both weights and activation bit-widths and
quantization parameters, supporting common quantization for-
mats [13]–[15]. Since the fine-grained NAS in ii) is analogous
to structured pruning [12], PLiNIO supports three of the
most common complexity-driven DNN optimizations in the
state-of-the-art, i.e., Quantization, Pruning and NAS [2],

ar
X

iv
:2

30
7.

09
48

8v
1

 [
cs

.L
G

]
 1

8
Ju

l 2
02

3

1 model = MyNN()
2 model = plinio.Method(model, {’cost’: cost_fn}, ...)
3 for epoch in range(N_EPOCHS):
4 for sample, target in data:
5 output = model(sample)
6 loss = criterion(output, target)+model.get_cost(’

cost’)
7 optimizer.zero_grad()
8 loss.backward()
9 optimizer.step()
10 exported_model = model.export()

Fig. 1. Standard PyTorch training loop turned into a PLiNIO optimization.
The Method() call is a place-holder for SuperNet(), PIT() or MPS().

[3] under a unified API thus enabling a complete Design
Space Exploration (DSE) for DNN workloads. Furthermore,
PLiNIO’s internals are designed to support extensibility, and
we plan to integrate the library with additional gradient-based
optimizations in future releases. PLiNIO is available open-
source at: https://github.com/eml-eda/plinio.

Fig. 1 shows the modifications required to implement a
PLiNIO optimization on top of a standard training loop in
PyTorch, i.e., the DNN training framework on which our
library is based. As shown, PLiNIO only requires three method
invocations, highlighted in the figure, to convert a standard
PyTorch DNN into an optimizable model (line 2), estimate
its complexity according to one or more cost metrics during
the optimization (line 6) and export the final optimized model
at the end of the process (line 10). This interface applies to
all supported gradient-based optimizations, making them very
simple to integrate into existing codebases.

To the best of our knowledge, PLiNIO is the first library to
support gradient-based NAS, pruning and MPS in a single
unified framework. In order to demonstrate its usefulness
for DNN workloads’ DSE, we run experiments on three
edge-relevant use-cases taken from the MLPerf Tiny bench-
mark suite [16], using corresponding state-of-the-art reference
DNNs as starting point for the optimization. Our results show
that by combining all three optimizations, PLiNIO can reduce
the DNN storage size by up to 94.34% with a limited accuracy
drop (-0.92%) with respect to the reference. Noteworthy, the
final model has 78.88% fewer parameters compared to the best
one obtained applying each optimization individually.

II. BACKGROUND

A. Neural Architecture Search

NAS search algorithms can be broadly categorized into
black-box methods, such as RL and EA, and Differentiable
NAS (DNAS) or one-shot methods. The former requires three
main steps: i) sampling one or more architectures from the
search space, ii) evaluating the objective function and then iii)
updating the sampling policy. These methods can optimize
almost any function, with both accuracy- and complexity-
related terms, on a discrete search space [6]. However, they are
often intractable, mainly due to the evaluation step (ii). In fact,
evaluating the accuracy of a sampled DNN ideally requires
training it to convergence, whereas cost metrics should be
obtained directly from deployment, both of which largely
increase the search time. This is partially mitigated by the use
of “proxies” [17], such as training on a subset of the dataset or

for a few epochs [9] and using Look-up Tables [17] or other
approximate models [18], [19] for cost metrics (e.g., mem-
ory occupation, latency or energy). Still, black-box methods
remain extremely time-consuming [6], [20].

DNAS reduce the optimization time significantly by re-
laxing the search space from discrete to continuous, making
the problem suitable for gradient-descent [6]. Namely, they
define a set of architectural parameters (θ) which encode the
selection of a DNN from the search space and train them
together with the weights of the networks. When optimizing
for both functional (accuracy) and non-functional metrics, a
DNAS training loop typically uses a loss function in the form:

min
W,θ

L(W ; θ) + λR(θ) (1)

where W are the normal DNN weights, L is the task-
dependent functional loss, R is a differentiable cost estimate,
and λ is a strength hyper-parameter that controls the balance
between the two. Typical expressions for R encode the model
size (number of parameters) or inference operations (OPs) as
a function of θ, but more complex latency approximations are
also possible [17], [21] (Sec. IV-C). At the end of the search,
the θ parameters are discretized to export the final DNN.

More specifically, path-based DNAS methods [9] define a
DNN (the supernet) whose graph includes multiple alternative
paths corresponding to the possible alternative operations in
the search space. The optimization reduces to selecting one
of these paths, as detailed in Sec. IV-A1. The main issue
with this approach is that the supernet size grows quickly
with the search space, limiting scalability. Advanced methods
such as ProxylessNAS [17] and HardCoReNAS [22] solve this
sampling few paths per training iteration.

Mask-based DNAS further reduce the optimization cost by
searching only among the DNNs that can be obtained by
shrinking an initial architecture, called seed, in a way similar
to structured pruning. In particular, slices of the DNN weights
or activations tensors are coupled with binary masks, whose
continuous relaxation is trained with gradient descent. At the
end of the search, the masked parts of the seed layers are
eliminated. Thus, the search space of these methods is more
restricted w.r.t. path-based DNAS (only subsets of the seed
are explored). However, the search granularity can be much
finer. Examples of mask-mased methods are MorphNet [23],
FbNetV2 [24] and PIT [12].

