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Abstract
We consider the reinsurance-investment problem under the mean variance criterion in
a dynamic contagion model that takes into account self and externally excited claim
clustering effects. We find explicit time-consistent reinsurance-investment strategies
for a generalized proportional contract in which only losses above a certain level are
reinsured. This greater flexibility in the contract mitigates the possible drawback of
the primary insurer ceding too much at the expense of profitability, while still ensuring
that the higher risks are shared with the reinsurance counterparty.

Keywords Reinsurance-investment problem · Dynamic contagion claims · Mean
variance criterion · Non cooperative game and time inconsistency · Proportional and
non proportional reinsurance

Mathematics Subject Classification 60H10 · 93E20 · 91G80 · 60G07

1 Introduction

The importance of reinsurance is growing steadily due to its role in helping insurers
mitigate their potential losses and, through stable earnings, it enables continued growth
and innovation.

In recent years, the increasing severity and frequency of natural catastrophes,
man-made catastrophic events or pandemics have highlighted the important role of
reinsurance companies in supporting the non-life and life insurance industry in paying
claims to their policyholders and enabling their financial investments.
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The augmented interest in the problem is also witnessed by the number of academic
studies which consider the problem under a variety of criteria and for different models
of the claim arrivals and investment market.We refer to Cao et al. (2020) and Brachetta
et al. (2022) for recent and concise surveys on the existing literature on the topic.

We consider a reinsurance-investment problem taking the side of the insurer that
by transferring her risks reduces earnings volatility and optimizes the financial results.
The motivation for buying reinsurance and the amount required vary depending on
several factors and in particular on the exposure to different types of risk. We consider
themodel introduced byDassios and Zhao (2011), which is a generalisation of the Cox
process with shot noise intensity and the Hawkes process. This contagion model is
extremely versatile, as it allows for the consideration of risks due to exogenous factors,
such as earthquakes and natural disasters, aswell as endogenous risks, and in themodel
the occurrence of these events increases the probability of future events. The simplest
proportional reinsurance is the quota share, see e.g. Zeng and Li (2011), in which the
primary insurer retains a fixed percentage of each policy’s premiums and cedes the
remainder according to a ratio defined in their contract. Losses are apportioned at the
same ratio.

This relatively simple form of reinsurance has the disadvantage that it is not flexible,
as it does not protect against extreme losses and, moreover, depending on the quota,
the insurer may be forced to cede too much at the expense of profits.

A possible solution to the latter drawback is to combine a quota share agreement
with another popular form of reinsurance, the so-called excess of loss agreement,
in which only claims exceeding a certain threshold are reinsured (see e.g. Li et al.
(2017)). Thus, we consider here a proportional reinsurance where the reinsurance
covers a quota share of the claim excess over a certain fixed retention level. This type
of contract has two collateral advantages. The first is related to the practical need to
keep the level of the deductible constant at least in a suitable time window (e.g. on an
annual basis) and, in the contract we are considering, the level is fixed. The second
is related to the advantages of the proportional contract. Within the time window, the
insurer seeks the optimal proportion of losses exceeding the fixed threshold, and this
proportion will assure the reinsurance counterparty that a portion of the higher risks
will be shared by the insurance company.

Following the works of Li et al. (2017) and Cao et al. (2020), for this type of
contract we provide in closed form the insurer’s optimal quota share when the insurer
optimizes according to the mean-variance criterion, and discuss the results obtained
over time and in terms of the retention level.

In Li et al. (2017) for a spectrally negative Lèvy model, it is shown that the optimal
equilibrium contract is of the excess-of-loss type, where the optimal retention level
can be computed in terms of the solution of an ordinary differential equation, while in
Cao et al. (2020) a similar result is obtained for the same dynamic contagion model
considered here. Therefore, as expected, the performance of the mixed contract we
propose in this work lies between that of the classical proportional and theXL contract.
This can be easily explained by the fact that in the mixed contract the insurance
company offers to share part of the higher risks with the reinsurance counterparty.
However, even if the proposed contract does not outperform the XL contracts of
Li et al. (2017) and Cao et al. (2020) at every threshold level, it is important to
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note that numerical examples show there are levels where the value functions for
the optimization problem are identical for both types of contracts. Moreover, the XL
mixed contract, characterized by a constant retention level and proportional excess,
is superior to the traditional proportional contract. The latter is a special case that
occurs when the retention level is set to zero. By sharing only the risks above a fixed
threshold, the primary insurer benefits from retaining more of the lower-risk portions,
leading to improved risk management and potentially higher profitability compared
to the classical proportional contract.

