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Abstract—Nowadays, Artificial Intelligence (AI) is bursting in many fields, including critical ones,
giving rise to reliable AI, that means ensuring safety of autonomous decisions. As the false
negatives may have a safety impact (e.g., in a mobility scenario, prediction of no collision, but
collision in reality), the aim is to push false negatives as close to zero as possible, thus
designing “safety regions” in the feature space with statistical zero error. We show here how
sensitivity analysis of an eXplainable AI model drives such statistical assurance. We test and
compare the proposed algorithms on two different datasets (physical fatigue and vehicle
platooning) and achieve quite different conclusions in terms of results that strongly depend on
the level of noise in the dataset rather than on the algorithms at hand.

THE INTRODUCTION. The rapid growing of
Artificial Intelligence (AI) technologies is lead-
ing to a closer interaction between humans and
machines, which poses legal and ethical issues;
technology experts and policy makers should
cooperate in order to make AI trustworthy and
responsible [1]. To this effort, regulation is be-
ing developed, stating the requirements that AI
systems should follow to achieve such goals.
For example, the European GDPR (https://gdpr.
eu/tag/gdpr/), introduced in 2018, states that a
“right to explanation” is needed when dealing
with automated systems. This has paved the way

to the development of a subfield of AI, referred
to as eXplainable AI (XAI), aiming to provide
humans with understanding and trust in models
outcomes. XAI may come in the form of global
intelligible rules, being simpler and generally less
accurate than more sophisticated models (like
those of deep learning), but with the advantage
of being interpretable.

Another viewpoint to trustworthy AI is identi-
fying and handling assurance under uncertainties
in AI systems. This means improving reliability
of prediction confidence. The topic remains a
significant challenge in machine learning (ML),
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as learning algorithms proliferate into difficult
real-world pattern recognition applications. The
intrinsic statistical error introduced by any ML
algorithm may lead to criticism by safety en-
gineers. This is corroborated even more by the
intrinsic instability of deep learning (DL) in the
presence of malicious noise [2]. The topic has
received a great interest from industry [3], in
particular in the automotive [4] and avionics [5]
sectors. In this context, the conformal predictions
framework [6] studies methodologies to asso-
ciate reliable measures of confidence with pattern
recognition settings, including classification.The
proposed approaches follows this direction, by
identifying methods to design data-driven safety
envelopes with statistical zero error. We show
how this assurance may limit the size of the safety
envelope (e.g., collision avoidance by drastically
reducing vehicles speed) and focus on how to find
a good balance between the assurance and the
extension of working conditions.

To this aim, we study how XAI can achieve
reliability based on rule tuning around safety
regions. The rationale behind the choice of XAI
relies on the typical complex shape of the so-
lutions drawn by black-box techniques (such as
neural networks), which makes a similar sensitiv-
ity analysis a hard task. We study the certification
under different angles of the estimated safety
envelope. Moreover, by testing and comparing
our three proposed methodologies on two distinct
datasets, we highlight the alternatives which can
be tuned according to the characteristics of the
dataset under analysis.

Related Work
Nowadays, a big effort is put in research

to integrate ML algorithms with safety, since
erroneous predictions may lead to severe con-
sequences in many safety-critical fields [7]. In
the context of autonomous driving, typical safety
engineering approaches are considered, with ex-
tension to ML paradigm [8]. These certification
approaches include formal verification [9], trans-
parent implementation [10], uncertainty estima-
tion [11], error detection [12], domain general-
ization [13] and adversarial approaches based on
data perturbation and corruption [14].

Other methods integrate safety assurance into
reinforcement learning, by making predictions to

guide the agent towards safe decisions [15].
Integrating ML and DL systems with safety

and reliability is fundamental in healthcare too: in
[16] a method to assess safety for pattern recog-
nition using a medical device is developed.To
the best of our knowledge, very few studies
address ML trustworthiness based on explainable
AI. Table 1 summarizes how the present work
contributes to advance the presented state-of-the-
art with respect to different key points: nature
of the algorithms (XAI or DL), kind of the
data (images or other) and safety approach (error
control or perturbation control).

Logic Learning Machine
Logic Learning Machine (LLM) is a global

rule-based method, developed as an improvement
of Switching Neural Networks [17] by Rulex
(https://www.rulex.ai/rulex-explainable-ai-xai/).
The LLM builds a classifier g(x) described by
rules of the following format: if <premise>
then <consequence>. The <premise> is the
logical AND (∧) of conditions on the input
features, whereas <consequence> is the output
class. The model is built in three phases:

1) Discretization and Latticization: each vari-
able is transformed into a string of binary
data in a Boolean lattice, using the inverse
only-one code binarization. All the strings
are then concatenated in one large string per
each sample.