B. Quantization and Mixed-precision Search
Integer quantization is a key DNN optimization, especially

at the edge, consisting in the approximation of floating point
weights and activations with low bitwidth integers, improving
both model size and efficiency [25]. While the conversion can
be done post-training [26], simulating the effect of quantiza-
tion at training time (so-called Quantization-Aware Training or
QAT) [25] can help the DNN adapt to the data approximation,
reducing the drop in accuracy.

Standard fixed-precision quantization assigns the same inte-
ger bit-width to the whole DNN, thus neglecting the sensitivity
of each layer to precision reductions. However, previous
works [13], [15] show that some layers (e.g., those close to
the input and to the output) tend to require higher precision.

https://github.com/eml-eda/plinio

Mixed-precision methods address this issue by quantizing var-
ious subsets of the DNN at different bitwidths. This creates a
new and not trivial optimization problem, i.e., finding precision
assignments that yield good trade-offs between accuracy and
complexity, exploring a search space whose size increases
exponentially with the number of considered bitwidths [27].

Various MPS approaches have been proposed to tackle this
problem, which is orthogonal to NAS. Some exploit sensitivity
metrics such as the layers’ Hessian spectrum [27] or the Signal
to Quantization Noise Ratio at different precisions [28], while
others are based on RL [8]. More recently, the authors of [13],
[15] proposed a gradient-based method similar to DNAS to
assign bitwidths during training. This is done by quantizing
data at every possible precision on-the-fly, and then learning
to select a single precision during training, similarly to [9].

III. RELATED WORKS

The need for efficient and accurate DNNs has brought a
plethora of techniques and algorithms for AutoML, including
NAS, pruning and quantization [6]. Given the very quick
innovation pace, the software ecosystem is naturally frag-
mented, with most techniques being shared as isolated and
hardly usable “research scripts”. Recently, comprehensive and
engineered tools have started to emerge, both commercially
and open-source, to tackle this problem.

Commercial tools for DNN optimization are usually inserted
in larger AutoML pipelines, which also help users with data
preprocessing and labeling, model deployment, etc, and are
commonly offered as cloud services. Some examples include
Azure Machine Learning, Google Cloud AutoML, etc. Other
providers offer similar features but target specifically con-
strained edge devices. Qeexo [29] is an example of no-code
end-to-end autoML platform for the edge, in which model
selection is performed by selecting a specific instance from a
zoo of predefined algorithms, which are then quantized at fixed
precision. Edge Impulse’s EONTuner [10] follows a similar
approach but offers more flexibility for model selection, with
the possibility to define a coarse search space (e.g., number of
convolutional/linear layers, presence of pooling, etc), searched
with hyperband or random-search.

In the open-source landscape, DL frameworks such as
Tensorflow and PyTorch support basic optimizations natively.
Namely, the TensorFlow Model Optimization Toolkit (TF-
MOT) [30] implements fixed-precision QAT, pruning, and
weight clustering, generating models compatible with the
TFLite converter and interpreter for edge devices. Likewise,
PyTorch supports different quantization and pruning tech-
niques and it exposes APIs to implement new ones [31].
Similar optimizations are also targeted by the open-source AI
Model Efficiency Toolkit (AIMET) [32].

Concerning NAS and hyperparameters optimization, one of
the first attempts to realize a user-friendly library is repre-
sented by AutoKeras [11]. This tool lets users define search
spaces or provides pre-defined ones for specific tasks such as
Image or Text Classification. It then offers different search
strategies, including hyperband and Bayesian optimization.
Neural Network Intelligence (NNI) [33] by Microsoft imple-
ments several optimization algorithms under a unified frame-

Fig. 2. SuperNet implementation in PLiNIO.

work with a common API. In particular, it supports Bayesian
and heuristic-based hyper-parameters optimization, NAS with
both iterative and gradient-based approaches, pruning, and
fixed-precision quantization. Vega [34] similarly groups in the
same codebase different NAS algorithms along with pruning
and mixed-precision assignment based on EA. To the best of
our knowledge, no existing single framework supports path-
based DNAS, mask-based DNAS, and gradient-based MPS
with a unified interface.

IV. PLINIO

PLiNIO is, to our knowledge, the first open-source tool to
support multiple gradient-based DNN optimizations, spanning
the dimensions of: i) coarse architectural choices (path-based
DNAS), ii) layer hyper-parameters optimization (mask-based
DNAS) and iii) precision selection (MPS), through a simple,
user-friendly interface. Its main scientific value is allowing to
study the combination of DSE and optimizations at different
levels, and their interactions, which may lead to superior
results with respect to any single method (see Section V).

While there exist tools with similar flexibility leveraging
at least in part black-box methods [34], an entirely gradient-
based toolchain helps to democratize research in this field,
since lightweight gradient-based methods might be the only
alternative to being forced to use third-party cloud services
for users that do not own large GPU clusters. One domain
where this is particularly relevant is TinyML [3], i.e., systems
that implement DNN inference directly on tightly constrained
mobile or IoT edge devices. Although PLiNIO can in principle
support the optimization of any DNN, regardless of its size and
of the hardware target, TinyML is in fact its primary use case.

