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Much work has been done to understand the settling dynamics of spherical particles
in a homogeneous and stratified fluid. However, the effects of shape anisotropy on the
settling dynamics of a particle in a stratified fluid are not completely understood. To
this end, we perform numerical simulations for settling oblate and prolate spheroids in
a stratified fluid. We present the results for the Galileo number, Ga, in the range 80–250
and the Richardson number, Ri, in the range 0–10. We find that both the oblate and prolate
spheroids reorient to the edge-wise and partially edge-wise orientations, respectively, as
they settle in a stratified fluid completely different from the steady-state broad-side on
orientation observed in a homogeneous fluid. We observe that reorientation instabilities
emerge when the velocity magnitudes of the spheroids fall below a particular threshold.
We also report the enhancement of the drag on the particle from stratification. The torque
due to buoyancy effects tries to orient the spheroid in an edge-wise orientation while
the hydrodynamic torque tries to orient it to a broad-side on orientation. Below the
velocity threshold, the buoyancy torque dominates; resulting in the onset of reorientation
instability. Finally, the asymmetry in the distribution of the baroclinic vorticity generation
term around the spheroids explains the onset of the reorientation instability.

Key words: particle/fluid flow, stratified flows

1. Introduction

Particles settling in a fluid medium under the influence of gravity has historically been
a widely investigated research problem (Basset 1888; Gatignol et al. 1983; Maxey &
Riley 1983; Boussinesq 1985; Magnaudet 1997). In the past few decades, researchers
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have devoted many efforts to understanding the effects of fluid density stratification on
the settling dynamics of spherical particles, mainly motivated by geophysical applications
(Doostmohammadi, Dabiri & Ardekani 2014; Ardekani, Doostmohammadi & Desai 2017;
Magnaudet & Mercier 2020). The most notable effect of density stratification on the
motion of a spherical particle is drag enhancement. This observation has been confirmed
by experiments (Lofquist & Purtell 1984; Srdić-Mitrović, Mohamed & Fernando 1999;
Yick et al. 2009), theory (Mehaddi, Candelier & Mehlig 2018) and computations (Torres
et al. 2000; Hanazaki, Konishi & Okamura 2009b). The immediate effect of this drag
enhancement is to reduce the settling velocity of a sphere falling through a stratified fluid
under the influence of gravity, an effect which should therefore be considered in large-scale
transport models of environmental interest (Doostmohammadi et al. 2014).

Fluid stratification also modifies the flow structures around spherical particles in
interesting ways. Depending on the Reynolds number of the moving particle, Rep =
UpD/ν, and the Froude number of the flow, Fr = Up/ND, a variety of jet structures can
be observed (Hanazaki, Kashimoto & Okamura 2009a) behind a sphere with diameter
D moving vertically with a velocity Up in a stratified fluid with kinetic viscosity ν and
Brunt–Väisälä frequency N. The formation of the jet influences a variety of phenomena
in the oceans, such as the vertical movement of zooplankton and buoys used for ocean
observation. Owing to the ubiquity of the density stratification due to salinity and/or
temperature gradients in nature, e.g. in the atmosphere (Fernando et al. 2001), lakes and
oceans (MacIntyre, Alldredge & Gotschalk 1995), it is obvious that studying how the
density stratification influences the dynamics of settling/moving particles is crucial to
understanding a plethora of natural phenomenon. For example, the atmospheric pollutants
and pyroclastic particles (Cas & Wright 1987) have sizes ranging from a few µm to a few
mm with Rep in the range of O(0–1000).

In oceans, the top layer, O ≈ (1–1000) m deep, is associated with intense biological
and ecological activities which are strongly influenced by the density stratification. The
formation of algal blooms has been known to be a direct consequence of marine organisms’
interactions with density stratification (MacIntyre et al. 1995). Stratification significantly
alters the stability, interaction and nutrient uptake of organisms (Ardekani & Stocker
2010; Doostmohammadi, Stocker & Ardekani 2012; More & Ardekani 2020, 2021).
Stratification impacts carbon fluxes into the ocean by inhibiting the descent of marine snow
particles (aggregates > 0.5 mm in diameter) (Alldredge & Gotschalk 1989). Furthermore,
the vertical density stratification promotes accumulation of marine snow (Alldredge &
Gotschalk 1989) and of phytoplankton (Cloern 1984). The Rep of these marine entities is
≈ O(0–100) depending on their sizes (Naganuma 1996; Bochdansky, Clouse & Herndl
2016). The bio-convection in the oceans is an important step in the carbon cycle and is
responsible for transferring approximately 300 million tons of carbon from the atmosphere
to the oceans every year (Stone 2010; Henson et al. 2011). These observations make
it imperative to investigate the role of density stratification on the dynamics of settling
particles. However, the particles/organisms which are influenced by stratification are not
exactly spherical. They come in a variety of shapes (Smayda & Morris 1980). The most
common shapes that can be imagined are plate-like flat (Gibson, Atkinson & Gordon 2007)
or rod-like elongated (Bainbridge 1957). The extra degree of freedom introduced by the
anisotropy of the particle shape leads to an interesting settling dynamics.

Even in a homogeneous fluid, the anisotropy of the settling particle shape leads to more
convoluted phenomena like breaking of the flow axial symmetry, an oscillatory settling
path and wake instability not observed for a spherical particle (Fernandes et al. 2007; Ern
et al. 2012). The influence of the body degrees of freedom on the wake dynamics along
with the vorticity production at the body surface can explain the wake instabilities and
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Spheroid settling in a stratified fluid

their consequences for the body path (Namkoong, Yoo & Choi 2008; Ardekani et al. 2016).
Specifically, for oblate spheroids, four different states for the particle motion are observed
for Galileo number, Ga =

√
(|ρr − 1|gD3)/ν2, between 50 to 250 (Chrust 2012; Ardekani

et al. 2016) for aspect ratio, AR = 1/3. Here, g is the acceleration due to gravity, ρr is the
particle to fluid density ratio, and D is the diameter of a sphere with the same volume as the
spheroidal particle. The transition between the four states takes place at Ga ≈ 120, 210 and
240 for ρr = 1.14. On the other hand, the onset of secondary motions for prolate spheroids
occurs at a considerably lower Ga than for an oblate spheroid. The peculiar feature of
settling prolate spheroids is that they attain a terminal rotational velocity about the axis
parallel to the vertical direction in which it is falling freely for Ga > 70 in the case of
aspect ratio, AR = 3. This behaviour can be explained by the four thread-like quasi-axial
vortices appearing in the wake of a prolate spheroid (Ardekani et al. 2016). Recently,
Roy et al. (2019) have presented theoretical and experimental evidence of an orientation
transition of a fibre due to a gravitational torque that arises above a critical Reynolds
number and showed the evolution of the oblique orientation toward the broad-side on
orientation as Re increased.

Although particle shape anisotropy leads to path and wake instabilities in the settling
motion of particles in a homogeneous fluid, it does not change the steady-state settling
orientations of the particles. The spheroidal particles have been observed to settle such
that their long axis is always perpendicular to the settling direction (Feng, Hu & Joseph
1994; Fernandes et al. 2007, 2008; Ardekani et al. 2016) for Rep > 0.1. In addition, the
particles reach a constant terminal velocity when falling freely in a homogeneous fluid.
The terminal velocity depends on the Ga and the aspect ratio of the particles.

The settling dynamics of spherical as well as non-spherical particles is significantly
altered by the presence of fluid density stratification. The first notable departure from the
settling in a homogeneous fluid is the absence of a terminal velocity. This is because
stratification increases the drag experienced by the settling particles which therefore
reduces their settling speeds. In addition, increasing buoyancy leads to the deceleration
of the particle as it approaches the neutrally buoyant position and can cause oscillations in
the particle velocity depending on the strength of stratification (Doostmohammadi et al.
2014).

Recently, researchers have started exploring the effects of stratification on the settling
dynamics of anisotropically shaped particles in a stratified fluid. Most of the investigations
are limited to disks. Experiments of a disk settling encountering a stratified two-layer fluid
show that the disk reorients itself such that the long axis is perpendicular to the vertical
direction while it moves through the transition layer between the two fluids (Mrokowska
2018, 2020a,b). Further, a disk settling in a linearly stratified fluid has been observed to go
through three regimes as it settles. First, there is a quasi-steady state with the disk long axis
perpendicular to the vertical direction. Then, there is a change in the stability for the disk
orientation when it changes its orientation from long axis normal to the vertical direction
(broad-side on) to long axis parallel to the vertical axis (edge-wise). Finally, the disk settles
edge-wise at its neutrally buoyant position (Mercier et al. 2020). As concerns prolate
spheroids, we can only mention the numerical study by Doostmohammadi & Ardekani
(2014), on the settling across a density interface. Hence, we are still far from completely
understanding the settling and orientation dynamics of spheroidal shaped particles in a
stratified fluid.

From a computational point of view, tracking an oblate and a prolate spheroid is similar
but computationally, the simulations for prolate spheroids are more expensive. This is
also true in the current numerical framework which will be discussed in the following
sections. The scarcity of studies with prolate spheroids does not mean a lack of practical
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applications as elongated particles in a stratified fluid are routinely encountered in many
industries involving suspensions of particles settling under gravity, pollutant transport in
the atmosphere or water, fluidized beds and settling of marine snow or organisms in upper
ocean layers. The most common shapes that can be imagined are plate-like flat (Gibson
et al. 2007) or rod-like elongated (Bainbridge 1957).

To gain some new understanding of the problem, we numerically simulate the
free-falling motion of spheroidal particles, an oblate spheroid with an aspect ratio, AR =
1/3 and a prolate spheroid with AR = 2, in a linearly stratified fluid for different Ga and
Fr values. The aim of this effort is to investigate the possible mechanism which leads
to the orientational instability of a freely falling spheroidal object in a linearly stratified
fluid.