2) Shadow Clustering: a set of binary values,
called implicants, are generated, allowing
the identification of groups of points asso-
ciated with a specific class.

3) Rule Generation: the implicants are trans-
formed into simple conditions and com-
bined into a collection of intelligible rules.

An implicant is a binary string in a Boolean
lattice that uniquely determines a group of points
associated with a given class. Starting from an im-
plicant, it’s possible to derive a rule having in its
premise a logical product of conditions based on
cutoffs obtained during the discretization step. In
LLM all the implicants are generated via Shadow
Clustering by looking at the whole training set:
thus, resulting rules can overlap and represent dif-
ferent relevant aspects of the underlying problem.
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eXplainable AI Deep Learning Image data Multivariate data Error control Perturbation control
[2] × × ×
[4] × ×
[5] × × ×
[6] × ×
[7] × ×
[8] ×
[9] × × × ×

[10] × × ×
[11] × × ×
[12] × × × ×
[13] × ×
[14] × × ×
[15] × ×
[16] × × ×

This paper × × ×

Table 1: The table summarizes the positioning of the state of the art with respect to the main pillars
of trustworthy AI. Error control here denotes additional mechanisms to give statistical guarantees to
the model. Perturbation control means robustness to discrepancies between training and operational
data

.

Feature and Value Ranking
A XAI model allows to perform an inspection

of its outcomes through feature and value ranking.
Consider a set of m rules rk, k =

1, . . . ,m, each including dk conditions clk , lk =
1k, . . . , dk. Let X1, . . . , Xn be the input vari-
ables, s.t. Xj = xj ∈ X ⊆ R ∀j = 1, . . . , n.
Let also ŷ be the class assigned by the rule and
yj the real output of the j − th instance.

A condition clk involving the variable Xj , can
assume one of the following forms:

Xj > s, Xj ≤ t, s < Xj ≤ t, (1)

being s, t ∈ X .
For each rule, it is possible to define a con-

fusion matrix. It is made up of four indices:
TP (rk) and FP (rk), defined as the number of
instances (xj, yj) that satisfy all the conditions
in rule rk with ŷ = yj and ŷ 6= yj respectively;
TN(rk) and FN(rk), defined as the number of
examples (xj, yj) which do not satisfy at least
one condition in rule rk, with ŷ 6= yj and ŷ = yj ,
respectively.

Consequently, we can derive the following
metrics:

C(rk) =
TP (rk)

TP (rk) + FN(rk)
(2)

E(rk) =
FP (rk)

TN(rk) + FP (rk)
(3)

The covering C(rk) is adopted as a measure
of relevance for a rule rk; in other words, the

greater is the covering, the higher is the generality
of the corresponding rule. The error E(rk) is a
measure of how many data are wrongly covered
by the rule. Both covering and error are used to
define feature ranking and value ranking.

Feature ranking (FR) provides a ranking of
the features used into the rules conditions accord-
ing to a measure of relevance. In order to obtain
the relevance R(clk) for a condition, we consider
rule rk, in which condition clk occurs, and the
same rule without condition clk , denoted as r′k.
Since the premise part of r′k is less stringent, we
obtain that E(r′k) ≥ E(rk), thus the quantity
R(clk) = (E(r′k)–E(rk))C(rk) can be used as a
measure of relevance for the condition of interest
clk . Each condition clk refers to a specific variable
Xj and is verified by some values νj ∈ X . In this
way, a measure of relevance Rŷ(νj) for every
value assumed by Xj is derived by the following
equation 4:

Rŷ(νj) = 1−
∏
k

(1−R (clk)) , (4)

where the product is computed on the rules
rk that include a condition clk verified when
Xj = νj . Since Rŷ(νj) takes values in [0, 1],
it can be interpreted as the probability that value
νj occurs to predict ŷ. The same argument can
be extended to intervals I ⊆ X , thus defining the
Value Ranking (VR). Relevance scores are then
ordered, giving evidence of the most sensitive
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interval of the feature with respect to each class.

Reliability Assessment Methods
Considering a binary classification problem,

we refer to the positive class (y = 1) as the
unsafe one. In contrast, class y = 0 is referred
to as the safe class. Based on this, we call
“safety regions” the regions in the feature space
where false negatives tend to zero; that means
the prediction of safety has no statistical error.
Through LLM feature and value ranking, we
apply two sensitivity optimization problems to
shape such regions. Moreover, the LLM itself
may be posed with statistical zero error and be
used in comparison with the former approaches.
The three methodologies are detailed formulated
in the following.

