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Nowadays, widely used videoconferencing software has been diffused even further by the
social distancing measures adopted during the SARS-CoV-2 pandemic. However, none of the
web-based solutions currently available support high fidelity stereo audio streaming, which is
a fundamental prerequisite for networked music applications. This is mainly due to the fact
that the WebRTC RTCPeerConnection standard or web-based audio streaming do not handle
uncompressed audio formats. To overcome that limitation, we discuss an implementation of
16-bit PCM stereo audio transmission on top of the WebRTC RTCDataChannel, leveraging
Web Audio and AudioWorklets. Results obtained with multiple configurations, browsers, and
operating systems show that the proposed approach outperforms the WebRTC RTCPeerCon-
nection standard in terms of audio quality and latency, which in our best case to date has been
reduced to only 40 ms between two MacBooks on a local area network (LAN).

0 Introduction

Web-based audio/video (A/V) streaming platforms for
videoconferencing services have become ubiquitous, in
part thanks to their easy integration within the web environ-
ment. The majority of web-based videoconferencing solu-
tions leverage Web Real-Time Communication (WebRTC)
media streams [1], which represents the standard approach
to peer-to-peer low-latency A/V streaming. The recent so-
cial distancing countermeasures imposed to mitigate the
spreading of the SARS-CoV-2 pandemic have further fos-
tered the extension of such platforms to Networked Mu-
sic Performance (NMP) applications which support real-
time musical interaction between musicians performing to-
gether from multiple geographical locations as if they were
in the same room.

Unfortunately, media streams do not allow for fine-
grained control over the latency introduced by A/V acqui-
sition, processing and buffering, which is of pivotal im-
portance for the perceived quality of experience in NMP
applications. Indeed, to ensure the necessary synchronisa-
tion and interplay between participants who perform music
together in real-time, the one-way Mouth-to-Ear (M2E) la-

*To whom correspondence should be addressed, e-mail: anto-
nio.servetti@polito.it

tency should ideally not exceed the 30 ms threshold [2] (the
reader is referred to [3] for a thorough discussion on how
such threshold is influenced by the genre, the tempo and
the instrumental characterization of the musical piece).

For this reason, NMP platforms are typically conceived
as standalone, native applications that run directly on an
operating system of choice in order to benefit from fast ac-
cess to system calls and customized software implemen-
tation. The vast majority of those tools, e.g. JackTrip [4],
Soundjack [5], LOLA [6], and UltraGrid [7], exploit UDP
transmission of uncompressed audio streams to minimize
the M2E latency. These software programs allow settings
for audio packet size and de-jitter buffering to strike the
best trade-off between quality of the audio streaming and
perceived latency.

Conversely, real-time communication based on We-
bRTC media streams offers limited configuration options
and adopts compressed audio formats to limit the bitrate,
at the price of introducing additional latency during the au-
dio encoding/decoding process: such delay may reach 20
ms or more, as measured in experiments with the Aretusa
NMP software [8]. To overcome the lack of configurability
of WebRTC media streams, i.e., the RTCPeerConnection,
an alternative option is to avoid their usage and to exploit
instead the RTCDataChannel, which is usually adopted for
non-multimedia data. The feasibility of such an approach
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was first explored in 2017 by researchers at Uninett, Otto
J. Wittner et al. [9]. However, the limited audio process-
ing capability of the ScriptProcessorNode [10] introduced
a significant amount of latency. The new AudioWorklet
API [11] promises to consistently reduce such latency con-
tribution, as it provides independent real-time threads and
enables more efficient audio processing.

Inspired by such possibilities, in this study we im-
plemented an alternative approach to peer-to-peer high
quality and low-latency audio communication, which ex-
ploits both the WebRTC RTCDataChannel and the Au-
dioWorklet API. We developed a WebRTC application
named JackTrip-WebRTC as a sibling to the popular Jack-
Trip software1 for NMP over the Internet. The application
is released as open source software on GitHub2. In the
remainder of this paper, we present the low-latency ap-
plication architecture, investigate its performance for sev-
eral configurations, browsers, and operating systems and
benchmark it against the traditional approach based on me-
dia streams.

A preliminary version of this study appears in [12]. With
respect to [12], the novel contributions presented in this
paper are:

• A new WebRTC implementation that adopts Shared Ar-
ray Buffer (SAB) instead of the Message Channel (MC).

• A substantial scalability improvement with respect to the
previous implementation, which enabled the connection
of at most three peers, thus greatly limiting the usage
in practical scenarios. The current version can instead
scale up to tens of connected peers, provided that enough
bandwidth and CPU power are available.