2. Governing equations

We present the governing equations and the solution methodology implemented to solve
them in this section. We solve the Navier–Stokes equations and the continuity equation
in terms of the perturbation velocity field and calculate the perturbation flow field
u′ = u − Up, where u is the fluid velocity field and Up is the instantaneous particle
velocity. We assume the fluid to be Newtonian and incompressible and assume the
Boussinesq approximation for the density to be valid which means we can ignore density
differences everywhere except in the gravitational body force term. These assumptions
result in the following equations, written in the reference frame translating with the particle
velocity Up:

ρf

(
∂u′

∂t
+ (

u′ − Up
) · ∇u′

)
= −∇p + μ∇2u′ + ρf (g + f ) , (2.1)

∇ · u′ = 0, (2.2)

where ρf is the density field, Up is the instantaneous particle translational velocity, p
is the pressure, μ is the fluid dynamic viscosity, g is the acceleration due to gravity.
The additional term f on the right-hand side of (2.1) accounts for the presence of
particle, modelled with the immersed boundary method (IBM). This IBM force is active
in the immediate vicinity of a particle to impose the no-slip and no-penetration boundary
conditions indirectly. In other words, the force distribution f ensures that the fluid velocity
at the surface is equal to the particle surface velocity (Up + ωp × r).

The particle motion is solution of the following Newton–Euler Lagrangian equation of
particle motion:

ρpVp
dUp

dt
=
∮

∂Vp

τ · n dA, (2.3)

d
(
Ipωp

)
dt

=
∮

∂Vp

r × (τ · n) dA, (2.4)

here, Up and ωp are the particle translational and angular velocities; ρp, Vp and Ip
represent the particle density, particle volume and the particle moment of inertia matrix; n
is the unit normal vector pointing outwards on the particle surface, while r is the position
vector from the particle’s centre; τ = −pI + μ(∇u + ∇uT) is the stress tensor and its
integration on the particle surface accounts for the fluid–particle interaction.
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Spheroid settling in a stratified fluid

Accounting for the inertia and buoyancy forces of the fictitious fluid phase inside the
particle volume and using IBM, (2.3) and (2.4) are rewritten as follows:

ρpVp
dUp

dt
≈ −ρ0

NL∑
l=1

F l�Vl + ρ0
d
dt

(∫
Vp

u dV

)
−
∫

Vp

ρf g dV + ρpVpg, (2.5)

d
(
Ip ωωωp

)
dt

≈ −ρ0

NL∑
l=1

rl × F l�Vl + ρ0
d
dt

(∫
Vp

r × udV

)
−
∫

Vp

r × ρf g dV, (2.6)

where the first two terms on the right-hand side of the equations denote the hydrodynamic
force and torque Fh and Th, respectively. The third term and the fourth term together in
(2.5) indicate the buoyancy force Fb while the third term in (2.6) indicates the buoyancy
torque Tb. More details on the numerical model can be found in Ardekani et al. (2018a)
and Majlesara et al. (2020).

The vertical variation in the fluid density can either be due to the vertical variation
in the fluid temperature or salinity or both. For this study we consider the density
stratification to arise from the fluid temperature variation. Thus, the particle sediments
in a linearly density stratified fluid with the initial vertical density stratification given
by ρ̄(z) = ρ0 − γ z. Here, ρ0 is the reference density, γ is the vertical density gradient
and z is the vertical coordinate. The fluid density increases linearly in the downward
z direction (gravity direction). The density variation across thermocline occurs due to
the vertical variation in the temperature, since ρ = ρ0(1 − β(T − T0)), where β is the
coefficient of thermal expansion, T is the temperature field and T0 is the reference
temperature corresponding to the reference density, ρ0. Thus, the initial temperature of
the background fluid is given by T̄(z) = T0 + (γ /βρ0)z. The energy equation for an
incompressible fluid flow in the frame of reference moving with the particle can be
simplified to,

∂T
∂t

+ (
u′ − Up

) · ∇T = ∇ · (α∇T) . (2.7)

Here, α is the thermal diffusivity. We split the temperature field in the linear component
and the perturbation (T

′
) as T = T̄(z) + T

′
. We solve for the temperature perturbation, T

′
,

and add it to the linear component to get the temperature field at any instance of time. (2.7)
can be rewritten in term of the temperature perturbation field, T

′
as follows:

∂T
′

∂t
+ (

u′ − Up
) · ∇(T̄(z) + T

′
) = ∇ · (α∇T

′
). (2.8)

We set α = 0 for the particle (Doostmohammadi et al. 2014) and α = ν/Pr for the fluid
phase; ν is the fluid kinematic viscosity and Pr is the Prandtl number. This is equivalent
to the insulating/impermeable/no-flux boundary condition on the surface of the particle
(Hanazaki et al. 2009b; Doostmohammadi et al. 2014) which is also true if the stratifying
agent is salt or having an adiabatic particle. We also investigate the effects of relaxing
the no-flux boundary condition on the particle surface by varying α for the particle by
changing the particle heat conductivity, k, in § 3.3.
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2.1. Dimensionless parameters and simulation conditions
Re-writing the equations in the non-dimensional form results in the following equations:

∂u
∂t

+ ((
u − Up

) · ∇)u = −∇P + 1
Re

∇2u + Ri
Re

T + f , (2.9)

∂T
∂t

+ (
u − Up

) · ∇T + u · êg = 1
ρ∗C∗

p
∇ ·

(
k∗

RePr
∇T

)
, (2.10)

∇ · u = 0, (2.11)

where, u, T and P now denote dimensionless perturbations in velocity, temperature and
pressure field. Temperature is normalized with the temperature difference of 1 equivalent
particle diameter in the gravity direction; ρ∗, C∗

p and k∗ indicate particle density, heat
capacity and heat conductivity ratio (ρr, Cpr and kr) inside the particles and are equal
to 1 in the fluid region. We investigate the sedimentation of spheroidal particles in
a quiescent but linearly density-stratified fluid with finite inertia. The details on the
numerical algorithm to solve the governing equations and validations of the numerical
tool are provided elsewhere (Ardekani et al. 2016, 2018b; Ardekani 2019) and hence not
discussed here.

The non-dimensional parameters defining the problem are described below:

(i) The Galileo number, Ga = UD/ν, with the reference velocity U defined as U =√
D|ρr − 1|g; D is the length scale corresponding to the particle size, set as the

diameter of a sphere with the same volume as that of the spheroidal particle (D =
(b2a)(1/3)); a and b denote the polar and the equatorial radius of the spheroidal
particle; Ga quantifies the relative importance of gravitational and viscous forces.

(ii) The particle Reynolds number, Rep = UpD/ν, which quantifies the relative
importance of the inertial and the viscous forces. Here, Up is the instantaneous
particle velocity so this is a non-dimensional measure of the particle settling speed.

(iii) The Richardson number, Ri = γ gD3/(Uρ0ν) = D3N2/(Uν), which quantifies the
relative importance of buoyancy and the viscous time scales; N = (γ g/ρ0)

1/2 is the
Brunt–Väisälä frequency. It is the natural frequency of oscillation of a vertically
displaced fluid parcel in a stratified fluid.

(iv) The Prandtl number, Pr = Cpμ/k, defined as the ratio of momentum diffusivity to
thermal diffusivity inside the fluid region.

(v) The particle density ratio, indicating the ratio between the particle density and the
reference density of the fluid; ρr = ρp/ρ0.

(vi) The particle heat conductivity ratio, kr = kp/kf , with subscripts p and f denoting the
particle phase and the fluid phase.

(vii) The particle heat capacity ratio, Cpr = Cpp/Cpf .
(viii) The particle aspect ratio, AR = a/b.

Finally, the characteristic time scale, τ , used to make t dimensionless is chosen to be
τ = D/U. In (2.9) and 2.10, Re is the Reynolds number which has the same definition as
the Galileo number, Ga. Please note that we use Rep to denote the instantaneous Reynolds
number of the particle which changes with time and particle location; Rep is used later for
drag calculations.

We simulate the sedimenting motion of a spheroidal shaped particle in a linearly density
stratified fluid using a three-dimensional rectangular domain of size 20D × 20D × 80D
(10D × 10D × 40D) for an oblate (prolate) spheroid with grid size equal to D/32 (D/48),
resulting in ≈ O(109) (≈ O(5 × 108)) grid points. We use periodic boundary conditions
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Figure 1. Schematic of the settling spheroidal objects in a linearly density-stratified fluid. (a) Oblate spheroid
(AR < 1) and (b) prolate spheroid (AR > 1). Here, a and b are the semi-major and the semi-minor axes. The
aspect ratio AR is given by a/b. For spherical particles AR = 1. The orientation of the particle is quantified in
terms of the polar angle θ and the azimuthal angle φ for a vector directed along the major axis of the spheroids.
The coordinate system used is shown at the top of the figures.

for the velocity field and the temperature perturbations on all the sides of the domain.
We consider an oblate particle with aspect ratio, AR = a/b = 1/3 (figure 1a) and a
prolate particle with AR = a/b = 2 (figure 1b). Since we solve the flow field in the frame
translating with the particle, the particle stays at its initial position, i.e. ([10D, 10D, 20D]
for an oblate spheroid and [5D, 5D, 10D] for a prolate spheroid). The domain sizes chosen
ensure that there is no significant interaction between the particles and its wake for the
entire parameter range explored in this study as shown in the Appendix.

Depending on the hydrodynamic torque it experiences, the particle can rotate freely.
The orientation of the spheroid is measured in terms of the polar angle θ , which is
the angle made by the major axis of the spheroid with the z-axis as shown in figure 1.
In the atmosphere, the typical value of N is 10−2 s−1 while in the ocean N is around
10−4 − 0.3 s−1 depending on the strength of density stratification (Geyer, Scully & Ralston
2008; Wüst et al. 2017). We perform simulations for Ga = 80 − 250, while we vary Ri
between 0 and 10 (or N ≈ 0.04 − 0.2 s−1), which are consistent with the typical value
of N mentioned above; Ri = 0 represents a particle settling in a homogeneous fluid with
a constant density. We fix the density ratio, ρr = 1.14 in all the cases. The temperature
inside the particle is set similar to the surrounding fluid initially, resulting in a domain
with zero temperature fluctuations at the start of the simulations.
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AR Cpr kr ρr Ga Ri Pr

1/3 1 (0, 0.001, 1) 1.14 (80, 170, 210, 250) 0–10 0.7, 7.0
2 1 (0, 0.001, 1) 1.14 (80, 180) 0–10 0.7, 7.0

Table 1. Values of relevant parameters investigated in this study.