Reliability from Outside
Let X be a D×N matrix of the input vectors

xi ∈ RN , with N being the total number of
features and i ∈ [1, D]. Let g(xi) = y be
the function describing the LLM classification
(hence, g(xi) = 1 for the positive class). Let
D1 be the number of instances belonging to class
y = 1 and D0 the number of instances in class
y = 0, so that D1 +D0 = D.

Let NFR be the number of the most signifi-
cant features obtained through the feature ranking
for class y = 1. For each feature j ∈ [1, NFR],
we can use the LLM value ranking to define the
most significant interval for y = 1 as [sj, tj].
Our method consists in expanding it as follows:
[sj − δsj · sj, tj + δtj · tj].

Being ∆ = (δ1, . . . , δNFR) a matrix, with
δj = (δsj , δtj ), the optimal ∆ is computed
through the following optimization problem. Let
P(∆) be the hyper-rectangle under the expanded
intervals and let V(P(∆)) be the inherent vol-
ume.

Then, the optimization problem identifies the
best fit from the outside of class y = 1, namely,
it finds the most suitable shape, in terms of rule-
based intervals, of safe points around the unsafe
ones. It is as follows:

∆∗ = arg min
∆:N1=D1

V(P(∆)) (5)

being N1 the number of elements in X clas-
sified as y = 1 and included into V(P(∆)).

For instance, if we fix NFR=2, the hyper-
rectangle P becomes a rectangle S . The op-
timization process lets us find out the matrix
∆∗ = (δ∗1, δ

∗
2). The related optimal intervals

are I1 = (s1 − δ∗s1 · s1, t1 + δ∗t1 · t1), I2 =
(s2 − δ∗s2 · s2, t2 + δ∗t2 · t2), corresponding to
the features j = 1 and j = 2 respectively: their
logical union (∨) defines a surface S .

Then, the “safety region” is defined as the
complementary bi-dimensional surface of S ,
which can be written as follows:

S1 = ((−∞, s1 − δ∗s1 · s1) ∨ (t1 + δ∗t1 · t1,∞))∧
((−∞, s2 − δ∗s2 · s2) ∨ (t2 + δ∗t2 · t2,∞))

(6)

Reliability from Inside
This method performs the same search for

“safety regions”, but it starts with NFR most im-
portant features for safe class instead and reduces
their most relevant intervals (again, provided by
LLM value ranking) until the obtained region
only contains true negative instances.

In this case, the reduced intervals are: [sj +
δsj · sj, tj − δtj · tj]. Being ∆ defined in the
same way as for Equation 5 and P0 the hyper-
rectangle under the reduced intervals, the optimal
∆ is found by enlarging as much as possible the
hyper-rectangle from inside the safe class, until
an unsafe point is reached. It is as follows:

∆∗ = arg max
∆:N1=0

V(P0(∆)) (7)

For NFR = 2, the “safety region” is the
following surface S0:

S0 = (s1 + δ∗s1 · s1, t1 − δ∗t1 · t1)∨
(s2 + δ∗s2 · s2, t2 − δ∗t2 · t2)

(8)

LLM with Zero Error
As the sharp angularity of hyper-rectangles

may be not fine enough to follow the potential
complex shapes of the boundaries between the
classes, a more refined approach would ask for
more complex separators, still preserving the zero
error constraint and by starting from the available
rule baseline. Zero error classification (for the
safe class) is readily available by the shadow clus-
tering adopted by LLM. The clustering process
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is applied with the further constraint of building
clusters without superposition of points of more
than one class [18] (LLM 0%, in the following).
All the resulting rules with zero error are then
joined in logical OR (∨), thus describing a shape
more complex than a hyper-rectangle. The new
model deserves a further sensitivity tuning (on a
test set) as follows.

The LLM 0% defines a set of m rules rk, k =
1, . . . ,m so that E(rk) = 0 ∀k ∈ [1,m]. Sup-
pose that this provides a set of m0 rules r0

k, k =
1, . . . ,m0 for the safe class (y = 0). Also, let
c0
lk
, l0k = (1, . . . , d0

k) be the set of d0
k conditions

inside of each rule r0
k. Then, we consider the

logical OR (∨) between the obtained highest-
covering rules, building a new predictor r̂. Our
goal is to assess its ability of classifying new test
set data with statistical zero error (FNR=0). This
implies to further tune r̂, by reducing a subset
of its conditions c0

lk
, chosen as those containing

the first NFR features obtained from LLM 0%
feature ranking for class y = 0. In mathematical
terms, for each feature j ∈ [1, NFR], we add the
thresholds of the chosen conditions by applying
δ = (δs, δt), being δs and δt the perturbations
applied to s and t thresholds, respectively, as
defined in Equation 1. Let r̂(δ) be the resulting
perturbed predictor, our goal is then to find the
optimal δ as follows:

δ∗ = arg max
δ:E(r̂(δ))=0

C(r̂(δ)) (9)

Applications and Results
The methods described in the previous sec-

tion have been applied on two different classi-
fication problems: physical fatigue detection in
working task simulation and collision detection
in vehicle platooning. Together with the false
negative rate (FNR), the true negative rate (TNR)
is of interest, being the measure of the quantity
of safe points in a region. The aim is to obtain
the largest TNR with zero FNR.