• An extensive performance assessment of the proposed
implementation, including the comparison of its perfor-
mance to that of widely available web-based audio com-
munication platforms such as Jitsi and Google Meet.

The remainder of the manuscript is structured as follows:
after an overview of the related literature in Section 1 and
a brief introduction to the WebRTC architecture in Sec-
tion 2, we describe our proposed solution for low-latency
WebRTC communications in Section 3. Experimental re-
sults are discussed in Section 4 and Section 5, respectively
for the overall M2E latency and for each layer of the au-
dio chain, whereas Section 6 reports the assessment of the
application jitter and scalability for multi-peer communi-
cations. Finally, Section 7 concludes the paper.

1 Related Work

The recent isolation imposed by the pandemic and the
increased need of interacting and working remotely have

1https://www.jacktrip.org/
2The code repository is available on GitHub https://github.

com/jacktrip-webrtc/jacktrip-webrtc/. The main branch contains
the code of the JackTrip-WebRTC version presented in the confer-
ence paper [12] while the experimental branch contains the code
of the enhanced version discussed in this paper.

fostered the adoption of simple and easy-to-use software
tools for videoconferencing. In almost every modern web
browser, those solutions leverage the WebRTC standard,
which was jointly proposed by the World Wide Web Con-
sortium (W3C) and by the Internet Engineering Task Force
(IETF). WebRTC provides an open and royalty-free stan-
dard for real-time audio/video acquisition and peer-to-peer
multimedia and data transmission. Nowadays, most of the
services that were originally developed with proprietary
protocols, such as Cisco’s WebEx or Zoom, have a We-
bRTC alternative implementation that allows users to join
directly from their browser without downloading any soft-
ware [13].

In [14] the authors provide an extensive comparison of
the performance of four videoconferencing applications
(Zoom, Microsoft Teams, VoiceLessonsApp, and Face-
Time) in terms of audio fidelity for the real-time transmis-
sion of musical content. By analyzing the introduced dis-
tortions in both time and frequency domain, they conclude
that, though all the considered platforms introduce artifacts
or noise, Zoom provides the highest fidelity to dynamics
and spectral characterization of the streamed signals. Nev-
ertheless, we should note that the web-based Zoom alter-
native that leverages the WebRTC implementation does not
provide the same audio quality level.

To overcome the scalability limits of the P2P structure
of WebRTC – that does not allow scaling up to hundreds of
connected peers – in [15] the authors propose a system that
efficiently extends such structure with synchronized mix-
ing and broadcasting of the audio/video streams to large
audiences with adequate real-time performance. [16] pro-
poses an alternative to improve bandwidth efficiency and
audio quality for speech communications with an adaptive
bitrate switching algorithm that selects the most suitable
bitrate and operating mode of the Opus codec[17], thus
lowering the impact of bursty and random packet loss con-
ditions.

The same authors in [18] highlight the limits of the We-
bRTC de-jitter buffer behavior in enabling low-latency au-
dio communications, even in presence of negligible net-
work delay: measurements show that WebRTC default ap-
plications may lead to latency levels that approach the ITU-
T Rec. G.114 [19] thresholds. In order to significantly de-
crease the WebRTC communication latency, the authors
in [9] envisioned bypassing the WebRTC standard algo-
rithm for the de-jitter buffer and all the overhead intro-
duced by the RTCPeerConnection channel.

The alternative investigated in that study is to rely on
the RTCDataChannel that, although designed for data (and
not media) communications, can be configured to exclude
reliable and ordered delivery algorithms and to allow a
UDP-like unreliable and unordered transmission. That im-
plementation did not achieve the expected results because
the support for efficient and timely management of audio
data in the browsers was still in its infancy [20] and new
improvements were still to be introduced [21][22], but it
laid the foundations for the present work.
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Figure 1: Traditional WebRTC application structure with
the RTCPeerConnection.

2 Background

2.1 Architecture of a WebRTC videoconferencing
application

The three major components of the architecture of a We-
bRTC videoconferencing application are the MediaStream,
RTCDataChannel, and RTCPeerConnection objects. Me-
diaStream, together with the getUserMedia method, is used
to acquire real-time media streams, such as the device cam-
era or the microphone, for rendering or further process-
ing (e.g., by means of the Web Audio API). The RTC-
DataChannel is a transport mechanism used for sending
arbitrary data such as control messages or files. It is imple-
mented through the Stream Control Transmission Proto-
col (SCTP) [23], which is a low-latency, message-oriented,
multi-streaming protocol based on UDP capable of provid-
ing also reliable, in-sequence transport of messages with
congestion control and packet retransmission similarly to
TCP. RTCPeerConnection is considered the main part of
the WebRTC specification, as it enables audio and video
communication between the peers. It is built on top of
the RTP/SRTP protocol, but it also provides multimedia
codecs, bandwidth management, and includes several sig-
nal processing algorithms.