The paper is organized as follows. In Sect. 2, we introduce the dynamic contagion
model, the surplus process and the mixed contract, and we formulate the reinsurance-
investment problem. Section 3 contains the main result, as it provides the optimal
portfolio strategy and the optimal retention proportion in closed form via an extended
Hamilton–Jacobi–Bellman equation. The optimal retention proportion depends on
the solution of an ordinary differential equation, whose behaviour is discussed over
time and with respect to the threshold level. Section 4 is devoted to some numerical
examples, which illustrate the theoretical results under the assumption that the claims
are exponentially distributed. Finally, a conclusion is presented in Sect. 5.

2 Problem formulation

On a filtered probability space (�,F ,F = {Ft , t ∈ [0, T ]},P) satisfying the usual
conditions of completeness and right continuity with a fixed time horizon T < +∞,
we model the insurer aggregate claim process by the compound process introduced in
Dassios and Zhao (2011).

The claims arrivals

Ct =
∑

i≥1

Yi11Ti≤t .

follow a contagion model that generalizes the Hawkes process and the Cox process
with shot noise intensity and includes a component depending on external events
together with a self-exciting component. In particular, the point process describing
the claims arrivals N = {Nt , t ∈ [0, T ]}, Nt = ∑

i≥1 11Ti≤t is characterized by the
stochastic intensity λ, whose self excited part has jumps Ri at the claims arrival times
Ti , whereas its externally excited part has jumps Zi occurring at the jumps times T (1)

i
of a homogeneous Poisson process N 1 with intensity ρ. Mathematically, the process
λ is written as

λt = β + (λ0 − β)e−αt +
∑

i≥1

Zie
−α(t−T (1)

i )11
T (1)
i ≤t

+
∑

i≥1

Rie
−α(t−Ti )11Ti≤t ,

for constant reversion level β ≥ 0, initial value λ0 > 0 and rate of exponential decay
α > 0.

The claimsYi are supposed to be positive i.i.d. (independent, identically distributed)
random variables and, analogously, the externally excited jumps Zi and the jumps Ri
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responsible for the self-excited effect are positive i.i.d.. Furthermore, Yi , Ri , Zi and
also T (1)

i are considered independent of each other.
The dynamics of the intensity process λ can be rewritten in terms of the counting

randommeasures ν(1),λ and νλ associated, respectively, to the external and self-excited
jumps of the intensity λ,

ν(1),λ(dt, dz) =
∑

i≥1

δ
(T (1)

i ,Zi )
(dt, dz)11

T (1)
i <∞ and

νλ(dt, dr) =
∑

i≥1

δ(Ti ,Ri )(dt, dr)11Ti<∞

as

dλt = α(β − λt−)dt +
∫ +∞

0
zν(1),λ(dt, dz) +

∫ +∞

0
rνλ(dt, dr).

Note that the processes λ and (N , λ) are Markovian.
We recall that the compensators of the measures ν(1),λ(dt, dz) and νλ(dt, dr) can

be respectively written as ρFZ (dz)dt and λt−FR(dr)dt , where FZ , FR denote the
distribution of the external, respectively self-excited, jumps. Moreover, mZ , nZ , and
mR , nR will denote the finite first and second moments of the variables Zi and Ri . We
assume mR < α to guarantee the stationarity of the intensity process.

With regard to the aggregate claim process, we introduce the associated counting
measure νC (dt, dy) = ∑

i≥1
δ(Ti ,Yi )(dt, dy)11Ti<∞. Let us observe that the two mea-

sures νλ and νC depend on the N ’s jumps times and write dCt = ∫ +∞
0 yνC (dt, dy).

Furthermore, recall that the compensator of the measure νC is λt−FY (dy)dt .
The reinsurance-investment problem of the insurer can be described as follows.
The insurer chooses her retention function 	p(t, y) on the base of the information

available, and, once observed the claim Y = y, she identifies the part covered by the
insurer (and the part y − 	p(t, y) to be reinsured). Once 	p(t, y) is chosen, it will
yield a surplus with a dynamics given by

dξt = λt−mY (θ − η)dt + λt−E[	p(t,Y )|Ft−](1 + η)dt −
∫ ∞

0
	p(t, y)ν

C (dt, dy)

where θ and η, 0 < θ < η, are respectively the insurer and reinsurer premium
safety loadings. Moreover note that E[	p(t,Y )|Ft−] = ∫ ∞

0 	p(t, y)FY (dy), due to
the independence of the claims Yi .

We assume the primary insurer considers a reinsurance contract characterized by
the retention function

	p(t, y) =
{
pt (y − l) + l if y > l

y if 0 ≤ y ≤ l,
(2.1)
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Onmean-variance optimal reinsurance-investment strategies...

where 0 ≤ pt ≤ 1 is the proportion which needs to be chosen optimally and l ≥ 0 is
a given threshold level.

The insurer invests the surplus in a financial market and decides the dollar amount
πt of the surplus which will be invested in a risky asset, leaving the residual in a bank
account paying interests at a constant rate r .

