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Support Vector Classifier for Constraints Handling in the Design of
Inductors for DC-DC Converters

Gianmarco Lorenti, Carlo Stefano Ragusa, Senior Member, IEEE, Maurizio Repetto, Luigi Solimene, Member, IEEE
Politecnico di Torino, Department of Energy “Galileo Ferraris”, Turin, Italy

The design of inductors for non-isolated DC-DC converters aims to obtain a required differential inductance value to limit the
current ripple, together with low power losses and reduced component size, desired for highly efficient and power-dense converters.
However, small size and low losses are often contrasting objectives. In addition, the design solution feasibility must be evaluated
by verifying saturation and thermal constraints. This multi-objective optimisation problem of the inductor design can be effectively
tackled through population-based algorithms, such as Artificial Immune Systems. As these approaches require the evaluation of
many designs through time-consuming procedures, a classifier system trained in advance to recognise non-admissible solutions can
support the search for candidate solutions. The adoption of the Support Vector Classifier for the constraints handling of the inductor
design problem is here presented and discussed.

Index Terms—Buck Converter, Nonlinear Inductors, Data-driven Classification, Multi-objective Optimisation, Support Vector
Machine.

I. INTRODUCTION

THE ever increasing demand for highly efficient and
high power-dense power electronics converters makes the

design of their inductors challenging [1]. In DC-DC buck con-
verters, the inductor has the role of the dynamic energy storage
element, allowing the transition between different operating
states of the switching circuit, and it works in a biased steady
state: an AC component (current ripple) is superimposed to a
DC bias, determined by the load current. The first target of the
inductor design is the value of operative differential inductance
Lop, required to limit the current ripple to the converter
specification. In addition, essential features of an inductor are
low power losses and reduced component size and weight,
aiming to achieve high efficiency and high power density, re-
spectively. However, in a design optimisation procedure, these
two goals are contrasting since the core volume reduction can
be achieved only by accepting an increase in the component
losses. Thus, a multi-objective approach is required to face the
inductor design problem, where the decision variables are the
main geometric core parameters and the number of turns of the
winding. The combination of the design variables must satisfy
the operative inductance requirement. In the case of linear
operations, the Lop is equal to the initial inductance value L0.
However, the DC bias field can lead the operating point of the
magnetic material toward saturation, resulting in Lop < L0.
Despite limited modelling and control complexities, design
configurations operating in partial saturation are considered
in the design procedure since they allow further reduction
of the core dimension, accepting a limited increase in the
total losses [2], [3]. Including the partial saturation operation
increases the computational cost of the design problem due
to the non-linear nature of the core material. In addition, the
thermal limit of the inductor materials must be considered by
computing the total losses during the inductor operation and
estimating the heat dissipation. Thus, the design problem is

configured as a constrained multi-objective design problem,
where the total losses and the component dimensions must be
reduced, and the constraints on the differential inductance pro-
file and the maximum operating temperature must be satisfied.
Optimisation procedures based on meta-heuristic algorithms
can tackle this multi-objective problem [4]. These optimisation
methods are usually effective in finding the Pareto front [5],
but they require the evaluation of many design points, which
typically results in time-consuming procedures. Adopting a
data-driven surrogate model can reduce the computational cost
of evaluating constraint compliance. In this framework, the
performances of the Support Vector Machine Classifier (SVC)
for the constraints handling are assessed by applying it to the
design of an output inductor for a DC-DC buck converter.

II. MULTI-OBJECTIVE INDUCTOR DESIGN

The design optimisation problem considers an inductor with
a double-E-shaped core as the one shown in Figure 1. A design
configuration is identified by the geometric parameters of the
core (A, B, F ) and the air gap length g, which take real values
in a fixed interval, and the number of turns N .
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Fig. 1. Geometric parameters considered as design variables in the optimi-
sation of the inductor: width (A), half-height (B), extension of the core (F )
and air gap’s length (g).
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Fig. 2. (a) Qualitative comparison of the solutions evaluated considering the
operation in linear and in partial saturation conditions, in the space of the total
losses and the core volume [7]. (b) Comparison of two design configurations,
operating in partial saturation and linear condition. The green box highlights
the feasible operating inductance range.

Figure 2a shows a cloud of points representing different
design configurations in the objectives space: volume V and
losses P , on the x and y axes, respectively. The figure presents
a comparison between the solutions obtained considering only
the operation in linear conditions (orange dots) and those
achievable in partial saturation (blue dots). As shown, the
partial saturation operation allows the exploitation of smaller
core volumes, which would not result in feasible configura-
tions considering only the linear operation.

The design of partially saturated inductors requires adopting
a non-linear model of the device to evaluate the differential
inductance profile. A computationally faster but approximated
method is the equivalent non-linear reluctance circuit of the
component, solved with an iterative procedure. A more accu-
rate design method requires at least a 2D FEM simulation or
a 3D FEM simulation to effectively consider the stray flux,
the fringing flux, or the skin and proximity effects in the
winding. The proposed results are provided considering an
equivalent non-linear reluctance model, useful in a preliminary
design phase of the power inductor. The non-linear problem
is solved through the fixed point (FP) technique [6]. However,
the following considerations and remarks can also be applied
to the other design procedures.