We use Pr = 0.7 for all the simulation cases in this study except in § 3.4 where we
investigate the effect of changing fluid Pr; Pr = 0.7 corresponds to temperature stratified
atmosphere, while Pr = 7 and Pr = 700 correspond to temperature-stratified water and
salt stratified water, respectively. In a stratified fluid, a density boundary layer is present in
addition to the velocity boundary layer near the particle surface. The thickness of this
density boundary layer scales as ≈ O(D/

√
RePr). For accurate resolution of the flow

within this boundary layer, it is necessary to have at least a few grid points in it. This
imposes limitations on the maximum mesh size that can be used for the simulations.
Owing to large size of the domain, using such a fine grid becomes computationally
expensive. Hence, we use a smaller value for the Pr which enables us to resolve the
fluid flow as well as the density field in both the boundary layer and the outside. We
show in § 3.4 (in agreement with previous studies Doostmohammadi et al. 2014) that,
changing the value of Pr merely changes the magnitudes of the velocities of the objects
moving in a stratified fluid conserving the overall qualitative trends and behaviours.
Finally, it should be noted that though we use the N and Pr values corresponding to
a temperature-stratified atmosphere and water, the density ratio chosen, i.e. ρr = 1.14
is representative of particles settling in an ocean rather than in a stratified air. A
realistic ρr for atmospheric particles would be ≈ O(103) resulting in large inertial effects
and effectively subverting any governing influence of density stratification. Hence, the
simulations presented here are not intended to mimic any atmospheric phenomenon but
are intended to provide crucial insights in understanding the sedimentation of individual
particles/organisms through oceanic thermoclines. The motivation for the chosen value
of Pr is computational convenience. Table 1 summarizes the values of all the relevant
parameters investigated.

3. Results and discussion

The following subsections present the simulation results for settling spheroids in a
stratified fluid. We present the settling velocities and orientations of the spheroids for
the range of Ga and Ri investigated. We first present and discuss the results for an
oblate spheroid followed by the results for the prolate spheroid. We compare the data
from the stratified fluid case with the data from the homogeneous fluid case to better
understand the results. We use ‘broad-side on’ to indicate an orientation of the spheroidal
particles such that their broader side is horizontal, i.e. θ = 0◦ for an oblate spheroid and
θ = 90◦ for a prolate spheroid. On the other hand, ‘edge-wise’ indicates the orientation of
the particles in which their broader side is perpendicular to the horizontal direction, i.e.
θ = 90◦ for an oblate spheroid and θ = 0◦ for a prolate spheroid.

3.1. Settling dynamics of an oblate spheroid in a stratified fluid

3.1.1. Fluid stratification slows down and reorients a settling oblate spheroid
This subsection presents the simulation results for an oblate spheroid with AR =
1/3 settling in a stratified fluid. The oblate spheroid starts from rest in an initially
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Figure 2. Settling dynamics of an oblate spheroid (AR = 1/3) with Ga = 210 in a homogeneous fluid (Ri =
0) and a stratified fluid with different Ri values: (a) settling velocity evolution, (b) spheroid orientation evolution
vs time. The insets in both the figures show the initial oscillations with decreasing amplitudes in the velocity and
orientation of the spheroid. The oblate spheroid attains a steady-state terminal velocity and oscillates about the
broad-side on orientation in a homogeneous fluid after the initial transients. Stratification leads to a reduction
in the spheroid velocity and a continuous deceleration of the spheroid velocity until it stops. The magnitude
of the deceleration increases with stratification. In addition, the steady-state orientation of the oblate spheroid
changes from broad-side on (i.e. θ = 0◦) in a homogeneous fluid to edge-wise (i.e. θ ≈ 90◦) in a stratified fluid.
The transition in the orientation starts once the magnitude of the dimensionless spheroid velocity drops below
a particular threshold. Here, |Up/U| < 0.15. The onset of transition in the spheroid orientation is denoted by
dotted horizontal line in (a) and yellow stars in (b).

quiescent fluid. The spheroid velocity then evolves depending on the hydrodynamic and
buoyancy forces acting on it as the flow evolves. We initialize the orientation of the oblate
spheroid such that θ = 90◦ or in edge-wise orientation. In a homogeneous fluid, the oblate
spheroid accelerates and attains a terminal velocity after the initial transients (which are
due to the oscillations in the spheroid orientation) as shown in figure 2(a). In addition,
as the oblate spheroid accelerates, it topples from its initial edge-wise to a broad-side
on orientation. However, due to its inertia and periodic shading of hairpin-like vortex
structures from alternate edges (Ardekani et al. 2016), it oscillates around the broad-side
on (θ = 0◦) orientation. So, for Ga = 210, an oblate spheroid settles in an oscillatory
orientation about θ = 0◦, as shown in figure 2(b) for Ri = 0. The oscillations are not
present at lower Ga (< 120) (Ardekani et al. 2016).

Introducing density stratification in the fluid significantly changes the settling dynamics
of an oblate spheroid. This is shown in figure 2 for Ga = 210 and various Ri as well as in
figure 3 for Ri = 3 and various Ga values. As the oblate spheroid sediments in a stratified
fluid, it moves from a region with lighter fluid into a region with heavier fluid. As a result,
it experiences an increasing buoyancy force which essentially opposes its settling motion.
Hence, the particle cannot attain a steady-state terminal velocity. This phenomenon is
clearly depicted in figures 2(a) and 3(a) where the particle velocity decreases continuously
after the initial transients. The suppression of the fluid flow due to the tendency of the
displaced iso-density difference surfaces (isopycnals) to return to their original locations
is another reason for the reduction in the particle velocity (see the detailed discussion in
§ 3.1.3 and figure 8).

An increase in the stratification strength of the background fluid increases the magnitude
of the particle deceleration. This is expected as the magnitude of the buoyancy force
experienced by the particle increases with the fluid stratification. As a result, the particle
stops at earlier times for increasing Ri values as shown in figure 2(a). Another consequence
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Figure 3. Settling dynamics of an oblate spheroid in a stratified fluid and Ri = 3 with different Ga values:
(a) settling velocity, (b) spheroid orientation evolution vs time. The insets show the initial oscillations with
decreasing amplitude. The oblate spheroid attains a steady-state terminal velocity and orientation (broad-side
on, θ = 0◦) in a homogeneous fluid. Stratification leads to a reduction in the spheroid velocity and a continuous
deceleration of the spheroid velocity until it stops. The magnitude of the deceleration decreases with increasing
the particle inertia. In addition, the steady-state orientation of the oblate spheroid changes from broad-side
on (i.e. θ = 0◦) in a homogeneous fluid to broad-side perpendicular (i.e. θ ≈ 90◦) in a stratified fluid. The
transition in the orientation starts once the magnitude of the dimensionless spheroid velocity drops below a
threshold. Here, |Up/U| < 0.15. The onset of transition in the spheroid orientation is denoted by the dotted
horizontal line in (a) and the yellow stars in (b).

of this increased opposition to the settling motion is the reduction in its peak velocity when
increasing the stratification as shown in figure 2(a). In addition, as the Ga of the particle
increases for a fixed Ri, the magnitude of deceleration decreases as shown in figure 3(a).
This is because of the increase in the inertia of the particle with Ga.

A closer comparison between the time histories of the velocity and orientation reveals
that, the onset of reorientation of the oblate spheroid is connected to the reduction of the
settling velocity below a certain threshold. From the simulation data, we observe that, the
reorientation starts once the magnitude of the dimensionless velocity of the particle falls
below ≈ 0.15. This is indicated by a horizontal dashed line in the velocity evolution plots
and a star in the spheroid orientation evolution plots (see figures 2 and 3). This observation
is consistent with the experimental and numerical study on the orientation of a settling disk
in a stratified fluid by Mercier et al. (2020). Since stratification leads to a reduction in the
particle velocity, an oblate spheroid eventually settles in an edge-wise orientation. This is
because after a long enough time, the particle velocity goes below the threshold velocity
for the onset of reorientation in a stratified fluid.

We quantify the effects of fluid density stratification on the peak velocity of the
particles in figure 4(a). We define the peak velocity as the maximum velocity achieved
by the particles as it settles. We observe that the peak velocity decreases monotonically
with the fluid stratification strength and increases with increasing Ga. Also, the relative
decrease in the peak velocity for the lowest to the highest stratification strengths explored
reduces with the Reynolds number. For Ga = 80 it decreases by ≈ 20 % while for
Ga = 250 it decreases by ≈ 6 %. This is due the increase in the strength of the inertial
effects as compared with the stratification effects with increasing Ga at fixed Ri. As
concluded from figures 2(a) and 3(a), increasing the stratification strength or reducing
the inertia of the particle moves the onset of the reorientation instability to an earlier time.
Figure 4(b) shows the effect of changing particle Ga and Ri on the time for the onset of
reorientation instability. We observe that, the time ((t/τ)threshold) at which particle velocity

929 A7-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

83
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.836


Spheroid settling in a stratified fluid

(a) (b)

0.6 0

500

400

300

200

100

1.4

1.2

1.0

0.8
Ga = 80

Ri 

Ga = 170

Ga = 210

Ga = 250

Ga = 80

Ga = 170

Ga = 210

Ga = 250

54321

Ri 
543210

(U
p(

t)/
U

) pe
ak

(t/
τ)

th
re

sh
ol

d
Figure 4. Effect of inertia and stratification strength on (a) the peak velocity, (Up(t)/U)peak, of a settling oblate
spheroid with AR = 1/3. The peak velocity attained by the particle decreases stratification and increases with
increase in particle inertia, and (b) the time ((t/τ)threshold) at which |Up(t)/U| < 0.15. The dashed line in (a)
is a guide to the eye. The dotted line in (b) is the (t/τ)threshold = A ∗ Ri−1 fit with A = 153.7, 310.5, 384.8 and
455.5 for Ga = 80, 170, 210 and 250, respectively.

falls below the threshold velocity for the onset of reorientation instability decreases as
O(Ri−1).