We describe the risky asset price S dynamics by

dSt = St (μdt + σdWt ), S0 > 0,

with constant coefficients μ, σ and denote by Xu the surplus process, that represents
the net value of the investment of the insurer after considering the reinsurance and the
premiums paid and received. The controlled evolution of the surplus investment Xu

can be written as follows

dXu
t = [

(μ − r)πt + r Xu
t− + λt−mY (θ − η) + λt−E[	p(t,Y )|Ft−](1 + η)

]
dt

+ σπt dWt −
∫ ∞

0
	p(t, y)ν

C (dy, dt),

where u = (p, π) belongs to the class of admissible controls U, defined as the set of
predictable processes satisfying the integrability condition

E
[ ∫ T

0
π2
t dt

]
< ∞ and pt ∈ [0, 1],∀t ∈ [0, T ].

The strategy will be chosen in order to maximize the mean-variance objective
functional of the final wealth, i.e.

sup
u∈U

Ju(t, x, λ), (2.2)

where Ju(t, x, λ) is the expected total reward at maturity with a penalization
proportional to the variance

Ju(t, x, λ) = Et,x,λ[Xu
T ] − γ

2
Vart,x,λ[Xu

T ] (2.3)

for a fixed insurer risk aversion parameter γ > 0.
It iswell known that themean variance criterion has the issue of being time inconsis-

tent, which implies that the dynamic programming principle does not apply. Therefore,
following Björk and Murgoci (2010) (see also Björk et al. (2017)) we approach the
decision problem as a non cooperative-game and look for the solution among the
equilibrium strategies defined as follows (see also Landriault et al. (2018)).

Definition 2.1 An admissible strategy û = ( p̂, π̂) is called a (reinsurance-investment)
equilibrium strategy for Problem (2.2)–(2.3) if for any (t, x, λ) and any perturbed
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strategy uε = (pε, πε) with ε > 0,

lim
ε→0

J û(t, x, λ) − Ju
ε
(t, x, λ)

ε
≥ 0,

where uε = (pε, πε) is any admissible strategy equal to û = ( p̂, π̂) on the set
[t + ε, T ].

3 Main results

For any φ(t, x, λ) ∈ C1,2,1([0, T ] ×R× (0,+∞)), the infinitesimal generator of the
controlled surplus Xu

t is given by

Auφ(t, x, λ) = [
(μ − r)π + r x + λmY (θ − η) + λE[	p(t,Y )](1 + η)

]
φx (t, x, λ)

+ φt (t, x, λ) + α(β − λ)φλ(t, x, λ) + 1

2
σ 2π2φxx (t, x, λ)

+ ρE
[
φ(t, x, λ + Z) − φ(t, x, λ)|Ft−

]
(3.1)

+ λE
[
φ(t, x − 	p(t,Y ), λ + R) − φ(t, x, λ)|Ft−

]
, (3.2)

where the two conditional expected values in (3.1) and (3.2) are finite. It is worth
noting that in (3.2) the jumps due to the measures ν(1),λ and νC both depend on N ’s
jump times and, that the conditional expectations are respectively

E
[
φ(t, x − 	p(t,Y ), λ + R)|Ft−

] =
∫ ∞

0

∫ ∞

0
φ(t, x−	p(t, y), λ+r)FY (dy)FR(dr),

and

E
[
φ(t, x, λ + Z)|Ft−

] =
∫ ∞

0
φ(t, x, λ + z)FZ (dz)

due to the independence hypotheses on the claims Yi and on the jumps of the intensity
Zi and Ri .

The next result is a verification theorem for an equilibrium reinsurance proportion
and investment strategy. It is a particular case of Theorem 5.2 in Björk et al. (2017)
(see also Cao et al. (2020)).

Theorem 3.1 Suppose there exist functions V (t, x, λ), g(t, x, λ) ∈ C1,2,1([0, T ] ×
R × (0,+∞) satisfying the following conditions:

1. For all (t, x, λ) ∈ [0, T ] × R × (0,+∞),

sup
u=(p,π)∈[0,1]×R

{
AuV (t, x, λ)− γ

2
Aug2(t, x, λ)+γ g(t, x, λ)Aug(t, x, λ)

}
= 0.