Figure 2b shows the comparison of two feasible differential
inductance profiles for a given operative inductance value,
one operating in linear conditions and the other operating in
partial saturation. Given the specifications of the converter, the
required operative inductance can be computed. In particular,
a tolerance range over the prescribed inductance value can be
defined.

The loss evaluation can be performed through analytical
computations. In particular, the AC winding losses are ne-
glected, while the DC winding losses can be determined by
computing the DC resistance of the winding [8]. Concerning
the losses of the magnetic core, the improved Generalised
Steinmetz Equation (iGSE) allows computing the losses un-
der an arbitrary waveform [9]. For the sake of clarity, it
should be noted that the DC magnetic field bias, typical in
inductors operating in DC-DC converters, involves an increase

in magnetic losses. The parameters of the iGSE can be
adjusted as a function of the applied premagnetising field
HDC [10]. However, the dependence of the parameters on
the DC bias field has to be investigated with experimental
measurements at different frequencies, magnetic flux density,
and premagnetising field values. In addition, these parameters
are generally not reported by manufacturers. This lack of
information forces the designer to neglect the effect of the DC
bias on the core loss increase, knowing that the estimated value
could be wrong. A further requirement for an output inductor
of a DC-DC buck converter is the controlled over-temperature
during regular operation. The appropriate estimation of the
inductor heating requires also knowing the positioning of
the other components on the PCB of the converter, and
the thermal specifications of the surrounding materials, to
implement a thermal finite element simulation. However, a
preliminary estimation of the temperature rise caused by the
inductor losses can be done considering a natural convection
heat transfer condition, with a uniform heat flux density over
the outer surface of the core exposed to air. To summarise,
the constraints compliance evaluation requires the non-linear
differential inductance profile and the operating temperature
computation. During a run of the optimisation procedure,
much time is spent evaluating configurations that turn out
to be unfeasible. To avoid these expensive and unnecessary
calculations, a data-driven surrogate model is proposed in
this paper to identify the feasibility of a design solution.
The model can be used in a pre-selection phase included in
the optimisation procedure, making a classifier system decide
whether a candidate solution is worth being evaluated [7]. As
a case of study, in this paper, the optimised design of an 80 µH
inductor in N87 ferrite for a 48-24 V, 10 A, 50 kHz DC-DC
buck converter is considered. The multi-objective optimisation
procedure is the Vector Immune System (VIS) algorithm [5].

III. THE SUPPORT VECTOR CLASSIFIER FOR COMPLIANCE
EVALUATION

The proposed procedure aims at defining if a configuration
P(x), being x the degree of freedom array, is compliant with
design constraints defined as:
(a) Inductance lower bound, Lop(P(x)) ≥ Lmin;
(b) Inductance upper bound, Lop(P(x)) ≤ Lmax;
(c) Inductance drop limit, Lop(P(x)) ≥ ksat L0, with

ksat ∈ (0, 1);
(d) Thermal limit, T (P(x)) ≤ Tmax;

Figure 3 represents the feasibility regions obtained from an ex-
tensive search of the design space by considering every single
constraint, while Figure 4 shows the same when considering
the intersection of the four constraints. Only three variables
are considered in the plots (extension of core F , air gap’s
length g, and number of turns N ) in order to make the design
space reproducible in three dimensions. It can be noticed that
the resulting feasibility region is narrow and largely nonlinear.
This makes the classification task hard.

The classification response should anticipate the evaluation
of the configuration’s accurate performance, which requires a
time-consuming magnetic and thermal analysis, so to avoid
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Fig. 3. Comparison of feasible (blue) and unfeasible (orange) configurations
in the normalised design variable space. (a) Inductance upper bound. (b)
Inductance lower bound. (c) Inductance drop limit. (d) Thermal limit.

Fig. 4. Comparison of feasible (blue) and unfeasible (orange) configurations,
in the normalised design variable space, considering all the constraints on the
inductance profile and the thermal limit.

the complete assessment of possibly-unfeasible solutions. The
classification problem is identified by 3 features (F, g, N) and
two classes (feasible, unfeasible). The technique chosen is the
Support Vector Machine Classifier [11], a machine-learning
model for classification and regression which is extremely
powerful in solving binary classification problems [12]. The
primary objective of SVC is to create a boundary that effec-
tively separates multiple classes in the training set, maximising
the margin between them. A significant benefit of SVCs is
their ability to identify a subset of support vectors, which
are used to find hyperplanes that can ideally separate classes,
minimising the classification errors on the training data. The

SVC formulation is extremely effective for linearly-separable
and not-overlapping classes. But this is not commonly the case
for real-life classification problems, such as the one presented
in this paper. However, the algorithm can be modified by
defining a soft margin, enabling some training points to be
misclassified. The SVC can be further adapted to non-linear
classification problems through the use of non-linear kernel
functions. These functions maps the input space to a higher
dimensional one, called feature space, where the problem is
linear and can be effectively treated by the SVC. A commonly-
used kernel function with SVCs is the Radial Basis Function
(RBF). Not going into details of the SVC formulation, taking
into account the concepts of soft margins and RBF kernel, two
hyper-parameters of SVC can be introduced:

• C, which influences the width of the soft margin, deter-
mining the maximum acceptance of classification errors
on the training dataset. A higher value of C implies that
a smaller margin will be accepted.