In a WebRTC application, media streams play a key role,
since they are used both for media acquisition/playback
and for exchanging multimedia data through the network.
Figure 1 depicts the typical WebRTC application structure.

At the sender, the web application uses the MediaDe-
vices.getUserMedia() method to acquire data from a me-
dia input, i.e., the audio feed from the internal micro-
phone or the input of a dedicated audio device, as a me-
dia stream. Note that the getUserMedia() method takes a
MediaStreamConstraints object, whose properties are of
fundamental importance to set up the media acquisition
process and minimize the overall system latency (together
with the properties that define the setup of the RTCPeer-
Connection), as we experimented and described in [12].
The getAudioTracks() method is then used to return an au-
dio track from the MediaStream and the RTCPeerConnec-
tion.addTrack() method is finally used to add the new me-

dia track to the set of tracks that will be transmitted to the
other peers. The RTCPeerConnection component contains
all the logic to manage the real-time media stream delivery
to the network.

An almost symmetric structure is implemented at the re-
ceiver peer where, when a new track is connected, a call-
back retrieves the remote media stream and attaches it to
an HTML audio element for playback.

2.2 Limitations of Videoconferencing Tools in
NMP Scenarios

Designed before the social distancing experienced dur-
ing the SARS-CoV-2 pandemic, the WebRTC protocol is
mainly optimized for speech-centered, turn-taking scenar-
ios. The criteria that govern the selection of multimedia
codecs and of the audio processing algorithms focus on
preserving network bandwidth at the expenses of higher
M2E latency and on preserving intelligibility at the ex-
penses of audio fidelity.

In fact, although the WebRTC protocol could support
any multimedia codec, the standardization process defined
a limited set of formats to ensure compatibility. Among
them, the frame-based perceptual codecs Opus [17] and
G.711 [24] are mandatory. Conversely, the use of uncom-
pressed PCM, which would ensure high-fidelity quality
and introduce no algorithmic delay, is not supported. More-
over, as reported in Sec. 4, even with all the settings opti-
mized to achieve the lowest latency, a WebRTC application
based on the RTCPeerConnection still introduces too high
delay, (60 ms in the best case), to be considered a suitable
tool for NMP applications.

Another main drawback exhibited by the vast majority
of videoconferencing applications, when adopted in NMP
scenarios, is that adaptive noise suppression (ANS), echo
cancellation (EC) and automatic gain control (AGC) are
enabled by default. Such features are useful to increase
the intelligibility of speech signals, but alter the natural-
ness of the sounds produced by musical instruments or by
singers’ voices, and introduce distortions in sound tran-
sients and intentional loudness dynamic variations. Fur-
thermore, all such functionalities introduce non-negligible
processing delays.

For some videoconferencing software products, it is dif-
ficult or even impossible to disable such features. As an
example, Google Meet and Microsoft Teams do not offer
the possibility to disable AGC. In Jitsi, disabling AGC is
possible only by tinkering with the URL parameters, since
there is no setting option directly available in the user inter-
face. Skype introduced such possibility only very recently
(previously, a modification in the Windows system registry
was necessary to disable AGC).

To substantiate the above claims, using the same audio
material provided in [14] online3 we analyzed the audio
transmitted by several videoconferencing applications. The

3The media files used in the article are avail-
able from https://www.ianhowellcountertenor.com/
preliminary-report-testing-video-conferencing-platforms
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Figure 2: Custom application structure of the WebRTC application with the RTCDataChannel and the Shared Array Buffer
(SAB) instead of the RTCPeerConnection.

obtained results are comparable to those reported in [14]:
Figure 3 shows an example of the alteration of the ampli-
tude envelope of a bowed violin, where the intensity of var-
ious segments of the excerpt has been completely reshaped
by the AGC, thus altering the original signal. In addition, in
several occurrences sustained notes by cello or violin were
suppressed because misinterpreted as noise by the ANS al-
gorithm.