In the rest of this Section, we first describe the three
optimization techniques currently supported by the library
(Sec. IV-A). We then detail some of the DNN graph trans-
formation passes required to implement the simple interface
of Fig. 1, hiding most complexity from the users (Sec. IV-B).
Lastly, we discuss the extensible DNN cost models supported
by PLiNIO for complexity-aware optimization (Sec. IV-C).

A. Supported Optimization Techniques

1) SuperNet: As the first DNAS, PLiNIO implements a
path-based method based on a supernet, schematized in Fig. 2.
The method is inspired by DARTS [9], but it differs by using
the Gumbel-Softmax sampling strategy, in accordance with
more recent works [19], [24], instead of the standard SoftMax
as done in [9]. The supernet is built by replacing each layer
L of a standard DNN with an ensemble of M alternatives
M = {li}M−1

m=0 . All li ∈M receive the same input, and their

Fig. 3. PIT channel-masking implementation in PLiNIO.

Fig. 4. MPS implementation in PLiNIO.

outputs are linearly combined using trainable parameters θi,
passed through a Gumbel-Softmax (GS), i.e.,:

Y =
∑
i

GS(θi) · li(X) (2)

The selection of layers is reduced to training θ, jointly with
the normal layer weights W , to minimize Eq. 1. At the end
of the training, the optimized DNN is obtained by selecting,
from each set, the alternative corresponding to the largest θi.

2) PIT: The second DNAS implemented in PLiNIO is
a mask-based approach akin to structured pruning. Starting
from a seed network, this method optimizes the main archi-
tectural hyper-parameters of Convolutional (Conv) and Fully-
Connected (FC) layers at fine grain. It extends PIT [12], which
was originally proposed to optimize the most important hyper-
parameters of 1D Conv, (i.e., number of output channels,
receptive-field, and dilation) to also support output channels
optimization for 2D layers.

Its channel-search approach is summarized in Fig. 3. Start-
ing from the seed, each Conv or FC weight tensor W , with
Cout output channels, is masked as follows:

WΘ = W ⊙H(θ) (3)

where θ is a vector of Cout trainable mask parameters, ⊙ is
the Hadamard product, and H is a Heaviside step function to
binarize θ. Each element θi masks an entire output channel
of W , controlling whether it is kept (H(θi) = 1) or removed
from the network (H(θi) = 0).

Similarly to the supernet of Sec. IV-A1, the DNN with
masked weights is inserted in a normal training loop, where W
and θ are trained together to minimize Eq. 1. During forward
training passes, the use of H has the effect of sampling of
one architecture from the search space, as shown on the right
of Fig. 3. Instead, in backward passes, a Straight-Through
Estimator (STE) [12] technique is used to ensure that gradients
flow through the non-differentiable H.

3) MPS: Fig. 4 summarizes the MPS method implemented
in PLiNIO to assign independent precision to weights W and
activations X in Conv and FC layers. The method is inspired
by [13], extended with additional quantization formats. Given
the set of supported bit-widths p ∈ P , e.g., P = {2, 4, 8},

3x3
Conv BN ReLU 5x5

Conv BN ReLU FCDW
Conv Comb Flatten

3x3
Conv BN ReLU

Id.

SuperNetModule

𝞱0

𝞱2

𝞱1

Fig. 5. SuperNet module example. Id. = Identity operation.

each tensor T (either W or X) is fake-quantized [25] at all
bit-widths. The differently quantized “variants” are linearly
combined by trainable parameter vectors θ of length ∥P∥,
normalized by means of a SoftMax function (SM). In practice,
an effective tensor is obtained as:

T̂ =
∑
p

SM(θp) · Tp (4)

where Tp is the p-bit version of T . Therefore, increasing the
value of θp causes the output tensor T̂ to resemble more
the result of p-bit quantization. Importantly, all fake-quantized
versions are derived from a single float tensor, thus minimizing
the method’s memory overhead at training time.

The effective tensors Ŵ and X̂ are then used to compute
the layer’s output, e.g.,: Y = Conv(X̂, Ŵ). As for the
other PLiNIO methods, the DNN, thus modified, is inserted
in a DNAS-like training loop to jointly optimize W and θ
according to Eq. 1.

B. Automatic Model Conversion and Export
PLiNIO lets users define the optimization input DNN as

a standard nn.Module sub-class, as in vanilla PyTorch. The
only special DNN definition construct is a new type of “layer”,
through which users can explicitly define the alternative paths
that form the search space of the method in Sec. IV-A1. The
constructor of this class, called SuperNetModule, takes as
input a list of nn.Module instances, each corresponding to
a possible optimization alternative, i.e., either a single layer
or a more complex sub-network. Fig. 5 shows an example
with three inputs, where the additional Comb node, added
automatically during the conversion, combines the various
branches through Eq. 2. This gives maximum freedom to
users, allowing them to easily consider different alternatives
for each layer rather than a fixed set of operations for the whole
DNN. Besides this, all other transformations required to make
a standard PyTorch DNN optimizable by PLiNIO occur trans-
parently, when the model is passed to a method’s constructor
(line 2 of Fig. 1). Namely, a series of conversion passes
are performed, which make extensive use of the torch.fx
toolkit, as detailed below. Fig. 6 shows an example of this
conversion for PIT on a portion of a plausible DNN graph.