3.1.2. Disappearance of oscillatory paths of settling oblate spheroid
An oblate spheroid settling in a homogeneous fluid exhibits four distinct trajectories
depending on its Ga (Ardekani et al. 2016). An oblate spheroid with AR = 1/3 falls in a
straight line with an axisymmetric wake for Ga � 120. Increasing Ga further eliminates
the axisymmetry and introduces oscillations in the settling path. The path is fully vertical
with periodic oscillations for Ga � 210. A weakly oblique oscillatory state motion is
observed in the range 210 � Ga � 240 whereas for Ga � 240 the particle path becomes
chaotic with patterns of quasi-periodicity. These four states of motion can be explained by
the wake instabilities behind a settling oblate spheroid (Ardekani et al. 2016) similar to the
wake instabilities behind a settling disk (Magnaudet & Mougin 2007; Yang & Prosperetti
2007; Ern et al. 2012).

Stratification significantly alters the settling paths of an oblate spheroid. In particular, it
completely annihilates the oscillatory trajectories experienced by a settling oblate spheroid
at Ga � 120 as shown in figures 5(b), 5(c) and 5(d). Comparing the trajectories at different
non-zero Ri for various Ga in figure 5 shows that an oblate spheroid experiences a
qualitatively similar trajectory (after the initial transients which will be absent if we
initialize the oblate spheroid with the broad-side on orientation) irrespective of its Ga
and Ri. The settling path can be divided into three regions.

Initially, as the spheroid accelerates from rest, it sediments approximately in a straight
line until its velocity approaches the threshold for the reorientation onset. We call this
region I. In region II, the oblate spheroid starts reorienting due to the onset of the
reorientation instability. This induces a non-zero horizontal velocity component in the
settling of an oblate spheroid. As a result, the particle moves in the horizontal direction,
breaking the straight line motion and getting deflected in the transverse direction. This
region can also be identified in the settling velocity of the oblate spheroid. The settling
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Figure 5. Trajectories of an oblate spheroid with AR = 1/3 in a homogeneous and a stratified fluid for
different Ga and Ri; (a) Ga = 80, (b) Ga = 170, (c) Ga = 210, (d) Ga = 250 and (e) a schematic summarizing
the settling velocity, particle trajectory and the orientation in the three zones identified in the settling motion of
an oblate spheroid in a stratified fluid. Left vertical axis and bottom horizontal axis indicate spheroid position
(solid line is the settling trajectory). Right vertical axis and top horizontal axis are for particle settling velocity
vs time (dashed line is the settling velocity).

velocity attains a temporary plateau after it falls below the threshold for reorientation.
During this time, the oblate spheroid experiences reorientation from broad-side on to
edge-wise and gets deflected in the horizontal direction. This horizontal deflection has
previously been observed for disks (Mrokowska 2018; Mercier et al. 2020; Mrokowska
2020a). This region ends when the reorientation is over and the settling velocity increases
momentarily as can be seen in figure 2(a). Finally, in region III, as the particle comes
close to its neutrally buoyant position, its velocity quickly decelerates and stops which
is indicated by the reversal of the horizontal trajectory at the end of the settling path in
figure 5. These settling trajectories and regions are similar to those observed for a disk
in a stratified fluid (Mercier et al. 2020). However, we do not observe any change in the
orientation of an oblate spheroid from edge-wise at the end of region III as observed for a
disk (Mercier et al. 2020). This is most likely because of the ideal conditions in simulations
as opposed to experiments. Figure 5(e) summarizes the three regions of the settling path
of an oblate spheroid in a stratified fluid along with their onset conditions on the settling
velocity evolution plot.

3.1.3. What causes deceleration and reorientation of an oblate spheroid in a stratified
fluid?

In the case of disk-like bodies settling in a homogeneous fluid, the path instabilities as
described in the last subsection can be explained by the wake instabilities (Magnaudet &
Mougin 2007; Yang & Prosperetti 2007; Ern et al. 2012). Therefore, analysing the wake
vortices can provide insight into the mechanisms leading to a particular type of motion in
either a homogeneous or a stratified fluid. For an oblate spheroid settling in a homogeneous
fluid, a single toroidal vortex attached to the particle is initially formed. This is similar to
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(a) (b) (d) (e)(c)

Figure 6. Dimensionless iso-surfaces of Q-criterion (Q = 1/2
(||Ω||2 − ||S||) where S = 1/2

(∇u + ∇uT)
is the rate of strain tensor and Ω = 1/2

(∇u − ∇uT) is the vorticity tensor) equal to 5 × 10−4 for an
oblate spheroid with AR = 1/3, Ga = 80 and Ri = 5 at equal time intervals of t/τ = 10.74 starting from
t/τ = 18.78. These contours show the evolution of vortices. The vortical structures identified by the positive
Q-criterion are associated with a lower pressure region behind the particle.

a spherical particle moving with a steady velocity in a homogeneous fluid. As time passes,
instabilities develop and the particle starts rotating around one of its major axes, normal to
the direction of gravity, as shown in figure 2(b). As the angle of the oblate spheroid with
respect to the horizontal axis increases, a part of this toroidal vortex detaches from the
particle in a hairpin-like structure (Ardekani et al. 2016). Vortices are associated with low
pressure regions rather than the ambient. So, as a result of the detachment of the toroidal
vortex, the oblate spheroid experiences a torque due to the formation of this low pressure
region behind it which directly opposes the rotation of the particle in the other direction.
Owing to inertia, the particle then rotates in the other direction. New hairpin vortices keep
detaching from the oblate spheroid alternatively from either side as it settles, leading to
periodic changes in the orientation and oscillatory paths (Ardekani et al. 2016).

The situation is completely different in the case of an oblate spheroid settling in a
stratified fluid. This is due to the fact that stratification suppresses the vertical motion of the
fluid (Ardekani & Stocker 2010; Doostmohammadi et al. 2014; More & Balasubramanian
2018 as shown by the isopycnals in figure 8) and prevents the particle from attaining
any steady-state speed. As a result, there is no mechanism which can lead to periodic
vortex shedding as described above. Conversely, we observe two toroidal vortices, one
attached to the particle and one detached from the particle, as shown in figure 6. Once the
particle velocity falls below the threshold velocity for reorientation, the detached vortex
is asymmetric and does not oscillate from one side to the other unlike the case of an
oblate spheroid sedimenting in a homogeneous fluid. As a result, there is a consistent low
pressure region behind the oblate spheroid which predominantly remains on one side. This
results in a torque on the particle which reorients it until it reaches its neutrally buoyant
position. Eventually, as the oblate stops, the torque acting on it also vanishes and it stops
in the edge-wise orientation.

To make this point clear, we measure the forces and torques acting on the spheroid.
As shown in the methodology section, the force (torque) acting on the spheroid can be
split into two components ((2.5) and (2.6)): (i) F h (T h) , arising from the hydrodynamic
stresses acting on the particle surface, denoted as the hydrodynamic force (hydrodynamic
torque), and (ii) F b (T b), arising from the buoyancy or the density disturbance at the

929 A7-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

83
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.836


R.V. More, M.N. Ardekani, L. Brandt and A.M. Ardekani

t/τ
0 10 20 30 40

F z(
–
)

=
F h,

z(
–

–
)

+
F b,

z(
..
.)

–0.5

0

0.5

1.0 Ri = 0

Ri = 1

Ri = 5

Ri = 10

0.02

0.01

–0.01

–0.02

0

0 10 20 30

5.0

2.5

–2.5

–5.0

0

ωP,x

ω
P,

x

|Th,x|
Th,x
Tb,x
Tx=Th,x + Tb,x

Up(t)/U < threshold for reorientation

Tb,x(destabilizing) > |Th,x|(stabilizing)

Tx

t/τ

(a) (b)

Figure 7. (a) Forces acting on the oblate spheroid with Ga = 80 as it settles in a stratified fluid with varying Ri
shown with different colours. The total force (solid line) can be split into two components, the hydrodynamic
component (dashed line) and the buoyancy component (dotted line). (b) The x-component of the torque acting
on the oblate spheroid with Ga = 80 as it sediments in a stratified fluid with Ri = 5 along with the x-component
of the angular velocity. The net torque (solid line) is split into two components, the hydrodynamic torque (dotted
line) which tries to orient it in a broad-side on orientation (hence stabilizing) and the buoyancy component
(dashed-dotted line) which is destabilizing and tries to reorient it in a edge-wise orientation. The reorientation
starts once the magnitude of hydrodynamic torque falls below the buoyancy torque which happens when the
particle velocity falls below the threshold for reorientation as discussed in § 3.1.1.

particle surface, denoted as the buoyancy force (buoyancy torque). The reason behind
the deceleration of the spheroid and its reorientation becomes clear by looking at the
z-component of the forces and the x-component of the torques acting on the spheroid
shown for an oblate spheroid with AR = 1/3, Ga = 80 and Ri = 5 in figure 7.

Initially, the density difference between the particle and the local surrounding fluid
results in a high buoyancy force (high Fb,z) on the spheroid resulting in its acceleration
(negative Fz at the initial t/τ in figure 7a). As the spheroid accelerates, the magnitude of
the hydrodynamic drag increases (Fh,z increases) and the buoyancy force decreases in a
region with increasing fluid density. Hence, the spheroid accelerates until the magnitude
of the hydrodynamic drag becomes larger than the buoyancy force (Fh,z > Fb,z), at which
point it attains the maximum velocity. The buoyancy force is unable to overcome this
increasing hydrodynamic drag which leads to the deceleration of the spheroid (Fz > 0
meaning the net force acting on the spheroid is in the opposite direction to its motion).
Eventually, as the particle reaches its neutrally buoyant position, it stops as there is no
net force acting on it. In a homogeneous fluid, i.e. Ri = 0, the buoyancy force acting
on the particle is constant, Fb,z = (ρp − ρf )Vpg and the hydrodynamic drag balances the
buoyancy force at steady state, resulting in a constant terminal velocity.