(3.3)
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2. For all (t, x, λ) ∈ [0, T ] × R × (0,+∞),

Aûg(t, x, λ) = 0, (3.4)

where û = ( p̂, π̂) is the strategy that attains the supremum in (3.3).
3. For all (x, λ) ∈ R × (0,+∞),

V (T , x, λ) = g(T , x, λ) = x . (3.5)

Then û = ( p̂, π̂) is an equilibrium reinsurance-investment strategy for objective
(2.2). Moreover, V (t, x, λ) = J û(t, x, λ) and g(t, x, λ) = Et,x,λ[X û

T ].
Applying the previous verification theorem, we obtain our main result, which states

the solution of our problem in explicit form.
In the following, we need the moments of 	p, thus we introduce the notation

m	p (pt ) = E[	p(t,Y )|Ft−], n	p (pt ) = E[	2p(t,Y )|Ft−],

and, taking into account the definition of the contract (2.1), we compute

m	p (pt ) = mY − (1 − pt )E (Y − l)+

and

n	p (pt ) = nY + (p2t − 1)E(Y 211(Y>l)) + l2 (1 − pt )
2
P(Y > l)

+ 2 l pt (1 − pt )E(Y11(Y>l))

= nY −
(
1 − p2t

)
E

(
(Y − l)+

)2 − 2 l (1 − pt )E (Y − l)+ .

Theorem 3.2 An equilibrium reinsurance-investment strategy û = ( p̂, π̂) for objec-
tive (2.2) is given by

p̂t = min {RP(t, k(t)), 1} , π̂t = μ − r

γ σ 2 e−r(T−t),

where RP(t, κ) denotes the retention limit proportion function

RP(t, κ) = E (Y − l)+

E
(
(Y − l)+

)2

(
η

γ
+ mRκ − l er(T−t)

)+
e−r(T−t)

and k(t) is the unique solution of the ODE

k̇(t) + (mR − α)k(t) + (
mY (θ − η) + η m	p ( p̂t )

)
er(T−t) = 0, k(T ) = 0. (3.6)

Moreover, the equilibrium value function is given by

V (t, x, λ) = J û(t, x, λ) = er(T−t)x + A(t) + K (t)λ, (3.7)
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where

A(t) =
∫ T

t

(
(αβ + ρ mZ ) K (s) − γ

2
ρ nZk

2(s) + (μ − r)2

2γ σ 2

)
ds (3.8)

and K (t) is the unique solution of the following ODE

{
K̇ (t) + (mR − α)K (t) + mY (θ − η)er(T−t) − γ

2 nRk2(t) + P(t) = 0

K (T ) = 0
(3.9)

where

P(t) =
(
−γ

2
er(T−t)n	p ( p̂t ) + (η + γmRk(t))m	p ( p̂t )

)
er(T−t).

Proof Assume that V and g take the form

V (t, x, λ) = er(T−t)x + A(t) + K (t)λ, g(t, x, λ) = er(T−t)x + a(t) + k(t)λ,

for suitable functions A(t), K (t), a(t), k(t) to be determined. From (3.5) we deduce
that A(T ) = K (T ) = a(T ) = k(T ) = 0.

The extended HJB equation (3.3) writes as

sup
p∈[0,1]

I1(t, x, λ, p) + sup
π∈R

I2(t, x, λ, π) + I3(t, x, λ) = 0,

where

I1(t, x, λ, p) = λer(T−t)
(
−γ

2
er(T−t)n	p (p) + (η + γmRk(t))m	p (p)

)
, (3.10)

I2(t, x, λ, π) = er(T−t)
(
−γ

2
σ 2er(T−t)π2 + (μ − r)π

)
, (3.11)

and

I3(t, x, λ) = λ
[
K̇ (t) + (mR − α) K (t) + mY (θ − η)er(T−t) − γ

2
nRk

2(t)
]

+ Ȧ(t) + (αβ + ρmZ ) K (t) − γ

2
ρnZk

2(t).

The optimal retention proportion and investment strategy follow immediately from
(3.10) and (3.11), respectively.

Since for all (t, x, λ) ∈ [0, T ] × R × (0,+∞) it holds

0 = I1(t, x, λ, p̂) + I2(t, x, λ, π̂) + I3(t, x, λ)

= λ
[
K̇ (t) + (mR − α) K (t) + mY (θ − η)er(T−t) − γ

2
nRk

2(t) + P(t)
]

+ Ȧ(t) + (αβ + ρmZ ) K (t) − γ

2
ρnZk

2(t) + (μ − r)2

2γ σ 2 ,
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we deduce (3.8) and (3.9).
Equation (3.4) becomes

0 = Aû g(t, x, λ) =λ
[
k̇(t) + (mR − α)k(t) + (

mY (θ − η) + ηm	p ( p̂(t))
)
er(T−t)

]

+ ȧ(t) + (αβ + ρmZ )k(t) + (μ − r)2

γ σ 2

which holds for all (t, x, λ) ∈ [0, T ]×R×(0,+∞). Taking into account that a(T ) =
k(T ) = 0, we deduce (3.6) and that

a(t) =
∫ T

t

(
(αβ + ρmZ ) k(s) + (μ − r)2

γ σ 2

)
ds.