1) Layer Auto-conversion: PIT and MPS are commonly
applied to all Conv and FC layers of a DNN. Thus, in this case,
PLiNIO does not require users to explicitly define optimiz-
able layers. Rather, it identifies and converts nn.Conv and
nn.Linear layers automatically (orange boxes in Fig. 6),
adding architectural masks/parameters (θ) as needed. Optional
user-specified rules, by name or type, can exclude parts of the
model from the optimization.

Flatten

3x3
Conv BN ReLU 1x1

Conv BN ReLU FCDW
Conv AddBN ReLU Flatten

1x1
Conv BN ReLU

=

=

∗ 𝐻 ∗𝑊

3x3
Conv ReLU 1x1

Conv ReLU FCDW
Conv AddReLU

1x1
Conv ReLU

BN

(a) Input DNN model

(b) PLiNIO Converted Model

𝜃! 𝜃! 𝜃"

𝜃"

𝜃#

Calc Calc Calc Calc

Calc

BN BN

BN

Fig. 6. PLiNIO auto-conversion example.

One key analysis pass performed during layer conversion is
mask sharing. In fact, for both PIT and MPS, the architectural
parameters of different layers shall not always be optimized
independently of each other. For instance, each output channel
of the DepthWise (DW) Conv layer in Fig. 6b processes a
different input channel. Therefore, if the j-th output channel
is masked by PIT based on Eq. 3, the j-th input activation map
also becomes useless, and so do the weights and computations
of the preceding 3x3 Conv layer that produced it. This is
addressed sharing the channels mask for the two layers (θA
in the figure). Similar reasoning also applies to the two 1x1
Conv layers, whose outputs converge into an element-wise
Add. MPS auto-conversion includes an analogous pass for
layers that need to share the same output activations bit-width
and quantizer parameters, such as the two Add inputs. Tools
such as EdMIPS [13] and the NAS API of NNI [33] do
not apply mask sharing automatically, producing outputs that
require further post-hoc transformations to become deployable,
possibly affecting both their accuracy and their cost.

2) Batch Normalization Folding: For PIT and MPS, another
pass folds Batch Normalization (BN) with the preceding
Conv/FC layers. For MPS, this is needed to closely mimic
a full-integer inference, which normally does not support BN,
thus improving the consistency between the fake-quantized
layers and the final integer model. For PIT, folding is required
because the zero-mean output of BN would back-propagate a
very small-magnitude gradient from the task loss term L of
Eq. 1 to the channel mask parameters of Eq. 3. Thus, the masks
gradients would be dominated by the cost term R. In other
words, the optimization would prune channels only based on
their cost and not on their impact on accuracy. PLiNIO saves
the original BN parameters in a special Conv/FC field (small
dashed squares in Fig. 6b), permitting to optionally unfold the
BN at the end of the optimization.

3) Effective Input Shape/Bitwidth Calculation: A layer’s
input tensor shape and precision greatly influence its cost. For
instance, pruning some channels from the 1x1 Conv layers
in Fig. 6b with PIT not only reduces their size/OPs, but also
affects the cost of the following FC layer, which has to process
a smaller number of inputs. As for architectural parameters
sharing, many other libraries do not account for these cost
dependencies during gradient-based optimization.

PLiNIO does so by first performing a DNN graph traversal
that associates each layer to the one(s) that determine its input
tensor shape/bitwidth. An example of the result for the chan-
nels dimension is shown by red dashed lines in Fig. 6b. The
map is created for all nodes but shown only for the orange ones
for simplicity. In practice, the static analysis pass identifies
layers that may alter the number of channels (e.g., 3x3 or
1x1 Conv) or not (e.g., DW Conv or ReLU), hierarchically
traversing user-defined nn.Modules. It then associates each
layer with its closest channel-defining predecessor. Special
cases are also dealt with, e.g., concat operations. A similar
association is also done for MPS, linking each layer with the
one that determines its input activations bitwidth.

Then, a second pass associates effective shape/bitwidth
calculator objects to each layer. The effective shape differs
from the static size of PyTorch tensors because, for example,
PIT does not actually eliminate parts of the layer but only
sets them to zero. Thus, the static shape remains unchanged
until the final DNN export, and using it to estimate a layer’s
computational cost, e.g., in terms of parameters or OPs would
lead to gross over-estimations. Effective shape calculators
(Calc), shown as small coloured rectangles in Fig. 6b for the
channels dimension, solve this issue by estimating the shape
that would be obtained by exporting the currently sampled
model as a function of the θ parameters. For example, if
a binarized θ array for a layer with Cout = 32 has 20
zeroes, then Cout,eff = 12. Clearly, layers that share the same
masks also share the calculator. Additionally, more complex
relationships are also inferred. For instance, the number of
output channels of the Flatten operation in Fig. 6b depends on
the preceding Conv through a multiplicative factor. A similar
mechanism estimates the effective input bitwidth for MPS,
since the input activations precision is relevant for estimating
the time/energy cost of a layer.