To understand the reason behind the reorientation, we plot the x-component of the
torques acting on the spheroid in figure 7(b). Initially, as the particle accelerates, it
topples from edge-wise orientation to a broad-side on orientation because of the increasing
magnitude of the hydrodynamic torque (Th,x) compared with the buoyancy torque (Tb,x).
Because of inertia, Th,x changes sign and the oblate oscillates about its broad-side on
configuration. This is shown by the oscillating Th,x and ωp,x in figure 7(b) at initial times.
Meanwhile, the buoyancy torque (Tb,x) increases gradually and is always > 0, which leads
to dampening of the oscillations of the oblate spheroid about the broad-side on orientation
as can be seen from the diminishing magnitude of the rotational velocity in figure 7(b).

The spheroid keeps oscillating about the broad-side on orientation as long as the inertial
effects (or Th,x) are stronger than the buoyancy effects (or Tb,x). However, as the spheroid
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decelerates, inertial effects start to weaken. In addition, the isopycnals resist further
deformation as will be explained below. As the spheroid velocity falls below the threshold
for reorientation (Up(t)/U < 0.15), the destabilizing buoyancy torque dominates over the
stabilizing hydrodynamic torque, i.e. Tb,x > |Th,x|. This transition in the dominating torque
is demarcated by a dotted vertical line in figure 7(b) which also corresponds to the time
when Up(t)/U < 0.15. As a result, the spheroid stops oscillating about the broad-side on
orientation and starts to reorient to the edge-wise orientation since Tb,x > |Th,x| implies
a net positive torque on the spheroid which results in a net positive rotational velocity
(ωp,x > 0) as shown in figure 7(b). In a homogeneous fluid, the buoyancy/baroclinic torque
is absent. Hence, the inertia and Th acting on the spheroid results in a broad-side on
orientation at steady state. The competition between the stabilizing hydrodynamic torque
and the destabilizing buoyancy torque can be understood by looking at the flow field and
the isopycnals around the spheroid as it sediments, as discussed below.

The equation for the vorticity, ω, can be obtained by taking the curl of the momentum
equation (2.1)

ρf
Dω

Dt
= (ω · ∇) u + μ∇2ω − g∇ρf × k̂. (3.1)

The last term on the right-hand side of (3.1), i.e. ωg = −g∇ρf × k̂, is the vorticity
generation due to the displacement of isopycnals caused by the settling motion of the
particle. This term is also known as the baroclinic vorticity generation. This contribution
arises due to the misalignment of the density gradient with the direction of gravity. This
term will be exactly 0 in a homogeneous fluid. This contribution is thus specific to particles
sedimenting in a stratified fluid as the vorticity around the particle is very different in a
homogeneous and a stratified fluid (Doostmohammadi et al. 2014).

We plot the x-component of the baroclinic vorticity generation, ωg, in the yz plane
around a settling oblate spheroid in figure 8. This term reveals the reason behind the onset
of instability and the reorientation of an oblate spheroid in a stratified fluid. Initially this
vorticity generation term is symmetric with a thin region of zero ωg separating regions of
positive and negative baroclinic vorticity (blue and red regions in figure 8) exactly along
the centreline of the spheroid. We call this the plume of zero baroclinic vorticity or ‘the
plume’ for simplicity. The plume also acts as the axis of symmetry for ωg. We call the point
at which the plume intersects the particle surface as the origin of the plume. A vertically
straight plume with its origin on one of the centrelines of the oblate signifies a symmetric
ωg around the particle.

As the particle settles and slows down, the oblate spheroid topples from an edge-wise
to broad-side on orientation due to inertial effects. Since the particle is accelerating, the
vorticity generation region expands as the isopycnals deform in the long wake behind the
particle until it reaches the peak velocity. After reaching the peak velocity, the particle
decelerates due to increasing buoyancy effects because of the tendency of the displaced
isopycnals to return to their original levels, as shown by the evolution of isopycnals in
figure 8. As a result, the region of vorticity generation shrinks. The origin of the plume
shifts along the longer face of the oblate towards the other end as it oscillates about the
broad-side on orientation.

As the inertial effects decrease with the particle deceleration, the oscillations of the
oblate spheroid about the broad-side on orientation are dampened. The isopycnals that
were deformed earlier (in the wake of the particle) do not completely return to their
original form, thus opposing further deformation as the oblate particles tries to oscillate.
Hence, the oscillations die out. This prevents the origin of the thin plume from shifting
completely to the middle of the spheroid, thus preventing ωg to become symmetric.
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Figure 8. Evolution of the x-component of the dimensionless baroclinic vorticity generation term due to
the misalignment of the density gradient vector with the direction of gravity, ∇ρf × k̂, in the x = 0 plane
for an oblate spheroid with AR = 1/3, Ga = 80 and Ri = 5. For clarity, the colour bar for the baroclinic
vorticity generation is shown only in (o). The solid lines indicate dimensionless isopycnals or equal density
lines separated by a value of 0.5. Darker shade of grey indicates a higher density. The panels are snapshots
(a–o) at specific time intervals with t/τ = 0, 2.69, 8.06, 13.43, 18.8, 24.17, 29.54, 34.91, 40.28, 45.65, 51.02,
56.39, 61.76, 67.13 and 107.4. Panel (a) shows the initial configuration and panel (o) the settling configuration
after the oblate reorients in the edge-wise orientation.

Since the origin of the plume is not at the centre of the oblate, the generated vorticity
field is asymmetric. The origin of the plume does not cross the centre of the spheroid and
remains on one side. In addition, because of the reduced inertia, there is no mechanism
to keep the spheroid oscillating about the horizontal. Thus, the ωg distribution around the
oblate remains asymmetric. This results in the onset of instability in the oblate orientation
as the origin of the plume tries to return to its earlier position on the spheroid, i.e. on the
edge. The net torque on the oblate spheroid slowly reorients it to the edge-wise orientation
(figure 7b). The same process will occur irrespective of the initial orientation of the oblate
spheroid which will eventually reorient in the edge-wise orientation.

3.1.4. Drag enhancement due to stratification
In the previous section, we discussed the reasons behind the decrease in the settling
velocity of the particle as it settles into a heavier fluid. Here, we quantify the effect of fluid
stratification by calculating the added drag due to stratification as the particle sediments.
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It has been shown in previous studies on spheres and disks that the stratification results in
a significant additional drag on the settling particle (Yick et al. 2009; Doostmohammadi
et al. 2014; Mercier et al. 2020). The aim of this section is to provide an idea regarding the
relative magnitudes of stratification induced drag and the hydrodynamic drag as particles
settle in a stratified fluid. The results obtained here can be used for modelling the added
stratification drag on spheroids in real-life situations such as suspensions of spheroids in a
stratified fluid.

There are three main contributions to the total force acting on the particle as it settles in a
stratified fluid (Doostmohammadi et al. 2014). First, the viscous and pressure forces due to
the current motion of the particle (hydrodynamic drag). Second, the buoyancy force caused
by the perturbations in the temperature field due to the particle motion (stratification
drag). Thirdly, the combined effect from added mass and history forces which have been
observed to be negligible with respect to the first two contributions for a sphere settling
in a stratified fluid (Doostmohammadi et al. 2014). To calculate the stratification drag,
we assume that the oblate spheroid undergoes a quasi-steady settling. This means that
the buoyancy and the hydrodynamic contributions to the total force are instantaneously
balanced (Mercier et al. 2020). Owing to the quasi-steady assumption we neglect the added
mass and the history effects which are anyway smaller than the buoyancy and the drag
force (Doostmohammadi et al. 2014; Mercier et al. 2020). The stratified drag coefficient
can be defined as (Yick et al. 2009)

CS
D = 2 (ρP/ρ(z) − 1) gD

U2
P(z)

. (3.2)

Here, ρ(z) and UP(z) are the unperturbed background density and the particle velocity at
the instantaneous particle location z. Hence, various dimensionless parameters also vary
with z and can be written as a function of the instantaneous particle location as

ρr(z) = ρP/ρ(z), (3.3)

Rep(z) = |UP(z)|D
ν

, (3.4)

Fr(z) = |UP(z)|
ND

. (3.5)

Here, Fr(z) is the instantaneous Froude number which can also be written as Fr(z) =√
Rep(z)/Ri. Please note that Ri remains constant irrespective of the particle speed and

location.
For spheroids in a homogeneous fluid, we use the following correlation for the drag

coefficient (CH
D ) which is valid in the range 1 ≤ Rep ≤ 200 and 0.4 ≤ AR ≤ 4 (Kishore

& Gu 2011):

CH
D = 24AR0.49

Rep(z)

(
1.05 + 0.152Rep(z)0.687AR0.671

)
. (3.6)

Figure 9 presents the variation in the added drag due to stratification (CS
D − CH

D ) for
different stratification strengths (figure 9a) and different Ga (figure 9b). As the particle
starts from rest, it accelerates initially and Fr(z) increases. As the particle accelerates, the
stratification drag acting on it decreases and hence CS

D − CH
D decreases. This is expected

as the inertial effects dominate in the initial phase of the settling until the particle attains
a peak velocity. Hence, CS

D − CH
D reaches a minimum when the particle attains its peak

velocity.
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Figure 9. Added drag due to stratification, CS
D − CH

D , for an oblate spheroid with AR = 1/3 as a function
of the instantaneous particle Froude number, Fr(z), for (a) Ga = 210 and different stratification strengths. (b)
Added drag for Ri = 3 for different Ga. The arrows show the direction of increasing time and the filled dots
show the simulation start time. The dashed pink line shows the −4 power line to indicate a Fr(z)−4 scaling of
CS

D − CH
D .