Finally, the uniqueness of the solutions k(t) and K (t) of (3.6) and, respectively,
(3.9) is due to the fact that the generators of the ODEs satisfy the uniform Lipschitz
condition. In fact, the generator of (3.6) can be written as

f (t, κ) = (mR − α)κ + (
mY θ − ηE (Y − l)+

)
er(T−t)

+ηE (Y − l)+ er(T−t) min{RP(t, κ), 1}

and satisfies

| f (t, κ1) − f (t, κ2)| ≤ |mR − α| |κ1 − κ2|

+ η
(
E (Y − l)+

)2

γE
(
(Y − l)+

)2

∣∣∣∣
(
η + γmRκ1 − γ l er(T−t)

)+ −
(
η + γmRκ2 − γ l er(T−t)

)+∣∣∣∣

≤ |mR − α| |κ1 − κ2| + ηmR |κ1 − κ2| ≤ (|mR − α| + η) |κ1 − κ2|.

Similarly, we can prove that the generator of (3.9) satisfies the uniform Lipschitz
condition. �	

Let us now discuss the results obtained and compare them with those of Cao et al.
(2020) and Li et al. (2017). Both the equilibrium investment and the retention pro-
portion strategies do not depend on the capital x , which is due to having considered a
constant risk aversion γ . In particular, the equilibrium investment strategy is identical
to that found in the two papers above, because the investment market is the same and
the price dynamics is independent of the aggregate claims process. The comparison for
the equilibrium retention is more involved, as we consider a different contract than the
excess of loss type and, moreover, a different model than Li et al. (2017), who have a
Lèvy-type aggregate claim dynamics instead of our contagion model also used in Cao
et al. (2020). In Li et al. (2017), the equilibrium excess of loss reinsurance strategy
does not depend on the claim, whereas in Cao et al. (2020), due to the contagion effect,
the reinsurance strategy depends on the distribution of the claim. It follows from The-
orem 3.2 that the equilibrium reinsurance proportion p̂ depends on the distribution of
the claim Y exceeding level l, either explicitly through the moments E (Y − l)+ and
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E
(
(Y − l)+

)2, specifically related to the proportional type of strategies, or implicitly
through the function k(t). Note that, as in Cao et al. (2020), the presence of the func-
tion k(t) is related to the internal and not external contagion effect. In fact, it does not
depend on the externally excited jumps, i.e. on the distribution of Z and on the Pois-
son intensity ρ. This suggests that the external effects are fully and implicitly hedged
through the related change in the premium rate, while self-excited effects require more
attention and management adjustments.

In the following proposition, we analyze the sign of k(t) to determine how the
contagion and, as already noted, the internal clustering specifically, affect the insurer’s
choice to retain more or less risk. We set the interest rate r = 0 for simplicity, so that
the ODEs in Theorem 3.2 are autonomous functions and k(t) is monotone in t . When
r 
= 0 is small, similar results we expect can be written (see Cao et al. (2020)).

Let us preliminary observe that, with r = 0 the retention limit proportion function
RP does not depend explicitly on time, that is

RP(κ) = E (Y − l)+

E
(
(Y − l)+

)2

(
η

γ
+ mRκ − l

)+
.

Proposition 3.1 Assume r = 0. Then

1. IfRP(0) > 1− θ
η

mY
E(Y−l)+ then k(t) is decreasing in t and k(t) > 0 for all t ∈ [0, T ),

k(T ) = 0;
2. If RP(0) = 1 − θ

η
mY

E(Y−l)+ then k(t) = 0 for all t ∈ [0, T ];
3. IfRP(0) < 1− θ

η
mY

E(Y−l)+ then k(t) is increasing in t and k(t) < 0 for all t ∈ [0, T ),

k(T ) = 0.

Proof Let k̃(t) = k(T −t), t ∈ [0, T ]. Then, the ODE (3.6) can be rewritten in forward

time as ˙̃k(t) = f (k̃(t)), k̃(0) = 0, where

f (κ̃) = (mR − α)κ̃ + mY θ − η (1 − min{RP(κ̃), 1})E (Y − l)+ .

It is well known (see, e.g., Lemma 1.7 in Hale and Koçak (1991)) that solutions of
an autonomous ODE are monotone in t , and the monotonicity depends on the sign of
f (0). If RP(0) ≥ 1 then f (0) = mY θ > 0, thus k̃(t) is positive and increasing or,
equivalently, k(t) is positive and decreasing.

If RP(0) < 1 then

f (0) = mY θ − η (1 − RP(0))E (Y − l)+

and the sign and the monotonicity of k̃(t) depend on the sign of f (0).
In particular, if f (0) = 0, equivalently RP(0) = 1− θ

η
mY

E(Y−l)+ , the unique solution

the ODE (3.6) is k̃(t) = 0 for all t ∈ [0, T ].
�	

From the previous proposition, we can see that we have one of the following cases.
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If RP(0) ≥ 1, k(t) is decreasing in t and thus RP(k(t)) ≥ RP(k(T )) = RP(0).
This implies that the reinsurance equilibrium proportion strategy is p̂t = 1 for all
t ∈ [0, T ], which means that nothing is reinsured. In this case, l <

η
γ
and the claim

size Y is light-tail with E (Y − l)+ ≤
(

η
γ

− l
)+

.