4) Final Model Export: At the end of a PLiNIO search
loop, the export() method (line 10 of Fig. 1) triggers
an opposite conversion process to output the final optimized
model as a vanilla nn.Module, that users can further train
or deploy using their existing infrastructure.

To this end, the model is cleaned up from all the support
structures added by PLiNIO, and the target layers are con-
verted back to the corresponding standard PyTorch classes.
SuperNetModule instances are replaced by the selected
branches, and the combiner node is removed from the DNN
graph. PIT target layers are replaced with a new instance of
the same type which does not include the pruned portions, and
the weights which have been preserved by the optimization
are copied to the new layer. BN is optionally unfolded. For
MPS, all layers are converted to fake-quantized versions at
the selected precision. This serves as an intermediate step
that allows us to possibly fine-tune the model before the final
integerization, which is hardware-specific [25].

C. DNN Cost Specification

PLiNIO is flexible with respect to the definition of the
DNN complexity model used for the optimization (R in
Eq. 1). Default cost metrics such as model size or number
of OPs are provided with the library, as well as more detailed

Basic HW-Aware

OPs
ISLPED22 [21] IGSC22 [15] ODiMO [35]

Multi-constraint
regularization loss

LUT-based bitwidth-
dependent MAC/cycle

Multi-accelerator model
partitioning

Params

DIANA’s Digital Accelerator Cycles Model

Conv

FC

Layer Params Model

Fig. 7. PLiNIO cost specification examples.

models for specific HW targets. Some examples, reported in
Fig. 7, include the LUT-based bitwidth-dependent MAC/cycle
model for the MPIC RISC-V processor’s vector unit of [15]
and the dataflow-aware cycles model for the accelerators
of [35]. A dictionary of cost specifications is passed to the
PLiNIO constructors (line 2 of Fig. 1), and the corresponding
cost values as a function of the optimization parameters θ
can then be retrieved using the get_cost method of the
optimizable model (line 6). We support more than one cost
specification, which the user can freely combine through any
differentiable function when computing the total loss, to allow
DNN optimization over multiple complexity dimensions, for
instance, trying to balance accuracy and latency under a size
constraint, as discussed in [21].

Cost specifications are key-value maps, associating DNN
graph patterns to differentiable PyTorch functions that estimate
the corresponding cost as a scalar. A simple example is shown
in Fig. 7 for the “params” model, and for the digital accelerator
model of [35]. The parameters passed to the cost function
include all geometrical shapes of the matched layers for PIT
and SuperNet (e.g., for a Conv., input/output channels, kernel
size, dilation, etc.), and the bit-width of all involved tensors
(inputs, weights, biases and outputs) for MPS.

User-defined cost specifications can use all or a subset of
these inputs, depending on their level of detail. Inputs use the
default naming of PyTorch (e.g., Cout is out_channels for
a Conv), to make the definition of cost metrics as orthogonal
as possible to the optimization method. It is then PLiNIO’s
responsibility to internally invoke the function with the correct
input values. For example, PIT will substitute the static Cout

with Cout,eff (θ) calculated as discussed in Sec. IV-B3. Cost
specifications also provide a default behaviour for unmatched
DNN graph portions, which is often to assume 0 cost (e.g.,
for negligible operations) or to trigger an exception.

V. RESULTS

A. Experimental Setup
We test PLiNIO on three benchmarks taken from the

MLPerf Tiny suite [16]. Namely, image classification (ICL),
visual wake word (VWW), and keyword spotting (KWS). For
each task, the suite defines a reference DNN, which we use
as seed for PIT or as blueprint to construct the SuperNet. We
create the SuperNet replacing all Conv layers of the reference
DNN with a SuperNetModule that selects between: i) a
Conv with 3× 3 filter, ii) a Conv with 5× 5 filter, iii) a DW-
separable convolution, which consists of a 3 × 3 DW Conv
followed by a 1 × 1 pointwise Conv [16] and iv) an identity
operation, to possibly skip the layer.

The ICL task is based on the CIFAR-10 dataset and the
reference DNN is a ResNet-like architecture with 8 Conv

layers. For VWW, the goal is to classify whether an input
image contains at least one person. The dataset is MSCOCO
2014 with a reference model based on MobileNetV1 with a
width multiplier of 0.25. Lastly, KWS uses the Speech Com-
mands v2 dataset. The reference architecture is a simple DW
Separable CNN (DS-CNN) [16]. For sake of space, we omitted
the least interesting MLPerf Tiny task, Anomaly Detection,
whose reference architecture is a fully-connected autoencoder
which does not offer the possibility to explore different layer
alternatives with SuperNet. PLiNIO is implemented using
Python 3.9 and PyTorch 1.13.1. We compare the results of
PLiNIO optimizations with the reference DNNs for each task.
Moreover, we compared the SuperNet and PIT results on

ICL with two similar methods taken from NNI [33] 2.10.1. All
experiments are executed on a machine with 32 GBs of RAM,
a Intel(R) Core(TM) i3-9100F CPU running at 3.60GHz, and a
Quadro P2200 GPU. We use the model size as PLiNIO’s cost
model for complexity-aware optimization (see Sec. IV-C).

B. Single NAS: PIT vs SuperNet

The results of applying PIT and SuperNet individually to the
three reference DNNs are shown in Fig. 8. Each plot shows
the reference (black square) and the optimized architectures
(coloured dots) in the accuracy vs model size. The λ in Eq. 1
was varied in the range between 1e-2 and 1e-10.