Physical Fatigue
The data used in this application belong to an

open-source dataset (https://github.com/zahrame/
FatigueManagement.github.io/tree/master/Data).
Data were collected through wearable sensors,
i.e. Inertial Movement Units, from 15 participants
who were asked to perform a simulation of an

industrial task for 180 minutes and provide a
fatigue level every 10 minutes using RPE [19].
A RPE≥13 corresponds to a fatigued state
(class y = 1), otherwise to non-fatigued (class
y = 0). From sensors raw data, a list of features
is derived (see Table 2 in [20]). We removed
heart-rate related features as well as gender,
since it is not numerical, and standardized data
by applying z-score transformation.

We then trained LLM with standard 5% max-
imum error allowed for rules on a 67% training
set. We evaluated it on a 33% test set obtaining
accuracy of 82%, sensitivity of 71%, specificity
of 95% and F1-score of 81 %.

Reliability from Outside
To test this method, we considered the first two
most important intervals for fatigued class that
we got from LLM value ranking: back rotation
position in sagittal plane > 0.03 and wrist jerk
coefficient of variation > 0.03. We applied the op-
timization algorithm (Equation 5) on such inter-
vals and obtained δ∗s1 = −13, δ∗s2 = 28, resulting
in FNR=0 and TNR=0.20. Therefore, the “safety
region”, which we call “non-fatigue region” in
this context, can be expressed as follows (for
brevity, let f1 and f2 be the two above mentioned
features):

S1 = ((f1 ∈ (−∞, 0.42)) ∧ (f2 ∈
(−∞,−0.81))

The region was then validated in order to take into
account that the involved feature values should
vary in a limited range, so to reflect real human
movement capabilities and correspond to proper
execution of the task. Since the dataset documen-
tation does not drive in this direction and the
inherent literature lacks of standard ranges, we
chose to consider maximum and minimum values
for the features based on two age groups (age≤40
and age>40). This helps to highlight the further
stratification readily available from the sensitivity
analysis.

Doing so, we were able to redefine two “non-
fatigue regions” by limiting the previous one
according to the ranges we found; such new
regions are expressed as:

S1 = ((f1 ∈ (−2.52, 0.42)) ∧ (f2 ∈
(−1.78,−0.81)) for age ≤ 40 y.o.
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Figure 1: Scatter plot of the first two features
(back rotation position in sagittal plane and wrist
jerk coefficient of variation) with representations
of the “non-fatigue region” (FNR=0) individuated
for age ≤ 40 group (pink) and age > 40 (violet).

S1 = ((f1 ∈ (−1.86, 0.42)) ∧ (f2 ∈
(−2.0,−0.81)) for age > 40 y.o.

In Fig. 1 a visual representation of the ob-
tained regions is provided.

Reliability from Inside
Reliability from inside considered the problem
of identifying non-fatigue regions starting from
the non-fatigued class The value ranking shown
back rotation position in sagittal plane ≤ 0.03
and chest acceleration mean > -0.47 as the two
most relevant intervals for predicting non-fatigue.
On such conditions, we applied the optimization
problem (Equation 7), which led us to individuate
δ∗t1 = 57, δ∗s2 = 8.78. For these values, we
got FNR=0 and TNR=0.06. The “non-fatigued
region” S0 is then found (with f1 and f2 being
back rotation position in sagittal plane and chest
acceleration mean respectively):

S0 = (f1 ∈ (−∞,−1.68) ∨ f2 ∈ (3.65,∞))

Just as for the outside approach, we limited such
region in function of the two age groups (≤ and
> 40 years old). This redefines S0 as follows (see
Fig. 2 for the graphical representation):

S0 = (f1 ∈ (−2.52,−1.68) ∨ f2 ∈
(3.65, 3.99)) for age ≤ 40 y.o.

S0 = (f1 ∈ (−1.86,−1.68) ∨ f2 ∈
(3.65, 3.99)) for age > 40 y.o.

Figure 2: Scatter plot of the first two features
(back rotation position in sagittal plane, Chest
Acceleration Mean) from value ranking of non-
fatigued class, with representations of the “non-
fatigue regions” (FNR=0) based on the age group
(violet for age ≤ 40, pink otherwise)

Zero Error LLM
Both previous approaches have the limitation of
individuating optimal solutions to the identifica-
tion of “non-fatigue regions” characterized by
relatively low values of TNR, i.e. number of
points included in such surfaces.