Even when ANS, EC and AGC are disabled, all the
videoconferencing applications still adopt some kind of au-
dio compression to reduce the media bitrate, thus de-facto
reducing the audio quality. Figure 3 also shows the com-
parison of the frequency content of the original signal with
the compressed one obtained with Google Meet or Jitsi;
Google Meet seems to preserve less accurately the quality
of the signal, especially in the high frequency range. The
same happens with all the other videoconferencing soft-
ware except for Zoom, which provides the so-called ”orig-
inal audio” option that can transmit the audio with minimal
alterations of its spectral content. However, we must note
that the ”original audio” option is available only in the na-
tive Zoom application, whereas it is not provided in the
web-based client application4.

Finally, the logic that automatically controls the band-
width usage and the latency of the de-jitter buffer, (re-
quired to mitigate the variability in packet inter-arrival
times) is designed to maximize speech quality at the ex-
pense of introducing additional latency (even up to 150
ms). Such latency can be tolerated in interactive speech
communications, but substantially hinders remote music
performances.

Figure 4 shows the results of several experiments with
popular videoconferencing software: the measured M2E

4Comparison of Zoom Desktop with Zoom Web Client https:
//support.zoom.us/hc/en-us/articles/360027397692

delays are in the range of 80-180 ms between two com-
puters in the same local area network. Note that, when al-
lowed by the software, we tested both the default configu-
ration and a low-latency (LL) configuration where most of
the audio processing features that increase the M2E delay
were disabled5. Being based on WebRTC, Jitsi and Google
Meet show similar latency figures, on the order of 120 ms,
when the default configuration is used. In its low-latency
configuration, Jitsi latency is reduced by about 30 ms, and
almost the same reduction is obtained with Zoom. We note
that Zoom presents the highest latency among all the ap-
plications because it always works in a client/server mode,
thus relying on the transmission through a server on the
Internet, instead than in a peer-to-peer mode with a direct
connection between the devices.

3 The proposed low-latency WebRTC application

3.1 Operational Principles
The structure of our proposed low-latency WebRTC ap-

plication is depicted in Fig. 2. It is derived from the clas-
sical structure of a WebRTC application, which is reported
in Fig. 1. Note that, in contrast with the popular NMP ap-
plications cited in Section 0 that, being native applications,
can directly access the low level OS API to implement cus-
tom functionalities, a web application is forced to use only

5Jitsi allows disabling audio processing, automatic EC, ANS,
AGC, high pass filtering by providing such information in the
URL as reported in https://www.homepages.ucl.ac.uk/∼rtnvrmp/
JitsiStereo.html. Skype allows disabling ANS and AGC from
the audio & video preference panel. Zoom has a special fea-
ture called original audio that disables all audio processing
and improves audio coding as reported in https://blog.zoom.us/
high-fidelity-music-mode-professional-audio-on-zoom/. Google
Meet does not allow any customization, thus only the default con-
figuration has been used.
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Figure 3: Distortions due to automatic audio gain (top) and perceptual codec compression (bottom) in Google Meet and
Jitsi with Chrome. The blue line represents the original signal and the red one the processed signal, both in the time and
frequency domains. The audio trace is a sample of a bowed violin playing quietly (-12 dB) the pitch B4.

the JavaScript API made available by the browser, for se-
curity reasons. It follows that, in our attempt to identify
alternative WebRTC configurations with the aim of reduc-
ing latency, we can modify the application structure only if
the JavaScript API provides us with alternative implemen-
tations for a given task.

In order to switch from an architecture based on the
RTCPeerConnection channel to an architecture based on
the RTCDataChannel, we have to resort to the Web Au-
dio API and to the AudioWorklet interface. It is in fact
necessary to tamper with the WebRTC MediaStream ob-
ject in order to access the raw audio content and route it to
and from the RTCDataChannel. In particular, two custom
AudioNodes need to be implemented: one in the transmit-
ter, to extract the raw audio from the MediaStream object

80 100 120 140 160

M2E latency (ms)

Zoom

Zoom (LL)

Google Meet

Jitsi

Skype (LL)

Jitsi (LL)

Figure 4: Mouth-to-Ear latency measured for common
videoconferencing software, both native and web-based
(Chrome v.98), between two MacBooks connected to the
same Ethernet switch. When available, a low-latency (LL)
software configuration without audio processing has been
selected. For each configuration, ten sessions of the dura-
tion of one minute have been measured.

returned by the getUserMedia method, and one in the re-
ceiver to reverse the process.