The left plot shows that, on ICL, SuperNet tends to
outperform PIT in terms of accuracy for a given storage
footprint budget. Table I reports some of the most interesting
architectures found by PLiNIO, whose memory spans from
31.6 kB to 405.08 kB and accuracy ranges from 72.9%
to 88.05%. SuperNet achieves the highest accuracy (4.02%
higher than the seed) with a memory overhead of 34.04%.
Additionally, SuperNet also achieves the greatest reduction in
memory (73.23%) without accuracy loss (+0.91%).

The middle graph shows that, on the contrary, PIT greatly
outperforms SuperNet on VWW. This is due to the large num-
ber of channels in seed layers, which creates a lot of memory-
saving opportunities for mask-based DNAS, and demonstrates
the importance of having both types of optimization in the
library. Many of the discovered architectures Pareto-dominate
the seed: PIT finds DNNs that achieve between 78.73% and
85.88% accuracy with memory between 6.24 kB and 83.55
kB. At Iso-Accuracy, we achieve a striking 97.60% memory
reduction. The SuperNet approach, while being outperformed
by PIT, is still capable of extracting architectures that are
smaller yet equally accurate than the seed.

The right plot shows the results on KWS, where PLiNIO
finds many Pareto-optimal solutions with the PIT algorithm,
spanning between 83.74% and 92.82% accuracy. Conversely,
SuperNet never outperforms the seed, a result that testifies the
goodness of the hand-tuned layer selection for this particular
reference DNN. Similar to VWW, the networks found with
SuperNet are outperformed by those found with PIT, indicating
that changing the layer types or removing some of them is not
beneficial for all tasks.

The time to complete one search epoch with SuperNet and
PIT is comparable to one training epoch of the reference DNN.
For instance, on ICL, one PIT epoch is 1.8× slower than the

Fig. 8. Application of PIT and SuperNet algorithms from the PliNIO library to three benchmarks of the MLPerf Tiny Suite.

TABLE I
BEST ARCHITECTURES OBTAINED AT ISO-ACCURACY OR MAXIMIZING ACCURACY WITH ONE BETWEEN PIT OR SUPERNET.

Task Model Algorithm Memory MMACs Accuracy Memory-Reduction Accuracy-improvement

ICL

Seed None 302.19 kB 12.5M 84.03 % n.a. n.a.

Iso-Accuracy PIT 127.35 kB 7.17M 84.45 % - 56.57 % + 0.42 %
SuperNet 80.90 kB 5.28M 84.94 % - 73.23 % + 0.91 %

Max-Accuracy PIT 242.58 kB 9.96M 86.89 % - 19.72 % + 2.86 %
SuperNet 405.08 kB 18.38M 88.05 % + 34.04 % + 4.02 %

VWW

Seed None 843.33 kB 7.49M 83.76 % n.a. n.a.

Iso-Accuracy PIT 20.04 kB 1.74M 83.45 % - 97.60 % - 0.31 %
SuperNet 239.69 kB 11.38M 83.28 % -71.27 % - 0.48 %

Max-Accuracy PIT 83.55 kB 3.3M 85. 88% - 89. 99 % + 2.12 %
SuperNet 553.52 kB 17.16M 84.27 % - 33.66 % + 0.51 %

KWS
Seed None 86.02 kB 2.66M 93.25 % n.a. n.a.

Max-Accuracy PIT 38.91 kB 1.03M 92.82 % - 54.76 % - 0.43 %
SuperNet 598.79 kB 21.0M 92.84 % + 596 % - 0.41 %

reference, whereas SuperNet takes 5× longer, due to replacing
each layer with multiple alternatives.

The left-most graph of Fig. 8 also compares SuperNet and
PIT with two similar approaches from NNI [33]. The com-
parisons are presented only on ICL for the sake of space. In
particular, SuperNet is compared with NNI’s GumbelDARTS
method (green triangle). Despite exploring the same search-
space, GumbelDARTS obtains a single optimized DNN, since
it does not support complexity-driven search. The obtained
point is strongly outperformed by PLiNIO’s SuperNet, with
4× size reduction at Iso-Accuracy. From a training-time
perspective, PLiNIO is also 11% faster than NNI. PIT, instead,
is compared with NNI’s L1NormPruner, which again supports
the same search-space. The two obtained Pareto-curves are
very similar, with PIT slightly outperforming NNI by up to
+0.64% accuracy at Iso-Memory. Further, one key drawback
of the NNI pruning is that it poorly supports complexity
awareness, only allowing users to set the sparsity of individual
layers (a knob difficult to control to achieve, for instance, a
target model size) while not supporting other cost models.

C. Combination of NAS: SuperNet → PIT

Fig. 9 depicts the results obtained by sequentially applying
the two NAS algorithms in PLiNIO. The rationale is to first
select the optimal number and type of layers with SuperNet,
then optimize each layer’s hyper-parameters at fine-grain with
PIT. In this case, the total cost is the sum of the cost of
the two optimizations. We test this on the two benchmarks
for which the Supernet approach had identified networks that
either outperformed the seed in accuracy, or achieved Iso-
Accuracy with a smaller model size, i.e., ICL and VWW.
We obtain the green curves exporting the solutions found by
SuperNet (line 10 of Fig. 1) to standard PyTorch networks
and, then, applying PIT to the SuperNet results reported in

Fig. 9. Comparison between the application of a single NAS and the
concatenation of SuperNet and PIT.