Once the particle reaches its peak velocity, it starts to decelerate as the buoyancy and
stratification effects start to dominate over the inertial effects. As a result, the stratification
drag starts to increase again. The difference, CS

D − CH
D scales as Fr(z)−4 as shown in

figure 9 and increases with increasing Ga (figure 9b). These calculations for drag show
that the stratification drag can be 1 − 5 orders of magnitude higher than the hydrodynamic
drag and hence it is crucial to include it in calculations for when we have suspensions of
particles in a stratified fluid. The calculations show that the extra contribution to the total
drag varies as Fr−4, a simple expression which can be used for modelling the effect of
stratification on the particle motion in practical applications.

3.2. Settling dynamics of a prolate spheroid in a stratified fluid
Similar to the case of an oblate spheroid, we report the simulation results on the settling
dynamics of a prolate spheroid with AR = 2 in a stratified fluid. We present the results
for the settling dynamics in a homogeneous fluid as well for comparison.

3.2.1. Fluid stratification slows down and partially reorients a settling prolate spheroid
Figure 10 shows the settling velocity of a prolate spheroid with AR = 2 in a homogeneous
and stratified fluid with different stratification strengths for Ga = 80 and 180. The prolate
spheroid starts from rest in an initially quiescent fluid. It then accelerates to reach a
maximum velocity depending on its Ga and Ri. In a homogeneous fluid, i.e. Ri = 0, the
prolate spheroid reaches a terminal settling velocity as shown in figures 10(a) and 10(b).

The stratification has the same effect on the settling velocity of a prolate spheroid
as it has on an oblate spheroid. In particular, the stratification causes a continuous
deceleration of the settling velocity after the initial transients. In addition, the settling
velocity magnitude reduces with the stratification strength for prolate spheroids with same
Ga. The reasons behind these observations are the same as discussed in § 3.1.1 and are
discussed briefly in § 3.2.3 and figure 15.

To study the effect of stratification on the particle orientation, we initialize the prolate
spheroid in an edge-wise orientation, i.e. θ = 0◦. In a homogeneous fluid, we find that,
it eventually settles down in a broad-side on, i.e. θ = 90◦ orientation, once it attains its
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Figure 10. Time evolution of the settling velocity of a prolate spheroid with AR = 2 in a homogeneous fluid
(Ri = 0) and a stratified fluid with different Ri: (a) Ga = 80, (b) Ga = 180. Evolution of the prolate orientation
for AR = 2 in a homogeneous fluid (Ri = 0) and a stratified fluid with different Ri: (c) Ga = 80, (d) Ga = 180.
The inset in (b) shows the initial oscillations with decreasing amplitudes in the velocity and orientation of the
spheroid. The prolate spheroid attains a steady-state terminal velocity and orientation (broad-side on) in a
homogeneous fluid. Stratification leads to a reduction in the spheroid velocity and a continuous deceleration of
the spheroid velocity until it stops. The magnitude of the deceleration increases with stratification. The onset of
reorientation given by |Up/U| < 0.15 and is denoted by a dotted horizontal line in (a,b) and correspondingly
by yellow stars in (c,d).

terminal velocity. However, similar to the case of an oblate spheroid, fluid stratification
significantly changes the settling orientation as shown in figures 10(c) and 10(d).

As the prolate spheroid accelerates from rest, it topples from an edge-wise orientation
to a broad-side on orientation. However, this orientation is stable only in a homogeneous
fluid. In a stratified fluid, once the velocity magnitude falls below a particular threshold
(we find that to be ≈ 0.15), the prolate spheroid starts to reorient. However, we observe
that, unlike an oblate spheroid, it can only reorient partially, i.e. it does not exactly go
back to θ = 0◦. The final settling orientation depends on the stratification strength and the
Reynolds number. This becomes clear when examining the final orientations at Ga = 80
and Ga = 180 for increasing stratification strengths in figures 10(c) and 10(d). At low
Re, i.e. Ga = 80, the prolate spheroid reorients almost completely at high stratification
(Ri = 10) such that θ ≈ 0◦ at the final times. However, for a lower stratification strength,
i.e. Ri = 5, it reaches a final orientation of θ ≈ 30◦. At a higher Ga, i.e. Ga = 180, the final
orientation is θ ≈ 22◦ and θ ≈ 35◦ for Ri = 10 and Ri = 5, respectively. Thus, the final
orientation angle increases if we increase Ga at fixed Ri, i.e. final orientation progressively
leaves the edge-wise orientation (θ = 0◦).

Next, we quantify the effects of fluid density stratification on the peak velocity of the
prolate spheroid (see figure 11a). The results are similar to the case of an oblate spheroid.

929 A7-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

83
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.836


R.V. More, M.N. Ardekani, L. Brandt and A.M. Ardekani

(b)(a)

0.6

1.6

1.4

1.2

1.0

0.8

Ri 
0 108642

Ri 
108642

(U
p(

t)/
U

) pe
ak

(t/
τ)

th
re

sh
ol

d

100

80

60

40

20

0

Ga = 80

Ga = 180

Ga = 80

Ga = 180

Figure 11. Effect of inertia and stratification strength on (a) the peak velocity, (Up(t)/U)peak, of a settling
prolate spheroid with AR = 2. The peak velocity attained by the particle decreases with increasing
stratification and increases with particle inertia, and (b) the time ((t/τ)threshold) at which |Up(t)/U| < 0.15.
The dashed line in (a) is a guide to the eye. The dotted line in (b) is the (t/τ)threshold = A ∗ Ri−1 fit with
A = 97.0 and 218.8 for Ga = 80 and Ga = 180, respectively. The O(Ri−1) fit in (b) is consistent with the case
of an oblate spheroid in § 3.1.1.

We observe that the peak velocity decreases monotonically with the fluid stratification
strength and increases with increasing Ga. Also, the relative decrease in the peak velocity
for the lowest to highest stratification strength explored reduces with Ga. For Ga = 80,
it decreases by ≈ 33 % while for Ga = 180 it decreases by ≈ 18 %. This is due to the
increase of the inertial effects as compared with the stratification effects with increasing
Ga for the same Ri. As shown in figures 10(a) and 10(b), increasing the stratification
strength or reducing the inertia of the particle results in the earlier onset of the reorientation
instability. To conclude, we observe that, the time ((t/τ)threshold) at which the particle
velocity falls below the threshold velocity for the onset of reorientation decreases as
O(Ri−1), see figure 11(b) where we display the time for the onset of the instability for
different particle Reynolds number and stratifications.

3.2.2. Settling trajectory of a prolate spheroid in a stratified fluid
Similarly to the case of an oblate spheroid, stratification suppresses the oscillatory
trajectories of a prolate spheroid in a homogeneous fluid at high Ga. The settling
trajectories of a prolate spheroid with AR = 2 in a homogeneous and stratified fluid are
displayed in figure 12. In a homogeneous fluid, the particle settles in a straight line at
Ga = 80 and in an oscillatory path at Ga = 180. Since stratification results in a reduction
of the settling velocity, the prolate spheroid stops at an earlier position as we increase the
stratification strength. In addition, the oscillatory path observed for a prolate spheroid with
Ga = 180 in a homogeneous fluid disappears in a stratified fluid.

A prolate spheroid goes through two regimes, unlike the three regimes reported above
for the settling of an oblate. In the first regime, denoted by I, it oscillates about its
broad-side on orientation as it settles. In this regime, the magnitude of the settling velocity
is still higher than the threshold below which the spheroid starts to reorient. However,
once the settling velocity drops below the threshold for the onset of reorientation, the
particle starts to rotate from broad-side on to edge-wise orientation. This is regime II.
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Figure 12. Trajectories of a prolate spheroid with AR = 2 in a homogeneous and a stratified fluid for different
Ga and Ri. a) Ga = 80, b) Ga = 180 and c) a schematic summarizing the settling velocity, particle trajectory
and the orientation in the two regimes observed in the settling motion. Left vertical axis and bottom horizontal
axis indicate the spheroid position (solid line is the settling trajectory). Right vertical axis and top horizontal
axis display the particle settling velocity vs time (dashed line is the settling velocity).

Unlike an oblate spheroid which rotates quickly in regime II and settles at a final edge-wise
orientation in regime III, a prolate spheroid reorients slowly in regime II. Furthermore, the
prolate spheroid does not reorient completely, but attains a final oblique orientation with
θ between 0◦ and 35◦. The exact value of the final θ depends on Ga and Ri as explained
before. The settling path along with the settling velocity are sketched in figure 12(c).

3.2.3. Why does a prolate spheroid reorients partially and only has two settling paths
regimes in a stratified fluid?

As for the case of an oblate spheroid, we analyse the wake vortices to gain insight into
the mechanisms leading to the reorientation of a prolate spheroid. The reasons for the
deceleration and the reorientation of a prolate spheroid in a stratified fluid are similar to
that of an oblate spheroid as will be discussed in this subsection. For a prolate spheroid
settling in a homogeneous fluid, a single vortex attached to the particle is initially observed
as in the case of an oblate spheroid. As we increase Ga, this vortex grows in size. At low
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(a) (b) (c) (d ) (e)

Figure 13. Dimensionless iso-surfaces of Q-criterion equal to 5 × 10−4 for a prolate spheroid with AR = 2,
Ga = 80 and Ri = 5 at equal time intervals of t/τ = 28.65; t/τ = 23.87 for panel (a). The vortical structures
identified by the positive Q-criterion are associated with a lower pressure region behind the particle.

Ga this vortical structure is still symmetric, however, it becomes helical, resulting in an
instability for a prolate spheroid with AR = 3 for Ga > 70. As a result, a prolate spheroid
with AR = 3 rotates about the vertical axis for Ga > 70 (Ardekani et al. 2016). This is
also clear in figure 12 as the prolate spheroid with Ga = 80 settles in a straight line while
the prolate spheroid with Ga = 180 has an oscillatory path. As shown in Ardekani et al.
(2016) the vortical structures for a prolate spheroid in a homogeneous fluid result in a
broad-side on orientation.