When 1 − θ
η

mY
E(Y−l)+ < RP(0) < 1, the optimal retention quota p̂T = RP(0)

exceeds the net relative cost of reinsurance assuming that all of the portion of the
claim above the level is reinsured. In this case, k(t) is again decreasing in t and so
are RP(k(t)) and p̂t = min{RP(k(t)), 1}. This implies that 1 − p̂T = 1 − RP(0)
represents the maximum reinsurance quota.

In the special case when RP(0) = 1 − θ
η

mY
E(Y−l)+ it is k(t) = 0 for all t ∈ [0, T ]

and, therefore, the optimal strategy is not affected by the contagion. In this case, the
equilibrium reinsurance proportion strategy is constant, precisely p̂t = RP(0). If, in
addition, l ≥ η

γ
then the equilibrium proportion is null and the insurer reinsures all

the claim exceeding l. Observe that, in the latter situation the insurer net cost for the
reinsurance is null, i.e. ηE (Y − l)+ − θmY = 0 .

Lastly, if RP(0) < 1− θ
η

mY
E(Y−l)+ , which implies the inequality θmY < ηE (Y − l)+

that would be required for reinsurance, we have that k(t) is increasing in t and so is
p̂t = RP(k(t)). This implies that 1 − p̂T = 1 − RP(0) represents the minimum
proportion for reinsurance.

For l greater than η
γ
, different cases are possible as the following corollary shows.

Corollary 3.1 Assume r = 0 and l ≥ η
γ
. Then

1. If mY
E(Y−l)+ >

η
θ
then k(t) is decreasing in t and k(t) > 0 for all t ∈ [0, T ),

k(T ) = 0;
2. If mY

E(Y−l)+ = η
θ
then k(t) = 0 for all t ∈ [0, T ];

3. If mY
E(Y−l)+ <

η
θ
then then k(t) is increasing in t and k(t) < 0 for all t ∈ [0, T ),

k(T ) = 0.

Proof The result follows immediately from Proposition 3.1 since, for l ≥ η
γ
, RP(0) =

0. �	
In the next proposition, we analyze the behaviour of k(t) in terms of the level

parameter.

Proposition 3.2 Assume r = 0 and denote

kl(t) = ∂

∂l
k(t), mY>l = E (Y − l)+ , QY>l = E (Y − l)+

E
(
(Y − l)+

)2 .

Then

kl(t) = −
∫ T

t
I (u) exp

{
−

∫ u

t
(α − mR − ηmR (mY>l)

× (QY>l) 1{0<(QY>l )
(

η
γ

+mRk(s)−l
)
<1}

)
ds

}
du, (3.12)
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where

I (t) = η
(
1 − p̂t

) ∂

∂l
(mY>l) − η (mY>l) 1{0<(QY>l )

(
η
γ

+mRk(t)−l
)
<1}

×
{ (

η

γ
+ mRk(t) − l

)
∂

∂l
(QY>l) − (QY>l)

}
. (3.13)

Proof Differentiating equation (3.6) with respect to l yields

k̇l(t) = (α − mR)kl(t) − η
∂

∂l

(
m	p ( p̂t )

) = (α − mR)kl(t) + η
∂

∂l

(
(mY>l)

(
1 − p̂t

))

= (α − mR)kl(t) + η
(
1 − p̂t

) ∂

∂l
(mY>l) − η (mY>l)

∂

∂l
p̂t

= (α − mR)kl(t) + η
(
1 − p̂t

) ∂

∂l
(mY>l)

− η (mY>l) 1{0<QY>l

(
η
γ

+mRk(t)−l
)
<1}

∂

∂l

(
QY>l

(
η

γ
+ mRk(t) − l

))

= (α − mR)kl(t) + η
(
1 − p̂t

) ∂

∂l
(mY>l)

− η (mY>l) 1{0<QY>l

(
η
γ

+mRk(t)−l
)
<1}

×
{(

η

γ
+ mRk(t) − l

)
∂

∂l
(QY>l) + (QY>l) (mRkl(t) − 1)

}
.