Table I. The black baseline curve is the combination of the
two Pareto fronts of Fig. 8 obtained by applying PIT (blue
curve) and SuperNet (orange curve) independently.

On both benchmarks, applying the two techniques in se-
quence results in small yet not negligible memory reductions.
For instance, on ICL, we further reduce the memory usage
by 4.5 kB for a solution matching the accuracy of the seed.
Similarly, on VWW, we add four new models to the Pareto
frontier in the 80% - 83% accuracy range. These limited
improvements are primarily due to the already optimized
nature of the seed models from MLPerf Tiny [16]. Starting
from a non-optimized DNN would make the initial SuperNet
step essential prior to the application of PIT, in order to avoid
utilizing sub-optimal layers.

D. Full Pipeline: SuperNet → PIT → MPS
Fig. 10 illustrates the significant improvement achieved by

applying MPS on top of the DNNs obtained in the previous
sections by first exporting them to standard PyTorch models
and then converting them with the plinio.MPS() auto-

Fig. 10. Comparison between MPS networks and floating point ones.

TABLE II
OPTIMIZATION OF A SEED NEURAL NETWORK WITH THE THREE

DESCRIBED NEURAL ARCHITECTURE SEARCH APPLIED IN SEQUENCE.

Model Memory MMACs Accuracy
Seed 302.19 kB 12.5M (fp32) 84.03%
SuperNet 80.90 kB (- 73.23%) 5.28M (fp32) 84.94%
PIT 76.5 kB (- 74.68%) 5.03M (fp32) 84.93%
MPS 17.09 kB (- 94.34%) 5.03M (mixed-prec) 83.11%

conversion feature. We search between 8-bit, 4-bit, and 2-bit
integer precision and use symmetric min-max quantization and
PaCT for weights and activations respectively, as in [15]. We
show results on ICL only, due to space constraints, although
MPS could be applied to all other benchmarks as well. In
the graph, the dashed black line is the global Pareto curve
obtained using SuperNet, PIT, or their combination. The red
curve contains the new points obtained by applying MPS to the
smallest architecture that matches the seed accuracy (shown
as a black triangle). Applying MPS to other Pareto-optimal
architectures would be feasible too, albeit requiring more
trainings. However, obtaining the complete best Pareto curve
is not the focus of this work, which is rather to demonstrate
the significant optimization potential unlocked by sequentially
applying all PLiNIO optimizations.

The most accurate quantized architecture found with MPS
reduces memory by 94.34% compared to the seed model, with
a marginal accuracy drop of -0.92% (83.11% vs 84.03%). In
comparison to the input of the MPS, it reduces memory usage
by 77.66% while sacrificing 1.82% in accuracy. This DNN
uses 8-bit quantization for all activation tensors and either 4-bit
or 8-bit for weight tensors. Additionally, by further reducing
the weights/activation precision of some layers, MPS identifies
several additional Pareto points. One optimization epoch with
MPS takes on average 4.3× longer compared to one reference
DNN training epoch on this benchmark.

To summarize the results, Table II shows the gains obtained
applying each PLiNIO optimization (SuperNet, PIT, and MPS)
in sequence on ICL, considering the smallest network that
outperforms the seed model (if any) or the one achieving the
highest accuracy after the optimization.

VI. CONCLUSIONS

We presented PLiNIO, an open-source library for DNN
inference optimization based on lightweight gradient-based
complexity-aware techniques, including coarse- and fine-
grained NAS, and MPS. PLiNIO exposes an extendable and
user-friendly interface that allows users to rapidly apply and
combine these optimizations to their specific use cases. With

results on different benchmarks and DNN architectures, we
have shown that PLiNIO’s optimizations, combined, can gen-
erate rich Pareto-fronts in the accuracy vs memory-footprint
space, reducing the size of a DNN by up to 94.34% at almost
Iso-Accuracy (-0.92%) with respect to the baseline.

REFERENCES

[1] A. Burrello et al., “Bioformers: Embedding Transformers for Ultra-Low
Power sEMG-based Gesture Recognition,” in 2022 DATE.

[2] D. Liu et al., “Bringing AI to edge: From deep learning’s perspective,”
Neurocomputing, vol. 485, pp. 297–320, May 2022.

[3] F. Daghero et al., “Energy-efficient deep learning inference on edge
devices,” in Hardware Accelerator Systems for Artificial Intelligence
and Machine Learning. Elsevier, 2021, vol. 122, ch. 8, pp. 247–301.

[4] J. An et al., “Chatgpt: tackle the growing carbon footprint of generative
ai,” Nature, vol. 615, no. 7953, pp. 586–586, 2023.

[5] X. Dong and Y. Yang, “Nas-bench-201: Extending the scope of repro-
ducible neural architecture search,” in ICLR 2020.

[6] C. White et al., “Neural architecture search: Insights from 1000 papers,”
arXiv preprint, arXiv:2301.08727, 2023.