To assess if such values could be increased,
we trained the LLM 0%, obtaining 6 rules for
the safe class, and built a new predictor by joining
the first four highest-coverage rules in logical OR
(see below).

IF (0.51 < HipACCMean ≤ 1.98 and
ChestACCcoefficientofvariation ≤ 1.11 and -1.73 <

averagestepdistance ≤ 0.81 and
backrotationpositioninsagplane ≤ 0.52) ∨
(WristjerkMean > 0.55 and -1.35 < Back rotation
position in sag plane ≤ 0.04) ∨
(-1.73 < averagestepdistance ≤ -0.22 and
backrotationpositioninsagplane ≤ -0.25 and -0.44 <
numberofsteps ≤ 3.75 and -1.73 <
Wristjerkcoefficientofvariation ≤ 0.55) ∨
(ChestxpostureMean > -0.033 and HipzpostureMean >

0.43 and WristACCMean > -0.83 and -0.88 <
backrotationpositioninsagplane ≤ 0.29)

THEN non-fatigued

Prior to any perturbation, we got FNR=0.06
and TNR=0.75. To further decrease the FNR, we
conducted the optimization process described in
Equation 9 by tuning the thresholds for the first
NFR = 2 features from non-fatigued feature
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ranking, namely HipACCMean and Wristjerk-
Mean. We obtained δ∗s1 =1.848 and δ∗t2 =0.027
for such features respectively, with FNR=0 and
TNR=0.42.

Vehicle Platooning
Vehicle platooning is one of the most impor-

tant challenges in autonomous driving, dealing
with a trade-off between performance and safety.
In our analysis we considered a scenario of
cooperative adaptive cruise control as described
in [18], where the platoon is in a steady state
of speed and reciprocal inter-vehicular distance
when a braking force is applied by the leader
of the platoon. In the present application, we
used simulation data generated by Plexe simu-
lator (https://github.com/mopamopa/Platooning).
For each of the generated samples, 5 features
were computed and filtered within the following
ranges: the number of vehicles, N ∈ [3, 8]
the braking force F0 ∈ [−8,−1] × 103 N
the Packet Error Rate PER ∈ [0.2, 0.5] the
initial distance between vehicles d(0) ∈ [4, 9]
m (supposed equal for all of them); the initial
speed v(0) ∈ [10, 90]km/h. The system registers
a collision when distance between two vehicles
is lower than 2 m.

Applying the default LLM with maximum
error of 5% on a 30% test set, we obtained 85,9%
of accuracy, 75.4% sensitivity, 86.8% specificity
and 46 % F1-score.

Reliability from Outside
From the value ranking for the collision class
(y = 1), we obtained PER >0.43 and F0 ≤
−7.50 × 103N as the first two most important
intervals. We then applied the optimization ap-
proach as in Equation 5 and found δ∗s1 = −0.034,
δ∗t2 = −0.416, with FNR=0 and TNR=0.34.
Thus, according to the definition in Equation 6,
the safety region we obtain is the following:

S1 = ((PER ∈ (0.2, 0.4154)) ∧ (F0 ∈
(−4.37,−1)× 103)

A visual representation of such region is in Fig. 3.
Also, we tested the method with NFR = 3,
including the third most important interval from
value ranking too, i.e. N > 6. We got δ∗s1 =
−0.184, δ∗t2 = −0.166 and δ∗s3 = −0.1 with
FNR=0 and TNR=0.19. In this case, the safety
region is the following volume (Fig. 4):

Figure 3: Scatter plot of the first two features
(PER and F0) with representations of the safety
region

Figure 4: 3D scatter plot of the first three features
(PER,F0,N): the safety region is represented by
the volume (in violet)

V1 = ((PER ∈ (0.2, 0.3509)) ∧ (F0 ∈
(−6.255,−1)× 103) ∧ (N ∈ [3, 5])

Reliability from Inside
Following the optimization approach in Equation
7, we first chose the first two intervals from
the value ranking of the safe class (y = 0):
PER ≤ 0.33 and F0 > −3.50 × 103N. Then,
we computed the optimal threshold perturbations
δ∗t1 = 0.356, δ∗s2 = 0.686, for which we got
FNR=0 with TNR=0.13. The obtained safety re-
gion is the surface (Fig. 5):

S0 = (PER ∈ (0.2, 0.2125) ∨ F0 ∈
(−1.1001,−1)× 103)
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Figure 5: Scatter plot of the first two features
(PER and F0) for safe class with representations
of the safety region