More in detail, at the transmitter the MediaStream is fed
as an audio source into the audio processing graph us-
ing the createMediaStreamSource method of the Audio-
Context, which creates a MediaStreamAudioSourceNode
(Fig. 2), i.e., an audio node whose media is retrieved
from the specified source stream. Such a node can then be
chained with other nodes of the Web Audio API for further
processing.

In this case, the required audio processing is limited to
accessing the raw audio data and packetizing it for trans-
mission. This task is performed by an AudioWorklet that
consists of two objects: an AudioWorkletNode that allows
the AudioWorklet to be connected with the other nodes of
the Web Audio graph, and an AudioWorkletProcessor that
will be in charge of executing the audio processing job.
We name the custom AudioWorklet in the transmitter Au-
dioSender (Fig. 2). It extracts uncompressed audio from
the source MediaStream and creates the packets to be deliv-
ered on the RTCDataChannel. Low-latency requirements
can be satisfied by the AudioWorkletProcessor because it
is executed in a separated thread and called each 128 sam-
ples, i.e., every 2.6 ms at 48 kHz.

On the receiver side, the custom AudioWorklet is named
AudioReceiver. Here the audio data retrieved from the
RTCDataChannel needs to be managed by a proper de-
jitter buffer before playout. The AudioWorkletProcessor is
then in charge of transferring the audio frames from the de-
jitter buffer to its outputs by means of its process method.
Finally, the associated AudioWorkletNode is connected to
the AudioContext.destination to enable the rendering of the
audio on the selected output device.

However, since the AudioWorkletNode and the Au-
dioWorkletProcessor are executed in different threads, the
browser has to handle the overhead of exchanging audio
data between the two of them. Two different methods can

J. Audio Eng. Soc., Vol. 70, No. 11, 2022 November 5
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be used to transfer data between the main thread and the
audio thread:

0. The Message Channel6 interface which allows the
two threads to exchange data using messages be-
tween one another through pipes with a port on each
end.

1. The Shared Array Buffer[25] object which repre-
sents a pre-allocated memory block that can be ac-
cessed by both threads for fast data transfer.

In our preliminary implementation [12], we described
an approach based on the common asynchronous Message
Channel – already available in the web browsers from a
long time – that was conceived to allow two separate scripts
running in different browsing context of the same doc-
ument to communicate between each other passing mes-
sages through a two-way pipe named port. This approach
showed to be suboptimal for real-time audio because it suf-
fers from high latency, and it requires repeated memory al-
location for the copy of the data, thus strongly limiting the
reliability and scalability of the system.

In the new implementation presented in this paper, we
substitute the Message Channel with a Shared Array Buffer
that lives between the page main thread and the Au-
dioWorklet thread and that enables more efficient data
communication between them. Here, a single (de-jitter)
buffer is allocated once, and it is reused for each data ex-
change, since it can be accessed from both threads with
proper coordination, as illustrated in [22].

For multi-thread synchronization, Atomics7 methods are
used to ensure correct concurrent access to the shared
buffer. On one side, in the main thread, the enqueue pro-
cedure consists of mixing every audio frame received from
each peer into the buffer [26]. This operation is imple-
mented with a simple addition in the appropriate position,
and it is performed with the Atomics.add method. The po-
sition is given by the current frame index and the peer off-
set. The peer offset is computed when the first frame from
that peer is received and it is equal to the current read po-
sition minus the de-jitter offset8 (see [27] for a description
of the de-jitter buffer logic). On the other side, in the Au-
dioWorklet thread, the dequeue procedure consists of ex-
tracting successive audio frames from the buffer for play-
out. The reading position is always incremented by one and
the values of the current frame are substituted by zeros so
that in case of lost frames a silence is played out. These
operations can be performed in a single instruction by the
Atomics.exchange method.

6https://developer.mozilla.org/en-US/docs/Web/API/
MessageChannel

7https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Global Objects/Atomics

8Since the de-jitter buffer is a circular buffer, every position is
computed modulo its size

4 Latency Measurements

4.1 Experimental Settings
To measure the M2E latency, we set up a testing envi-

ronment where we are able to accurately quantify the de-
lay between the sound acquired by the sending input de-
vice and the sound emitted by the receiving output device.
In order to monitor and better control the network delay,
we perform the measurements between two different de-
vices (peers) connected throughout a wired connection to
the same switch of a local area network, as shown in Fig. 5.