The situation is completely different in the case of a prolate spheroid settling in a
stratified fluid. In this configuration, the stratification suppresses the vertical motion of
the fluid and prevents the particle from attaining any steady-state speed. In a stratified
fluid, initially there is one vortex attached to the particle as shown in figure 13. As time
passes, a part of this vortex detaches and remains predominantly on one side of the prolate
spheroid as also shown in figure 13. As a result of this, there is a significant asymmetric
low pressure region behind the prolate spheroid. This results in a torque which reorients the
particle with its major axis aligned with the density gradient until it settles at its neutrally
buoyant position. As discussed above, a prolate settles at an angle between 0◦ and 90◦
depending on the Reynolds number.

We present for forces and torques acting on the prolate spheroid in figure 14. The net
force and the force components, Fh,z and Fb,z behave similarly to the case of an oblate
spheroid discussed in § 3.1.3. High magnitude of the buoyancy force compared with the
hydrodynamic drag explains the initial acceleration of the prolate. However, the buoyancy
force decreases as the prolate sediments in a region with higher fluid density causing it to
slow down. The gradual increase in the magnitude of the destabilizing buoyancy torque
compared with the stabilizing hydrodynamic torque as the prolate velocity decreases
explains the onset of reorientation to the edge-wise orientation below a threshold velocity
as shown in figure 14(b). This is similar to an oblate spheroid, as shown in figure 7(b).
However, a difference between the oblate and prolate spheroid case is found: the partial
reorientation and the absence of regime III in the settling of a prolate spheroid.

The secondary motions of the spheroids provide a hint about the partial reorientation
of a prolate spheroid. An oblate spheroid oscillates about the broad-side on orientation
while a prolate spheroid does not oscillate about the broad-side on orientation as it
attains terminal velocity in a homogeneous fluid (Ardekani et al. 2016). Hence, if the
inertial effects are strong enough, they can prevent the prolate spheroid from reorienting
completely. This becomes clear if we compare the evolution of the buoyancy torque on an
oblate spheroid and a prolate spheroid (figures 7b and 14b). Once the particle velocities
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Figure 14. (a) Forces acting on the prolate spheroid with Ga = 80 as it settles in a stratified fluid for different
values of Ri shown with different colours. The total force (solid line) can be split into two components,
the hydrodynamic component (dashed line) and the buoyancy component (dotted line). (b) The x-component
of the torque acting on a prolate spheroid with Ga = 80 as it sediments in a stratified fluid with Ri = 5 along
with the x-component of the angular velocity. The net torque (solid line) is split into two components, the
hydrodynamic torque (dotted line) which tries to orient the prolate in a broad-side on orientation (hence
stabilizing) and the buoyancy component (dashed-dotted line) which is destabilizing and tries to reorient the
prolate edge-wise. The reorientation starts once the magnitude of the hydrodynamic torque falls below the
buoyancy torque which happens when the prolate velocity falls below the threshold for reorientation discussed
in § 3.2.1.

fall below the threshold for the onset of reorientation, the destabilizing buoyancy torque on
an oblate spheroid dominates for a longer time (4.5 units in dimensionless time which is
enough to ensure that the oblate spheroid reorients completely) as compared with a prolate
spheroid (1.75 units in dimensionless time which is not enough to reorient the spheroid
completely) before they balance each other as the particle velocity approaches 0. Similar
observations regarding complete/partial reorientation in the limit Re → 0 and Ri → 0
were also made in a recent theoretical study (Varanasi, Marath & Subramanian 2021)
which hints at the role of the particle AR in determining the exact degree of reorientation.

To understand the reorientation mechanism, we again examine the x-component of
the vorticity generation (ωg) due to the deformation of the isopycnals (figure 15). The
dynamics is similar to what happens in the case of an oblate spheroid settling in a stratified
fluid as discussed in § 3.1.3. The only difference is that the prolate spheroid reaches its
neutrally buoyant location before it can reorient completely where it stops moving and
rotating as seen in figures 10(c) and 10(d).

3.2.4. Stratification drag on a prolate spheroid
Figure 16 shows the added drag due to stratification, CS

D − CH
D on a prolate spheroid

sedimenting in a stratified fluid. The drag due to stratification behaves similarly to the case
of an oblate spheroid discussed in § 3.1.4. The stratification drag on the prolate particle
decreases as it accelerates. CS

D − CH
D is minimum when it attains a peak velocity and starts

to increase again as the buoyancy/stratification effects take over inertial effects and slow it
down. As in the case of an oblate spheroid, CS

D − CH
D scales as ≈ O(Fr(z)−4).

3.3. The effect of heat conductivity ratio κr on the settling spheroid
For this study, we have chosen a no-flux boundary condition on the particle surface, i.e.
the stratifying agent cannot diffuse inside the particle (adiabatic/impermeable or no flux)
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Figure 15. Evolution of the x-component of the dimensionless vorticity generation term due to the
misalignment of the density gradient vector with the direction of gravity, ∇ρf × k̂, in the x = 0 plane for
a prolate spheroid with AR = 2, Ga = 80 and Ri = 5. The solid lines indicate dimensionless isopycnals or
equal density lines separated by a value of 0.5. Darker shade of grey indicates a higher density. The panels are
snapshots (a–o) at specific time intervals with t/τ = 0, 4.77, 14.32, 23.87, 33.42, 42.97, 52.52, 62.07, 71.62,
81.17, 90.72, 100.27, 109.82, 119.37,and 219.65. Panel (a) shows the initial configuration and the panel (o) shows
the settling configuration after the prolate stops.
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(Doostmohammadi & Ardekani 2015) and, as a consequence, pycnoclines must be normal
to the particle surface. This is the case if the stratifying agent is salt or the particle is
adiabatic. In this section, we investigate the settling dynamics when the fluid and particle
temperature influence each other by changing the heat conductivity ratio kr. Figure 17
shows the settling dynamics of a particle having a non-zero kr. For a small kr = 0.001,
the settling dynamics of an oblate spheroid is similar to the case kr = 0. The velocity is
slightly higher for kr = 0.001. The particle accelerates initially, attaining a peak velocity
after which it decelerates and stops when it reaches its neutrally buoyant position. Also, as
its velocity falls below a threshold, it reorients to an edge-wise orientation. Since the flux
of the stratifying agent into/out of the particle is much slower than the settling dynamics
of such a small value of kr, the surrounding fluid is not subjected to any significant heat
exchange-induced density change. As for the cases studied above, the particle settles in a
fluid region with increasing density, its velocity decreases as the net buoyancy force acting
on it increases and the isopycnals resist their deformation. No-flux boundary condition is
typical for objects settling in a temperature or a salt-stratified fluid, e.g. plastics, metals,
organisms, etc. (Hanazaki et al. 2009b; Doostmohammadi et al. 2014; Mehaddi et al. 2018;
Mercier et al. 2020).

The settling dynamics changes for a high kr value. A high kr value implies significant
heat exchanges between the two phases and results in a warmer fluid close to the particle
surface. The warmer boundary layer with decreased density accelerates upwards and
thus creates a downforce that prevents particles from deceleration. This scenario might
occur in chemical processes, e.g. liquid fluidized beds, and marine snow settling in a
temperature-stratified water. For kr = 1, the settling dynamics during the initial time for an
oblate spheroid is similar to kr = 0 case, however, the particle does not keep decelerating
as time passes in contrast to the case with kr = 0. For a high kr, the particle attains a
terminal velocity much like in the case of an oblate spheroid settling in a homogeneous
fluid. The terminal velocity, however, decreases as we increase the stratification strength as
shown in figure 17(a). Furthermore, the oblate spheroid does not reorient to an edge-wise
orientation as its velocity does not fall below the threshold for the onset of reorientation
instability, but settles in a broad-side on orientation as shown in figure 17(b). The same
holds for a prolate spheroid as shown in figure 18. As discussed in §§ 3.1.3 and 3.2.3,
kr = 0 implies that the isopycnals are orthogonal to the particle surface, which creates a
net torque on the spheroid. For a higher kr value, the pycnoclines are not orthogonal to
the particle surface and hence do not result in a significant destabilizing buoyancy torque,
Tb, on the spheroid. Thus, we conclude that the no-flux boundary condition is essential to
observe the reorientation of spheroids settling in a stratified fluid.

3.4. The effect of Prandtl number, Pr
The fluid Pr is one of the parameters that greatly influences the settling dynamics of
particles in a stratified fluid. Pr = ν/α quantifies the relative magnitude of momentum
diffusivity and the thermal diffusivity. Previous numerical studies investigating the motion
of isolated spheres in a stratified fluid concluded that changing the fluid Pr leads to
quantitative changes in the settling velocity (Doostmohammadi et al. 2014) and radius
of downstream jet (Hanazaki et al. 2009b) but does not lead to any significant qualitative
changes in the general trends and the overall behaviour. We find that similar observations
hold true even for spheroid shaped particles settling in a stratified fluid.

We investigate the effect of increasing the fluid Pr from 0.7 (value corresponding to
a temperature-stratified atmosphere) to 7 (value corresponding to a temperature-stratified
water) on the settling velocity and the orientation of spheroids in a stratified fluid. Figure 19
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Figure 17. Effect of permeability of the particle of the stratifying agent on (a) the settling velocity, Up(t)/U,
of a settling oblate spheroid with AR = 1/3, and (b) the orientation, θ , for Ri = 5 and 10. Here, k = 0 inside
the particle means the stratifying agent cannot diffuse into/out of the spheroid. A non-zero value for k inside the
particle results in increasing the temperature and decreasing the density of the boundary layer. For a very small
kr = 0.001, the spheroid settling dynamics is similar to kr = 0 case. However, for a high kr = 1, the spheroid
has a completely different settling dynamics. If the stratifying agent can diffuse inside the spheroid, then, the
spheroid attains a terminal velocity and does not reorient. These results show that spheroids will reorient only
in the case of salt-stratified fluid or an adiabatic particle and not in a temperature-stratified fluid with conductive
particles.
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Figure 18. Effect of permeability of the particle to the stratifying agent on (a) the settling velocity, Up(t)/U,
of a settling prolate spheroid with AR = 2, and (b) the orientation, θ , for Ri = 5 and 10. Here, k = 0 inside the
particle means the stratifying agent cannot diffuse into the spheroid which results in no change in the density
of the surrounding boundary layer. This is true in the case when the stratifying agent is salt. A non-zero value
for k inside the particle results in diffusing heat to the surrounding fluid and thus decreasing the density of the
boundary layer. For a high kr = 1, the spheroid has a completely different settling dynamics, with the spheroid
attaining a terminal velocity and not reorienting. These results show that spheroids will reorient only in the
case of salt stratified fluid and not in a temperature-stratified fluid with conductive particles.

show the settling velocity and orientation variations with time for an oblate (AR = 1/3)
and a prolate (AR = 2) spheroid with fixed Ga = 80, Ri = 5 but for two different Pr =
0.7 and 7.0. The data show that increasing the fluid Pr to 7.0 only quantitatively changes
the particle settling velocity and its orientation with time but does not change the general
trends discussed in §§ 3.1.3 and 3.2.3 for Pr = 0.7.