[7] X. He et al., “Automl: A survey of the state-of-the-art,” Knowledge-
Based Systems, vol. 212, p. 106622, 2021.

[8] K. Wang et al., “HAQ: Hardware-Aware Automated Quantization With
Mixed Precision,” in Proc. IEEE/CVF CVPR, 2019.

[9] H. Liu et al., “Darts: Differentiable architecture search,” in ICLR, 2018.
[10] Edge Impulse, “EON Tuner,” https://docs.edgeimpulse.com/docs/edge-

impulse-studio/eon-tuner, April 26th, 2023.
[11] H. Jin et al., “Autokeras: An automl library for deep learning,” JMLR,

vol. 24, no. 6, pp. 1–6, 2023.
[12] M. Risso et al., “Lightweight neural architecture search for temporal

convolutional networks at the edge,” IEEE Trans. Comp., 2023.
[13] Z. Cai and N. Vasconcelos, “Rethinking differentiable search for mixed-

precision neural networks,” in CVPR, 2020.
[14] J. Choi et al., “PACT: Parameterized Clipping Activation for Quantized

Neural Networks,” CoRR, vol. abs/1805.0, 2018.
[15] M. Risso et al., “Channel-wise Mixed-precision Assignment for DNN

Inference on Constrained Edge Nodes,” in IEEE IGSC, 2022.
[16] C. Banbury et al., “Mlperf tiny benchmark,” in NeurIPS, 2021.
[17] H. Cai et al., “ProxylessNAS: Direct neural architecture search on target

task and hardware,” in ICLR, 2019.
[18] E. Liberis et al., “µNAS: Constrained Neural Architecture Search for

Microcontrollers,” in Proc. Workshop on ML and Sys. ACM, 2021.
[19] S. Xie et al., “Snas: stochastic neural architecture search,” in ICLR,

2018.
[20] H. Cai et al., “Enable deep learning on mobile devices: Methods,

systems, and applications,” ACM TODAES, vol. 27, no. 3, mar 2022.
[21] M. Risso et al., “Multi-complexity-loss dnas for energy-efficient and

memory-constrained deep neural networks,” in ISLPED, 2022.
[22] N. Nayman et al., “HardCoRe-NAS: Hard Constrained diffeRentiable

Neural Architecture Search,” in ICML, Jul. 2021, pp. 7979–7990.
[23] A. Gordon et al., “Morphnet: Fast & simple resource-constrained

structure learning of deep networks,” in Proc. IEEE CVPR, 2018.
[24] A. Wan et al., “Fbnetv2: Differentiable neural architecture search for

spatial and channel dimensions,” in Proc. IEEE/CVF CVPR, 2020.
[25] B. Jacob et al., “Quantization and Training of Neural Networks for

Efficient Integer-Arithmetic-Only Inference,” in CVPR, 2018.
[26] R. Banner et al., “Post training 4-bit quantization of convolutional

networks for rapid-deployment,” NIPS, vol. 32, 2019.
[27] Z. Dong et al., “HAWQ: Hessian AWare Quantization of Neural Net-

works With Mixed-Precision,” in IEEE/CVF ICCV, 2019.
[28] N. P. Pandey et al., “A Practical Mixed Precision Algorithm for Post-

Training Quantization,” Feb. 2023, arXiv:2302.05397 [cs].
[29] TDK Qeexo, “Qeexo AutoML,” https://qeexo.tdk.com, May 08th, 2023.
[30] TensorFlow, “TensorFlow Model Optimization Toolkit,” https://

tensorflow.org/model optimization, May 08th, 2023.
[31] A. Paszke et al., “Pytorch: An imperative style, high-performance deep

learning library,” 2019.
[32] Qualcomm, “AI Model Efficiency Toolkit,” https://developer.qualcomm.

com/software/ai-model-efficiency-toolkit, May 08th, 2023.
[33] Microsoft, “Neural Network Intelligence,” 1 2021. [Online]. Available:

https://github.com/microsoft/nni
[34] B. Wang et al., “Vega: Towards an end-to-end configurable automl

pipeline,” 2020.
[35] M. Risso et al., “Precision-aware latency and energy balancing on multi-

accelerator platforms for dnn inference,” arXiv:2306.05060, 2023.

http://arxiv.org/abs/2301.08727
http://arxiv.org/abs/2302.05397
https://qeexo.tdk.com
https://tensorflow.org/model_optimization
https://tensorflow.org/model_optimization
https://developer.qualcomm.com/software/ai-model-efficiency-toolkit
https://developer.qualcomm.com/software/ai-model-efficiency-toolkit
https://github.com/microsoft/nni

	Introduction
	Background
	Neural Architecture Search
	Quantization and Mixed-precision Search

	Related Works
	PLiNIO
	Supported Optimization Techniques
	SuperNet
	PIT
	MPS

	Automatic Model Conversion and Export
	Layer Auto-conversion
	Batch Normalization Folding
	Effective Input Shape/Bitwidth Calculation
	Final Model Export

	DNN Cost Specification

	Results
	Experimental Setup
	Single NAS: PIT vs SuperNet
	Combination of NAS: SuperNet PIT
	Full Pipeline: SuperNet PIT MPS

	Conclusions
	References