Moreover, to exclude behavioral differences due to the
use of different audio devices, all measurements use the
same USB audio interface: the Behringer UMC404HD.
This choice is also motivated by the fact that this platform
is targeted at professional musicians, and so we consider
the use of an external audio interface mandatory. Addition-
ally, measurements performed in a non professional set-
ting, using the internal audio card of the devices, have al-
ready been presented in [12]. Measurements are collected
using custom developed software running on an external
device which is calibrated every time to avoid the intro-
duction of any processing latency. This allows to accurately
measure the whole audio chain delay, including the delay
introduced by the audio interfaces themselves. The mea-
surement device emits an impulsive sound and records the
time elapsed between the peak value of the emitted sound
and the corresponding peak of the received one.

As reported in [12], the first crucial step in order to re-
duce the overall latency is to appropriately configure the
getUserMedia call. By disabling all the additional process-
ing performed on MediaStreams, i.e., AGC, ANS and EC,
it is possible to decrease the latency by tens of millisec-
onds. Both the RTCPeerConnection and RTCDataChan-
nel based solutions may benefit from this latency reduc-
tion. For this reason, all the measurements of this work
are performed with the settings as in Listing 1, i.e., au-
toGainControl, echoCancellation, noiseSuppression set to
false, and latency set to 0.

Listing 1: Low-latency constraints for WebRTC getUser-
Media.

1 const constraints = {
2 video: false,
3 audio: {
4 autoGainControl: false,
5 echoCancellation: false,
6 latency: 0,
7 noiseSuppression: false,
8 sampleRate: 48000,
9 }

10 };
11 const mediaStream =
12 navigator.mediaDevices.getUserMedia(constraints);

All measurements are performed on three different op-
erating systems: macOS (v10.14.6 and v12.2.1) with Core
Audio, Windows 10 (v20H2) with Windows Audio, and
Ubuntu Linux (20.04, kernel 5.15) with PulseAudio9. Win-

9All three OSes have been used with the default system setup.
However, further reduction in latency may be achieved with a cus-
tom setup, in particular with Linux.
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Figure 5: M2E measurement process. The measurement device computes the delay as the time difference between the time
it emits the test signal and the time it receives it back from the full audio chain, which includes the audio interfaces (here
represented as the rectangular objects), the peers and the network transmission between them.

dows and Linux are running on two different machines:
an HP ProBook 430 G8 with an i7-1165G7 (4 cores / 8
threads) processor and 16 GB LPDDR4 3200 MHz RAM
and a custom-built PC with an i9-10900 processor with
16 GB of DDR4 2133 MHz RAM. MacOS was running on
two different MacBooks: a MacBook Pro 2018 with an i7-
8559U (4 cores / 8 threads) processor and 16 GB LPDDR3
2133 MHz RAM, and a MacBook Pro 2020 with an i5-
8257U (4 cores / 8 threads) processor and 8 GB LPDDR3
2133 MHz RAM. For each OS, we tested the latest ver-
sion of the two major web browsers that currently support
AudioWorklets: Chrome v.98 and Firefox v.97.

4.2 Overall Latency
Measurements in Fig. 6 show the comparison between

the RTCPeerConnection and the RTCDataChannel imple-
mentations. Each row summarizes the results of ten ses-
sions of the duration of one minute and the box plot rep-
resents the maximum, 75th percentile, median, 25th per-
centile, and minimum values.

Interestingly, the approach with the RTCDataChannel
shows a significantly lower M2E delay with respect to the
architecture with the RTCPeerConnection, with latency as
low as 40 ms on Firefox on macOS. This result, that al-
ready includes a de-jitter buffer of about 20 ms – that may
suffice in a typical network scenario – is very close to the
one that could be achieved by NMP tools10. On the con-
trary the performance on other browsers and OSes is not so
appealing, mostly because, at the moment, no browser can
be easily configured to directly exploit the audio card low-
latency (ASIO) drivers, as it is done by the native NMP ap-
plications. Nevertheless, the measurements reveal that the
adoption of the AudioWorklet and the RTCDataChannel

10See the JackTrip Visual Studio FAQ
at https://help.jacktrip.org/hc/en-us/articles/
360055332753-Virtual-Studio-Frequently-Asked-Questions-FAQ-
(accessed on March 17, 2022).

for low-latency audio communication may be more effec-
tive than the actual implementation of the WebRTC Medi-
aStream that suffers from the algorithmic delay of audio
coding and, mostly, from its propensity for using large de-
lays in the de-jitter buffer, that, in the reported experiments,
have been measured in the order of 20 to 60 ms [18].