Therefore

k̇l(t) =
(

α − mR − ηmR (mY>l) (QY>l) 1{0<QY>l

(
η
γ

+mRk(t)−l
)
<1}

)
kl(t)

+ η
(
1 − p̂t

) ∂

∂l
(mY>l) − η (mY>l) 1{0<QY>l

(
η
γ

+mRk(t)−l
)
<1}

×
{ (

η

γ
+ mRk(t) − l

)
∂

∂l
(QY>l) − (QY>l)

}
,

with boundary condition kl(T ) = 0 as k(T ) = 0. The thesis follows immediately. �	
We observe that from the previous result it follows that the monotonicity of k(t) with
respect to the level depends on the sign of I (u) in (3.13). This reflects on the mean of
the controlled surplus investment X û

T since

Et,x,λ[X û
T ] = g(t, x, λ) = x + a(t) + k(t)λ, (3.14)

with

a(t) =
∫ T

t

(
(αβ + ρmZ ) k(s) + μ2

γ σ 2

)
ds.
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The behaviour with respect to the level of the variance

Vart,x,λ[X û
T ] = 2

γ
(g(t, x, λ) − V (t, x, λ)) ,

where V (t, x, λ) is defined by (3.7), depends on the co-movement of k(t) and K (t).
In the next section we illustrate some examples and show the behaviour of the

optimal proportion p̂t and of the value function for different choices of the threshold
level l.

4 Numerical examples

Example 1: Proportional reinsurance
The proportional reinsurance, that means 	p(t, y) = pt y, is obtained setting l = 0.

In this case, the equilibrium retention proportion reduces to

p̂t = min
{
RP(t, k(t)), 1

}
, RP(t, κ) = mY

nY

(
η

γ
+ mRκ

)+
e−r(T−t),

where k(t) solves the ODE

k̇(t) + (mR − α)k(t) + mY
(
θ − η + η p̂t

)
er(T−t) = 0, k(T ) = 0.

Furthermore, K (t) solves the ODE (3.9) with

P(t) =
(
−γ

2
er(T−t)nY p̂

2
t + (η + γmRk(t))mY p̂t

)
er(T−t).

When additionally r = 0, Proposition 3.1 applies with RP(0) = mY η
nY γ

.
The time behaviour of k(t) and of the optimal proportion p̂t is represented in

Figs. 2 and 3 (continuous lines), under the assumption that the claims are exponen-
tially distributed. We observe that the optimal proportional retention p̂t has the same
behaviour as k(t). In particular, for T = 5, mR = 1, α = 3, θ = 0.3, η = 0.4,
γ = 0.05, mY = 5, case 1 of Proposition 3.1 applies and k(t) is positive and decreas-
ing, whereas if mY = 18, case 3 applies and k(t) is negative and increasing. In both
cases, the optimal proportion is affected by contagion, retaining more for less risky
claims and less for riskier ones. As expected, the self-exciting effect vanishes as time
approaches the terminal horizon T . Finally, the value of the objective function for the
proportional contract can be deduced from Fig. 4 and compared with our generalized
proportional contract.

Example 2: Exponentially distributed claims
If Y ∼ Exp then

E (Y − l)+ = mY e
− l

mY , E
(
(Y − l)+

)2 = nY e
− l

mY = 2m2
Y e

− l
mY ,
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Fig. 1 Proposition 3.1 under different choices of model parameters

Fig. 2 Time behaviour of k(t) and p̂(t) for different levels. Model parameters are: η = 0.4, γ = 0.05,
θ = 0.3, mY = 5 (see Fig. 1a), and α = 3, mR = 1, T = 5

Fig. 3 Time behaviour of k(t) and p̂(t) for different levels. Model parameters are: η = 0.4, γ = 0.05,
θ = 0.3, mY = 18 (see Fig. 1b), and α = 3, mR = 1, T = 5
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so that

p̂t = min{RP(t, k(t)), 1}, RP(t, κ) = 1

2mY

(
η

γ
+ mRκ − l er(T−t)

)+
e−r(T−t),

where k(t) solves the ODE

k̇(t) + (mR − α)k(t) + mY

(
θ − η(1 − p̂t )e

− l
mY

)
er(T−t) = 0, k(T ) = 0.

Furthermore, K (t) solves the ODE (3.9) with

P(t) =
(
−γ

2
er(T−t)n	p ( p̂t ) + (η + γmRk(t))m	p ( p̂t )

)
er(T−t),

where

n	p ( p̂t ) = nY − (1 − p̂2t )nY e
−l/mY − 2 l(1 − p̂t )mY e

−l/mY

and

m	p ( p̂t ) = mY − (1 − p̂t )mY e
−l/mY .

When additionally r = 0, by Proposition 3.1 we deduce that if

RP(0) = 1

2mY

(
η

γ
− l

)+
> 1 − θ

η
el/mY (4.1)

then k(t) is decreasing in t and positive for all t ∈ [0, T ) (and this happens at least for
all l > l0 = mY log( η

θ
)), while it is increasing and negative if the inequality in (4.1)

is the opposite. The equality in (4.1) corresponds to k(t) = 0 for all t ∈ [0, T ], and
thus to p̂t constant on [0, T ].