Zero Error LLM

By lowering the LLM maximum error allowed
to 0%, we were able to look for more complex
safety regions. After training the LLM model with
0% error, we obtained 99 rules for the safe class
and joined the first 4 with the highest covering.
This corresponded to the following predictor:

IF (N ≤ 5 and v(0) ≤ 54.50) ∨

(PER ≤ 0.295 and N ≤ 7 and v(0) ≤ 86.50) ∨
(v(0) ≤ 28.50 and PER ≤ 0.445) ∨
(v(0) ≤ 28.50 and N ≤ 6 and d(0) ≤ 7.86)

THEN safe

Before any perturbation, the metrics are
FNR=0.05 and TNR=0.55. We then exploited the
feature ranking to individuate which features to
tune for lowering FNR as much as possible. The
two most influent features resulted were v(0)
and PER in this case. By solving Equation
9, we perturbed them: in this case, we were
able to achieve only a suboptimal solution, with
FNR=0.02 and TNR=0.45, corresponding to
δt1 = 0.000877 for v(0) and δt2 = 0.277 for
PER. In order to maintain TNR as large as
possible, we perturbed only the most stringent
threshold where the same feature was present
in more than one rule. The final result is a
slight modification of rules above with respect
to v(0) (as the inherent δ is very low) and with
a significant impact on PER as it is reduced to
its lower bound in the second rule.

Discussion
Comparing the obtained results on the two

datasets, we can see that inferring reliability
from the available rules is highly dependent on
the structure of the data under analysis. The
three methods performed differently in the two
cases. More specifically, the LLM 0% achieved
optimality (zero FNR) for the fatigue problem
and suboptimality (almost zero FNR) in platoon-
ing. However, as expected, in both cases results
showed an improvement in TNR with respect to
the other methods. On the other hand, the inside-
outside methods show flexibility in looking at the
feature space, alternating good results (outside in
platooning in two dimensions), surprising results
(outside in platooning in three dimensions is
outperformed by the same in two dimensions) and
bad results (inside in platooning in two dimen-
sions). The outside approach finds larger (higher
TNR) safety regions than the inside one both
in fatigue and platooning. Inside-outside may be
even joined together when the feature ranking
agrees on the most important features for the
available classes. As this happens in the platoon-
ing case, we may consider the safety regions
involving PER and F0 (Fig. 3 and Fig. 5), and,
by visual analysis of the overlap of such regions
(see Fig. 6), we could join them to find a larger
and more complex safety region.

Conclusions and Future Works
In this work, we have studied native XAI

models as a solution for safety insurance. In
particular, we focused on a rule-based model,
the LLM, and demonstrated how innovative rule
optimization algorithms can be applied to design
“safety regions” in the features space with zero
statistical error. By testing and comparing our
proposed methodologies on problem instances
of different nature (physical fatigue and vehicle
platooning), we have also shown how their per-
formance varies between the datasets.

Future works may extend the testing through
cross-validation in the presence of a large amount
of data, including the adoption of data augmen-
tation techniques. The characterization of the
placement of the points deserves further study
to understand the optimal covering of the safety
regions. The translation of DL logic into rules
with further design of safety envelope is another
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Figure 6: Scatter plot of the two most important
features in vehicle platooning LLM classification
(PER and F0), with representation of the safety
regions found with Inside (pink area) and Outside
(blue area) methods: the overlap of such regions
defines a new safety region, where TNR reaches
higher values

topic we are going to pursue in the near future.

REFERENCES
1. R. Madhavan, J. A. Kerr, A. R. Corcos, and B. P.

Isaacoff, “Toward trustworthy and responsible artificial

intelligence policy development,” IEEE Intelligent Sys-

tems, vol. 35, no. 05, pp. 103–108, sep 2020.

2. A. Clavière, E. Asselin, C. Garion, and C. Pagetti,

“Safety Verification of Neural Network Controlled Sys-

tems,” Nov. 2020, working paper or preprint. [Online].

Available: https://hal.archives-ouvertes.fr/hal-02975455

3. “Standardization in the area of artificial intelligence,”

ISO/IEC, Washington, DC 20036, USA, Standard,

Creation date 2017, https://www.iso.org/committee/

6794475.html.

4. “Road vehicles safety of the intended functionality pd

iso pas 21448:2019,” International Organization for

Standardization, Geneva, CH, Standard, Mar. 2019.

5. “Concepts of design assurance for neural networks

codann,” European Union Aviation Safety Angency,

Daedalean, AG, Standard, Mar. 2020, also available as

https://www.easa.europa.eu/sites/default/files/dfu/EASA-

DDLN-Concepts-of-Design-Assurance-for-Neural-

Networks-CoDANN.pdf.