5 Audio Chain Latency Assessment

In this section we report further measurements to inves-
tigate how each part of the application audio chain con-
tributes to the overall delay. From the architecture depicted
in Fig. 2 we can decompose the application in three main
layers:

A. The input/output layer that corresponds to the el-
ements that are directly responsible for exchanging
data with the audio device, i.e., getUserMedia and
audioContext.destination.

B. The processing layer that includes the Au-
dioWorklets and that moves audio data from the Me-
diaStream to the main thread and vice versa. Here,
in the receiver, a de-jitter buffer (that introduces
additional latency) is implemented to compensate
for network delay variance.

C. The network layer that corresponds to the send and
receive procedures that responsible for exchanging
data with the RTCDataChannel thus managing the
transmission and reception of each audio frame.

We tested five ad hoc setups of the application. Figure 7
presents the results of the M2E latency assessments for dif-
ferent combinations of browsers and operating systems. As
described in Sec. 4, to simulate a professional setup, we
used an external audio card instead of the internal micro-
phone and speakers. With respect to the results presented
in [12] we notice that the adoption of an external audio card
reduces by about 20 ms the latency on macOS. On the con-
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Figure 6: Mouth-to-Ear latency measurements with different browsers and OSes for the two approaches based on the
RTCPeerConnection and the RTCDataChannel.

trary, we record a worse performance in the other OSes,
likely due to the fact that, at the moment, other operating
systems do not optimize browser access to the audio cards.

Setup A represents the simplest I/O chain that is pos-
sible to implement in a browser. Here the input layer has
been directly connected to the output layer to test the base-
line latency that any audio application implemented in a
web browser may suffer from for just capturing and play-
ing out the unprocessed audio, i.e., avoiding processing and
networking. In this setup both browsers achieve the low-
est latency on macOS, a value that is well below the one
achieved on the other operating systems: about 30 ms for
Chrome and close to 15 ms for Firefox. Firefox is faster
than Chrome on macOS and Ubuntu, but not on Windows.

Setups B0 and B1 use both the I/O layer and the pro-
cessing layer, but not the network layer: audio is captured,
processed by the AudioSender and AudioReceiver Au-
dioWorklets, and then played out within the same browser
page. In this setup we must consider two implementations,
one with the MC, B0, and one with the SAB, B1. As shown
in Fig. 7, both implementations suffer from about the same
latency. We should note, anyway, that the increase in la-
tency with respect to the setup A is almost completely due
to the presence of a de-jitter buffer in the receiver, which is
needed to compensate the system delay jitter, thus allow-
ing for loss-free playback. A buffer of eight audio frames
is used, that accounts for a delay of 21.34 ms at 48 kHz.

Finally, setup C0 and C1 use the complete audio chain
and connect two applications on two different devices, as in
a real scenario. Here, the devices are connected on the same
1 Gbps LAN with an Ethernet cable in order to limit the
effect of network delay (and its variation). For this setup,
in the majority of the scenarios we note a small increase
in the delay, but in two scenarios it happens that the de-
lay is instead lower than the delay in setups B0 and B1.
Given the high variability of the latency measurements and
the negligible impact of the network (way below one mil-
lisecond), from these results we can assume that in this sce-
nario also the overhead of the processing and network layer
is very modest. The measurements confirm that the RTC-

DataChannel can provide timely audio delivery even if de-
signed for data, and not audio, transfer. At the same time,
the artifice of using AudioWorklet to divert audio from the
media stream to the main thread and vice versa does not
significantly impact the performance of the system.

From the analysis of the contribution of each single layer
of the software application to the overall M2E latency, it is
clear that the main drawback in implementing a NMP tool
in a web browser is due to the latency in the real-time ac-
quisition (and reproduction) of the audio data that accounts
for the vast majority of the overall M2E delay. This result
represents a great limitation for every low-latency real-time
audio processing application that would be implemented in
a web browser, not only for NMP applications. However,
the performance of Firefox on macOS, that has a latency
close to 15 ms, is not significantly far from the one achiev-
able by native NMP applications, that is in the order of
5–10 ms at best.

6 Application Robustness

6.1 Jitter Measurements
All the experiments discussed so far have been per-

formed with a de-jitter buffer of eight audio frames
(21.34 ms). However, the length (and delay) of the buffer
can be set to different values, depending on the CPU load
and the network conditions. Since varying delays can be
introduced at different stages of the audio transmission
chain, in the following we report additional measurements
of both the acquisition and the transmission stages that
illustrate the real-time characteristics of the system. Note
that, in order to have the same time reference at both trans-
mitter and receiver sides, the two peers are running on the
same device, in two tabs of the same browser.