We observe that increasing the fluid Pr reduces the settling speed of the spheroids
as in the case of spherical particles (Doostmohammadi et al. 2014). Also, the spheroids
still reorient away for the broad-side on orientation once their velocity magnitude falls
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Figure 19. Effect of the Prandtl number, Pr, on the settling dynamics of an oblate (AR = 1/3, (a,b)) and a
prolate (AR = 2, (c,d)) spheroid with Ga = 80 settling in a stratified fluid with Ri = 5. Here, κr = 0. (a,c)
Dimensionless settling velocity vs dimensionless time. Fluid Pr quantitatively changes the settling velocity
such that the settling velocity decreases with increasing Pr. However, the overall trend does not change, i.e.
acceleration initially, attaining peak velocity, deceleration and finally particle stops at its neutrally buoyant level.
Increasing Pr to 7 from 0.7 also increases the threshold for the onset of reorientation to |Up(t)/U| < 0.195
from |Up(t)/U| < 0.15, respectively. (b,d) Particle orientation vs dimensionless time. Increasing the fluid Pr
leads to the onset of reorientation instability at an earlier time and also reduces the time interval in which the
reorientation occurs. This shows that a fluid in which the convection dominates diffusion, the influence of the
fluid stratification on the spheroid settling dynamics is stronger.

below a particular threshold. Interestingly, we observe that this threshold increases to
|Up(t)/U| < 0.195 for Pr = 7.0 from |Up(t)/U| < 0.15 for Pr = 0.7 (figures 19a and
19c). Furthermore, increasing Pr leads to a reduction in the time, (t/τ)threshold, for the
onset of the spheroid reorientation and the time required for its reorientation as shown
in figures 19(b) and 19(d). Increasing the value of Pr results in slower stratifying agent
diffusion and hence increases the influence of inertial or convective effects. As a result, the
density boundary layer thickness which scales as δρ ≈ D/

√
RePr reduces with increasing

Pr. The density gradients (∇ρf as introduced in (3.1)) near the particle surface scale as
≈ γ D/δρ = γ

√
RePr. Thus, with increasing Pr, the magnitude of the density gradients

near the particle surface increases. This results in a stronger buoyancy torque, Tb, on the
spheroid in a fluid with a higher Pr for a fixed Ga and Ri as can be seen in figure 20 for
an oblate spheroid. This increases the velocity threshold and also reduces (t/τ)threshold for
the onset of spheroid reorientation.

The results from this section prove that the basic physics behind the particle deceleration
and reorientation is independent of the fluid Pr since it is rooted in the buoyancy force and
torque as explained in §§ 3.1.3 and 3.2.3. Changing Pr will change the magnitude of the
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Figure 20. Variation in torque acting on an oblate spheroid with Ga = 80, Ri = 5 and AR = 1/3 with time
for two different Pr values. Increasing the Pr of the fluid results in a stronger and dominant buoyancy torque,
Tb, on the spheroid for a fixed Ga and Ri which result in an earlier onset of the reorientation.

buoyancy force and torque which results in a different peak velocity of the particles and
a different time for the onset of the reorientation, but the particles still decelerate and
reorient. Hence, the insights obtained from our study are also applicable at higher Pr such
as 7 for temperature-stratified water or Schmidt number of order 700 for salt stratified
water. Our results also show a qualitative agreement with the experiments of disks settling
in a salt-stratified fluid (Schmidt number ≈ 700) (Mercier et al. 2020) which showed that
disks also decelerate as they settle and reorient which is what we observe as well.

4. Conclusions

We investigated the settling dynamics of anisotropic shaped particles in a density-stratified
fluid using direct numerical simulations. The shapes considered are an oblate spheroid
with AR = 1/3 and a prolate spheroid with AR = 2. We vary the Reynolds number Ga
from 80 to 250 and the Richardson number Ri from 0 to 10 while keeping the density
ratio ρr and Prandtl number Pr constant. The results show that the settling dynamics of
spheroids is significantly different in a stratified fluid than in a homogeneous fluid.

Initially, the spheroids accelerate from rest and reach a maximum velocity. The peak
velocity attained by the particles increases with their Ga while decreases monotonically
when increasing the stratification. After the settling velocity attain its peak value,
stratification dominates over inertia, because the inertial effects are not enough to sustain
the deformation of the isopycnals once the particle reaches its peak velocity. Hence, due
to the tendency of the isopycnals to return to their original positions, the fluid experiences
a resistance to its motion. This results in an increased drag and hence a deceleration of
the particle until it stops at its neutrally buoyant position. This evolution of the settling
velocity is similar to that of a spherical particle settling in a stratified fluid.

The fluid stratification alters the orientation of the spheroids compared with their
orientations in a homogeneous fluid. The fluid stratification leads to reorientation
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instability as the particle settling velocity falls below a threshold. For the parameters
considered here, the onset of the reorientation instability occurs at |Up(t)/U| < 0.15.
Interestingly, the dimensionless threshold velocity for the onset of reorientation instability
is found to be the same for the oblate and prolate spheroids. This value might be different
for different values of the density ratio and the Prandtl number. As a result of this
instability, an oblate spheroid settles with its broader side aligned with the direction of the
stratification. On the other hand, a prolate spheroid reorients partially or fully depending
on its Ga and settles such that its longer edge is at an angle greater than 0◦ and lower
than 45◦ with the horizontal direction. This is completely opposite to what happens in
a homogeneous fluid as both an oblate and a prolate spheroid settle in a broad-side
on orientation. Stratification also eliminates the oscillatory path instability observed for
spheroids in a homogeneous fluid. This is due to the decreasing magnitude of the inertial
effects as the particle decelerates while reaching regions of higher fluid density.

The asymmetry in the low pressure region behind the spheroids due to an asymmetric
wake results in the onset of the reorientation instability. This asymmetry results from the
asymmetric distribution of the vorticity generation term due to the misalignment of the
density gradient vector with the vertical direction (baroclinic vorticity generation). As
a result, the destabilizing buoyancy torque, Tb, becomes dominant over the stabilizing
hydrodynamic torque Th as the spheroid velocity falls below a threshold value causing
the onset of reorientation instability. We also report that the spheroids will only reorient
in the case when they are impermeable to the stratifying agent (κr 
 1) which is true in
the case of a salt stratification or an adiabatic particle. If the stratifying agent can diffuse
(κr � 0) inside the particle, then the spheroid will not reorient and the settling dynamics
is similar to that in a homogeneous fluid with stratification causing a reduction in the
terminal velocity. We also find that increasing the fluid Pr from 0.7 (temperature-stratified
air) to 7.0 (temperature-stratified water) results in a stronger and dominant Tb on the
spheroids. As a results for Pr = 7.0, the onset of reorientation occurs at a higher velocity
threshold |Up(t)/U| < 0.195 and at an earlier time compared with case Pr = 0.7. The
results presented in this paper are a first contribution to the field of settling particles in a
fluid, in particular for anisotropic particles and stratified fluids. As extensions of this work,
it would be interesting to investigate the behaviour of particle suspensions, the effect of the
aspect ratios and also extensively quantify the effect of Pr as well as other particle shapes
on the settling dynamics of particles in a stratified fluid.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.836.
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Figure 21. Comparison of velocity vs time for a prolate spheroid with AR = 2 in two different domain sizes
at Ga = 180 and Ri = 5. The error in the velocity using a smaller domain is negligible which means even a
smaller domain gives accurate results but at a lower computational cost.

Ga Ret (15D × 15D × 125D) Ret (20D × 20D × 80D)

80 55.3 56.1
170 132.1 129.6
210 165.3 166.0
250 198.5 199.8

Table 2. Comparison of terminal Reynolds numbers, Ret, with two different domain sizes in a homogeneous
fluid, i.e. Ri = 0 for an oblate spheroid with AR = 1/3 at different Ga. The values are in agreement, which
means there is no significant interaction between the particle wake and the particle.

Appendix. Verification of domain size independence

In the absence of stratification, a domain with a vertical length much larger than Ga is
needed to make sure that the wake does not have a strong effect on the settling of the
particle by interacting with it. However, since fluid stratification suppresses the vertical
motion, we can use a smaller vertical length for our domain. Here, we show that the chosen
domain sizes are big enough to make sure that the particles do not interact with their wakes
for the entire range of parameters explored in this study.

We find an excellent agreement between the terminal Re attained by a settling oblate
spheroid with AR = 1/3 in a homogeneous fluid, i.e. Ri = 0, at different Ga in a bigger
domain (15D × 15D × 125D) and a smaller domain (20D × 20D × 80D), used for this
study) as shown in table 2. This proves that there is no significant interaction between
the particle wake and the particle as it settles and the used domain size is enough to
resolve the particle dynamics. Additionally, figure 21 shows the velocity vs time evolution
for a prolate spheroid with AR = 2 with Ga = 180 in a stratified fluid with Ri = 5 in a
bigger domain (10D × 10D × 80D) and a smaller domain (10D × 10D × 40D), used for
this study). Again, this shows that there is no significant interaction between the particle
and its wake and the domain size used for this study is enough to ensure accuracy for an
affordable computational cost.
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