6. V. N. Balasubramanian, S. Ho, and V. Vovk, Conformal

Prediction for Reliable Machine Learning, 1st ed. 225

Wyman Street, Waltham, MA 02451, USA: Morgan

Kaufmann Elsevier, 2014.

7. A. Barredo Arrieta, N. Dı́az-Rodrı́guez, J. Del Ser,

A. Bennetot, S. Tabik, A. Barbado, S. Garcia, S. Gil-

Lopez, D. Molina, R. Benjamins, R. Chatila, and

F. Herrera, “Explainable artificial intelligence (xai): Con-

cepts, taxonomies, opportunities and challenges toward

responsible ai,” Information Fusion, vol. 58, pp. 82–115,

2020. [Online]. Available: https://www.sciencedirect.

com/science/article/pii/S1566253519308103

8. S. Mohseni, M. Pitale, V. Singh, and Z. Wang, “Practical

solutions for machine learning safety in autonomous

vehicles,” CoRR, vol. abs/1912.09630, 2019. [Online].

Available: http://arxiv.org/abs/1912.09630

9. S. A. Seshia, A. Desai, T. Dreossi, D. J. Fremont,

S. Ghosh, E. Kim, S. Shivakumar, M. Vazquez-

Chanlatte, and X. Yue, “Formal specification for deep

neural networks,” in Automated Technology for Verifi-

cation and Analysis, S. K. Lahiri and C. Wang, Eds.

Cham: Springer International Publishing, 2018, pp. 20–

34.

10. J. Adebayo, J. Gilmer, M. Muelly, I. J. Goodfellow,

M. Hardt, and B. Kim, “Sanity checks for saliency

maps,” CoRR, vol. abs/1810.03292, 2018. [Online].

Available: http://arxiv.org/abs/1810.03292

11. B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Sim-

ple and scalable predictive uncertainty estimation using

deep ensembles,” in Proceedings of the 31st Interna-

tional Conference on Neural Information Processing

Systems, ser. NIPS’17. Red Hook, NY, USA: Curran

Associates Inc., 2017, p. 6405–6416.

12. C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On

calibration of modern neural networks,” in Proceedings

of the 34th International Conference on Machine Learn-

ing, ser. Proceedings of Machine Learning Research,

D. Precup and Y. W. Teh, Eds., vol. 70. International

Convention Centre, Sydney, Australia: PMLR, 06–

11 Aug 2017, pp. 1321–1330. [Online]. Available:

http://proceedings.mlr.press/v70/guo17a.html

13. X. Zhang, Z. Wang, D. Liu, and Q. Ling,

“DADA: deep adversarial data augmentation for

extremely low data regime classification,” CoRR,

vol. abs/1809.00981, 2018. [Online]. Available:

http://arxiv.org/abs/1809.00981

14. D. Hendrycks and T. Dietterich, “Benchmarking neural

network robustness to common corruptions and pertur-

bations,” 2019.

15. D. Isele, A. Nakhaei, and K. Fujimura, “Safe

reinforcement learning on autonomous vehicles,”

CoRR, vol. abs/1910.00399, 2019. [Online]. Available:

http://arxiv.org/abs/1910.00399

16. U. Becker, “Increasing safety of neural networks in

9

Authorized licensed use limited to: CNR-IEIIT Institute. Downloaded on March 17,2022 at 08:09:14 UTC from IEEE Xplore.  Restrictions apply. 

https://hal.archives-ouvertes.fr/hal-02975455
https://www.iso.org/committee/6794475.html
https://www.iso.org/committee/6794475.html
https://www.easa.europa.eu/sites/default/files/dfu/EASA-DDLN-Concepts-of-Design-Assurance-for-Neural-Networks-CoDANN.pdf
https://www.easa.europa.eu/sites/default/files/dfu/EASA-DDLN-Concepts-of-Design-Assurance-for-Neural-Networks-CoDANN.pdf
https://www.easa.europa.eu/sites/default/files/dfu/EASA-DDLN-Concepts-of-Design-Assurance-for-Neural-Networks-CoDANN.pdf
https://www.sciencedirect.com/science/article/pii/S1566253519308103
https://www.sciencedirect.com/science/article/pii/S1566253519308103
http://arxiv.org/abs/1912.09630
http://arxiv.org/abs/1810.03292
http://proceedings.mlr.press/v70/guo17a.html
http://arxiv.org/abs/1809.00981
http://arxiv.org/abs/1910.00399


1541-1672 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MIS.2022.3159098, IEEE Intelligent
Systems

Department Head

medical devices,” in Computer Safety, Reliability, and

Security, A. Romanovsky, E. Troubitsyna, I. Gashi,

E. Schoitsch, and F. Bitsch, Eds. Cham: Springer

International Publishing, 2019, pp. 127–136.