By means of the high precision timestamp API available
in the browser11, we traced the arrival time of each audio
frame at the AudioWorkletNode, both in the transmitter and

11https://developer.mozilla.org/en-US/docs/Web/API/
Performance/now
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Figure 7: Mouth-to-Ear latency measurements for different setups of the audio chain with Chrome and Firefox on different
operating systems. Labels correspond to the setups (A, B, C) described in Sec. 5 either with the MC (0) or the SAB (1).

in the receiver peer (those are the first places at both ends
where we can trace the frame timestamps). The acquisition
chain measurement includes only the jitter introduced by
the getUserMedia method on the input device. The trans-
mission chain measurement includes also the jitter due to
the RTCDataChannel that is supposed to be slightly higher
(even if the measurement is performed on the same com-
puter on the loopback device).

Figure 8a shows traces of the Inter-Frame Delay Varia-
tion (IFDV) both after frame acquisition at the sender and
after frame reception at the receiver. The two peers are on
the same browser running Chrome or Firefox under low
CPU load (only the application and some system and user
background services). In a low jitter setup the IFDV value
should be close to zero. Comparing the acquisition and re-
ception traces, as expected, we see larger variation in the
IFDV of the latter. This is also confirmed by Fig.8b, that re-
ports the histogram of the probability density function for
the two IFDV traces measured using Firefox on macOS. It
is important to notice that with Chrome there are two most
frequent series of values, +2.67 and -2.67 ms, that means
that the frames are handled in pairs. This behavior can how-
ever appear in both browsers when the CPU load increases.

6.2 Scalability Evaluation
The proposed solution has been tested to verify its scala-

bility, both with the MC and with the SAB implementation,
when multiple peers are interconnected. Even if the perfor-
mance, with two peers, is the same in terms of latency, as
shown in Fig.7, and no losses are present, we experience a
rapid reduction in performance for the MC implementation
as soon as the number of connected peers increases. On the
contrary, the SAB implementation does not report any loss

in any of the audio streams even with as much as twenty
concurrent peers.

Figure 9 presents the results of the measurements in
term of audio frame losses versus the number of concurrent
peers (two sessions of one minute have been performed for
each scenario and the average loss is reported). Here the
lost frames are indeed late losses, that is frames that have
been received too late for playback (despite the 21.34 ms
de-jitter delay). Also in this case macOS shows better re-
sults than Windows with both the browsers, and Firefox
outperforms Chrome in both the OSes.

The combination of the AudioWorklet, the SAB and the
RTCDataChannel, has proved to efficiently handle both the
high bit-rate (1,536 kbps per peer) required for the trans-
mission of two uncompressed 16 bit PCM audio channels
at 48 kHz and the high frame rate (375 frames per second)
given by using small audio frames of 128 samples each.

7 Conclusions

In the time of SARS-CoV-2 restrictions we have seen
a widespread adoption of Internet software for remote
music performance by conservatories, music schools, and
even professional musicians. Some of these users adopted
proper NMP tools, but many of them relied on videocon-
ferencing applications that are far simpler to use, in par-
ticular if web-based. However, all the current web-based
audio communication software suffers from high latency
and constrained quality because the WebRTC media stream
(RTCPeerConnection) is targeted to speech interaction and
its API does not allow the programmer to customize its be-
havior.

To the extent of our knowledge, this is the first work that
presents a web-based solution (i.e., based on Web Audio
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and WebRTC) for NMP with the quality of uncompressed
stereo PCM audio and with far reduced M2E latency with
respect to the state of the art. On one side, the results pre-
sented in this paper show that is possible to achieve the
desired audio quality, robustness, and scalability with such
an implementation. On the other side, the achieved M2E
latency results to be just above the requirements of NMP
applications only on macOS with the Firefox web browser;
other scenarios still present too high delay. Nevertheless,
the current implementation may be used in some scenarios
where pristine audio quality is pivotal, such as remote in-
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Figure 9: Percentage of lost audio frames, i.e., discarded
because too late, as a function of the number of concurrent
peers, when MC or SAB are used.

dividual music lessons or performances with loose musical
interplay.

Investigation of the different layers of the audio commu-
nication chain reveal that quite a high portion of the over-
all latency is due to the audio acquisition and reproduc-
tion layers that are implemented in the native code of the
web browser and are not under the control of the JavaScript
programmer. Thus, we advocate for reduction of browser
latency in audio I/O and inclusion of uncompressed audio
in the RTCPeerConnection API with the possibility to cus-
tomize media streams for music applications.
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