• γ, related to the RBF formulation, which determines the
distance of influence of a single training sample in the
feature space. For large values of γ, the samples need to
be very close to each other to be considered in the same
class.

Both hyper-parameters influence the model’s behaviour by
making it closely follow the class boundaries in the training
samples (i.e. to overfit), or determining smoother decision
surfaces (which instead could lead to underfitting). The next
section will discuss the effect of the SVC hyper-parameters
on the constraints handling of the inductor design problem.

IV. RESULTS

The application of the SVC to the proposed inductor design
problem requires some remarks. The first regards the nature
of the dataset used for the training of the classifier and for the
evaluation of its performance. A generalised balanced dataset
of 2000 design configurations is considered for the training
phase. Some details on the generation of the training dataset
are provided in [7]. On the other hand, the SVC performances
are evaluated on an unbalanced dataset (33% feasible, 67%
unfeasible) of about 135000 design configurations, which are
the result of a VIS optimisation run. Given the nature of the
VIS optimisation [5], these points are obtained both from
random generation and local mutation of admissible design
configuration. The second remark regards the effect of the
classifier on the optimisation procedure: comparing the clas-
sifier response and the effective constraints evaluation defines
four outputs, constituting the well-known confusion matrix.
In the framework of an optimisation algorithm, the effects of
the two False outputs are different. While a False Positive
(FP) output, which means an unfeasible design configuration
misclassified as feasible, reduces the effectiveness of the
classifier in reducing the computational time of the design
procedure but does not influence the classification output, the
effect of a False Negative (FN) output can be significantly
detrimental. A FN output is a feasible configuration that is
misclassified as unfeasible. It means that a hypothetical opti-
mal design configuration will be wrongly disregarded during



4

TABLE I
OPTIMAL HYPER-PARAMETERS AND CLASSIFICATION SCORES

Case C γ TPR FPR
1 20.7 300.79 0.998 0.014
2 1.13 3.325 1 0.099

TABLE II
CONFUSION MATRIX RESULTS

Case TP TN FP FN
1 39944 69376 21335 4060
2 42851 61851 28461 969

the optimisation procedure, affecting the quality of the Pareto
Front. The selection of the SVC hyper-parameters can drive
the compromise accepted in the classifier accuracy. A good
indicator of a binary classifier performance can be represented
by the True Positive Rate (TPR) and the False Positive Rate,
defined as

TPR =
TP

TP + FN
, (1)

FPR =
FP

TN + FP
, (2)

where TP, TN, FP, FN are the True Positives, True Negatives,
False Positives, and False Negatives, respectively. An ideal
classifier will present a TPR = 1 and a FPR = 0. In a
real application, the SVC hyper-parameters can be optimised
by searching the TPR - FPR scores nearest to the ideal
values. Applying this strategy to the design problem with
a grid search in the range 10−1 - 103 for C and 10−1 -
104 for γ, the values of the SVC hyper-parameters and the
classifier scores presented in Table I are obtained. The scores
are evaluated by training the SVC on the 50% of the 2000
samples generalised dataset and testing it on the remaining
50%. Then, the performances of the SVC on the 135000 design
configurations from the VIS optimisation can be evaluated.
The results for the obtained confusion matrix are presented in
Table II.

The TPR and FPR of Case 1 are the nearest to the ideal
ones. In this case, the high value of the γ parameter determines
an extremely accurate classification of the training samples.
In addition, the high γ value makes the influence of the C
parameter in modifying the classifier output negligible. These
results are interesting since the rate of TN output is consid-
erable, allowing to effectively disregard about 70000 design
configurations during the optimisation procedure. However,
the high number of FN outputs could strongly deteriorate the
quality of the optimisation procedure. Lower values of the C
and γ parameters can be selected, as in Case 2, allowing to
define a smoother model and thus reducing the FN outputs
to 969. This outcome is obtained at the expense of a higher
FP rate, which implies the evaluation of about 7000 additional
unfeasible configurations if compared to Case 1. The selection
of the most appropriate SVC hyper-parameters depends on the
trade-off between the influence on the optimisation accuracy
and on the required computational cost.

V. CONCLUSIONS

This paper proposes a preliminary evaluation of the adoption
of a Support Vector Machine Classifier for the constraints
handling in the design of inductors for DC-DC converters.
The presented results support the effectiveness of the SVC in
predicting the constraint compliance of the design configura-
tions of power inductors, suggesting that it will help to reduce
the computational cost of the design optimisation procedures.
An interesting future development is the integration of the
training phase of the SVC in the first steps of the optimisation
procedure, also considering the hyper-parameters tuning to
adapt the classifier performances to the evolution of the
available training dataset during the optimisation.
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