17. M. Muselli, “Switching neural networks: A new connec-

tionist model for classification,” pp. 23–30, 01 2005.

18. M. Mongelli, E. Ferrari, M. Muselli, and A. Fermi,

“Performance validation of vehicle platooning through

intelligible analytics,” IET Cyber-Physical Systems:

Theory & Applications, vol. 4, no. 2, pp. 120–127, 2019.

[Online]. Available: https://ietresearch.onlinelibrary.

wiley.com/doi/abs/10.1049/iet-cps.2018.5055

19. N. Williams, “The Borg Rating of Perceived Exertion

(RPE) scale,” Occupational Medicine, vol. 67, no. 5,

pp. 404–405, 07 2017. [Online]. Available: https:

//doi.org/10.1093/occmed/kqx063

20. Z. Sedighi Maman, Y.-J. Chen, A. Baghdadi,

S. Lombardo, L. A. Cavuoto, and F. M. Megahed,

“A data analytic framework for physical fatigue

management using wearable sensors,” Expert Systems

with Applications, vol. 155, p. 113405, 2020. [Online].

Available: http://www.sciencedirect.com/science/article/

pii/S0957417420302293

Sara Narteni Got her M.Sc. in Bioengineering at
the University of Genoa on March 2020, with a thesis
entitled “Pleural line ultrasound videos analysis for
computer aided diagnosis in acute pulmonary failure”.
She is PhD student at Politecnico di Torino, working
in the IEIIT institute of Consiglio Nazionale delle
Ricerche. She works on data analytics and machine
learning topics from different fields, such as industry,
healthcare and automotive. Moreover, her research
interests also concern computer security topics, in-
cluding covert channels and Internet of Things.

Vanessa Orani Got a M.Sc. in Stochastics and
Data Science in April 2019 with the thesis “Bayesian
isotonic logistic regression via constrained splines: an
application to estimate the serve advantage in profes-
sional tennis”. Now she is research fellow at the lab-
oratory IEIIT of the CNR, the main research activities
concern machine learning applied in different field,
including health, transport and telecommunications.
She is currently involved in the ALISA project, funded
by Regione Liguria and in cooperation with Aitek
S.p.A. (www.aitek.it), to investigate AI approaches
with data obtained from IoT devices and to deepen
video content analysis/image processing.

Ivan Vaccari Got his Ph.D. in Computer Science
and a Computer engineering degree cum laude at

the University of Genoa, respectively in 2021 and
2017. During his research activities, he worked in
different European projects focused on security in
healthcare data, IoT and financial infrastructures. He
is currently a research fellow at IEIIT institute of
Consiglio Nazionale delle Ricerche, working on IoT
and network security focused on identification of vul-
nerabilities and developed of innovative cyber threats.
Regarding detection and mitigation systems, he is
working on machine learning and artificial intelligence
approaches.

Enrico Cambiaso Got his Ph.D. degree in Computer
Science at the University of Genoa, while working
for Ansaldo STS and Selex ES, both companies are
part of the Finmeccanica group. He has a strong
background as computer scientist and he is currently
employed at the IEIIT institute of Consiglio Nazionale
delle Ricerche, as a technologist working on cyber-
security topics and focusing on the design of last
generation threats and related protection.

Maurizio Mongelli Obtained his Ph.D. Degree in
Electronics and Computer Engineering from the Uni-
versity of Genoa (UNIGE) in 2004. The doctorate was
funded by Selex Communications S.p.A. (Selex). He
worked for both Selex and the Italian Telecommu-
nications Consortium (CNIT) from 2001 until 2010.
During his doctorate and in the following years, he
worked on the quality of service for military networks
with Selex. He was the CNIT technical coordinator
of a research project concerning satellite emulation
systems, funded by the European Space Agency; and
he spent three months working on the project at the
German Aerospace Center in Munich. He is now a
researcher at the Institute of Electronics, Computer
and Telecommunication Engineering (IEIIT) of the
National Research Council (CNR), where he deals
with machine learning applied to bioinformatics and
cyber-physical systems. He is co-author of over 100
international scientific papers and 2 patents.

10

Authorized licensed use limited to: CNR-IEIIT Institute. Downloaded on March 17,2022 at 08:09:14 UTC from IEEE Xplore.  Restrictions apply. 

https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-cps.2018.5055
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-cps.2018.5055
https://doi.org/10.1093/occmed/kqx063
https://doi.org/10.1093/occmed/kqx063
http://www.sciencedirect.com/science/article/pii/S0957417420302293
http://www.sciencedirect.com/science/article/pii/S0957417420302293
www.aitek.it