Regarding the behaviour of k(t) with respect to the level, from

k(t) = −
∫ T

t
mY

(
−θ + η

(
1 − p̂u

)
e
− l

mY

)
e−(α−mR)(u−t)du

we observe that it is a bounded function of l. Therefore, RP(κ(t)) =
1

2mY

(
η
γ

+ mRκ(t) − l
)+

vanishes for l above a certain level and p̂t = 0 ∀ t ∈ [0, T ],
which means that all is reinsured. Below that level, p̂t may either be positive for all
t ∈ [0, T ], or it may vanish/become positive after a certain instant (respectively, if
k(t) is positive and decreasing/negative and increasing).

Figure 1 illustrates some significant examples of the different situations that can
occur depending on the values of the model parameters.

Figure1a is one of the simplest cases. For η = 0.4, γ = 0.05, θ = 0.3, mY = 5,
(4.1) holds for any value of the threshold level l, so k(t) and consequently p̂t are
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Fig. 4 Behaviour of the value function V (t, x, t) with respect to the level and relative difference of the
value functions with benchmark (Cao et al. 2020) for three different times t = 0, 2, 4 and for x = 0, λ = 3.
Model parameters are: η = 0.4, γ = 0.05, θ = 0.3, mY = 5, α = 3, mR = 1, T = 5 (see Fig. 2), and
β = 1, σ = 0.3, ρ = 2, μ = 0.05, λ = 3, nR = 2, mZ = 1, nZ = 2

positive and decreasing in t . By additionally fixing α = 3, mR = 1, T = 5, a plot of
their time behaviour is reported in Fig. 2 for different values of l. As a consequence
of Proposition 3.2, this plot also shows that the optimal proportion is decreasing with
respect to l and vanishes over a suitable l.

In Fig. 1b, we set the same values of the model parameters except for mY = 18.
In this case, we observe that there exists a level l = l∗ for which the equality in (4.1)
holds true. Therefore, for that level it results that k(t) = 0 for all t ∈ [0, T ], which
means that there is no contagion effect on the optimal proportion. Moreover, since

l∗ <
η
γ
, we get p̂t = 1

2mY

(
η
γ

− l∗
)
for all t ∈ [0, T ]. Besides, if 0 ≤ l < l∗, k(t)

is negative and increasing in t , while it is positive and decreasing for l > l∗. This
situation is presented in Fig. 3.

In Fig. 1c, mY = 30 and, similarly to the previous case, there exists l∗ such that
k(t) = 0 for all t ∈ [0, T ]. Since l∗ >

η
γ
, for that level it results that p̂t = 0 for all

t ∈ [0, T ]. Furthermore, since by Proposition 3.2 one can check that p̂t is decreasing
with respect to l, the optimal proportion is null for all levels l > l∗.

The situation in Fig. 1d is more involved, since there are two levels l∗ < l < l∗ for
which the equality in (4.1) is fulfilled. Nevertheless, the monotonicity of k(t) and p̂t
follows from similar arguments.

Figure4a and b are devoted to the value function V (t, x, λ). Figure4a studies the
dependence of V (t, x, λ) on the level. The function is plotted for three different initial
times t = 0, 2, 4 and for x = 0, λ = 3 when the model parameters are η = 0.4,
γ = 0.05, θ = 0.3,mY = 5, α = 3,mR = 1, T = 5 (see Fig. 2), and β = 1, σ = 0.3,
ρ = 2, μ = 0.05, λ = 3, nR = 2, mZ = 1, nZ = 2. It can be seen that there is a level
for which the value functions reaches a maximum. Whereas, in Fig. 4b the relative
difference of the value function compared to that of Cao et al. (2020) is evaluated and
from the result it can be deduced that the maximum reaches the optimal value obtained
by Cao et al. (2020).
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It is finally worth noting that, by applying Proposition 3.2 with mY>l = mY e
− l

mY

and QY>l = mY
nY

= 1
2mY

we get

I (t) = ηe
− l

mY

(
−(1 − p̂t ) + 1

2
1{0< 1

2mY

(
η
γ

+mRk(t)−l
)
<1}

)
. (4.2)

Since k(t) is a bounded function of level, the indicator function in (4.2) vanishes from
a certain level upwards, and thus I (t) is negative from that level. This implies, by
(3.12) and (3.14), that k(t), and thus Et,x,λ[X û

T ], are increasing in l at least from a
certain level upwards.

5 Conclusions

In this paper, we consider an optimal investment-reinsurance problem in a dynamic
contagion model allowing for self and externally excited claim clustering effects. We
find explicit mean-variance reinsurance-investment time consistent strategies for a
proportional reinsurance contract where the reinsurance cover a quota share of the
claim exceedance over a certain fixed retention level. The contract mitigates the pos-
sible drawback of the proportional resulting in the primary insurer ceding too much
still guaranteeing to share higher risks to the reinsurance counterpart. The insurer’s
retention proportion depends on the model contagion and on the tail heaviness of the
claim distribution depending on the fixed threshold level.
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